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ABSTRACT

Differentially Private-SGD (DP-SGD) of Abadi et al. (2016) and its variations are the only known
algorithms for private training of large scale neural networks. This algorithm requires computation
of per-sample gradients norms which is extremely slow and memory intensive in practice. In this
paper, we present a new framework to design differentially private optimizers called DP-SGD-JL and
DP-Adam-JL. Our approach uses Johnson–Lindenstrauss (JL) projections to quickly approximate
the per-sample gradient norms without exactly computing them, thus making the training time and
memory requirements of our optimizers closer to that of their non-DP versions.
Our algorithms achieve state-of-the-art privacy-vs-accuracy tradeoffs on MNIST and CIFAR10
datasets while being significantly faster. Unlike previous attempts to make DP-SGD faster which
work only on fully-connected or convolutional layers, our algorithms work for any network in a
black-box manner which is the main contribution of this paper. To illustrate this, on IMDb dataset,
we train a Recurrent Neural Network (RNN) to achieve good privacy-vs-accuracy tradeoff, whereas
existing DP optimizers are either inefficient or inapplicable. On RNNs, our algorithms are orders of
magnitude faster than DP-SGD for large batch sizes.
The privacy analysis of our algorithms is more involved than DP-SGD, we use the recently proposed
f -DP framework of Dong et al. (2019). In summary, we design new differentially private training
algorithms which are fast, achieve state-of-the-art privacy-vs-accuracy tradeoffs and generalize to all
network architectures.

1 INTRODUCTION

Over the past decade, machine learning algorithms based on (deep) neural architectures have lead to a revolution in
applications such as computer vision, speech recognition and natural language processing (NLP). An important factor
contributing to this success is the abundance of data. For most of these applications, however, the training data comes
from individuals, often containing personal and sensitive information about them. For example, natural language models
for applications such as suggested replies for e-mails and dialog systems rely on the training of neural networks on email
data of users (Chen et al. (2019); Deb et al. (2019)), who may be left vulnerable if personal information is revealed.
This could happen, for example, when a model generates a sentence or predicts a word that can potentially reveal private
information of users in the training set. Many studies have shown successful membership inference attacks on deep
learning models (Shokri et al. (2017); Carlini et al. (2019)). Indeed, in a recent work, Carlini et al. (2019) show that
“unintended memorization” in neural networks is both commonplace and hard to prevent. Such memorization is not due
to overtraining (Tetko et al. (1995); Carlini et al. (2019)), and ad hoc techniques such as early-stopping, dropout etc., do
not prevent the risk of privacy violations. Moreover, Feldman (2020) shows that memorization is in fact necessary,
provably, for some learning tasks. Thus, to prevent unintended privacy breaches one needs a principled approach for
private training of deep learning models. In this paper we study training neural networks with differential privacy, a
mathematically rigorous notion of privacy introduced in the seminal work of Dwork et al. (2006), and focus on user
level privacy.
Definition 1.1 ((ε, δ)-DP). We say that an algorithm M is (ε, δ)-DP if for any two neighboring databases D,D′ and
any subset S of outputs, we have Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Besides being a provable privacy notion, it has been shown that deep learning models trained with DP protect against
leakage of sensitive information; we refer the readers to Carlini et al. (2019); Abadi et al. (2016) for more details.

In a highly influential paper, Abadi et al. (2016) introduced a differentially private version of stochastic gradient descent
(DP-SGD) for training deep learning models, and showed that it is possible to achieve reasonable accuracy-vs-privacy
tradeoff on common benchmarks such as MNIST and CIFAR10. Since then, there has been a vast body of work building
on and extending the algorithm of Abadi et al. (2016); we refer the readers to McMahan et al. (2018); Bu et al. (2019);
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Carlini et al. (2019); Thakkar et al. (2019); Augenstein et al. (2020); Zhou et al. (2020); Chen et al. (2020); Balle et al.
(2020). The DP-SGD and its variations such as DP-Adam differ from their non-private counter parts in two crucial
ways (see Algorithm 4):

• Gradient Clipping: In each iteration of DP-SGD, we clip each per-sample gradient to have `2-norm at most
some fixed parameter C. This step ensures that the sensitivity of the average gradient is bounded, which is
crucial for privacy analysis. Computing the norms of per-sample gradients is the most expensive step in the
algorithm. Efficient implementations of backpropagation such as in TensorFlow and PyTorch only maintain
the average of per-sample gradients across a batch by default. Therefore, getting the norm of each per-sample
gradient requires significantly more time and memory.
• Adding Noise: Once clipped gradients are averaged across a batch, DP-SGD algorithm adds carefully

calibrated noise, typically sampled from the Gaussian distribution, to ensure privacy.

The analysis of DP-SGD in Abadi et al. (2016) then follows from a careful tracking of privacy budget lost in each
iteration, for which they introduced a novel technique called moments accountant, which was later generalized as Renyi
differential privacy by Mironov (2017). This analysis was further refined and improved using the f -DP framework by
Dong et al. (2019) and Bu et al. (2019), which lead to better privacy bounds. In this work, we use f -DP framework of
Dong et al. (2019) for our privacy analysis.

While DP-SGD has been shown to achieve reasonable accuracy-vs-privacy tradeoff Bu et al. (2019); Abadi et al. (2016),
and arguably is the only known algorithm for training deep neural networks, its use in real-world deep learning has
been rather limited. One of the primary reasons for this is the training time of DP-SGD compared to SGD. In DP-SGD,
per-sample gradients are computed at a heavy cost in runtime, especially for large deep learning models. The naive
approach of setting the batch size to 1 is too slow to be practical as we completely lose the benefits of parallelization.
This problem has attracted significant attention in the community and has been noted in popular implementations of
DP-SGD including Tensorflow Privacy and Opacus (Pytorch DP). Many strategies have been proposed to circumvent
this issue, and they fall broadly into the following categories:

• Microbatching: DP-SGD implementation in Tensorflow Privacy allows dividing a batch into several micro-
batches and clipping the gradient at the microbatch level; the per-sample gradients in a microbatch are first
averaged and then clipped, and finally these clipped gradients are averaged across microbatches. Thus, if each
microbatch is of size L, then it gives a speedup of L over the usual DP-SGD. Unfortunately, the sensitivity
goes up by a factor of L, so we need to add L times more noise. In our experiments, we observe that this often
leads to poor accuracy even for moderate values of L.
• Multiple method: In this approach, proposed by Goodfellow and implemented as the vectorized DP-SGD

in Tensorflow Privacy, one copies the model as many times as there are samples in a batch. As each copy of
the model is used on only one example, we can compute the per-sample gradients in parallel. This approach
improves speed at the cost of memory and is impractical for large models.
• Outer product method: This strategy was proposed by Goodfellow (2015) for fully-connected networks

and later generalized by Rochette et al. (2019) to include convolutional networks. The norms of per-sample
gradients are computed exactly using outer products between the activations and backpropagated gradients
across adjacent layers. The biggest drawback of this approach is that it does not work for many network
architectures (e.g., RNNs such as bidirectional LSTMs). Moreover, this method requires significantly more
memory than DP-SGD and non-private SGD (see Section D.1).

