
RoboCerebra: A Large-scale Benchmark for
Long-horizon Robotic Manipulation Evaluation

Songhao Han1∗ Boxiang Qiu1∗ Yue Liao2∗† Siyuan Huang3
Chen Gao1 Shuicheng Yan2‡ Si Liu1‡

1Beihang University 2National University of Singapore 3Shanghai Jiao Tong University

robocerebra.github.io

1

Pick up popcorn
from the

wooden cabinet

2

Pour popcorn
into black bowl

3

Place popcorn
on coffee table

4

Open the
microwave

5

Pick up popcorn
bowl from the

coffee table

6

Place black
bowl into the

microwave

7

Close the
microwave

8

Pick up wine
bottle from the

coffee table

9

Pour wine from
the bottle into

the mug

Put the wine
bottle on coffee

table

10

502.5

2972.4

A
ve

ra
ge

 T
ra

je
ct

or
y

L
en

gt
h

(s

te
ps

/ta
sk

)

371.9
276.3

160.2130.4125.8

Approximately
6× longer

than previous!

Regenerate if verification fails.

(a) Dataset Generation Pipeline

(b) Long-Horizon & Diverse Task Sequences (c) Comparison of Benchmarks

Objects
Library

Task Design
& Decomposition

Simulation
Code Generation

Close-Loop
Verification

Trajectory
Annotation

Temporal
Annotation

Quality
Checking

Re-annotate if check fails.

Observations may conflict with plansObjects not always stillExploration process relies on memory

1

2
3

Open the top
region of cabinet

Open the middle
region of cabinet

Pick up popcorn
1

2

3

Execution not visible without memory

Open the
microwave

Place black bowl
into microwave

Close the
microwave

[Microwave closed]

[Microwave closed]

Pick up wine
bottle from table

Pick up wine
bottle again

[The bottle fell]

[Bottle lifted]

1 2
(-0.3, 0)(-0.3, -0.2) (-0.3, 0.2)

𝒕𝒕𝟎𝟎𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐

[The butter is on the middle]

[The butter is on the left]

[The butter is on the right]

RecoveryCollisionTask completion
unclear from
observation

Figure 1: We shift the focus of robotic imitation learning from fast, reactive System 1 behavior to
slow, deliberative System 2 reasoning. To support this, we introduce RoboCerebra, a benchmark
centered on long-horizon tasks composed of extended subtask sequences. (a) A top-down data
generation pipeline uses an LLM to produce high-level task instructions and decompose them into
subtasks. Human operators execute these in simulation to collect trajectories, with multi-stage
verification ensuring quality and semantic consistency. (b) A dataset example showing a long, fine-
grained subtask sequence under dynamically changing visual conditions. (c) RoboCerebra features
significantly longer trajectories, approximately 6× those in existing robotic manipulation benchmarks.

Abstract

Recent advances in vision-language models (VLMs) have enabled instruction-
conditioned robotic systems with improved generalization. However, most exist-
ing work focuses on reactive System 1 policies, underutilizing VLMs’ strengths
in semantic reasoning and long-horizon planning. These System 2 capabili-
ties—characterized by deliberative, goal-directed thinking—remain underexplored
due to the limited temporal scale and structural complexity of current benchmarks.
To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-
level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1)
a large-scale simulation dataset with extended task horizons and diverse subtask
sequences in household environments; (2) a hierarchical framework combining a
high-level VLM planner with a low-level vision-language-action (VLA) controller;
and (3) an evaluation protocol targeting planning, reflection, and memory through

∗Equal contribution
†Project Leader
‡Corresponding Author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://robocerebra.github.io

Table 1: Comparison of Benchmarks. Our RoboCerebra benchmark is designed to evaluate System
2 capabilities in robotic manipulation. It is designed to generate long-horizon tasks with large
language models (LLMs), enriched with human-collected trajectories.Our benchmark also includes
fine-grained decomposed substeps, dynamic scene variations, and time-segment annotations, all of
which are critical factors in long-horizon tasks yet currently missing in existing benchmarks.

