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ABSTRACT

Iterative refinement has emerged as an effective paradigm for enhancing the capa-
bilities of large language models (LLMs) on complex tasks. However, existing ap-
proaches typically implement iterative refinement at the application or prompting
level, relying on autoregressive (AR) modeling. The sequential token generation
in AR models can lead to high inference latency. To overcome these challenges,
we propose Context-Wise Order-Agnostic Language Modeling (COrAL), which
incorporates iterative refinement directly into the LLM architecture while main-
taining computational efficiency. Our approach models multiple token dependen-
cies within manageable context windows, enabling the model to perform iterative
refinement internally during the generation process. Leveraging the order-agnostic
nature of COrAL, we introduce sliding blockwise order-agnostic decoding, which
performs multi-token forward prediction and backward reconstruction within con-
text windows. This allows the model to iteratively refine its outputs in parallel
in the sliding block, effectively capturing diverse dependencies without the high
inference cost of sequential generation. Empirical evaluations on reasoning tasks
demonstrate that COrAL improves performance and inference speed, respectively,
achieving absolute accuracy gains of 4.6% on GSM8K and 4.0% on LogiQA,
along with inference speedups of up to 3.9× over next-token baselines. Prelimi-
nary results on code generation indicate a drop in pass rates due to inconsistencies
in order-agnostic outputs, highlighting the inherent quality–speed trade-off.

1 INTRODUCTION
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Figure 1: Scaling of performance and inference
cost on GSM8K with increasing the minimum
refinement times for each output position. k
represents the backward context window size.
We set the decoding block size as b = 64.

Large Language Models (LLMs) have recently
achieved remarkable success across a wide range
of tasks (Brown et al., 2020; Touvron et al.,
2023; OpenAI, 2023; Dubey et al., 2024), such
as mathematical problem-solving, logical rea-
soning, and programming (Yu et al., 2024; Pan
et al., 2023; Schick et al., 2023; Rozière et al.,
2023). Strategies that enable LLMs to learn
from previous mistakes and iteratively refine their
outputs have been particularly effective, achieving
human-level performance and transforming both
academic research and industrial applications (Pan
et al., 2024; Ye et al., 2024; OpenAI, 2024). These
iterative refinement approaches incorporate
feedback—either external or internal—as supervi-
sion signals during training (Zelikman et al., 2022;
Huang et al., 2023; Shinn et al., 2023; Lightman
et al., 2024; Xie et al., 2024), or by developing
prompting frameworks that guide the model toward improved generations through methods like
guided search or self-refine (Yao et al., 2023; Xie et al., 2023; Madaan et al., 2023).

Despite their effectiveness, these approaches predominantly rely on autoregressive (AR) LLMs,
which generate text by predicting the next token in a fixed left-to-right order using causally masked
Transformers (Radford, 2018). This sequential generation process inherently limits the model’s

1
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Figure 2: Sliding Blockwise Order-Agnostic Decoding. COrAL performs multi-token prediction
and refinement in the sliding block with context window size k =3 and block size b=6.

ability to capture dependencies spanning beyond the immediate next token, especially those that
require backward context (Hu et al., 2024). Moreover, the sequential nature of AR models leads to
high inference latency, resulting in computational inefficiency for long sequences (Cai et al., 2024).

To address these limitations, researchers have explored order-agnostic architectures that enhance
representation learning and accelerate inference. Previous studies mainly focus on two solutions:
permutation-based AR and non-autoregressive (NAR) modeling, but each has its own strengths and
limitations. For instance, permutation-based models propose diversity-enhanced pretraining objec-
tives that predict multiple subsequent tokens in various orders to capture richer dependencies (Yang
et al., 2019; Zhang et al., 2024b). Similarly, NAR models generate tokens in parallel, significantly
reducing inference time (Gu et al., 2018). However, conventional NAR models often struggle with
tasks involving variable-length generation and complex token dependencies, leading to degraded
text quality. As a result, these models are typically task-specific and require additional mechanisms
to ensure consistency (Gui et al., 2023; Shi et al., 2024). Inspired by the success of diffusion models
in image generation (Austin et al., 2021), recent efforts have adapted denoising techniques to gener-
ative language modeling as an iterative extension of NAR models (Savinov et al., 2022; Gong et al.,
2023). While these methods improve efficiency, they still lag behind AR models regarding gener-
ation quality and generalizability. Given the trade-offs among different models1, a pivotal question
arises:Can we unify the strengths of denoising techniques with order-agnostic modeling to enhance
the capabilities of AR-LLMs while mitigating their respective limitations?

In this work, we propose Context-Wise Order-Agnostic Language Modeling (COrAL), which
combines the advantages of AR and order-agnostic modeling. COrAL models token dependen-
cies within manageable context windows, effectively balancing the capture of both local and long-
range dependencies with computational efficiency. Through context-wise modeling, COrAL over-
comes the limitations of fixed-order generation in AR models and the dependency modeling chal-
lenges in NAR models. Within each context window, COrAL models diverse dependencies in an
order-agnostic manner, enhancing the model’s ability to capture complex token relationships while
maintaining computational efficiency. Leveraging COrAL, we introduce Sliding Blockwise Order-
Agnostic Decoding, which performs forward multi-token prediction and backward reconstruction
simultaneously. As shown in Figure 1, this strategy enables the model to perform iterative refine-
ment internally to scale up inference performance. Additionally, to ensure that the model remains
aware of target token positions without necessitating architectural changes, we apply a generalized
Rotary Position Embedding (RoPE) (Su et al., 2024) to the last layer of the Transformer. This po-
sitional encoding technique preserves target-aware representations, which are essential for effective
order-agnostic generation and iterative refinement.

With a two-stage training strategy, we equip conventional AR-LLMs with order-agnostic capabilities
without requiring architectural add-ons or pre-training from scratch. We conduct extensive exper-
iments on reasoning tasks, including arithmetic computation and logical reasoning, to evaluate the
effectiveness and efficiency of COrAL. Our empirical results show that COrAL not only improves
performance but also significantly accelerates inference. Specifically, COrAL achieves absolute ac-
curacy gains of 4.6% on GSM8K and 4.0% on LogiQA, along with inference speedups of up to

1We make conceptual comparison among different model architectures in Appendix A.
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Figure 3: Context-Wise Order-Agnostic Language Modeling. We visualize the order-agnostic
dependencies within a context window size k = 2. For target-aware position encoding, we show how
COrAL obtains query representations for multiple positions within a context window size k = 2.

3.9 times over next-token baselines. These findings demonstrate that COrAL effectively captures
dependencies within context windows while maintaining computational efficiency. However, pre-
liminary experiments on code generation reveal a decrease in pass rates due to inconsistencies in
order-agnostic outputs, highlighting the inherent quality–speed trade-offs. This suggests that further
refinements are necessary for tasks that require strict syntactic coherence.