Table 1: Summary of different methods for DP training of neural networks

Optimizers Privacy Speed Memory Generalizability
Non-DP SGD 8 4 4 4

DP-SGD-Vanilla 4 8 4 4
DP-SGD-Multiple 4 4 8 4

DP-SGD-Outer 4 4 4 8
DP-SGD-JL 4 4 4 4

As we can see, none of these approaches for speeding up DP-SGD completely solve the problem and fall short in at least
one dimension. In this work, we propose a new algorithmic framework based on JL-projections for fast differentially
private training of deep neural networks, which bypasses the expensive step of exactly computing per-sample gradient
norms. We summarize this discussion in Table 1.
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Figure 1: Accuracy vs Training time for various algorithms
on CIFAR10 using the network from Papernot et al. (2020).
Privacy loss ε is color coded for a fixed δ = 10−5.

Our Contributions and Techniques The main idea
of our algorithm is to approximate the per-sample gra-
dient norms instead of computing them exactly. John-
son–Lindenstrauss (JL) projections provide a convenient
way to approximate the `2 norm of a vector; simply
project the vector onto a uniformly random direction,
the length of the projection (scaled appropriately) is a
good approximation to the `2-norm of the vector. By do-
ing more such projections and averaging, we get even
better approximation to the true `2-norm. Moreover,
there is an efficient way to obtain such projections us-
ing forward-mode auto-differentiation or Jacobian-vector
product (jvp) (see Section 2.1 for details). jvp can be
calculated during the forward pass making it very effi-
cient. Since this makes the sensitivity itself a random
variable, the privacy analysis is significantly harder than
the traditional DP-SGD. We use the recently proposed
f -DP framework of Dong et al. (2019) for our analysis. Intuitively, f -DP captures the entire collection of (ε, δ)-DP
guarantees that each iteration of the algorithm satisfies and composes them optimally to find the best (ε, δ)-DP guarantee
for the final algorithm.

To summarize, the key contributions of this paper are:

• Our algorithms DP-SGD-JL and DP-Adam-JL achieve training times comparable to their non-private coun-
terparts, are significantly faster than previously known private training algorithms, and work for all network
architectures. The privacy-vs-accuracy tradeoff achieved by our algorithms is comparable to the existing
state-of-the-art DP-algorithms.

• Compared to DP-SGD, our analysis of privacy is more involved. Since we only approximate the per-sample
gradient norms, we cannot precisely bound sensitivity. Therefore the analysis requires significantly new ideas
and we use the recently developed f -DP framework of Dong et al. (2019).

• We demonstrate these improvements by performing extensive experiments on MNIST, CIFAR10, and IMDb
datasets using various network architectures such as convolution layers, recurrent layers, embedding layers
etc.. See a glimpse of our results in Figure 1. Our experiments in Section 3 show that our algorithms achieve
state-of-the-art privacy-vs-accuracy tradeoffs, sometimes even improving them, while being 20× faster on
MNIST, 8× faster on CIFAR10, and 350× faster on IMDb for a bidirectional LSTM network.

• Our algorithms introduce a new knob, the dimension of JL-projection, which allows us to do a tradeoff between
training-time and privacy, which was not possible in earlier algorithms. All hyperparameters being the same,
smaller JL dimension will give much better running time with a slight increase in privacy budget.

Estimating per-sample gradients norms is also useful in other applications such as optimization based on importance
sampling ( Zhao & Zhang (2015)). We believe that our JL-projection technique will be useful in speeding up all such
applications.

2 DP-SGD-JL ALGORITHM

In this section we describe our new differentially private optimizers. We will first present DP-SGD-JL, and DP-Adam-JL
follows in the same lines and is presented in Appendix A. We begin with an introduction to “Jacobian-vector product”
(jvp) which is crucial for our algorithm.

2.1 JACOBIAN-VECTOR PRODUCT (JVP)

Given a function f : Rd → R, the gradient of f with respect to θ, denoted by∇θf , is:

∇θf =

(
∂f

∂θ1
,
∂f

∂θ2
, . . . ,

∂f

∂θd

)
.
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Let F : Rd → Rm be some function given by F (θ) = (F1(θ), F2(θ), . . . , Fm(θ)). The Jacobian of F (θ), denoted by
∇θF , is the matrix:

∇θF =

[
∂Fi
∂θj

]
ij

=


∇θF1

∇θF2

...
∇θFm

 .
Most auto-differentiation packages allow for calculating the vector-Jacobian product (vjp) given by uT∇θF =∑m
i=1 ui∇θFi for any u ∈ Rm efficiently using reverse-mode auto-differentiation, which is the familiar ‘backpropaga-

tion’.1 One can also calculate the Jacobian-vector product (jvp) given by

∇θF · v =


〈∇θF1, v〉
〈∇θF2, v〉

...
〈∇θFm, v〉


efficiently using forward-mode auto-differentiation (i.e., the required derivatives are calculated during the forward
pass of the network). This is implemented in the recent tensorflow versions.2 Unfortunately, PyTorch doesn’t have an
implementation of forward-mode auto-differentiation. Instead, one can compute jvp using two calls to vjp, this is
called the ‘double vjp trick’ (see Townsend). Define G(α) = αT∇θF , which can be calculated using vjp. Note that
∇αG = (∇θF )T . Now we can use vjp again on G to calculate

vT∇αG = vT (∇θF )T = (∇θF · v)T .

In our experiments, we use jvp to compute the Jacobian-vector products as double vjp trick is significantly slower.

2.2 ALGORITHM
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2
r for different r.

The main idea of our algorithm is to approximate `2-norms of per-
sample gradient norms instead of computing them exactly. And the
key tool to achieve this is JL projections.

