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ABSTRACT

Many efforts have been contributed to alleviate the adversarial risk of deep neu-
ral networks on continuous inputs. Adversarial robustness on general categorical
inputs, especially tabular categorical attributes, has received much less attention.
To echo this challenge, our work aims to enhance the robustness of classifica-
tion over categorical attributes against adversarial perturbations. We establish an
information-theoretic upper bound on the expected adversarial risk. Based on it,
we propose an adversarially robust learning method, named Integrated Gradient-
Smoothed Gradient (IGSG)-based regularization. It is designed to smooth the at-
tributional sensitivity of each feature and the decision boundary of the classifier to
achieve lower adversarial risk, i.e., desensitizing the categorical attributes in the
classifier. We conduct an extensive empirical study over categorical datasets of
various application domains. The experimental results confirm the effectiveness
of IGSG, which surpasses the state-of-the-art robust training methods by a mar-
gin of approximately 0.4% to 12.2% on average in terms of adversarial accuracy,
especially on high-dimension datasets.

1 INTRODUCTION

While categorical data widely exist in real-world safety-critical applications,much less research at-
tention has been attracted to evasion attack and defense with categorical inputs, compared to the
efforts with continuous data, e.g. images. It thus becomes a must to develop adversarially robust
learning paradigms to harden ML systems with categorical inputs.Previous research on adversari-
ally robust learning has mainly focused on enhancing the resilience of target classifiers against LQ

and L∞ adversarial perturbations (Goodfellow et al., 2016; Madry et al., 2017; Moosavi-Dezfooli
et al., 2019; Attias et al., 2019; Yin et al., 2019; Shafahi et al., 2019; Zhang et al., 2019; Wong
et al., 2020; Bashivan et al., 2021; Zhang et al., 2022). However, when dealing with categorical
data, the conventional Euclidean space framework used for continuous measurements, such as pixel
intensities, is not a natural fit. Categorical variables like race and occupation have non-continuous
and unordered qualitative values that cannot be combined in Cartesian products or ordered numer-
ically.Thus, L0-norm bounded adversarial perturbations are commonly employed to assess the ro-
bustness of categorical data (Lei et al., 2019; Bao et al., 2021).

Adversarial training (Madry et al., 2017) stands out as a predominant defense strategy in the con-
tinuous domain. However, adversarial training on categorical data poses a challenging Mixed In-
teger Nonlinear Programming (MINLP) problem (Lee & Leyffer, 2011). It involves the iterative
generation of adversarial training samples within the categorical feature space, followed by model
retraining using these adversarial samples in an alternating sequence. The exponential growth of
the categorical adversarial space with increasing amounts of categorical features complicates the
generation of adversarial samples via heuristic search like Brand-and-Bound (Pataki et al., 2010). In
Section.3.1, we identify that exploring the categorical adversarial space leads to insufficient cover-
age, causing a distribution gap between adversarial training and future attacks, resulting in ”robust
overfitting” on categorical data (Rice et al., 2020). Encoding categorical features as one-hot vectors
and relaxing the adversarial training to the continuous domain, treating one-hot vectors as proba-
bilistic representations, partially mitigates categorical data complexities. However, this approach
encounters a bottleneck— the non-convex and highly non-linear nature of the relaxed adversarial
training objective, stemming from the bi-level mini-max training and deep neural network archi-
tectures. Consequently, the approximated solution lacks a bounded integrality gap to the original
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discrete adversarial training problem, failing to guarantee optimality in the categorical feature space
(Nohra et al., 2021). Thus, classifiers trained this way remain vulnerable to discrete adversarial sam-
ples in the combinatorial space. As empirically confirmed in Table.1, an MLP-based classifier tuned
with the relaxed PGD-based adversarial training remains highly vulnerable to the state-of-the-art
discrete adversarial attacks.

An alternative solution involves adversarial training within the embedding space of categorical vari-
ables. For instance, text classifiers can be defended using adversarial perturbations confined to the
LQ ball around the target word in its embedding space (Zhu et al., 2019; Li et al., 2021; Pan et al.,
2022). While effective for text-related tasks, this approach is unsuitable for general categorical data,
such as system logs in cyber intrusion detection or medical examination records, lacking a meaning-
ful embedding space. Additionally, domain-specific constraints crucial for adversarial perturbations,
like synonymous words and semantic similarity measures, may be undefined or inapplicable across
various categorical domains.

Figure 1: IG score distribution from the IGSG
trained model and the undefended model Std
Train on Splice and PEDec dataset.