2 CONTEXT-WISE ORDER-AGNOSTIC LANGUAGE MODELING

We present Context-Wise Order-Agnostic Language Modeling, a generalized AR framework that
captures conditional textual distributions based on various orders in context windows.

2.1 BACKGROUND

Given a prompt x and a target sequence of T tokens y = {y1, y2, · · · , yT }, conventional AR mod-
els factorize the multivariate distribution p(y | x) into a product of univariate distributions using
the probability chain rule log p(y | x) =

∑T
t=1 log p(yt | y<t,x), which requires T iterative sam-

pling steps to generate the sequence. In contrast, order-agnostic AR modeling generalizes this by
modeling multiple possible orderings σ ∈ ST of the sequence:

log p(y | x) = logEσ∼ST
[p(y | x, σ)]

≥ Eσ∼ST
[log p(y | x, σ)] = Eσ∼ST

[
T∑

t=1

log p
(
yσ(t) | yσ(<t),x

)]
.

(1)

where ST denotes the set of all possible permutations of the indices {1, 2, · · · , T}. However, this
permutation-based objective poses a significant optimization challenge and can lead to underfitting,
as observed in prior works (Yang et al., 2019; Hoogeboom et al., 2022).

On the other hand, NAR modeling (Lee et al., 2018) breaks the sequential dependency to accelerate
inference. This approach applies sequence-level denoising steps, enabling parallel reconstruction
of multiple tokens with iterative refinement to enhance generation quality. To equip the model
with denoising capabilities, it employs L intermediate latent variables {y(1),y(2), · · · ,y(L)} and
approximates their marginalization as follows:

log p(y | x) ≥
T∑

t=1

log p(yt | y(L),x) +

L∑
l=1

T∑
t=1

log p(y
(l)
t | y(l−1),x) +

T∑
t=1

log p(y
(0)
t | x) (2)

where the latent variables are constrained to match the type of the target output y. While previ-
ous studies demonstrate the efficiency of NAR modeling in specific tasks such as machine transla-
tion (Gu et al., 2018; Ghazvininejad et al., 2019; Kasai et al., 2020), its potential in language model-
ing remains underexplored. Moreover, the use of corrupted data for denoising and the assumption of
token-wise independence in each reconstruction step in NAR models can introduce instability, often
resulting in reduced text quality compared to their AR counterparts (Savinov et al., 2022).

3
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2.2 OBJECTIVE: CONTEXT-WISE ORDER-AGNOSTIC AUTOREGRESSIVE MODELING

To address the above limitations in AR language modeling, we propose Context-Wise Order-
Agnostic Language Modeling (COrAL), unifying token-level dependency modeling and sequence-
level denoising to advance the capabilities of current LLMs. Previous order-agnostic modeling
works attempt to capture various factorization orders involving long dependencies that are difficult
to model and fit. In contrast, COrAL learns the orderless relationships within predetermined context
windows. Built on the AR foundation, our COrAL framework leverages the superior capability of
sequential language modeling in LLMs.

COrAL tackles the problem of generative language modeling by combining forward multi-token
prediction with backward denoising in a context-wise and order-agnostic framework. Denoting the
context window size as k2, we model the conditional probability distribution of each target token by
considering an ensemble of dependencies over all possible positions in the context:

log pθ(y | x) ≥
T∑

t=1

Ei∼U [t−k,t+k]El≥0

[
log pθ(yt | y(l)

≤i,x)
]

(3)

where y(l) represents an intermediate state of the target output sequence y during iterative refine-
ment. The conventional AR modeling, in comparison, becomes a specific case where only the
forward prediction with k=1, conditioned on previous tokens in the target sequence y, is modeled.

Forward Prediction and Backward Reconstruction. As shown in Figure 3, we decompose the
order-agnostic objective into forward prediction and backward reconstruction. In forward pre-
diction, COrAL learns to predict multiple future tokens simultaneously given past tokens in the
ground-truth sequence. For backward reconstruction, we randomly corrupt tokens in the input se-
quence to create the intermediate states y(l) in Eq. 3. Similar to BERT (Devlin et al., 2019), we
compute the loss only on the corrupted tokens. During training, we use the original data for predic-
tion and the corrupted data for reconstruction. This decomposition disentangles the self-refinement
capability from forward prediction, leveraging all data points to enhance sequence modeling.

Corruption Strategy. Our corruption and reconstruction process is a form of denoising autoen-
coding (Vincent et al., 2008) in language modeling. However, instead of representation learning, we
aim to endow the model with the self-refinement capability to revise the generated content. Inspired
by masked autoencoders (He et al., 2022), we divide the output sequence into non-overlapping
patches and randomly sample a subset for corruption. Each patch is a fragment of text containing
one or multiple consecutive tokens in the sequence. Specifically, we corrupt a patch by either (i)
replacing it with a random patch sampled from the current sequence or (ii) repeating the first token
to replace the other tokens in the patch. This design draws on insight from Ye et al. (2024) that
model performance can be significantly improved by simply enhancing consistency across steps.

2.3 ARCHITECTURE: TARGET-AWARE QUERY REPRESENTATION FOR SELF-ATTENTION

We build our framework by adapting the standard architecture of LLMs using decoder-only Trans-
formers (Brown et al., 2020). Unlike prior NAR works employing encoder–decoder architec-
tures (Lee et al., 2018; Kasai et al., 2020), the conventional AR foundation predicts the same dis-
tribution given the current context regardless of the target token position. While this demonstrates
advanced capabilities of sequence modeling and generation, the typical parameterization of next-
token distribution constrains its generalizability to the order-agnostic objective in Eq. 3.

Previous works on order-agnostic modeling have explored various ways to incorporate positional
information, including scaling up the dimensionality of the final projection layer (Stern et al., 2018)
and adding look-ahead tokens (Monea et al., 2023) or extra decoding heads (Cai et al., 2024;
Gloeckle et al., 2024). Despite their promising performance, these methods introduce the over-
head of additional self-attention network calls and new parameters for multi-position prediction.
Instead, we propose a seamless adjustment without adding extra model parameters. Specifically, we
apply a generalized Rotary Position Embedding (RoPE) (Su et al., 2024) at the final layer of the
decoder-only Transformers to integrate target-aware information into the query representations.