Proposition 2.1 (JL projections). Let y ∈ Rd be any vector. If
v1, v2, . . . , vr ∼ N (0, Id) are independent standard Gaussian vec-

tors, then Mr =
√∑r

i=1
1
r 〈y, vi〉

2 has the same distribution as

‖y‖2
√

1
rχ

2
r .3 In particular E[M2

r ] = ‖y‖22 .

Proof. By the properties of the standard Gaussian distribution, 〈y, vi〉
has the distribution of ‖y‖2N (0, 1). And 〈y, vi〉 are independent for
i = 1 to r. Therefore

∑r
i=1 〈y, vi〉

2 has the same distribution as
‖y‖22 χ2

r.

As shown in Figure 2, as r grows larger, the distribution of
√

1
rχ

2
r concentrates more around 1 and therefore Mr

becomes a better estimate of ‖y‖2 . Using jvp, we can compute projections of per-sample gradients on to standard
Gaussian vectors quickly and therefore get good approximations to their norms. This is the main idea of DP-SGD-JL
(Algorithm 1). The privacy analysis of our algorithm is quite involved and we will get back to it in Section 4 after
discussing our experiments.

1In PyTorch, uT∇θF can be calculated as autograd.grad(F,θ,grad outputs=u).
In Tensorflow, this is tf.GradientTape().gradient(F,θ,output gradients=u).

2Supported in tf-nightly≥2.4.0.dev20200924 as tf.autodiff.ForwardAccumulator(θ,v).jvp(F).
3χ2
r is the chi-square distribution with r degrees of freedom which is the distribution of sum of squares of r standard Gaussians.

4



Under review as a conference paper at ICLR 2021

Algorithm 1 Differentially private SGD using JL projections (DP-SGD-JL)

Input: Examples {x1, x2, . . . , xN}, loss function L(θ) = Ei∈[N ][L(θ;xi)], initialization θ0.
Parameters: number of iterations T , learning rates (η1, η2, . . . , ηT ), noise scale σ, batch size B, clipping norms
(C1, C2, . . . , CT ), number of JL projections r.

for t = 1 to T do
Sample St = {X1, X2, . . . , XB} ⊂ {x1, x2, . . . , xN} uniformly at random.
Define F (θ) = (L(θ;X1),L(θ;X2), . . . ,L(θ;XB))

Sample v1, v2, . . . , vr ← N (0, Id) (where θ ∈ Rd) . JL projections to estimate per-sample gradient norm
for j = 1 to r do

(P1j , P2j , . . . , PBj)← ∇θF (θt−1) · vj (using jvp) . Note that Pij = 〈∇θL(θt−1;Xi), vj〉
end for
for i = 1 to B do

Set Mi =
√

1
r

∑r
j=1 P

2
ij . Mi is an estimate for ‖∇θL(θt−1;Xi)‖2 .

end for
Define L̃(θ) = 1

B

∑
i∈B min{1, CtMi

} · L(θ;Xi). . Clip the per-sample gradients

g̃t ← ∇θL̃(θt−1) + σ·Ct
B · N (0, Id) . Add noise to the average of clipped gradients

Update θt ← θt−1 − ηtg̃t
end for
Output: θ0, θ1, θ2, . . . , θT

3 EXPERIMENTS

We experimentally evaluate and compare our new algorithms for training deep neural networks to previously algorithms
on multiple classification tasks, such as MNIST (LeCun & Cortes (2010)), CIFAR10 (Krizhevsky et al. (2009)) and
IMDb Dataset (Maas et al. (2011)). We demonstrate that compared to existing implementations of DP-SGD with exact
per-sample gradient clipping, our optimizers have significant advantages in speed and memory cost while achieving
comparable accuracy-vs-privacy tradeoff. Moreover our algorithms perform well on a variety of network architectures.

In the following, we write ‘Non-DP-SGD’ as the standard non-private SGD. We note that the original DP-SGD described
in Abadi et al. (2016) can be implemented in two ways: we denote the ‘DP-SGD-Vanilla’ as the one implemented in
Tensorflow Privacy and the mathematically equivalent but faster implementation in Opacus as ‘DP-SGD-Outer’ since it
uses the ‘outer product’ trick discussed in the introduction. We note that DP-SGD-Vanilla can be applied to any network
architecture (see TFissue) including recurrent layers such as LSTM and GRU, at the cost of slow computation.

We can implement DP-SGD-JL and DP-Adam-JL in two different ways: 1) via jvp directly (in Tensorflow) and 2) via
double vjp trick (in Pytorch and Tensorflow). Both implementations are mathematically equivalent and result in the
same accuracy and privacy, but they differ in computation time. We note that using jvp is usually much faster than the
double vjp trick. In Appendix D.1, we analyze the memory footprints for various algorithms. In Appendix D.2, we
demonstrate the scalability of our algorithms by training a large neural network VGG13. In this section, we focus on
accuracy-vs-privacy-vs-time tradeoffs while fixing the memory.

Notation: We denote the noise multiplier as σ, clipping norm as C, batch size as B, learning rate as η and the number
of epochs as E = BT/N . We fix the privacy parameter δ = 10−5, as done by prior work. We denote the JL dimension
used by each optimizer in the parentheses. We use one Tesla P100 16GB GPU for all experiments.

3.1 MNIST EXPERIMENTS

Figure 3 displays the performance of various algorithms in training the 2-layer CNN from Bu et al. (2019); Tensor-
flow Privacy; Opacus on MNIST. We use the same hyper-parameters as in Bu et al. (2019): B = 256, σ = 1.3, C =
1.5, η = 0.25, E = 15.

Fixing the accuracy at 95%, DP-SGD-JL(1) requires less than 10 seconds and ε of 2.4. On the other hand, DP-SGD-
Outer requires more than 100 seconds; however, it achieves an ε of less than 1. So, while DP-SGD-JL(1) gives a
significant speedup, it does require higher privacy budget. However, by increasing the JL dimension, we can tradeoff
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Figure 3: Left: Performance of various algorithms training a 2-layer CNN on MNIST. Right: Fixing accuracy at 95%,
plotting speed-vs-privacy tradeoff.

the speed-vs-privacy. These experiments show another important strength of JL optimizers: our algorithms give a new
knob – the dimension of JL projections – to tune privacy-vs-speed tradeoff. On the other hand, DP-SGD-Vanilla would
take roughly the same time per epoch regardless of the value of ε.