Considering the limitations of the discussed solu-
tions, we seek an alternative strategy to mitigate the
adversarial risk with categorical inputs. We focus
on enforcing smoothness regularization on the tar-
get classifier (Ross & Doshi-Velez, 2018a; Finlay
& Oberman, 2021). Specifically, our strategy first
involves penalizing the input gradients. According
to the information-theoretic upper bound on the ex-
pected adversarial risk on categorical data detailed
in Section.3.2, penalizing input gradients mitigates
the excessive curvature of the classification boundary and reduces the generalization gap of the tar-
get classifier. As a result, it alleviates the classifier’s over-sensitivity to input perturbation. However,
our comprehensive analysis indicates that merely penalizing the input gradient is not sufficiently
secured. An additional influential factor is the excessive reliance on specific features, where a few
features contribute significantly more to the decision output than others. The adversary may choose
to perturb these dominant features to significantly mislead the classifier’s output. To mitigate this, we
propose to perform a Total-Variation (TV) regularization (Chambolle, 2004) on the integrated gradi-
ents (IG) of one-hot encoded categorical features. This evens the attribution from different features
to the classification output. While IG is widely accepted as an XAI method to interpret feature-
wise attribution to the classifier’s decision output, our work is the first to uncover theoretically and
empirically the link between smoothing the axiomatic attribution and improving adversarial robust-
ness of the target classifier with categorical inputs. Combining both smoothing-driven regularization
techniques, we propose Integrated Gradient-Smoothed Gradient (IGSG)-based regularization, effec-
tively improving the adversarial robustness of the model. As shown in Figure.1, the IGSG-trained
model demonstrates approximately evenly distributed IG scores for different categorical features.
In contrast, the undefended model (Std Train) exhibits a highly skewed distribution of IG scores
across features. Connecting Figure.1 with Figure.3, we observe that highly attacked features are
precisely those with high IG scores. In summary, IGSG jointly smooths the classification boundary
and desensitizes categorical features. It therefore prevents adversarial attacks from exploiting the
over-sensitivity of the target classifier to the adversarial inputs.

Our technical contributions are summarized in the following perspectives:

Understanding influencing factors of adversarial risk: We’ve developed an information-theoretic
upper bound to understand and minimize the expected adversarial risk on categorical data, providing
insight into influential factors that can suppress adversarial risks effectively.

Development of a model-agnostic robust training through regularized learning for categorical
features. We’ve reframed adversarial robustness, proposing IGSG, a method focused on minimizing
our information-theoretic bound, enhancing feature contribution smoothness and decision boundary
definitiveness during training. It’s a universally adaptable solution for models dealing with categor-
ical features.

Extensive experimental study. We’ve conducted thorough analyses comparing IGSG against the
state-of-the-art adversarially robust training methods on three categorical datasets. The experimental
results confirm the superior performances of models trained via IGSG.
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2 RELATED WORKS

Adversarial training employs min-max optimization, generating adversarial samples via Fast Gra-
dient Sign Method (FGSM) (Wong et al., 2020; Zhang et al., 2022) or Projected Gradient Descent
(PGD) (Madry et al., 2017). TRADES (Zhang et al., 2019) optimizes a regularized surrogate loss,
balancing accuracy and robustness. Adversarial Feature Desensitization (AFD) (Bashivan et al.,
2021) leverages a GAN-like loss to learn invariant features against adversarial perturbations. While
these methods can handle L1-norm bounded adversaries for relaxed categorical data, ensuring con-
sistent performance is uncertain. The challenge of ”robust overfitting” in adversarial training (Rice
et al., 2020) is addressed by Chen et al. (2020); Yu et al. (2022) in the continuous domain, but our
investigation reveals this overfitting issue persists in the discrete feature space, unaddressed by exist-
ing continuous domain methods. Notably, our proposed IGSG successfully mitigates this problem.

Adversarial learning for categorical data typically involves search-based methods (Lei et al.,
2019; Wang et al., 2020b; Bao et al., 2021; Li et al., 2018; Jin et al., 2020). However, the substantial
time cost of generating adversarial samples hinders widespread application to general categorical
data tasks, as seen in cybersecurity and medical services. Xu et al. (2023) suggested extending
adversarial methods from continuous to discrete domains, but the MINLP nature of adversarial
training poses challenges in generating sufficient samples for comprehensive defense. In text data,
Ren et al. (2019) used word saliency and classification probability for guided word replacement,
while methods like FreeLB Zhu et al. (2019); Li et al. (2021) applied multiple PGD steps to word
embeddings. Dong et al. (2021) modeled the attack space as a convex hull of word vectors, and
Wang et al. (2020a) enhanced BERT-based model robustness using information theory, often relying
on language-specific constraints, limiting their broader applicability.

Regularization-based methods offer an alternative approach for enhancing adversarial robustness
by penalizing the target classifier’s complexity. Previous works Smilkov et al. (2017); Ross & Doshi-
Velez (2018b); Finlay & Oberman (2021) proposed gradient magnitude regularization during train-
ing. Others Gu & Rigazio (2014); Jakubovitz & Giryes (2018); Hoffman et al. (2019) focused on
penalizing the Frobenius norm of the Jacobian matrix for smoother classifier behavior. Additionally,
Chen et al. (2019); Sarkar et al. (2021) suggested using Integrated Gradients (IG) for feature con-
tribution measurement and applying regularization over IG to enhance robustness. Notably, these
methods did not specifically target adversarial robustness. Our work reveals the effectiveness of IG-
based regularization in adversarial robust training. Importantly, we demonstrate the significance of
simultaneously regularizing gradient magnitude and IG distribution across different feature dimen-
sions for a more potent approach.