2Without loss of generality, we can set different context window sizes for forward prediction and backward
reconstruction in practice. Here, we present the objective with the same hyperparameter k to avoid clutter.
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Target-Aware RoPE. RoPE encodes positional information into query and key representations,
ensuring that their inner product inherently contains relative position information in self-attention:
f(qm,m)⊤f(kn, n) = g(qm,kn,m−n), where f is the positional encoding function applied to the
query and key embeddings at m-th and n-th positions, respectively. Conventional RoPE integrates
positional information of the current token to form the query representation. While this effectively
enhances the position-aware representation of the input token in intermediate hidden states, it intro-
duces inherent misalignment with the target token position when using the learned representation
for output prediction. To avoid this problem, we propose Target-Aware RoPE (Figure 3), which
modifies the positional encoding function at the final layer by considering the target token position
in the query representation:

f(qm, µ)⊤f(kn, n) = g(qm,kn, µ− n), µ ∈ [m− k,m+ k] (4)
The rationale behind this modification is that the position encoding in RoPE can adapt the represen-
tation of the current token to be tailored for the target position. This simple yet effective adjustment
endows the model with the target-aware capability, allowing it to predict tokens at various positions
without the overhead of additional entire network calls.

3 SLIDING BLOCKWISE ORDER-AGNOSTIC DECODING

Leveraging the order-agnostic capabilities of COrAL, we propose Sliding Blockwise Order-
Agnostic Decoding, a parallel decoding strategy to enable efficient iterative refinement.

High inference latency significantly hinders the broader application of AR-LLMs. Recent studies
have tackled this bottleneck from various angles to accelerate inference. For instance, speculative
decoding employs a smaller, faster draft model to propose multiple continuations, which the larger
target model then verifies and accepts (Leviathan et al., 2023; Miao et al., 2024). Blockwise parallel
decoding directly leverages the large model to generate multiple tokens simutaneously (Stern et al.,
2018; Cai et al., 2024). However, these studies increase memory consumption, which thus limits
the scalability and impedes distributional deployment. Another promising line of work breaks the
sequential dependency by adopting Jacobi decoding (Santilli et al., 2023; Fu et al., 2024) for iterative
refinement without architectural add-ons. Kou et al. (2024) propose consistency LLMs to further
improve the performance of Jacobi decoding inspired by consistency models (Song et al., 2023).

While these existing approaches improve inference efficiency, they rely on the conventional left-to-
right AR foundation with monotonic dependencies. In this work, we leverage the order-agnostic
nature of COrAL to perform backward sequence-level refinement and forward multi-token predic-
tion simultaneously, significantly accelerating inference. At each step, we ensemble the output
distributions based on multiple possible dependencies and construct a candidate set to fill a block
of the output sequence. Furthermore, this process facilitates self-refinement by modifying previous
generations at a higher-level horizon, enhancing output quality with advanced inference capabili-
ties. Next, we detail the ensemble strategy in decoding for candidate construction and verification,
corresponding to the “Collect” and “Verify and Slide” parts in Algorithm 1, respectively.

Prediction. Given a set of possible distributions {pθ(yt | y≤i,x)}t+k
i=t−k for the t-th token in the

output sequence, we obtain the ensemble distribution via model arithmetic (Dekoninck et al., 2024).
Specifically, we apply different weights to the distributions to prioritize the more accurate depen-
dencies, with distributions based on more qualified content generally leading to better generations:

πθ(yt) = softmax

(
1∑t+k

i=t−k ωt−i(y≤i,x)

t+k∑
i=t−k

ωt−i(y≤i,x) log pθ(yt | y≤i,x)

)
(5)

The weight function ωt−i(y≤i,x) = λt−i · c(y≤i | x) is determined by the relative distance and
direction of the dependency, as well as the confidence of the generated context y≤i. Here, the
factor λt−i ∈ [0, 1] only depends on the relative position of the target token, decaying for longer
dependencies. Using order-agnostic modeling, we calculate the confidence score c by gathering the
predicted probabilities based on different dependencies, which we obtain in the verification stage.
Generally, backward reconstruction and next-token prediction based on iteratively refined content
will be associated with higher weights. See Section 4.3 for a detailed comparison among different
dependencies. In practice, some of the distributions in Eq. 5 may not be available for all tokens at
each step. We calculate the ensemble utilizing available dependencies within the context window.
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Algorithm 1 Sliding Blockwise Order-Agnostic Decoding

1: Input: Order-agnostic generator πθ and verifiers vθ and vCD
θ based on OA-LLM pθ , prompt x, decoding

context window size k, decoding block size b, maximum output sequence length T .
2: Initialize t← 0, y ← ∅. ▷ Initialize the current length of the output sequence
3: Initialize ts ← 1, te ← min (k, b). ▷ Initialize the start and end indices of the block to predict and refine
4: while ts < T do
5: Construct Yts:te ←

{
{ỹi}tei=ts

, ỹi ∼ πθ(yi | y,x)
}

. ▷ Collect candidates through tree construction
6: Select yts:te ← argmaxỹts:te∼Yts:te

1
te−ts+1

∑te
i=ts

(
vθ(ỹi | y,x) + vCD

θ (ỹi | y,x)
)
. ▷ Verify

7: Update y ← concat(y<ts ,yts:te).
8: Set t← te.
9: for i = ts to te do

10: Sample r ∼ U [0, 1] from a uniform distribution
11: if r < c(yi | y,x) then
12: Set ts ← ts + 1. ▷ Slide the decoding block based on rejection sampling
13: if yi == [EOS] then
14: Exit while loop.
15: end if
16: else
17: Exit for loop.
18: end if
19: end for
20: Set te ← min (ts + b− 1, t+ k).
21: end while
22: Output: y

Verification. Following Cai et al. (2024), we employ tree attention3 to select from multiple can-
didates sampled from the ensemble distribution πθ. Each candidate is a combination of tokens used
to fill the sliding block. Unlike previous works that only adopt the original next-token probabil-
ity for verification, we also incorporate the backward reconstruction probabilities to leverage the
refinement ability of COrAL. The verification score can thereby be formulated as follows:

vθ(yt) =
1∑t+k

i=t−1 λt−i

t+k∑
i=t−1

λt−i log pθ(yt | y≤i,x) (6)

Here, we only consider the next-token and backward predictions for the verification score calcula-
tion. This scheme can be further enhanced by introducing a contrastive objective (Li et al., 2023)
that penalizes the possible failure cases in forward multi-token prediction:

vCD
θ (yt) = max

(
0, log pθ(yt | y≤t−1,x)−

1∑t−2
i=t−k λ

′
t−i

λ′
t−i log pθ(yt | y≤i,x)

)
(7)

where λ′
t−i = 1/λt−i to apply a higher penalty to predictions based on longer dependencies. Com-

bining vθ with vCD
θ , we keep the candidate of the highest average score. We allow several refinement

iterations for each position within a sliding block to enhance the generation quality. Specifically, we
propose an ensemble rejection sampling scheme to determine the sliding step size through majority
voting across multiple dependencies, where we accept each token with the probability:

c(yt | y≤t+k,x) =
1

k + 2

t+k∑
i=t−1

1pθ(yt|y≤i,x)>min(ϵ,
√
ϵ exp(−H(pθ(·|y≤i,x)))) (8)

where H(·) is the entropy and ϵ is a fixed threshold to reject low-probability predictions. This
acceptance scheme is inspired by truncation sampling (Hewitt et al., 2022; Cai et al., 2024) to choose
candidates that are more likely to be sampled from the reference distributions. The sliding step size
for each step is set to the length of the longest accepted prefix of the current block. We detail the
sliding decoding procedure in Algorithm 1.