3.2 CIFAR10 EXPERIMENTS

Next, we conduct experiments on a more difficult image dataset, CIFAR10, using a neural network architecture
proposed in a recent work of Papernot et al. (2020). This paper achieves an accuracy of 66.2% at ε = 7.53 without
data-augmentation or pre-training, in contrast to previous works Abadi et al. (2016); Xiang et al. (2019); Phan et al.
(2017). In Table 2, the DP-SGD implemented by Pytorch uses double vjp trick to compute jvp and the one by
Tensorflow uses jvp directly.

Non-DP SGD DP-SGD-Vanilla DP-SGD-Outer DP-SGD-JL(1) DP-SGD-JL(10)
Pytorch 12 - 17 78 657

Tensorflow 2.5 434 - 6.6 38

Table 2: Seconds per epoch to train the network from Papernot et al. (2020) (7 convolutional layers and 1 fully-connected
layers) with 623,146 parameters. We set σ = 0.9, C = 2, B = 256, η = 0.1, E = 20.
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Figure 4: Left: Performance of various algorithms training the network in Papernot et al. (2020) on CIFAR10. Right:
Privacy-vs-Training time tradeoff fixing accuracy at 55%.

In Figure 4, we see that DP-SGD-JL(1) matches the state-of-the-art4 accuracy of 66.1% at ε = 5.55 while clearly
beating all other algorithms in training time. If we fix an accuracy of 55%, DP-SGD-JL1 is about 8× faster than DP-
SGD-Outer while losing only a little bit in privacy. We also note that DP-SGD-JL(10) closely matches the performance
of DP-SGD-Outer.

It is interesting that DP-SGD-JL(1) is simultaneously more private and faster than DP-SGD-JL(4). One possible
explanation is that DP-SGD-JL(1) learns faster than larger JL dimensions since it might be taking larger steps compared
to others. Another possibility is the non-monotonicity of the privacy loss w.r.t JL dimension (see Appendix C).

4We could not reproduce the exact results of Papernot et al. (2020), which states that an accuracy of 66.2% can be achieved using
ε = 7.53.
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3.3 IMDB EXPERIMENTS

The goal of these experiments is to show that our algorithms work well on RNNs for which existing techniques do not
work. We train a bidirectional LSTM with an embedding layer on the IMDb dataset for sentiment analysis. We remark
that simpler networks not based on RNNs can achieve good accuracy-vs-privacy tradeoff as shown in Bu et al. (2019)
and Pytorch. However, LSTM models based on RNN architectures are widely used in NLP applications, and hence
efficient private training of such models remains an important challenge in this area (McMahan et al. (2018)). Moreover,
as we noted in the introduction, methods such as the outer product trick do not work for bidirectional LSTMs. 5.

Non-DP Adam DP-Adam-Vanilla DP-Adam-JL(1) DP-Adam-JL(4) DP-Adam-JL(10) DP-Adam-JL(30)
12 13931 38 100 243 669

Table 3: Seconds per epoch to train our RNN with 598,274 parameters. We set β1 = 0.9, β2 = 0.999, σ = 0.6, C =
1, B = 256, η = 0.001, E = 20.

We implement DP-Adam-JL in Algorithm 3 using jvp method. We train the same single-layer bidirectional LSTM as
in the Tensorflow, using the same IMDb dataset with 8k vocabulary. The dataset has binary labels and is preprocessed
by zero-padding the sequences to a length of 150 before being fed into the embedding layer.
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Figure 5: Performance of RNN on IMDb dataset
with different Adam.

Table 3 shows a speedup of about 350× for DP-Adam-JL(1) over DP-
Adam-Vanilla. This is unexpected as the speedup should not be more
than batch size (256); this may be due to memory and implementation
issues. Moreover, DP-Adam-JL(1) achieves an accuracy of 83.2%
with ε = 21. This is very close to the accuracy achieved by Non-DP-
Adam.

In Figure 6, fixing test accuracy at 70%, we see that DP-SGD-JL(1)
is much faster and more private than other JL dimensions up to 10.
DP-Adam-Vanilla is extremely slow, so we could only run it for 4
epochs in our experiments and we couldn’t train it until it reaches
an accuracy of 70%. But we expect the accuracy-vs-privacy tradeoff
of DP-Adam-Vanilla to be very close that of DP-Adam-JL(30) but
much slower. Finally, fixing the training time at 720 seconds, we
observe a trade-off between accuracy and privacy, with smaller JL
dimensions achieving higher accuracy at the cost of more privacy
loss. DP-Adam-Vanilla doesn’t even finish one epoch.
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Figure 6: Accuracy, privacy and training time trade-off for training RNN on IMDb dataset. Left: Fixing accuracy at
70%, Middle: Fixing training time at 720 seconds, Right: Fixing ε = 8.

4 PRIVACY ANALYSIS

4.1 f -DP PRELIMINARIES

We use the recently proposed f -DP framework of Dong et al. (2019) for our privacy analysis. The f -DP framework
allows us to reason about a collection of (ε, δ)-privacy guarantees simultaneously which can then be composed to get a
much better (ε, δ)-privacy for the final algorithm. We will first define the notion of (ε, δ)-DP formally and then define

5In Pytorch Opacus github, the LSTM layer is only partially supported, e.g. single directional, single LSTM layer, no dropout
layer; other recurrent layers such as GRU are not supported (see Opacus).
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the notion of f -DP. We then state a proposition from Dong et al. (2019) which shows that these two notions are dual to
each other.
Definition 4.1 ((ε, δ)-DP). We say that an algorithm M is (ε, δ)-DP if for any two neighboring databases D,D′ and
any subset S of outputs, we have Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

For each value of ε ≥ 0, there exists some δ ∈ [0, 1] such that M is (ε, δ)-DP. We can represent all these privacy
guarantees by a function δ(ε) : R≥0 → [0, 1] and say that M is (ε, δ(ε))-DP for each ε ≥ 0. We will now see that
there is a dual way to represent the function δ(ε) called f -DP. To introduce this, we will need the notion of a tradeoff
function.
Definition 4.2 (Tradeoff function). Let P,Q be two distributions over some domain X. Let φ : X → [0, 1] be a
prediction rule which given a sample predicts which distribution the sample came from. The type I error is defined as
α = Ex∼P [φ(x)] and the type II error is defined as β = Ex∼Q[1−φ(x)]. The tradeoff function T (P ||Q) : [0, 1]→ [0, 1]
is defined as:

T (P ||Q)(α) = inf
φ
{1− EQ[φ] : EP [φ] ≤ α}. (1)

Given two random variables X,Y , we define T (X||Y ) to be T (P ||Q) where P,Q are the distributions of X,Y
respectively.