3 UNDERSTANDING THE INFLUENCING FACTORS OF ADVERSARIAL RISK

Preliminary. Let’s assume that a random sample xi = {xi,1, xi,2, . . . , xi,p} has p categorical
features and a class label yi. Each feature xi,j can choose one out of m possible category values.
Following the one-hot encoding scheme, we can represent xi as a binary Rp∗m matrix b(xi). Each
row of b(xi) corresponds to the value chosen by feature xi,j , i.e., b(xi)j,k∗ = 1 when xi,j selects
the k∗-th category value, and for all other b(xi)j,k ̸=k∗ = 0 (k = 1, 2, ...,m). An adversarial sample
x̂i = {x̂i,j ,j=1,...,p } is generated by modifying the categorical values of a few features of xi. The
number of changed features from xi to x̂i is noted as diff(xi, x̂i). Given a classifier f and taking
b(xi) as input to f , f(b(xi)), simplified as f(xi), predicts its corresponding label yi.

3.1 LIMITATIONS OF ADVERSARIAL TRAINING ON CATEGORICAL DATA

Table 1: MLP with PGD-based ad-
versarial training

Dataset Attack Adv. Acc. Defend

Splice
PGD-1 95.2% ✓

OMPGS 51.7% ×
FSGS 43.6% ×

PEDec
PGD-1 96.0% ✓

OMPGS 74.1% ×
FSGS 52.5% ×

Census
PGD-1 93.2% ✓

OMPGS 62.7% ×
FSGS 54.1% ×

Firstly, we evaluate the limitations of adversarial training on
categorical data. We implement f as a Multilayer Percep-
tron (MLP) and conduct PGD-based adversarial training on
it across three datasets. Subsequently, the resistance of f
to three evasion attacks is outlined in Table.1. With the at-
tack budget 5 (i.e., diff(xi, x̂i) ≤ 5), both Forward Stepwise
Greedy Search (FSGS) (Elenberg et al., 2018), and orthogo-
nal matching pursuit based greedy search (OMPGS) (Wang
et al., 2020b) can directly find attack samples x̂i. PGD attack
in the 1-norm setting (PGD-1) (Madry et al., 2017) locates
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attack samples and subsequently discretizes them to yield feasible adversarial samples x̂i. Table.1
show that the adversarially trained f is only resilient against the PGD-1 based attack (high adver-
sarial accuracy), remaining vulnerable facing the other two attacks (significantly lower adversarial
accuracy). This suggests that the PGD-based adversarial training may not account for all possible
adversarial samples, causing the model to overfit to the samples discovered by the PGD method.

Similar observations can be made for f when using OMPGS-based adversarial training (see Figure.4
in Appendix.F). For the first 200 epochs, the adversarial accuracy and clean accuracy on the test set
mirrored those on the training set. However, with further adversarial training, there is a notable
increase in the adversarial accuracy and clean accuracy on the training set, while those on the test
set remain unchanged, which indicates robust overfitting. The findings in Table.1 and Figure.4
show that the adversarial examples encountered during training do not generalize well to the test
set. It suggests the presence of a distribution gap between discrete adversarial samples generated by
different attack methods, as well as a distribution gap between adversarial samples generated during
training and those encountered in the test set using the same attack method.

To provide further evidence of this distribution gap, we calculate the Wassernstein distance between
the distributions of adversarial samples generated by PGD-1 and OMPGS on PGD/OMPGS-based
adversarially trained model respectively (detailed in Appendix.F). A greater Wasserstein distance
suggests a larger discrepancy between the two distributions. Two main observations are evident
from Table.5. First, while PGD-based methods yield discrete adversarial samples with consistent
distributions during both training and testing phases, these samples present significantly disparate
distributions compared to those produced by OMPGS-based methods. This consistency in distribu-
tion with PGD-based methods is coherent with the results in Table.1, revealing substantial accuracy
against PGD-based attacks but a lack of substantial defense against OMPGS-based attacks. Second,
the adversarial samples derived via OMPGS exhibit a prominent distribution gap pre and post ad-
versarial training. This distinction is indicative of the declining adversarial accuracy of the retrained
classifier, as noted in Table.1 and Figure.4, through the course of the adversarial training.

Robust overfitting with categorical vs. continuous data. While robust overfitting in adversarial
training with continuous data has been extensively researched Yu et al. (2022), the root causes differ
when dealing with categorical data. Methods based on adversarial training typically employ heuris-
tic search techniques like PGD or OMPGS to discover discrete adversarial samples for training. Due
to the NP-hard nature of combinatorial search, these techniques can only explore a subset of adver-
sarial samples, leaving samples outside this range to be perceived as Out-of-Distribution (OOD) by
the classifier. This situation poses significant challenges for the model to generalize its robustness to
unseen adversarial samples during testing. Attempted solutions such as thresholding out small-loss
adversarial samples (Yu et al., 2022) have proven inadequate on categorical data in Appendix.I.4.
Therefore, we opt for regularized learning-based paradigms for enhanced robustness in training with
categorical data, avoiding the necessity to generate discrete adversarial samples.