3To balance exploitation and exploration in tree construction, we select nodes according to the estimated
accuracy of each token. Detailed considerations of candidate selection can be found in Appendix C.
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Table 1: Result comparison of performance (accuracy %), speed (accepted tokens per second), and
cost (seconds per sample) on arithmetic reasoning tasks. We compare against the conventional
autoregressive greedy decoding approach as our next-token prediction baseline (NT). “verifier” and
“multi-forward” represent the verification stage and multiple forward token prediction in inference.

Approach GSM8K MATH

Accu. Speed Speedup Cost Accu. Speed Speedup Cost

NT 74.1 39.7 1.0× 3.67 21.8 38.7 1.0× 5.41
SC@4 76.2 37.8 − 15.5 23.0 38.0 − 16.6

Ours 75.3↑1.2 43.4 1.1× 3.35 22.7↑0.9 44.4 1.1× 4.82
Ours w/o verifier 72.4↓1.7 156.8 3.9× 0.96 20.0↓1.8 139.7 3.6× 1.47
Ours w/o multi-forward 78.7↑4.6 14.9 − 9.81 24.3↑2.5 11.5 − 18.2

4 EXPERIMENTS

In this section, we demonstrate the efficiency and breadth of COrAL regarding the quality–speed
trade-offs across arithmetic, logical reasoning, and code generation.

Datasets. For arithmetic reasoning, we train COrAL on MetaMathQA (395K) (Yu et al., 2024)
and evaluate it using GSM8K (Cobbe et al., 2021) on grade school math word problems and
MATH (Hendrycks et al., 2021) of challenging competition mathematics problems. For logical rea-
soning, we filter LogiCoT (Liu et al., 2023b) with deduplication and reformulation, obtaining 313K
training samples. We assess logical reasoning performance with multiple-choice reading compre-
hension tasks that test interpretation and decision-making skills: LogiQA (Liu et al., 2023a), based
on the Chinese Civil Service Examination, and ReClor (Yu et al., 2020), sourced from Law School
Admission Council exams. For code generation, we train on Magicoder-Eval-Instruct-110K (Wei
et al., 2023) and evaluate using programming tasks from HumanEval (Chen et al., 2021).

Experimental Protocol. To address the discrepancy between the next-token-based pre-trained
model and the target order-agnostic model, we adopt a two-stage training strategy (Kumar et al.,
2022) to progressively enhance order-agnostic modeling. We begin with a domain-specific super-
vised fine-tuned (SFT) model. In the first stage, we perform order-agnostic training exclusively
on the last target-aware layer, while freezing the other layers to preserve the output quality. In the
second stage, we train the entire model by focusing on the previously frozen layers first and then
unlocking the last layer to train together. We use Mistral-7B-v0.3 and DeepSeek-Coder-6.7B-base
as the base models for reasoning and code generation tasks, respectively. During inference, we
explore the effect of the verification stage and ablate the values of decoding context window size and
block size. Given the order-agnostic training tax resulting from the discrepancy between pretraining
and fine-tuning objectives, we use next-token prediction with the same model as the baseline to
ensure a fair comparison. We detail our hyperparameter settings in Section 4.2 and Appendix D.

4.1 MAIN RESULTS

We compare our order-agnostic decoding approach (Section 3) with its next-token counterparts
across three tasks. We also show the quality–speed trade-offs in by ablating the decoding settings.

Arithmetic Reasoning. As shown in Table 1, COrAL enhances the effectiveness and efficiency
through different mechanisms in order-agnostic generation. Using both verification and multiple
forward token prediction in decoding, COrAL surpasses the corresponding next-token baseline with
comparable inference-time cost. Furthermore, by trading inference speed with iterative generation
and verification through backward refinement, we observe a substantial improvement in accuracy
from 74.1% to 78.7 and 21.8% to 24.3%, on GSM8K and MATH, respectively. When skipping the
verification stage for quality control, our approach significantly speeds up the decoding process up
to 3.9×. This demonstrates the flexibility of COrAL in enhancing both the generation quality and
inference speed in mathematical reasoning.

Logical Reasoning. Table 2 compares the performance and generation speed of model outputs un-
der different decoding settings on logical reasoning tasks. Similarly, COrAL improves the reasoning
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Table 2: Result comparison of performance and speed on logical reasoning tasks.

Approach LogiQA ReClor

Accu. Speed Speedup Accu. Speed Speedup

NT 55.1 33.6 1.0× 63.2 33.2 1.0×
Ours 58.2↑3.1 62.1 1.8× 62.7↓0.5 38.2 1.2×
Ours w/o verifier 55.7↑0.6 99.1 2.9× 61.6↓1.6 72.0 2.2×
Ours w/o multi-forward 59.1↑4.0 8.9 − 64.7↑1.5 11.3 −

Table 3: Result comparison of pass rates and
speed on code generation.

Approach HumanEval

Pass@1 Speed Speedup

NT 64.6 42.2 1.0×
Ours 13.0↓51.6 45.8 1.1×
Ours w/o verifier 6.5↓58.1 119.0 2.8×
Ours w/o multi-forward 61.6↓3.0 28.8 −
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Figure 4: Meso-analysis of error cases in code
generation (Ours w/o verifier) on HumanEval. The
primary failure cases come from syntax errors.

performance by augmenting next-token prediction exclusively with backward refinement. However,
we observe a discrepancy in the performance improvements on LogiQA and ReClor with absolute
increases of 4.0% and 1.5% in corresponding accuracies. We attribute this gap to the imbalanced
proportions of the two tasks in our SFT data from LogiCoT (Liu et al., 2023b). This also implies
the importance of high-quality data selection to boost the effect of order-agnostic training to model
different dependencies related to the target tasks.