Note that if T (P,Q) = f , then T (Q,P ) = f−1. A tradeoff curve f is called symmetric if f−1 = f. Given two
functions f, g on the same domain, we say f � g if f(x) ≤ g(x) for all x in the domain. f � g is similarly defined.
Definition 4.3 (f -DP). We say an algorithm M is f -differentially private if for every two neighboring databases D,D′,
we have T (M(D)||M(D′)) � f .
Proposition 4.1 (Duality of f -DP and (ε, δ)-DP from Dong et al. (2019)). If M satisfies f -DP where f is symmetric
(i.e., f−1 = f ). Let α∗ be such that f(α∗) = α∗. Then M satisfies (ε(α), δ(α))-DP for every 0 ≤ α ≤ α∗ where:

ε(α) = log(−f ′(α)), δ(α) = 1− f(α) + αf ′(α).

So the tangent to f at α has slope − exp(ε(α)) and y-intercept 1− δ(α) (see Figure 7).

Figure 7: Duality of f -DP and (ε, δ)-DP. Ev-
ery tangent to the f -DP curve gives an (ε, δ)-
DP guarantee where the slope is −eε and y-
intercept is 1− δ.

Note that by convexity of f, f ′ : [0, 1] → R is increasing in [0, 1]
and by symmetry f ′(α∗) = 0. Therefore Proposition 4.1 covers the
entire range of ε ≥ 0.

Definition 4.4 (Parametrization of a tradeoff curve). A parametriza-
tion of a tradeoff curve f is given by (α(t), β(t)) for some parameter
t ∈ R such that f(α(t)) = β(t). A symmetric parametrization is a
parametrization such that (α(−t), β(−t)) = (β(t), α(t))

If we have a symmetric parametrization of the tradeoff curve given
by f(α(t)) = β(t), then we can find ε, δ as:

ε(t) = log

(
−β
′(t)

α′(t)

)
, δ(t) = 1− β(t) + α(t)β′(t)/α′(t) (2)

for t ≥ 0. Note that in a symmetric parametrization, α∗ = α(0) =
β(0).

Proposition 4.2 (Post-processing). Let X,Y be two random vari-
ables supported on A and let M : A → B is some randomized

function, then T (X||Y ) � T (M(X)||M(Y )).

Proposition 4.3. Let (X1, Y1) and (X2, Y2) be pairs of random variables such that X1|Y1=y has the same distribution
as X2|Y2=y for all y. Then T (X1, Y1||X2, Y2) = T (Y1||Y2).

Proof. By post-processing (Proposition 4.2), T (X1, Y1||X2, Y2) � T (Y1||Y2). Let X(y) be a random variable which
has the distribution of X1|Y1=y and X2|Y2=y. Let M(y) = (X(y), y). Then M(Y1) = (X1, Y1) and M(Y2) =
(X2, Y2). Therefore, by post-processing (Proposition 4.2), we have the inequality in the other direction.

Proposition 4.4 (Composition Dong et al. (2019)). Let X1, X2, . . . , Xm be independent random variables and let
Y1, Y2, . . . , Ym be independent random variables. Then

T (X1, X2, . . . , Xm||Y1, Y2, . . . , Ym) = T (X1||Y1)⊗ T (X2||Y2)⊗ · · · ⊗ T (Xm||Ym)

where ⊗ is a commutative, associative operation on functions from [0, 1]→ [0, 1].

8
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For any random variable X , we have T (X||X) ≡ Id where Id : [0, 1] → [0, 1] is defined as Id(α) = 1 − α. The
function Id is identity for ⊗ operation i.e. f ⊗ Id = f for all f.

We will the need the following proposition which explains how subsampling affects the privacy curve.
Proposition 4.5 (Dong et al. (2019)). Let p ∈ (0, 1) and let f = T (P ||Q). Then T (P ||(1 − p)P + pQ) = p · f +
(1− p) · Id.

We will now present two crucial lemmas which are important for our privacy analysis. The proofs of the lemmas are
presented in Appendix B.
Lemma 4.1. Let Z be some random variable and let f = T (Z,N(Z, 1)||Z,N(0, 1)). Then f can be parametrized as
f(α(t)) = β(t) where:

α(t) = EZ
[
Φ

(
− t

Z
− Z

2

)]
, β(t) = EZ

[
Φ

(
t

Z
− Z

2

)]
and Φ is the CDF of standard Gaussian. We also have:

α′(t) = −exp(−t/2)√
2π

EZ
[

1

Z
exp

(
− t2

2Z2
− Z2

8

)]
, β′(t) =

exp(t/2)√
2π

EZ
[

1

Z
exp

(
− t2

2Z2
− Z2

8

)]
and β′(t)/α′(t) = − exp(t).

Lemma 4.2. Let Z, Z̃ be two random variables such that there exists some coupling (Z, Z̃) with Z ≥ Z̃ ≥ 0. Then
T (Z,N(Z, 1)||Z,N(0, 1)) � T (Z̃,N(Z̃, 1)||Z̃,N(0, 1)).

4.2 PROOF OF PRIVACY FOR ALGORITHM 4

Algorithm 2 Subroutine of Algorithm 1

Input: Vectors {g1, g2, . . . , gN} ⊂ Rd, clipping norm C, noise scale σ, number of JL projections r.

Sample v1, v2, . . . , vr ← N (0, Id) . JL projections to estimate per-sample gradient norm

For i ∈ [N ], set Mi =
√

1
r

∑r
j=1 〈gi, vj〉

2
. Mi is an estimate for ‖gi‖2

g̃ ←
(∑N

i=1 min{1, CMi
} · gi

)
+ σ · C · N (0, Id)

Output: g̃

We will first analyze the privacy of a crucial subroutine used in Algorithm 4 which is shown in Algorithm 2.
Lemma 4.3. Algorithm 2 is f -DP with

f = T (Zr,N (Zr/σ, 1)||Zr,N (0, 1))

where Zr = 1√
1
rχ

2
r

. Moreover f can be parametrized as f(α(t)) = β(t) for t ∈ R where:

α(t) = EZr
[
Φ

(
− tσ
Zr
− Zr

2σ

)]
, β(t) = EZr

[
Φ

(
tσ

Zr
− Zr

2σ

)]
.

Proof. Let X be the output of Algorithm 2 with input {g0, g1, . . . , gN} and let Y be the output of Algorithm 2 with
input {g1, . . . , gN}. We want to show that T (X||Y ) � f . We have

X =

(
N∑
i=0

min

{
1,

C

Mi

}
· gi

)
+ σ · C · N (0, Id), Y =

(
N∑
i=1

min

{
1,

C

Mi

}
· gi

)
+ σ · C · N (0, Id).