3.2 INFORMATION-THEORETIC BOUND OF ADVERSARIAL RISK

Prior to developing our regularized learning approaches, we unveil the factors influencing adversarial
risk for categorical data via the following analysis. We first define the adversarial risk.

Definition 1. We consider a hypothesis spaceH and a non-negative loss function ℓ: µz×H → R+.
Following (Xu & Raginsky, 2017; Asadi et al., 2018), given a training dataset Sn composed of n
i.i.d training samples zi ∼ µ, we assume a randomized learning paradigm A mapping Sn to a
hypothesis f , i.e., f = A(Sn), according to a conditional distribution Pf |Sn . The adversarial risk
of f , noted as Radv

f , is given in Eq.1. It is defined as the expectation of the worst-case risk of f on
any data point z = (x, y) ∼ µz under the L0-based attack budget diff(x, x̂) ≤ ϵ. The expectation is
taken over the distribution of the n training samples Sn and the classifier f = A(Sn).

Radv
f = E

Sn,Pf|Sn
E

z=(x,y)∼µz ,
sup

diff(x,x̂)≤ϵ

ℓ(f(x̂), y). (1)

As defined, Radv
f measures the worst-case classification risk over an adversarial input ẑ = (x̂, y)

where the attacker can modify at most ϵ categorical features. Similarly, we provide the empirical
adversarial risk of f in Eq.2. It is defined as the expectation of the worst-case risk over adversarial
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samples ẑ = (x̂, y) over the joint distribution of Sn and Pf |Sn .

R̂adv
f = E

Sn,Pf|Sn

1

n

∑
zi=(xi,yi)∈Sn

sup
diff(xi,x̂i)≤ϵ

ℓ(f(x̂i), yi), (2)

Theorem 1. Let ℓ(f(xi), yi) be L-Lipschitz continuous for any zi = (xi, yi). Let Df be the diam-
eter of the hypothesis space H. For each xi, the categorical features modified by the worst-case
adversarial attacker and the rest untouched features are noted as ωi and ωi, respectively. Given an
attack budget ϵ, the size of ωi is upper bounded as |ωi| ≤ ϵ. The gap between the expected and
empirical adversarial risk in Eq.1 and Eq.2 is bounded from above, as given in Eq.3.

Radv
f − R̂adv

f ≤ LDf√
2n

√√√√ n∑
i=1

I(f ; zi) + 2

n∑
i=1

Ψ(xi,ωi , xi,ωi) +

n∑
i=1

Φ(xi,ωi , x̂i,ωi),

Ψ(xi,ωi , xi,ωi) = |I(xi,ωi ; f)− I(xi,ωi , yi; f)|,
Φ(xi,ωi , x̂i,ωi) = α|I(x̂i,ωi ;xi,ωi , yi, f)− I(xi,ωi ;xi,ωi , yi, f)|,

α = max
zi=(xi,yi)∈Sn,|ωi|≤ϵ

1 +
|I(x̂i,ωi ;xi,ωi , yi)− I(xi,ωi ;xi,ωi , yi)|

|I(x̂i,ωi ;xi,ωi , yi, f)− I(xi,ωi ;xi,ωi , yi, f)|
,

(3)

where xi,ωi
and x̂i,ωi

are ωi features before and after injecting adversarial modifications, and
I(X;Y ) represents the mutual information between two random variables X and Y .

The proof can be found in Appendix.A. We further discuss the tightness of Eq.3 in Appendix.A. In
the adversary-free case where ẑ = z, we show in Appendix.A that the bound established in Eq.3 is
reduced to a tight characterization of generalization error for a broad range of models, which was
previously unveiled in (Zhang et al., 2021; Bu et al., 2019).

The information-theoretical adversarial risk bound established in Eq.3 unveils two major factors to
suppress the adversarial risk over categorical inputs.

Factor 1. Reducing I(f ; zi) for each training sample zi helps suppress the adversarial risk f .
I(f, zi) in Eq. 3 represents the mutual information between the classifier f and each training sample
zi. Pioneering works (Xu & Raginsky, 2017; Bu et al., 2019; Zhang et al., 2021) have established
that a lower value of I(f, zi) corresponds to a diminishing adversary-free generalization error. As
widely acknowledged in adversarial learning research and emphasized in Eq. 3, a better generaliz-
able classifier exhibits greater resilience to adversarial attacks, resulting in lower adversarial risk

Factor 2. Reducing Ψ(xi,ωi
, xi,ωi

) and Φ(xi,ωi
, x̂i,ωi

) helps smooth the feature-wise contribu-
tion to classification, thus reducing the adversarial risk. We note that reducing the impact of
excessively influential features can suppress adversarial risk, corresponding to minimizing the sec-
ond and third terms beneath the square-root sign in Eq.3. First, in Ψ(xi,ωi