Code Generation. Results on code generation, however, show an opposite effect of order-agnostic
modeling on performance. In Table 3, we observe substantial performance drops across different
decoding settings using COrAL. For example, without verification, the pass rate on HumanEval
decreases to 6.5% from 64.6% of next-token prediction. This gap remains to be large when applying
verification for quality control. Error analysis in Figure 4 indicates that the major cause of this
drop comes from the erroneous syntax, where the primary error type, Invalid Syntax, accounts for
70.1% of all samples. To mitigate this issue, we can turn off the mechanism of forward multi-token
prediction and increase the threshold ϵ in Eq. 8 to reject tokens with low confidence scores. For
example, with ϵ = 0.5, COrAL achieves a comparable pass rate of 61.6% compared to 64.6% of the
baseline. The absolute decrease of 3.0% indicates the deficiency of COrAL in producing incoherent
content, showing the importance of specific designs for tasks requiring strict textual formats.

4.2 ABLATION STUDIES

In this section, we analyze the core designs of COrAL to enable efficient iterative refinement. We
probe the effect of different training and decoding hyperparameters.

Backward Refinement Improves Generation Quality. Figure 1 shows how the performance and
inference cost scale with iterative refinement. Note that even without backward dependencies in
prediction, COrAL can still perform backward refinement using the next-token prediction. In this
case, we examine the effect of backward dependencies with different context window sizes. Notably,
the performance of iterative refinement scales faster than the inference cost as the iteration time
increases. Furthermore, leveraging backward dependencies, COrAL reaches a higher plateau of
performance compared to refining with forward dependencies only. However, the fast saturation of
performance improvement with larger refinement times indicates a relatively low upper bound of the
enhancement brought by backward reconstruction. We extensively discuss this problem attributed
to the discrepancy between pre-training and fine-tuning objectives in Appendix E.

Quality–Speed Trade-off in Inference. In Section 4.1, we demonstrate the quality–speed trade-
off by ablating the employment of verification and forward multi-token prediction. We now provide
a detailed analysis of the decoding hyperparameters to show this trade-off. We consider the block
size b and the forward context window size k, two variables closely related to the inference speed
and quality. For block size, we probe its effect in reducing inference time in the verification-free case
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Figure 5: Quality–speed trade-offs on GSM8K. Generally, COrAL accelerates inference with larger
decoding block size b and forward context window size k.

1 2 4 8
Corruption Granularity (# Tokens)

70.0

72.0

74.0

76.0

78.0

80.0

82.0

Ac
cu

ra
cy

 (
%

)

73.1
73.9 74.1

71.3

74.8

76.4

78.7

72.8

Next-Token
Ours (w/o multi-forward)

(a) Effect of corruption granularity.

0.125 0.25 0.5
Corruption Ratio

70.0

72.0

74.0

76.0

78.0

80.0

82.0

Ac
cu

ra
cy

 (
%

)

73.9 74.1

72.3

77.0

78.7

72.9

Next-Token
Ours (w/o multi-forward)

(b) Effect of corruption ratio.
Figure 6: Ablation on the effects of corruption granularity and ratios in training for backward recon-
struction. We probe the variation in model improvements from backward dependencies.

to maximize the speedup rate. Figure 5a shows that we can push the speedup boundary toward the
corresponding upper bound of k with large b. For example, given k=4, we approach the maximum
speedup rate 4× with large block sizes such as b= 64 and 128. Notably, leveraging the backward
refinement capability of COrAL, this block size-driven acceleration process retains the generation
quality at the same level, illustrating the balance of efficiency and effectiveness of our acceleration
mechanism. For forward context window size, we adopt the two-stage prediction–verification setting
to explore the quality improvement boundary of the iterative refinement mechanism. Figure 5b
shows trends of performance drop and inference speedup when increasing k. We explain this trade-
off as a reflection of the decreasing precision in predicting future tokens of longer dependencies.

Learning from Corruption Enhances Refinement Capability. One core design in COrAL is
the denoising process to enable iterative refinement, where the corruption strategy is crucial for
controlling data quality and model performance. In Figure 6, we analyze the variation in perfor-
mance improvements from backward refinement (w/ multi-forward) when applying corruption with
different granularity or ratios. Given a backward context window size k = 8, we observe a more
significant improvement when applying corruption on longer pieces of text. For example, COrAL
achieves an absolute increase of 4.6% with granularity 4, compared to 1.7% under token-level cor-
ruption. However, as the corrupted context gets longer, the model’s capability to learn from mistakes
may also degrade. One possible reason for this performance drop is the difficulty and inconsistency
in simultaneous multi-token regeneration, as reconstructing more tokens brings higher uncertainty
and noise. This indicates the importance of using a reasonable corruption granularity to obtain data
of good quality and maintain training stability. Likewise, we see a similar trend when the corruption
ratio varies. Specifically, a high corruption ratio such as 0.5 can damage the semantic meaning of
the context, leading to a performance drop in both our and baseline approaches. Nevertheless, we
can still benefit when increasing the corruption ratio within a reasonably lower range, such as 0.125
to 0.25, to enhance the reconstruction process.

4.3 FURTHER ANALYSIS

We analyze COrAL’s capability to model different dependencies, and the potential computation
overhead from order-agnostic modeling.
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Figure 7: Token-wise losses and accuracies corresponding to different dependencies.

How does COrAL model order-agnostic dependencies? We compare the model capabilities
across different positions using token-wise losses and accuracies in Figure 7. Generally, COrAL
performs better on backward reconstruction than forward prediction, as shown in the lower losses
and higher accuracies on backward dependencies. Notably, we see better generalizability of back-
ward reconstruction. For example, given the backward context window size k = 8 and forward
context window size k = 4, we find that the loss and accuracy of backward reconstruction with
dependencies longer than the training context window size, such as positions |−9|> |−8|, are also
at the same level as other backward dependencies. Differently, we observe a dramatic increase in
loss and a drop in accuracy from positions 4 to 5 on longer dependencies in forward prediction. This
explains how backward refinement benefits from more information in sequence-level generation to
improve performance. We observe decreased performance for forward prediction as the dependency
gets longer, especially when it exceeds the forward context window size in training. However, we
can mitigate this issue by aggregating multiple predictions for each position. As shown in Figure 7b,
while forward positions with longer dependencies obtain lower accuracies on tghe first prediction,
the accumulated accuracies of their non-first predictions are generally higher than those from other
dependencies. This illustrates how COrAL can benefit from the tree construction and verification
stage in decoding (Section 3) by considering multiple candidates for each position.

Computation Overhead. One concern regarding order-agnostic modeling is the potential compu-
tation overhead to accommodate more dependencies in the context windows. As target-aware RoPE
is only applied on the last layer, this overhead scales relatively slower as we increase the number
of positions to predict. For example, with forward and backward context window sizes each set as
k = 4, each forward pass of COrAL costs 5.48 TFLOPS, compared with 2.81 TFLOPS of next-
token prediction. In other words, COrAL predicts 8× number of tokens with less than 2× overhead
in computational cost. This indicates the efficiency of COrAL in leveraging available computation
resources to accelerate and enhance inference. Furthermore, we can adjust the forward and back-
ward context window sizes to determine the number of tokens to predict in parallel, demonstrating
the flexibility and generalizability of COrAL with target-aware RoPE.