By post-processing property (Proposition 4.2), we have

T (X||Y ) � T (v1, v2, . . . , vr,M0, X
′||v1, v2, . . . , vr,M0, Y

′)

where

X ′ = min

{
1,

C

M0

}
· g0 + σ · C · N (0, Id), Y

′ = σ · C · N (0, Id).

9
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By Proposition 4.3,

T (v1, v2, . . . , vr,M0, X
′||v1, v2, . . . , vr,M0, Y

′) = T (M0, X
′||M0, Y

′).

Let U be a rotation matrix which rotates g0 to ‖g0‖2 · e1 ∈ Rd where e1 = (1, 0, 0, . . . , 0). Let X ′′ = UX ′ and
Y ′′ = UY ′. Since U is a fixed bijective map,

T (M0, X
′||M0, Y

′) = T (M0, X
′′||M0, Y

′′).

Because of rotation invariance, U · N (0, Id) has the same distribution as N (0, Id). So,

X ′′ = min

{
1,

C

M0

}
· ‖g0‖2 e1 + σ · C · N (0, Id), Y

′′ = σ · C · N (0, Id).

The coordinates (X ′′i )i≥2 are independent of each other and M0, X
′′
1 . Similarly the coordinates (Y ′′i )i≥2 are also

independent of each other and M0, Y
′′
1 . Moreover X ′′i and Y ′′i has the same distribution for i ≥ 2. Therefore by

Proposition 4.4,

T (M0, X
′′||M0, Y

′′) = T (M0, X
′′
1 ||M0, Y

′′
1 )⊗ Id⊗ Id⊗ · · · ⊗ Id = T (M0, X

′′
1 ||M0, Y

′′
1 ),

where X ′′1 = min

{
1,

C

M0

}
· ‖g0‖2 + σ · C · N (0, 1) and Y ′′1 = σ · C · N (0, 1).

Let f(M0) = min
{
‖g0‖2
σC ,

‖g0‖2
σM0

}
. We can further simplify this using Proposition 4.3 as:

T (M0, X
′′
1 ||M0, Y

′′
1 )

= T (M0, f(M0) +N (0, 1) ||M0,N (0, 1))

= T (M0, f(M0), f(M0) +N (0, 1) ||M0, f(M0),N (0, 1))

= T (f(M0), f(M0) +N (0, 1) || f(M0),N (0, 1))

We can simplify f(M0) further by using the fact that ‖g0‖M0
= ‖g0‖2 /

(√
1
r

∑r
j=1 〈g0, vj〉2

)
has the same distribution

as 1/
√

1
rχ

2
r . Therefore f(M0) has the same distribution as

Z̃ = min

‖g0‖2
σC

,
1

σ
√

1
rχ

2
r

 .

Let Zr = 1√
1
rχ

2
r

and so Z̃ = min
{
‖g0‖2
σC , Zrσ

}
. By Lemma 4.2,

T (Z̃,N (Z̃, 1)||Z̃,N (0, 1)) � T (Zr,N (Zr/σ, 1)||Zr,N (0, 1)).

Therefore, this proves that T (X||Y ) � T (Zr,N (Zr/σ, 1)||Zr,N (0, 1)) where Zr = 1√
1
rχ

2
r

. The parametrization

follows from Lemma 4.1.

Theorem 4.1. Let p = B/N where B is the batch size and N is the total number of samples. Then Algorithm 1 is
g-DP with g = min

{
f⊗Tp , (f⊗Tp )−1

}∗∗
where fp = pf + (1− p)Id and f = T (Zr,N (Zr/σ, 1)||Zr,N (0, 1)).6

Proof. Algorithm 1 can be thought of as adaptive composition of T iterations of Algorithm 2, but where the inputs to
the Algorithm 2 in each iteration is subsampled from the entire input with sampling probability p = B/N . And we
already showed in Lemma 4.3 that Algorithm 2 satisfies f -DP with f as claimed. The rest of the proof is very similar to
Theorem 3 in Bu et al. (2019) which itself builds on a similar theorem in Dong et al. (2019). It proceeds by applying
Proposition 4.5 to understand the effect of subsampling and an adaptive version of the composition in Proposition 4.4 to
compose the privacy curves in all the T iterations.

One could hope to use the central limit theorem for composition from Dong et al. (2019); Bu et al. (2019) (see
Proposition B.3) to find an approximate closed form expression for the final privacy curve. Unfortunately, these central
limit theorems do not apply in our setting (see Proposition B.5). Instead, we numerically compute the final privacy
curve obtained in Theorem 4.1.

6h∗∗ is the double convex conjugate of h (i.e., the greatest convex lower bound for h).
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Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp.
263–275. IEEE, 2017.

Library Opacus.
github.com/facebookresearch/pytorch-dp.

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tempered sigmoid activations
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A DP-SGD AND DP-ADAM-JL

For completeness, we provide pseudo-code for DP-SGD and DP-Adam-JL used in our experiments. DP-Adam-JL
satisfies exactly the same privacy bounds as DP-SGD-JL.

Algorithm 3 Differentially private Adam using JL projections (DP-Adam-JL)

Input: Examples {x1, x2, . . . , xN}, loss function L(θ) = Ei∈[N ][L(θ;xi)], initialization θ0.
Parameters: number of iterations T , momentum parameters (β1, β2), noise scale σ, batch size B, clipping norms
(C1, C2, . . . , CT ), number of JL projections r.

for t = 1 to T do
Sample St = {X1, X2, . . . , XB} ⊂ {x1, x2, . . . , xN} uniformly at random.
Define F (θ) = (L(θ;X1),L(θ;X2), . . . ,L(θ;XB))

Sample v1, v2, . . . , vr ← N (0, Id) (where θ ∈ Rd) . JL projections to estimate per-sample gradient norm
for j = 1 to r do

(P1j , P2j , . . . , PBj)← ∇θF (θt−1) · vj (using jvp) . Note that Pij = 〈∇θL(θt−1;Xi), vj〉
end for
for i ∈ Bt do

Mi ←
√

1
r

∑r
j=1 P

2
ij . Mi is an estimate for ‖∇θL(θt−1;Xi)‖2 .