Benchmarks Train (var) Test (var) Long-horizon LLM-Gen Tasks Human Traj. Dynamic Time-Anno. FG. Decomp.
RLBench [1] 100 (323) 100 (323) ✗ ✗ ✗ ✗ ✗ ✗
VLMBench [2] 8 (233) 8 (374) ✗ ✗ ✗ ✗ ✗ ✗
ARNOLD [3] 8 (3,571) 8 (800) ✗ ✗ ✗ ✗ ✗ ✗
ALFRED [4] 7 (21,023) 7 (1,529) ✓ ✗ ✓ ✗ ✗ ✗
Calvin [5] 34 34 (1,000) ✓ ✗ ✓ ✗ ✗ ✗
RoboCasa [6] 100 100 ✓ ✓ ✗ ✗ ✗ ✗
Libero-Long [7] 10 (500) 10 (500) ✓ ✗ ✓ ✗ ✗ ✗
VLABench [8] 100 100 ✓ ✗ ✗ ✗ ✗ ✗

RoboCerebra 1,000 (100,000) 60 (600) ✓ ✓ ✓ ✓ ✓ ✓

structured System 1–System 2 interaction. The dataset is constructed via a top-
down pipeline, where GPT generates task instructions and decomposes them into
subtask sequences. Human operators execute the subtasks in simulation, yielding
high-quality trajectories with dynamic object variations. Compared to prior bench-
marks, RoboCerebra features significantly longer action sequences and denser
annotations. We further benchmark state-of-the-art VLMs as System 2 modules
and analyze their performance across key cognitive dimensions, advancing the
development of more capable and generalizable robotic planners.

1 Introduction

Recent advances in vision-language models (VLMs) [9, 10, 11, 12] have introduced new capa-
bilities for robotic manipulation [13, 14]. Departing from conventional control paradigms, recent
research [15, 16] has increasingly explored the use of foundation models to enable more generalizable,
instruction-conditioned robotic behavior. By integrating VLMs, robotic systems gain enhanced com-
petence in grounding natural language commands within complex visual contexts, thereby improving
adaptability across diverse and unstructured environments. A prevalent paradigm instantiates VLMs
as fast-reactive System 1 modules—vision-language-action (VLA) models [14, 17, 13] that function
as reactive policies, mapping multimodal inputs directly to low-level control signals. While effective
for real-time execution, this usage fails to fully exploit the models’ strengths in semantic abstraction,
relational understanding, and contextual reasoning. These capabilities are fundamentally aligned with
slow-thinking System 2 processes [18, 19], such as long-horizon planning and subgoal decomposition.
To unlock the full potential of VLMs in robotics, it is imperative to move beyond reactive policy
deployment and utilize these models as deliberative planners within hierarchical frameworks.

In line with this vision, recent benchmarks [7, 6, 5, 4] have extended robotic tasks from single-
step instructions to multi-step procedures. However, they remain limited in temporal scale and
structural complexity, typically involving only 2 to 5 sub-tasks and fewer than 500 action steps [8, 6].
While these benchmarks move beyond early reactive settings, they fall short of capturing real-world
demands such as hierarchical goal decomposition, temporal abstraction, and adaptive planning. As
a result, the System 2 capabilities of VLMs—particularly high-level reasoning and long-horizon
planning—remain underexplored. Addressing this gap requires benchmarks with extended horizons,
diverse subgoals, and complex reasoning in dynamic, partially observable environments.

To address these limitations and enable a comprehensive evaluation of System 2 capabilities, we
present RoboCerebra, a novel benchmark designed to assess long-horizon planning and high-level
reasoning in robotic manipulation. RoboCerebra includes: (1) a large-scale manipulation dataset
featuring extended task horizons and dynamically evolving environments that better reflect real-world
complexity; (2) a baseline framework that integrates System 2–System 1 coordination for hierarchical
policy execution; and (3) an evaluation protocol tailored to isolate and measure System 2 performance.