5 CONCLUSION AND FUTURE WORK

By unifying denoising with context-wise order-agnostic language modeling and introducing target-
aware positional encoding, COrAL incorporates iterative refinement directly into the language gen-
eration process while keeping inference costs low. This approach offers a promising direction for
developing more efficient and capable large language models by effectively capturing local depen-
dencies within context windows and reducing inference latency.

The effectiveness and efficiency of COrAL underscores the promise of order-agnostic strategies as a
generalized architecture to facilitate generative language modeling and text generation. Specifically,
it suggests new opportunities to unify: (i) the sequence modeling and varying-length generation
abilities of autoregressive modeling, (ii) the multi-dependency modeling and multi-token prediction
mechanisms in order-agnostic modeling, and (iii) the efficient way of iterative refinement in denois-
ing techniques. We hope our work will motivate future research to explore order-agnostic modeling
and denoising in various tasks and other domains beyond sequence modeling.
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unrolled denoising autoencoders for text generation. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=T0GpzBQ1Fg6.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach them-
selves to use tools. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf79ba039352da0f658a906-Abstract-Conference.html.

Kunyu Shi, Qi Dong, Luis Goncalves, Zhuowen Tu, and Stefano Soatto. Non-autoregressive sequence-to-
sequence vision-language models. CoRR, abs/2403.02249, 2024. doi: 10.48550/ARXIV.2403.02249. URL
https://doi.org/10.48550/arXiv.2403.02249.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion: lan-
guage agents with verbal reinforcement learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=WNzy9bRDvG.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Inter-
national Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 32211–32252. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/song23a.html.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autoregres-
sive models. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-
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Canada, pp. 10107–10116, 2018. URL https://proceedings.neurips.cc/paper/2018/
hash/c4127b9194fe8562c64dc0f5bf2c93bc-Abstract.html.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024. doi: 10.1016/J.
NEUCOM.2023.127063. URL https://doi.org/10.1016/j.neucom.2023.127063.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cyn-
thia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Sto-
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Sean Welleck, Kianté Brantley, Hal Daumé III, and Kyunghyun Cho. Non-monotonic sequential text gen-
eration. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 6716–6726. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/welleck19a.html.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael Qizhe Xie.
Self-evaluation guided beam search for reasoning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/81fde95c4dc79188a69ce5b24d63010b-Abstract-Conference.html.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and Michael
Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. CoRR, abs/2405.00451,
2024. doi: 10.48550/ARXIV.2405.00451. URL https://doi.org/10.48550/arXiv.2405.
00451.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
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LIMITATIONS

This work proposes an approach to integrate iterative denoising with order-agnostic language mod-
eling to enhance both the effectiveness and efficiency of LLM inference. While it offers a promising
paradigm for mitigating issues related to monotonic dependencies and inference latency in conven-
tional autoregressive models, several directions remain for further exploration, including designing
corruption and decoding strategies to tailor the model to specific tasks, optimizing the training pro-
cess to overcome the order-agnostic training tax, and probing the generalizability and scalability of
COrAL across different context sizes, model scales, and tasks.

Specifically, order-agnostic language modeling can struggle with tasks that demand specific output
formats or syntax due to inconsistencies in the multi-token predictions. This indicates the impor-
tance of a task-specific design of the acceptance scheme in order-agnostic decoding. For instance,
the performance of the verification policy in Eq. 6 may vary by language and domain. Addition-
ally, applying semantic-aware weights to different dependencies could further enhance task-specific
features in the generated outputs. Future work can further explore the potential of incorporating
different evaluation heuristics to guide the inference process.

Furthermore, incorporating corrupted data may introduce discrepancies between training- and
inference-time objectives. For example, our experiments explore rule-based context-wise corruption
strategies to create noisy data. Future work could focus on diversifying the types of corruption and
scaling the difficulty level and proportion to better understand their impacts on model capabilities.

Finally, due to the computation constraint, we explore the model capabilities in order-agnostic mod-
eling with fixed context window sizes during the SFT stage only. Future work may investigate the
effect of scaling context window sizes in both forward and backward directions. Moreover, increas-
ing the context window sizes may exacerbate the discrepancy between autoregressive pre-training
and order-agnostic fine-tuning. We thus anticipate future work to extend COrAL to the pre-training
stage to further enhance model capabilities.

POTENTIAL BROADER IMPACT

Compared to conventional autoregressive modeling, COrAL leverages multi-token prediction and
reconstruction to backtrack and iteratively refine past generations. This strategy mirrors the human
decision-making process in real-world task completion. We anticipate COrAL to inspire the com-
munity to design more efficient and effective frameworks to enhance interpretability and alignment
with the reasoning and planning process of humans.

A CONCEPTUAL COMPARISON AMONG MODEL ARCHITECTURES

We consider the properties an ideal architecture should have as follows:

• VL: varying-length generation
• BT: backtrack / look-ahead
• MV: multi-variable generation
• MD: multi-dependency (inter-sample connection) modeling
• FS: fitting feasibility
• EF: inference efficiency
• IT: mechanism of iterative refinement

Table 4: Conceptual comparison regarding desired features across different architectures.

Architectures VL BT MV MD FS EF IT

Next-Token AR (Uria et al., 2016) ✓ ✗ ✗ ✗ ✓ ✗ ✗
Permutation-Based AR (Uria et al., 2014) ✗ ✓ ✓ ✓ ✗ ✓ ✗
NAR (Gu et al., 2018) ✗ ✓ ✓ ✓ ✓ ✓ ✓
Diffusion (Ho et al., 2020) ✗ ✓ ✓ ✓ ✓ ✗ ✓
Consistency Model (Song et al., 2023) ✗ ✓ ✓ ✓ ✓ ✓ ✓

COrAL (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓
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B FURTHER RELATED WORK

Order-Agnostic Language Modeling. Order-agnostic architectures have been explored to over-
come the limitations of sequential generation in autoregressive models. Uria et al. (2014) propose
permutation-based autoregressive models to learn different data orderings for density estimation.
In language modeling, Yang et al. (2019) further explore the idea of order-agnostic autoregressive
modeling as a generalized pretraining method. Welleck et al. (2019) explore the possibility of non-
monotonic text generation in a tree-structure manner and achieve competitive performance with the
conventional left-to-right sequential generation. To avoid the high latency in autoregressive decod-
ing, Gu et al. (2018) introduce non-autoregressive machine translation by breaking the sequentially
causal dependency across time into conditionally independent per-step distributions with latent vari-
ables as intermediate steps. Lee et al. (2018) adopt iterative refinement to interpret the latent variable
model, inspired by the design of denoising autoencoders (Alain & Bengio, 2014). Follow-up works
on non-autoregressive machine translation show promising performance of the iterative refinement
process of mask-predict (Ghazvininejad et al., 2019; Kasai et al., 2020). Our work explores the
potential of unifying the strengths of order-agnostic modeling and denoising to advance sequential
modeling in LLMs, demonstrating an efficient way to conduct iterative refinement internally.