, xi,ωi
), I(xi,ωi

; f) and
I(xi,ωi , yi; f) reflect the contribution of the feature subset ωi and the rest features ωi to f . Features
with higher mutual information have more substantial influence on the decision output, i.e. adver-
sarially perturbing the values of these features is more likely to mislead the decision. Minimising
Ψ(xi,ωi , xi,ωi) thus decreases the contribution gap between the attacked and untouched features. It
prompts the classifier to maintain a more balanced reliance on different features, thereby making
it harder for adversaries to exploit influential features. Second, Φ(xi,ωi

, x̂i,ωi
) measures the sen-

sitivity of features in ωi, in terms of how adversarial perturbations to this subset of features affect
both the classification output and the correlation between ωi and ωi. Minimizing Φ(xi,ωi

, x̂i,ωi
)

makes the classifier’s output less sensitive to the perturbations over input features, which limits
the negative impact of adversarial attacks. In conclusion, jointly minimising Ψ(xi,ωi

, xi,ωi
) and

Φ(xi,ωi
, x̂i,ωi

) ensures that the classifier does not overly rely on a few highly sensitive features. It
helps reduce the susceptibility of the classifier to adversarial perturbation targeting at these features,
which consequently limits the adversarial risk.Beyond the two factors, minimizing the empirical
adversarial risk R̂adv

f in Eq.3 may also reduce the adversarial risk. This concept is synonymous
with the principles of adversarial training. Nevertheless, as highlighted in Section.3.1, the efficacy
of adversarial training is restricted.

4 IGSG: ROBUST TRAINING FOR CATEGORICAL DATA

Our design of adversarially robust training is in accordance with two recommended factors to min-
imize the adversarial risk. However, it is challenging to derive consistent estimates of mutual in-
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formation between high-dimensional variables, e.g. model parameters of deep neural networks and
high-dimension feature vectors, due to the curse of dimensionality Gao et al. (2018). Directly op-
timizing the mutual information-based bound is thus impractical. To overcome this bottleneck, we
propose the IGSG-based robust training paradigm. It jointly applies two smoothness-enhancing reg-
ularization techniques into the learning process of a classifier with categorical inputs, in order to
mitigate the adversarial attack over categorical data.

Minimizing I(f ; zi) by smoothing the curvature of the classification boundary. In previous
work, Fisher information ρ(zi)f was utilized as a quantitative measure of the information that the
hypothesis f contains about the training sample zi (Hannun et al., 2021). As shown in Wei &
Stocker (2016), ρ(zi)f is closely related to the mutual information I(f ; zi), higher/lower ρ(zi)f in-
dicates higher/lower I(f ; zi). Our work aims to minimize ρ(zi)f to effectively penalize excessively
high mutual information I(f ; zi). The computation of ρ(zi)f is detailed in Eq.16 of (Hannun et al.,
2021). In this context, suppressing ρ(zi)f (approximately suppressing I(f ; zi)) is equivalent to pe-
nalizing the magnitude of the gradient of the loss function with respect to each zi. This approach,
supported by findings in (Smilkov et al., 2017), uses gradient regularization to smooth the classi-
fier’s decision boundary, thereby reducing the potential risk of overfitting and enhancing adversarial
resilience We calculate the gradient of the classification loss to the one-hot encoded representation
of b(xi), which gives as∇b(xi)ℓ(xi, yi; θ) ∈ Rp∗m. Each element of∇b(xi)ℓ(xi, yi; θ) is formulated
as ∂

∂b(xi)j,k
ℓ(xi, yi; θ). According to (Yang et al., 2021), ∇b(xi)ℓ(xi, yi; θ) measures the curvature

of the decision boundary around the input. A larger magnitude of∇b(xi)ℓ(xi, yi; θ) indicates a more
twisted decision boundary, thus a less stable decision around the input. Enforcing the regularization
over the magnitude ∥∇b(xi)ℓ(xi, yi; θ)∥q leads to a smoother decision boundary (with lower curva-
ture) and improves the robustness of the decision output f(xi) against potential perturbation. In this
work, we apply smoothed Gradient Regularization (SG) (Smilkov et al., 2017) to further boost the
smoothness of the classifier.

Minimizing Ψ(xi,ωi , xi,ωi) and Φ(xi,ωi , x̂i,ωi) via smoothing the distribution of feature-wise
contribution to the classification output. Minimizing these terms involves evaluating the mutual
information between the feature subset ωi and the combined set of remaining features and the trained
model f . Approximating this mutual information-based penalization with Fisher information is thus
infeasible. The primary goal of regularizing these terms is to prevent the classifier from relying
too heavily on a few influential features. To achieve this, we propose using Integrated Gradient (IG)
(Sundararajan et al., 2017) to assess feature-wise contributions to the classification output. We apply
Total-Variance (TV) regularization over the feature-wise Integrated Gradient to promote a smooth
and balanced distribution of feature-wise attribution. In Appendix.I.1, we show empirically with
toy models that performing the proposed TV regularization can reduce the estimated value of both
mutual information-based terms.