The dataset is constructed in simulation to support long-horizon task evaluation. Since the focus is
on high-level reasoning rather than low-level control, the sim-to-real gap is less critical. Simulation
further offers scalability and reproducibility, enabling systematic benchmarking. We design an

2

efficient and high-quality top-down data generation pipeline: GPT [20] is prompted to generate
high-level task instructions conditioned on environment context and to decompose them into coherent
subtask sequences. To encourage deeper temporal dependencies and complex subgoal structures, we
craft prompt strategies that promote long-horizon compositionality. Human operators execute these
subtasks in simulation to collect demonstration trajectories, with dynamic object variations introduced
to increase scene complexity and semantic diversity. Compared to prior datasets, RoboCerebra
provides significantly longer action sequences (6×) and denser subtask annotations, forming a more
rigorous testbed for evaluating System 2 reasoning.

To demonstrate the utility of RoboCerebra, we develop a Hierarchical Planning and Execution (HPE)
Framework composed of a high-level VLM planner and a low-level VLA controller. The VLM
generates structured multi-step plans from low-frequency observations and stores them in a memory
bank, while the VLA executes fine-grained actions using high-frequency visual inputs. During
training, the VLM learns temporal grounding from video demonstrations, and the VLA acquires
visuomotor skills from paired visual inputs and primitive actions. At inference, the VLM updates
the plan and memory, and the VLA executes actions accordingly. This hierarchical design combines
semantic reasoning with precise control, enabling robust execution in dynamic, long-horizon tasks.

To systematically assess System 2 capabilities, we design an evaluation pipeline that targets key
cognitive functions in robotic manipulation. We first train a VLA model at the subtask level as a fixed
System 1 controller. Given this shared System 1, we evaluate three critical dimensions of System 2
reasoning through structured System 1–System 2 interaction: (1) planning, the ability to decompose
high-level goals into subtask sequences; (2) reflection, the ability to assess task completion status; and
(3) memory, the ability to retain and utilize long-term context. We conduct a comprehensive evaluation
of state-of-the-art VLMs, including GPT-4o [11], Qwen2.5-VL [21], and LLaVA-Next-Video [22],
as System 2 modules and analyze their performance across these dimensions in detail.

2 Related Work

Robotic Manipulation Benchmarks. Early robotic manipulation benchmarks [1, 2, 3, 7] primarily
focus on single-step tasks designed to evaluate low-level control capabilities. With the emergence of
more capable simulators and large language models, recent efforts [5, 6, 8] have introduced compo-
sitional tasks involving language-conditioned multi-step instructions. However, these benchmarks
typically involve fewer than 500 action steps and lack dynamic variations or memory requirements,
limiting their ability to reflect real-world task complexity. In contrast, RoboCerebra significantly
extends action sequence lengths (Fig.1(c)), and explicitly incorporates memory-dependent execution
and dynamic scene changes, enabling more comprehensive evaluation of long-horizon reasoning.

Vision-Language-Action (VLA) Models. Recent advances in VLMs [9, 10, 12, 11, 23, 24, 25, 26]
and large-scale manipulation datasets [27, 28] have driven the development of VLA models [13, 29]
that translate language instructions into executable robotic actions. While these models have shown
strong performance in short-horizon tasks, their precision is often constrained by discrete action
representations. To address this, recent works [30, 31, 32] propose using diffusion models to
represent continuous action spaces, improving expressiveness and control fidelity. Nonetheless,
existing approaches remain limited in their ability to generalize to long-horizon scenarios. Most
focus on low-level policy execution or short-term planning, and struggle to maintain coherence
across extended temporal contexts. In this work, we adopt OpenVLA as the low-level controller, and
focus on how high-level reasoning via hierarchical System 2 planning can enhance performance in
long-horizon manipulation tasks.