end for
Define L̃(θ) = 1

B

∑
i∈B min{1, CtMi

} · L(θ;Xi). . Clip the per-sample gradients

g̃t ← ∇θL̃(θt−1) + σ·Ct
B · N (0, Id) . Add noise to the average of clipped gradients

mt ← β1mt−1 + (1− β1) g̃t
ut ← β2ut−1 + (1− β2) g̃2

t
ηt ← mt/(

√
ut + 10−8)

Update θt ← θt−1 − ηtg̃t
end for
Output: θ0, θ1, θ2, . . . , θT

Algorithm 4 Differentially private SGD (DP-SGD) from Abadi et al. (2016)

Input: Examples {x1, x2, . . . , xN}, loss function L(θ) = Ei∈[N ][L(θ;xi)], initialization θ0.
Parameters: number of iterations T , learning rates (η1, η2, . . . , ηT ), noise scale σ, batch size B, clipping norms
(C1, C2, . . . , CT ), number of JL projections r.

for t = 1 to T do
Sample St = {X1, X2, . . . , XB} ⊂ {x1, x2, . . . , xN} uniformly at random.
for i = 1 to B do

ĝi ← min{1, Ct
‖∇θL(θt−1;Xi)‖2 } · ∇θL(θt−1;Xi) . Clip the per-sample gradients to `2-norm at most Ct

g̃t ← 1
B

(∑
i∈Bt ĝi

)
+ σCt

B · N (0, Id) . Average the clipped gradients and add noise
Update θt ← θt−1 − ηtg̃t

end for
end for
Output: θ0, θ1, . . . , θT

B PRIVACY ANALYSIS: MISSING PROOFS

In this section, we will prove Lemma 4.1 and Lemma 4.2. Before we start the proofs, we will need some preliminaries.

Though Eqn (1) defining the tradeoff curve requires us to take an infimum over a large class of tests, Neyman-Pearson
lemma gives a very simple form for the optimal tests to use.
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Proposition B.1 (Neyman-Pearson lemma). Let P,Q be two continuous distributions over some domain X. The type I
error vs type II error tradeoff function between P and Q is attained by the Neyman-Pearson tests which are a single
parameter family of tests of the form φt : X → [0, 1] defined as:

φt(x) =

{
1 if P (x) ≤ tQ(x)

0 if P (x) > tQ(x).

Proposition B.2 (Dong et al. (2019)). For µ ≥ 0, define Gµ(α) = T (N (µ, 1)||N (0, 1)) = T (N (0, 1)||N (µ, 1)).
Then

Gµ(α) = Φ(−µ+ Φ−1(1− α)) = Φ(−µ− Φ−1(α))

where Φ is the CDF of standard Gaussian.
Corollary B.1. Let µ ≥ µ′ ≥ 0. Then T (N(µ, 1)||N(0, 1)) � T (N(µ′, 1)||N(0, 1)).

Corollary B.2. For µ ≥ 0, Gµ(α) = T (N (µ, 1)||N (0, 1)) can be parametrized by t ∈ R as Gµ(α(t)) = β(t) where:

α(t) = Φ

(
− t
µ
− µ

2

)
, β(t) = Φ

(
t

µ
− µ

2

)
.

Proof. This follows from Proposition B.2.

Φ−1(α(t)) = − t
µ
− µ

2

⇒− µ− Φ−1(α(t)) =
t

µ
− µ

2

⇒Φ
(
−µ− Φ−1(α(t))

)
= Φ

(
t

µ
− µ

2

)
:= β(t).

Note that Corollary B.2 is a special case of Lemma 4.1 which we will prove now using the Neyman-Pearson lemma.

Proof of Lemma 4.1. Denote P := Z ×N(0, 1), Q := Z ×N(Z, 1). From Neyman-Pearson lemma (Proposition B.1),
the type I/II errors are

α(t) = Pr
(z,x)∼P

[
Q(z, x)

P (z, x)
≥ et

]
= Pr
z∼Z,x∼N (0,1)

[
exp

(
x2

2
− (x− z)2

2

)
≥ et

]
= Pr
z∼Z,x∼N (0,1)

[
x2

2
− (x− z)2

2
≥ t
]

= Pr
z∼Z,x∼N (0,1)

[
zx− z2/2− t ≥ 0

]
=EZ

[
Φ

(
− t

Z
− Z

2

)]
and

β(t) = Pr
(z,x)∼Q

[
Q(z, x)

P (z, x)
< et

]
= Pr
z∼Z,x∼N (z,1)

[
exp

(
x2

2
− (x− z)2

2

)
< et

]
= Pr
z∼Z,x∼N (z,1)

[
x2

2
− (x− z)2

2
< t

]
= Pr
z∼Z,x∼N (0,1)

[
(x+ z)2

2
− x2

2
< t

]
= Pr
z∼Z,x∼N (0,1)

[
zx+ z2/2− t < 0

]
=EZ

[
Φ

(
t

Z
− Z

2

)]
.
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Since Φ′(z) = φ(z) = 1√
2π

exp(−z2/2) which is the Gaussian PDF, the derivatives are given by

α′(t) =EZ
[
− 1

Z
φ

(
− t

Z
− Z

2

)]
= −exp(−t/2)√

2π
EZ
[

1

Z
exp

(
− t2

2Z2
− Z2

8

)]
β′(t) =EZ

[
1

Z
φ

(
t

Z
− Z

2

)]
=

exp(t/2)√
2π

EZ
[

1

Z
exp

(
− t2

2Z2
− Z2

8

)]
.

Proof of Lemma 4.2. Let fz = T (N(z, 1)||N(0, 1)) be a family of privacy curves parametrized by z ∈ R≥0. By
Corollary B.1, fz � fz̃ if z ≥ z̃ ≥ 0. Let αz(t), βz(t) be the parametrization of fz(t) given by:

αz(t) = Φ

(
− t
z
− z

2

)
, βz(t) = Φ

(
t

z
− z

2

)
.

By Lemma 4.1 and Equation (2), we have εz(t) = t and δz(t) = 1− βz(t)− αz(t)et. Therefore δz(ε) = 1− βz(ε)−
αz(ε)e

ε. If δZ(ε) be the (ε, δ) privacy curve for T (Z,N(Z, 1)||Z,N(0, 1)), by Lemma 4.1, we have

δZ(ε) = 1− Ez∼Z [βz(ε)]− Ez∼Z [αz(ε)]e
ε = Ez∼Z [δz(ε)].