We extend the computation of the IG scores in the categorical feature space by first defining a
baseline input x′. We augment the set of optional category values for each feature xi,j : we add one
dummy category m + 1, with constantly all 0 values for the embedding vector in f . Each feature
of x′ is set to take the dummy category value, i.e., b(x′)j,m+1 = 1, b(x′)j,k = 0(k = 1, 2, . . . ,m).
By feeding b(x′) to the classifier, no useful information is conveyed for classification, making it
a non-informative baseline. Given the defined baseline input x′, the IG score of each categorical
feature xi,j is approximated as:

IG(xi)j =

m∑
k=1

IG(xi)j,k =

m∑
k=1

(b(xi)j,k − b(x′)j,k)×
1

T

T∑
t=1

∂f(b(x′) + t
T
× [b(xi)− b(x′)])

∂b(xi)j,k
(4)

where T is the number of steps in the Riemman approximation of the integral. We empirically
choose T=20, which provides consistently good learning performances. IG(xi)j derived along the
trajectory between b(x′) and b(xi) hence represents the contribution of xi,j to the classifier’s output.

To ensure a smooth and balanced distribution of IG scores and to mitigate excessive dependency on
specific features, we propose to minimize the TV loss of the normalized IG scores, as influenced by
prior work (Chambolle, 2004). Initially, we employ a softmax transformation to normalize the IG
scores of each feature xi,j , ensuring the normalized scores lie within [0, 1] and collectively sum to
1. The TV regularization term is then defined as the sum of the absolute differences between neigh-
boring features’ normalized IG scores: ℓTV IG(xi) =

∑p−1
j=1 |IG(xi)j − IG(xi)j+1|, following the
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TV loss used in time series data analysis (Chambolle, 2004). This minimization promotes a more
balanced distribution of feature-wise contributions to the classifier’s decision.

Combining Eq.18 in Appendix.E and ℓTV IG(xi), the objective function of IGSG gives:

min
θ

E
(xi,yi)∈Sn

ℓ(xi, yi; θ) + αℓTV IG(xi) +
β

R

R∑
r=1

||Gr||p

where Gr,j,k =
∂

∂b(xr)j,k
ℓ(xr, yi; θ)−

∂

∂b(xr)j,k∗
ℓ(xr, yi; θ)

(5)

where α and β are hyper-parameters set by cross-validation.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

Summary of datasets. To evaluate the proposed IGSG algorithm, we employ two categorical
datasets and one mixed dataset with both categorical and numerical features, each from different
applications and varying in the number of samples and features.
1) Splice-junction Gene Sequences (Splice) (Noordewier et al., 1990). The dataset includes 3190
gene sequences, each with 60 categorical features from the set {A, G, C, T, N}. Each sequence is
labeled as intron/exon borders (IE), exon/intron borders (EI), or neither.
2) Windows PE Malware Detection (PEDec) (Bao et al., 2021). This dataset, used for PE malware
detection, consists of 21,790 Windows executable samples, each represented by 5,000 binary fea-
tures denoting the presence or absence of corresponding malware signatures. The samples are cate-
gorized as either benign or malicious.
3) Census-Income (KDD) Data (Census) (Lane & Kohavi, 2000). This dataset includes census data
from surveys conducted from 1994 to 1995, encompassing 299,285 samples. Each has 41 features
related to demographics and employment, with 32 categorical and 9 numerical. The task is to deter-
mine whether subjects fall into the low-income (less than $50,000) or high-income group.

For Splice and PEDec, we use 90% and 10% of the data samples as the training and testing set to
measure the adversarial classification accuracy. For Census, we use the testing and the training set
given by (Lane & Kohavi, 2000), i.e., 199,523 for training and 99,762 for testing.

Robustness evaluation protocol. Three domain-agnostic attack methods, FSGS (Elenberg et al.,
2018), OMPGS (Wang et al., 2020b) and PCAA (Xu et al., 2023), designed specifically for gen-
erating discrete adversarial perturbations in categorical data, are employed to evaluate adversarial
robustness. Due to the discontinuous nature of categorical data, traditional attacks like PGD and
FGSM cannot be directly applied. Further discussion is presented in Appendix.G. FSGS, OMPGS
and PCAA, with proven attack effectiveness across various real-world applications, are suitable for
comparing the effectiveness of different robust model training methods on categorical input.

We traverse varied attack budgets (the maximum number of the modified features) for OMPGS
attacks. Due to the high computational complexity of FSGS (Bao et al., 2021), we set a fixed attack
budget of 5 on all three datasets. For PCAA, we also fix the attack budget to be 5. On each dataset,
we use MLP and Transformer (Vaswani et al., 2017) as the target classifier. Due to space limitations,
we provide detailed attack settings in Appendix.H.1, the experimental results on Transformer models
in Appendix.I.3, and the experimental results of PCAA attack in Appendix.I.7

Baselines. We involve one undefended model and 7 state-of-the-art robust training methods as the
baselines in the comparison with IGSG. Specifically, we include 5 adversarial training baselines
Adv Train (Madry et al., 2017), Fast-BAT (Zhang et al., 2022), TRADES (Zhang et al., 2019), AFD
(Bashivan et al., 2021) and PAdvT (Xu et al., 2023), and 2 regularization-based baselines IGR (Ross
& Doshi-Velez, 2018b) and JR (Hoffman et al., 2019). The details of the baselines can be found in
Appendix.H.2 and the details of the hyper parameter settings can be found in Appendix.H.3.