3 RoboCerebra

In this section, we present RoboCerebra, a novel benchmark for evaluating System 2 capabilities
in long-horizon robotic manipulation, unified under the vision-language model (VLM) paradigm.
RoboCerebra comprises three core components: (1) a task suite designed to capture phenomena that
naturally unfold over extended temporal horizons, (2) a diverse dataset annotated along multiple
dimensions, and (3) a multi-faceted evaluation protocol. Together, these components provide a
comprehensive framework for assessing the planning, reasoning, and memory capabilities of VLMs
in complex, temporally extended robotic settings.

3

Step 1:
Pick up the milk from the
short_fridge

milk, short_fridge

Step 2:
Place the milk on the
coffee_table

milk, coffee_table

…

Step M:
Place the coffee_mug in
microwave, turn on

coffee_mug, microwave

Task: Heat milk in microwave

(b) Cascaded Task Designer with a Large Language Model

Task and Steps G
eneration

Prim
itive actions G

eneration

Step 1:
Open the short_fridge

short_fridge

Task: Heat milk in microwave

…

Step N:
Turn on the microwave
 microwave

.

Task: Heat milk in microwave

Step 2:
Pick up the milk from
upper_region of short_fridge

milk, short_fridge

…
Step N:
Turn on heating_region of the
microwave microwave

(a) Items Sampler from Simulator

…

RegionActionCategoryItem

N/AN/AFoodmilk

N/AN/AFoodtomato_sauce

N/AN/ATablewarecoffee_mug

N/AN/ATablewarewhite_bowl

top_side, etc.openAppliancesmicrowave

upper_region, etc.openAppliancesshort_fridge

contain_regionN/AAppliancesbasket

Items Library Item Info Table

.

Step 1:
Open the short_fridge short_fridge

Task: Heat milk in microwave

Step 2:
Pick up the milk from upper_region of the
short_fridge milk, short_fridge

Step 3:
Place the milk on the coffee_table

milk, coffee_table

…

Step N:
Turn on heating_region of the microwave
 microwave

(c) Simulator Scene Programmer via Pre-defined Rules

.
Agent View:

Bird View:

Check whether the object placement in

this scene aligns with human cognition

from different perspectives.

.

Fixtures and Objects

Fixtures
coffee_table
short_fridge

 microwave

Objects
milk
coffee_mug

.

Initial to Final Region

Initial
coffee_table

<default>
short_fridge

coffee_table_init_region
 microwave
coffee_table_init_region

milk
short_fridge_upper_region

coffee_mug
coffee_table_init_region

Final
coffee_table

<default>
short_fridge

coffee_table_init_region
 microwave
coffee_table_init_region

milk
short_fridge_upper_region

coffee_mug
microwave_heating_region

Pre-defined
Rules

Task and Steps G
eneration

F
ai

lu
re

Success

GPT Verifier

F
ai

lu
re

Success

A
ffordance G

eneration
Scene initialization code

Figure 2: Task generation pipeline in RoboCerebra. (a) Objects are randomly sampled from
Libero’s item library and converted into structured representations based on their categories and
attributes. (b) The structured data is fed into an LLM to generate high-level task descriptions, which
are hierarchically decomposed into low-level substeps. (c) The resulting task plan is parsed into
executable simulator code via rule-based transformations. The generated scene is then validated
through a closed-loop process involving symbolic checks and vision-language consistency via VLMs.

3.1 Task setting

Designing a benchmark for long-horizon robotic manipulation requires addressing challenges absent
in short-horizon settings. Beyond decomposing tasks into discrete steps, agents must reason over
extended temporal dependencies, operate under partial observability, and adapt to dynamically
changing environments. As shown in Fig. 1(b), this entails maintaining memory (e.g., recalling
explored cabinet compartments), inferring hidden states (e.g., remembering items placed in closed
containers), updating beliefs as the world evolves (e.g., object shifts), and recovering from disruptions
(e.g., dropped objects). To capture these complexities, we define six representative sub-task types:
Ideal — baseline tasks in static, fully observable settings; Memory Exploration — requiring active
exploration to form internal representations; Memory Execution — requiring memory retrieval for goal
completion; Random Disturbance — introducing unexpected environmental changes; Observation
Mismatching — requiring robustness to plan-perception misalignment; Mix — combining memory
and dynamic factors for continual re-planning under uncertainty.