When z ≥ z̃, we have fz � fz̃ which implies that δz(ε) ≤ δz̃(ε). Therefore by using the coupling (Z, Z̃)

with Z ≥ Z̃, we have Ez∼Z [δz(ε)] ≥ Ez̃∼Z̃ [δz̃(ε)]. Therefore δZ(ε) ≥ δZ̃(ε) which further implies that
T (Z,N(Z, 1)||Z,N(0, 1)) � T (Z̃,N(Z̃, 1)||Z̃,N(0, 1)).

B.1 CENTRAL LIMIT THEOREM FOR PRIVACY CURVE COMPOSITION

In this section, we show that we cannot apply the central limit theorems from Dong et al. (2019); Bu et al. (2019) to
find a closed form expression for the privacy of our algorithms.

Proposition B.3 (Bu et al. (2019)). Suppose f is a trade-off function such that f(0) = 1, f(x) > 0 for all 0 ≤ x < 1

and
∫ 1

0
(f ′(α) + 1)4dα <∞. Let fp = pf + (1− p)Id. Furthermore, assume p

√
T → ν as T →∞ for some constant

ν > 0. Then we have the uniform convergence

f⊗Tp → G
ν
√
χ2(f)

as T →∞ where χ2(f) =
∫ 1

0
f ′(α)2dα− 1.

Proposition B.4. The PDF of Zr = 1√
1
rχ

2
r

is given by

Zr(a) =
1

Cr
· 1

ar+1
· exp

(
− r

2a2

)
where Cr =

∫∞
0

1
ar+1 · exp

(
− r

2a2

)
= ( 2

r )r/2 · Γ(r/2)
2 is the normalization constant and

Γ(r/2) =

{(
r
2 − 1

)
! if r is even,√

π(r−1)!

2r−1·( r−1
2 )!

if r is odd.

Proposition B.5. Let f = T (Zr,N (Zr/σ, 1)||Zr,N (0, 1)). Then χ2(f) =∞.
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Proof. Using the parametrization of f from Lemma 4.1, we can compute χ2(f) as follows.

χ2(f)

=

∫ 1

0

f ′(α)2dα− 1

= −
∫ ∞
−∞

exp(2t)α′(t)dt− 1

=

∫ ∞
−∞

exp(2t) · exp(−t/2)√
2π

EZr
[
σ

Zr
exp

(
− t

2σ2

2Z2
r

− Z2
r

8σ2

)]
dt− 1

= EZr
∫ ∞
−∞

exp(3t/2)√
2π

· σ
Zr

exp

(
− t

2σ2

2Z2
r

− Z2
r

8σ2
r

)
dt− 1

= EZr
[
exp

(
Z2
r

σ2

)]
− 1

=

∫ ∞
a=0

1

Cr · ar+1
exp

(
− r

2a2

)
· exp

(
a2

σ2

)
da− 1.

=∞

since the integrand tends to infinity as a→∞.

C EFFECT OF JL DIMENSION ON PRIVACY

In this section, we analyze how JL dimension effects the privacy guarantees of DP-SGD-JL (or DP-Adam-JL as they
have the same privacy guarantee). Since the per-sample gradient norm estimations get more accurate with JL dimension,
it is clear that the privacy of DP-SGD-JL should converge to that of DP-SGD-Vanilla for large JL dimension. This can
be see from Figure 8. Another interesting observation is that the privacy loss is not monotone w.r.t JL dimension. This
is happening because it is not always true that T (Zr,N (Zr/σ, 1)||Zr,N (0, 1)) � T (Zr′ ,N (Zr′/σ, 1)||Zr′ ,N (0, 1))
for r > r′. Thus sometimes, smaller JL dimension can be more private and faster than larger JL dimensions.
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Figure 8: Privacy loss of DP-SGD-JL up to 5 epochs. Here ‘No JL’ represents the original the privacy loss of DP-SGD-
Vanilla. We set N = 60000, B = 256, σ = 1.3) for the upper panel, and N = 25000, B = 64, σ = 0.5 for the lower
panel.
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D ADDITIONAL EXPERIMENTS

D.1 MEMORY ANALYSIS

In this section, we focus our attention to the memory footprint for various algorithms discussed in the paper. From
Table 4, we see that even for small neural networks, DP-SGD-Outer may require too much memory to be deployable.
In contrast, DP-SGD-JL only needs as much memory as non-DP SGD.

Optimizer 2-layer CNN AlexNet
Sec/epoch Sec/epoch Memory (of 16GB)

Non-DP SGD 1 14 12%
DP-SGD-Vanilla7 50 332 38%
DP-SGD-Outer8 12 85 75%

DP-SGD-JL(1) ( jvp) 3 43 15%
DP-SGD-JL(10) (jvp) 20 182 15%

DP-SGD-JL(1) (double vjp) 14 26 22%
DP-SGD-JL(10) (double vjp) 22 105 22%

Table 4: 2-layer CNN in OpacusTensorflow Privacy with 26,010 parameters and batch size of 256. AlexNet in
Krizhevsky et al. (2012) (5 convolutional layers and 3 fully-connected layers) with 21,598,922 parameters and batch
size of 64. The double vjp implementation is in PyTorch and the rest of them are in Tensorflow.

D.2 LARGE MODELS

To illustrate the scalability of our algorithms, we perform experiments on CIFAR10 with a large neural network, VGG13
(Simonyan & Zisserman (2014)), and a large batch size. In contrast to previous works Abadi et al. (2016); Xiang et al.
(2019); Phan et al. (2017), we do not use data-augmentation nor pre-training.

Non-DP SGD DP-SGD-Vanilla DP-SGD-Outer DP-SGD-JL(1) DP-SGD-JL(10)
Pytorch 13 - Out of Memory 212 1946

Tensorflow 12 1625 - 20 106

Table 5: VGG13 (10 convolutional layers and 3 fully-connected layers). This network contains 32,394,562 parameters.
During training, σ = 0.9, R = 3, B = 256, η = 0.001, E = 20.

For for VGG13, we observe that all existing acceleration methods fail: DP-SGD-Outer cannot fit in the memory.
But unfortunately, overall no algorithm achieves reasonable privacy-vs-accuracy tradeoff; almost all the algorithms
achieve less than 20% accuracy. Yet, these experiments are serve to demonstrate that our algorithms can indeed provide
significant speed-up on large models.

Finally we note the difference in implementing DP-SGD-JL with jvp or vjp. When training with DP-SGD-JL,
Tensorflow jvp takes 11 seconds per JL dimension per epoch but Pytorch double vjp takes about 180 seconds.
Therefore, it is preferred to adopt jvp on large neural networks.
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