LLM Self-Refinement. Self-refinement in LLMs focuses on various feedback mechanisms to
improve the model performance dynamically. Existing works utilize the feedback mainly in two
directions. The first one relates to prompting-based frameworks such as instance-level refine-
ment (Madaan et al., 2023), step-level guided search (Yao et al., 2023; Xie et al., 2023), and
principle-driven reasoning (Zheng et al., 2024). Another line of work adapts the feedback as training
signals to further enhance the performance of LLMs, including rationale-augmented refinement (Ze-
likman et al., 2022), hindsight-driven alignment (Zhang et al., 2023; 2024c), and search-enhanced
preference learning (Xie et al., 2024). Unlike existing works relying on the AR foundation in con-
ventional LLMs, we leverage the order-agnostic modeling ability of COrAL to conduct the iterative
refinement internally while foregoing the computation overhead in AR-LLMs to maintain efficiency.

Parallel Decoding. Parallel decoding methods aim to accelerate LLM inference by generating
multiple tokens simultaneously rather than sequentially. Non-autoregressive models (Gu et al.,
2018) and blockwise decoding approaches (Stern et al., 2018; Monea et al., 2023; Cai et al., 2024)
have enabled faster generation but often struggle with output inconsistencies. Speculative decod-
ing techniques (Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2024) adopts a faster draft
model to speedup inference while struggling with the deficiency in scalability. Self-speculative de-
coding (Zhang et al., 2024a) uses the same model for drafting by selectively skipping certain inter-
mediate layers. Look-ahead (Santilli et al., 2023) and Jacobi (Fu et al., 2024) decoding, on the other
hand, directly utilize the AR LLMs to enhance performance iteratively. Consistency LLMs (Kou
et al., 2024) further reduces this iteration time drawing inspiration from consistency models (Song
et al., 2023; Song & Dhariwal, 2024). In this work, we realize parallel decoding leveraging the
multi-token generation ability of COrAL. Instead of decoding toward the forward direction only, we
support backward refinement simultaneously to enhance the generation quality further.

Iterative Refinement. Prompt engineering approaches (Madaan et al., 2023; Shinn et al., 2023)
exploit incorrect attempts in historical data to improve the performance of a frozen LLM. In con-
trast, our method enables the model to directly correct generated mistakes via backward refinement.
Verifier-based methods (Cobbe et al., 2021; Lightman et al., 2024) train separate models to re-rank
outputs. These strategies are orthogonal to our method, which could further enhance COrAL by pro-
viding stronger verification mechanisms. An et al. (2024) demonstrate that the mistake reasoning
data can be directly utilized through a standard fine-tuning approach. However, this approach relies
on AR-LLMs and sequential prediction, whereas COrAL introduces a fundamentally new paradigm
by enabling mistake correction through backward dependencies.

Scheduled Sampling. Scheduled sampling (Bengio et al., 2015) aims to mitigate the discrepancy
between training and inference, it gradually transitions from teacher-forcing to self-generated inputs
using curriculum learning. In contrast, COrAL decomposes the order-agnostic training into two
separate objectives: forward prediction with ground-truth input and backward reconstruction with
corrupted input. Inspired by scheduled sampling, future iterations of COrAL could explore cur-
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riculum strategies to gradually increase corrupted input ratios, enhancing robustness and stability.
Furthermore, scheduled sampling is designed for sequential decoding at inference, while COrAL
employs blockwise order-agnostic decoding, enabling multi-token forward prediction for speedup
and backward refinement for quality improvement.

C CANDIDATE TREE CONSTRUCTION IN ORDER-AGNOSTIC DECODING

Our specific design of tree construction aims to explore promising combinations of multi-position
predictions with a fixed budget for the number of total nodes in the tree. Unlike selecting promising
nodes based on the accuracies of the top predictions of different heads in Cai et al. (2024), we forego
the need of a validation set for accuracy calculation by leveraging the model confidence of each
prediction with a dedicated scaling factor. Let p(i)t denote the model-predicted probability of the i-
th top candidate for the t-th token. For a candidate sequence composed by the top [its , its+1, · · · , ite ]
predictions of tokens at different positions, we estimate its accuracy as:

te∏
j=ts

(
p
(ij)
j /γj

)
(9)

where γi is a scaling factor to up weight the predictions based on nonconsecutive forward dependen-
cies. As shown in Figure 7, this process benefits from the fact that COrAL obtains higher accuracies
on non-first predictions on such dependencies. Empirically, we set these factors to be 1.1, 1.2, 1.3
for the second, the third, and the fourth tokens to predict, respectively.

Following Eq. 9, we construct the tree in a greedy manner, adding the node with the highest con-
fidence to the tree one by one. This process considers the token-wise confidence as the expected
contribution of each prediction to the tree. We repeat the node-adding process until the total number
of nodes reaches the desired number to accommodate the maximum sequence length the model can
deal with.

D HYPERPARAMETER SETTING

Training. For order-agnostic training, we train for 3 epochs at each stage with a batch size of
128 on all tasks. We fix the context window size in training as 4 and 8 for forward and backward
dependencies. At different training stages, we recommend employing different learning rates. We
set the learning rate as 5e−6 and 1e−4 in reasoning and code generation, respectively, for the last-
layer tuning stage. We increase the learning rates at the second stage to be 1e−6 and 2e−5 for
corresponding tasks following the general SFT settings.

We corrupt the training data with granularity 4 and ratio 0.25 across all tasks for backward re-
construction. As discussed in Section 4.2, we ablate the granularity and ratios on mathematical
reasoning data to study their respective effects on enhancing model’s refinement abilities. Note that
as the training context window sizes are fixed as 4 and 8 for forward and backward dependencies,
the optimal corruption hyperparameters may vary as we scale the context window sizes. Due to the
computation constraint, we leave it to future work to explore the combinations of different granular-
ities and corruption strategies.

Decoding. For order-agnostic decoding, we suggest adopting different context window sizes and
block sizes to balance the quality and inference speed in different tasks. We report the experiment
results (Section 4.1) under the same context window and block sizes across the three tasks, where the
forward and backward context window and block sizes are 4, 8, and 64, respectively. For verifica-
tion, we set ϵ = 0.2 and 0.5 for reasoning and code generation. We implemented our order-agnostic
decoding and corresponding next-token baseline without KV-Cache (Pope et al., 2023). During
decoding, we set the batch size 1 and conduct inference on a single GPU.