3.2 Dataset construction pipeline

We develop a modular pipeline to construct structured, executable tasks for long-horizon robotic
manipulation. Built on the Libero simulation platform [7], our pipeline comprises three key stages: (1)
cascaded task generation, which uses GPT to synthesize high-level tasks and decompose them into
subtask sequences; (2) scene initialization and verification, which instantiates tasks into physically
and semantically valid simulator scenes; and (3) human demonstration and annotation, where
operators execute subtasks and provide fine-grained temporal labels. This pipeline enables scalable,
high-quality dataset construction for evaluating System 2 reasoning in dynamic environments.

Cascaded Task Generation. This phase aims to automatically construct structured and executable
tasks based on sampled object configurations from the simulator. Given a set of items (Fig. 2(a)), we
first convert each object into a structured representation capturing its category, functional affordances,
and spatial context. These representations are then used to prompt GPT-o3-mini[20] to generate
diverse high-level task descriptions (e.g., “Heat milk in the microwave”), which are subsequently
decomposed into coherent step-by-step subtask instructions (Fig. 2(b)). To ensure temporal consis-
tency and physical plausibility, we incorporate affordance-aware and spatially grounded reasoning
into the prompting process. The model is guided to validate preconditions, postconditions, and object

4

0

50

100

150

200

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 23
0

500

1000

1500

2000

2500

3000

3500

50.4%

7.4%

31.4%

10.7%

≥5

3 4

2

(a) Distribution of minimum steps
to complete a task

(b) Frequency Distribution of
action categories

(c) Number of action
categories per task

Figure 3: The statistical analysis of our RoboCerebra dataset. . (a) Distribution of minimum steps
per task, highlighting its long-horizon nature. (b) Frequency of action categories, with dominant
primitives (place, pick, pour) and rare fine-grained actions. (c) Number of action categories per task,
showing high compositional diversity—over 10% of tasks involve five or more action types.

interactions across steps, preventing logically invalid or physically infeasible plans. This cascaded
generation pipeline enables scalable task creation that is both semantically meaningful and executable,
supporting a wide range of object combinations and manipulation goals. The resulting task-subtask
pairs serve as the foundation for downstream data collection and learning.

Scene Initialization and Verification Execution. This stage aims to translate the structured
task instructions into executable scenes within the simulator. Given the cascaded task plans,
each action step is parsed into a set of spatial and relational constraints (e.g., placing milk from
short_fridge_upper_region to coffee_table_top). We maintain a registry of fixtures and
movable objects, and apply rule-based mappings to convert each step into corresponding initial and
target object placements (Fig. 2(c)). These placements are then compiled into simulator-executable
code to construct the full scene. To ensure that the generated environments are both functionally
correct and semantically plausible, we perform two levels of verification. First, a symbolic simulator
loop validates the consistency of object states and relational constraints across steps. Second, a
vision-language verification loop leverages GPT-4o to evaluate spatial plausibility from multi-view
RGB-D renderings, ensuring alignment with human commonsense understanding. This dual-loop
validation process ensures that the instantiated scenes are physically realizable and faithfully reflect
the intended task semantics.
Table 2: Estimated time for automated and human-in-the-loop stages in our data pipeline. Gen.:
Cascaded Task Generation, Program: Scene Initialization & Verification Programming, Anno.:
Human Annotation, Check: Human Check.