Performance metrics. We compare the adversarial accuracy of the target models trained using the
methods above against FSGS and OMPGS attacks. We evaluate the adversarial robustness of mixed-
type datasets by attacking categorical features with FSGS/OMPGS and numerical features with
PGD-∞. Further details can be found in Appendix.H.4. Time complexity analysis and training time
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Table 2: Adversarial Accuracy under FSGS attack and Accuracy (%) for IGSG and baseline models.
Adv Train (Madry et al., 2017), Fast-BAT (Zhang et al., 2022), TRADES (Zhang et al., 2019), AFD
(Bashivan et al., 2021), PAdvT (Xu et al., 2023), IGR (Ross & Doshi-Velez, 2018b), JR (Hoffman
et al., 2019)

Dataset Attack Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv Train Fast-BAT TRADES AFD PAdvT IGR JR IGSG

Splice budget=5 36.7±4.8 43.6±0.7 28.7±7.4 23.3±8.6 21.1±13.0 39.1±1.7 40.9±3.0 4.3±3.7 44.0±2.6
Clean 95.2±2.5 96.2±0.4 95.6±1.0 96.3±0.3 93.4±0.7 94.9±1.3 95.2±0.6 95.2±0.9 95.9±0.7

PEDec budget=5 14.9±0.8 53.1±1.7 62.4±2.7 31.0±2.5 74.3±3.9 46.9±2.9 31.4±0.9 74.3±0.2 86.5±3.8
Clean 96.4±0.2 96.2±0.0 96.2±0.1 96.4±0.1 96.0±0.2 96.5±0.3 96.4±0.0 95.4±0.1 95.5±0.2

Census budget=5 46.2±1.8 54.1±2.3 63.4±3.8 49.8±1.6 60.2±1.9 61.9±5.4 45.8±1.7 48.3±3.4 67.2±3.5
Clean 95.4±0.1 94.5±0.3 95.0±0.1 94.8±0.3 95.2±0.2 95.2±0.1 95.3±0.1 95.4±0.1 95.5±0.2

Figure 2: Adversarial accuracy for IGSG and baselines under OMPGS attack with varied budgets.

for different methods are provided in Appendix.I.5. The code is available at https://github.
com/fshafrh/IGSG.

5.2 EXPERIMENTAL RESULTS

Adversarial Accuracy Performance of IGSG Compared to Baseline Methods. Table.2 reports
the accuracy and the adversarial accuracy against FSGS attacks for each robust training method.
From the results, we can see that the adversarial accuracy of IGSG significantly outperforms the
baseline methods. Especially, on PEDec, IGSG can largely improve the adversarial accuracy up to
86.5%. In comparison, the best baseline of robust training, JR and AFD, only achieves an adversarial
accuracy score of 74.3%. IGSG also achieves comparable accuracy on the three datasets.

Figure 2 illustrates the adversarial accuracy of all the methods tested under OMPGS-based attacks
with varying attack budgets. Higher attack budgets indicate stronger attacks against the targeted
classifier, resulting in lower adversarial accuracy overall. Similar to the undefended model, most
baseline methods experience a decline in adversarial accuracy as the attack strength increases. In
contrast, the proposed method, IGSG, consistently achieves higher and more stable levels of ad-
versarial accuracy across all three datasets. Specifically, on PEDec, IGSG maintains an adversarial
accuracy above 88% regardless of the attack strength. On Splice, IGSG consistently outperforms
other baseline methods, exhibiting a performance gain of over 10%. On Census, IGSG initially
shows similar adversarial accuracy to other baselines under small attack budgets but demonstrates
a significantly slower rate of decline as the attack budget increases. Notably, adversarial training
methods like Adv Train perform poorly on PEDec. This is because the feature space of PEDec is ex-
tensive, causing adversarial training to suffer from robust overfitting on categorical data. The attack
can only explore a small fraction of all possible adversarial perturbations, limiting the effectiveness
of adversarial training, while IGSG can provide consistently robust classification regardless of the
feature dimensionality. JR performs well on PEDec, while the performance on Splice and Census
is constantly bad. Using regularization as well, IGSG has a more stable performance on different
datasets. It is worth noting that Splice has a few particularly sensitive features. Modifying these
features can result in a change in whether a sample crosses an intron/exon or exon/intron boundary,
or neither physically, which causes misclassification. Thus, all the defense methods involved in the
test do not perform well against attacks on Splice.