Computation. For reasoning tasks with maximum sequence length 512, all training experiments
were done on single-node eight 40GB A100s. For code generation task with maximum sequence
length 2048, we conduct training and inference on single-node four 80GB H100s.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The Kennel house keeps 3 German Shepherds and 2 Bulldogs. 
If a German Shepherd consumes 5 kilograms of dog food and a bulldog consumes 3 kilograms of dog food per day. 
How many kilograms of dog food will they need in a week?

Prompt

Responses

1
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3

6
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39
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48
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Sliding Blockwise Order-Agnostic Decoding Next-Token Based Greedy Decoding

The1

The b2

The bery3

The bery b had 26

The bery b had 207

The bery b had 2008

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold

38

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a

39

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total

40

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 3

47

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39

48

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 =

49

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They also

59

The bery b had 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They also returned 6 unsold loaves, 
so they had 200 - 132 + 6 = 72 loaves of bread left.
#### 72
The answer is: 72

106

The bakeraked

The bakeraked 200

The bakeraked 200 loaves of bread

The bakeraked 200 loaves of bread.
They sold 93 loaves the in3

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning morning and  

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and  39 loaves in

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 1226 loaves

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves. left...

The bakeraked 200 loaves of bread.
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Therefore, they266

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 

......
The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 74 loaves of bread left.
#### 74
The answer is: 74 

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 72

The bakeraked 200 loaves of bread.
They sold 93 loaves in the morning and 39 loaves in the afternoon, 
so they sold a total of 93 + 39 = 132 loaves.
They returned 6 loaves, so they had 132 - 6 = 126 loaves left.
Therefore, they had 200 - 126 = 74 loaves of bread
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Figure 8: Qualitative result comparison on GSM8K.

E EXTENDED DISCUSSION

In this section, we extensively discuss the training protocol we design to endow AR-LLMs with
order-agnostic ability without pretraining. Lastly, we illustrate how COrAL efficiently corrects mis-
takes in previous generations in qualitative analysis.
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Passage: 
Youth phase refers to how adolescents perceive their level of youth development to be earlier, 
more timely or later than their peers.

Question: According to the above definition, which of the followings is timely in the phase of youth activation is?

A. Junior high school student A is the shortest boy in the class, but his parents think it is normal
B. Junior high student B had several zits on his face, 
     while other students did not, which made him feel uncomfortable
C. Junior high school students C in the physical health class and other students like the opposite sex of the 
     physiological structure is full of curiosity
D. Junior high school students in the adolescent physical health development self-assessment scale carefully 
     tick the normal option
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Junior high school students C in the physical health class class
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other students like the opposite of of the physi

Junior high school students C in the physical health class and
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Junior high school students C in the physical health class and
other students like the opposite of of physiological structure is
full of curious curiosity. This curious is about the normal stage of
physical development for adolesents, and it does not indicate
that the student is earlier than their peers or perceive their
development, so thefore, the the correct answer is C.
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 Junior high school students in the adolescent physical health
development self-ass assessment scale carefully tick the normal
option - This choice reflects the perception of the student's level of
youth development compared to their peers, as they they they normal
option indicating that they feel their development is timely to their
peers.
Therefore, the correct answer is D.

Figure 9: Qualitative result comparison on LogiQA.

Effect of Two-Stage Training. As discussed in Section 4.2, a high corruption ratio can cause a
collapse in model performance as the noisy data contains corrupted information in a format that the
model has not seen in pretraining. Furthermore, we are also faced with the order-agnostic train-
ing tax to endow an AR-based LLM with denoising and multi-token prediction abilities. In this
section, we elaborate on the two-stage training we designed to mitigate this issue. Following Cai
et al. (2024), we first tune the last layer where we apply target-aware RoPE. This adapts the pre-
vious parameterization on next-token prediction to target-aware multi-position prediction. Due to
the discrepancy of training objectives in pretraining and fine-tuning, full fine-tuning is still essential
to ensure better performance on multi-token prediction. To stabilize the training process, we then
freeze the last layer and gradually unlock it through the second training stage of full fine-tuning.
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Empirically, we find this strategy effective for stabilizing the autoregressive loss changes in forward
prediction. However, we observe an order-agnostic training tax where the next-token prediction per-
formance drops from 77.0% to 76.5% and then 74.1% after the first and second stages, respectively.
This performance degradation possibly comes from two aspects: the difference in training objectives
and the incorporation of corrupted data in fine-tuning. We leave it to future work to further explore
the effect of applying our order-agnostic framework to the pretraining stage.

Qualitative Analysis. Our qualitative analysis on GSM8K and LogiQA showcases how COrAL
corrects previously generated mistakes through the iterative internal process. In Figure 8, COrAL
obtained a wrong calculated result 72 at the 48-th step. However, the backward refinement mech-
anism enables it to backtrack and refine the result to the correct number, 74, as shown at the 49-th
step. In contrast, the next-token baseline cannot correct the erroneous 72, leading to the wrong final
result. On the other hand, we observe the incoherence in COrAL’s generation where COrAL can fail
in correcting the mistakes when it happens to skip some positions during generation. For example,
at the 1-st step, COrAL outputs “bakeraked” instead of “baker baked”. This error incurs a chain
reaction where the subsequent outputs all omit the correct token “ b” right after “baker”, indicating
the need for further enhancement on the generation fluency of order-agnostic methods.

On LogiQA, interestingly, we observe a higher frequency of the inconsistencies in COrAL’s gen-
eration. As discussed in Section 4.1, we attribute this scenario to the relatively low proportion of
LogiQA-related training data in LogiCoT, where there are only 5K samples out of the 313K data
points. As shown in Figure 9, while the COrAL produces several grammatical errors in a genera-
tion, it still achieves the correct result. This indicates the advanced ability of COrAL to sematically
escape from paths that may lead to dead ends through iterative refinement.

Further Analysis on Computation Overhead. As discussed in Section 4.3, the computation
overhead in COrAL scales efficiently relative to the number of predicted positions, with target-aware
RoPE applied only to the last layer. We now provide a detailed computation comparison between
COrAL and the baseline approaches.

Table 5: Computation comparison across different decoding approaches on GSM8K.

Approach TFLOPS Accuracy (%) Speed Speedup(per forward pass) (tokens per second)

Next-Token (NT) 2.81 74.1 39.7 1.0×
Ours 13.6 75.3 43.4 1.1×
Ours w/o verifier 5.48 72.4 156.8 3.9×
Ours w/o multi-forward 17.9 78.7 14.9 −
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