Ablation Study. We include the following variants of the proposed IGSG method in the ablation
study. SG and IG are designed to preserve only the smoothed gradient-based (SG, see Eq.18) or
the IG-based smoothness regularization (IG, see Eq.17) respectively in the learning objective. We
compare SG and IG to IGSG for demonstrating the advantage of simultaneously performing the IG
and gradient smoothing-based regularization. IGSG-VG: We replace the smoothed gradient given
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in Eq.18 with the vanilla gradient of the one hot tensor. Another four variants to provide additional
validation for the design of IGSG are presented in Appendix.I.6

Table 3: Ablation Study. Adversarial Accuracy and Accu-
racy (%) for IGSG variants with an attack budget of 5.

Dataset Adversary SG IG IGSG-VG IGSG

Splice
FSGS 43.3±3.0 40.3±5.0 39.7±2.4 44.0±2.6

OMPGS 59.9±6.5 54.9±4.9 59.4±5.3 63.8±4.2
Clean 95.7±0.5 94.7±1.0 95.2±1.1 95.9±0.7

PEDec
FSGS 12.7±1.8 84.2±2.9 81.6±3.8 86.5±3.8

OMPGS 28.6±1.1 83.4±7.6 82.3±3.5 88.0±4.0
Clean 96.4±0.1 94.8±0.3 95.2±0.2 95.5±0.2

Census
FSGS 47.9±2.1 57.8±0.8 54.1±1.6 67.2±3.5

OMPGS 71.4±7.8 65.9±2.7 69.3±6.4 71.3±9.0
Clean 95.1±0.3 95.5±0.1 95.4±0.0 95.5±0.2

Table.3 shows that IGSG consistently
outperforms the variants in adversar-
ial accuracy against both FSGS and
OMPGS attacks, affirming the effec-
tiveness of IGSG’s design in mitigating
both types of greedy search-based at-
tacks simultaneously. SG does not em-
ploy IG-based regularization, resulting
in a classifier that may overly rely on
a few highly influential features con-
tributing most to the classification out-
put. These sensitive features can be readily targeted by both types of greedy search-based attacks,
particularly on PEDec. In comparison, IG lacks the classification boundary smoothness, leading to
a slight decrease in performance compared to IGSG. The results with SG and IG show that the two
attributional smoothness regularization terms employed by IGSG are complementary to each other
in improving the adversarial robustness of the built model.

Table 4: MLP with IGSG training and
Performance Gain Compared to PGD-
based Adversarial Training

Dataset Attack Adv. Acc. Gain

Splice
PGD-1 95.6% 0.4% ∼

OMPGS 63.8% 12.1% ↑
FSGS 44.0% 0.4% ∼

PEDec
PGD-1 94.5% -1.5% ∼

OMPGS 88.0% 13.9% ↑
FSGS 86.5% 34% ↑

Census
PGD-1 93.0% -0.2% ∼

OMPGS 71.3% 8.6% ↑
FSGS 67.2% 13.1% ↑

IGSG-VG replaces the smoothed gradient-based regular-
ization defined in Eq.18 and Eq.19 with a vanilla gradient.
Its diminished performance shows the merit of introduc-
ing the smoothed gradient computing and the mean field
smoothing based technique in Eq.18 and Eq.19.

Effectiveness of Avoiding Robust Overfitting. By uti-
lizing regularization, IGSG avoids the issue of “robust
overfitting” encountered in adversarial training. This re-
sults in improved performance, as demonstrated in Ta-
ble.4, compared to the adversarial accuracy shown in Ta-
ble.1. We conduct the comparison between IGSG and two
works mitigating robust overfitting in continuous domain
(Chen et al., 2020; Yu et al., 2022). IGSG achieves consistently better adversarial robustness. The
details are presented in Appendix.I.4

Figure 3: Attack frequency reduced by IGSG

Reduced Attack Frequency with IGSG. We
compare the frequency of each feature attacked
under OMPGS on Splice and PEDec. The at-
tack frequency represents the number of times a
feature appears among the altered features in all
successful adversarial attack samples. As seen in
Figure.3, IGSG results in fewer and lower peaks
on Splice compared to the undefended model, in-
dicating enhanced robustness. For PEDec, the feature with the highest attack frequency is entirely
suppressed with IGSG. This demonstrates the effectiveness of IGSG, with feature desensitization
being achieved post-training.

6 CONCLUSION

In this work, we first unveil influencing factors of adversarial threats on categorical inputs via de-
velopping an information-theoretic upper bound of the adversarial risk. Guided by the theoretical
analysis, we further propose IGSG-based adversarially robust model training via enforcing the two
smoothness regularization techniques on categorical data, which helps mitigate adversarial attacks
on categorical data. On the one hand, our method smooths the influence of different categorical fea-
tures and makes different features contribute evenly to the classifier’s output. On the other hand, our
method smooths the decision boundary around an input discrete instance by penalizing the gradient
magnitude. We demonstrate the domain-agnostic use of IGSG across different real-world applica-
tions. In our future study, we will extend the proposed method to the text classification task and
compare it with text-specific robust training methods enhanced with semantic similarity knowledge.
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