Stage Gen. Program Anno. Check

Task Prompt Rule Def. Traj. & Time Check
Time 20 hrs 30 hrs 400 hrs 200 hrs

Human Demonstration and Annotation. Despite extensive automation, high-quality demonstrations
remain essential for learning grounded, long-horizon manipulation. We employ human operators
to perform task instructions in simulation, generating diverse and realistic action trajectories. Each
trajectory is annotated with fine-grained subtask boundaries to align actions with specific task steps.
This subtask-level annotation enables precise temporal segmentation, supports diverse execution
styles, and ensures comprehensive coverage across task variants and lengths. It further facilitates
grounding of language instructions to motion segments, enabling the training of temporally-aware
and instruction-conditioned policies. To maintain annotation quality at scale, we allocate significant
human effort: 400 hours for trajectory and time annotation, alongside 200 hours dedicated to a
separate verification phase, as outlined in Tab. 2. This rigorous process ensures the consistency,
completeness, and accuracy of labeled plans and state transitions.

3.3 Data Analysis

RoboCerebra contains 1,000 human-annotated trajectories spanning 100 task variants, each designed
to reflect long-horizon and compositional manipulation scenarios (Fig. 3). The tasks cover a wide
range of household activities, including preparing drinks, organizing groceries, tidying up, and setting
tables. Each task instance consists of 2 to over 20 atomic steps (mean: 9.1), yielding over 10,000

5

step-level segments with fine-grained temporal annotations. The dataset captures diverse execution
patterns across varying spatial and temporal contexts (Fig. 3(a)). To characterize action diversity, we
define 12 distinct action types. Common primitives such as place, pick, and pour dominate, while
lower-frequency actions like turn, return, and store highlight the fine-grained control required in
realistic tasks (Fig.3(b)). On average, each task involves 3.5 action categories, and over 10% of tasks
require five or more, indicating high compositional complexity (Fig. 3(c)). A defining feature of
RoboCerebra is its extended temporal scale. As shown in Fig. 1(c), the average trajectory length
reaches 2,972.4 simulation steps—about 6× longer than existing long-horizon manipulation datasets.
This temporal richness supports the study of memory-based control, subgoal abstraction, and planning
under long-term dependencies. Moreover, the dataset maintains a broad distribution over trajectory
lengths and task types, facilitating evaluation across a wide spectrum of planning challenges.

3.4 Multi-dimensional Evaluation

We evaluate system performance across a benchmark of N long-horizon manipulation tasks. Each
task i is defined by a sequence of Ki key object state transitions, denoted as s(1)i , s

(2)
i , . . . , s

(Ki)
i ,

which constitute the minimal sufficient conditions for successful task completion. These transitions
are automatically verified using a simulator-internal predicate function ψ(s), which returns True if
the target condition holds in state s.

While binary task success is a standard metric, it alone fails to capture the broader cognitive de-
mands of long-horizon manipulation. We therefore propose a multi-dimensional evaluation protocol
grounded in four complementary metrics: (1) task success, (2) planning accuracy, (3) planning
efficiency, and (4) action completion accuracy. Each metric targets a distinct aspect of long-horizon
reasoning, enabling a more comprehensive understanding of system behavior.

To evaluate planning efficiency, we compare the predicted high-level plan πpred
i generated by a large

language model (LLM) against a human-annotated ground-truth plan πGT
i using exact sequence

matching. The actual symbolic execution trace is denoted as Ai = [a1, a2, . . . , aT], where at
represents a discrete symbolic action at step t.

To assess perceptual alignment and semantic interpretability, we introduce a VideoQA benchmark
comprising M human-written binary questions qjMj=1. Each question is evaluated using a verification
function δ(qj), which returns 1 if the correct answer is inferred from the execution, and 0 otherwise.
We define the following evaluation metrics:

Task Success Rate (SR): Measures whether the agent achieves the intended object state transitions:

SRi =
1

Ki

Ki∑
k=1

1
[
ψ
(
s
(k)
i

)]
(1)

Average Plan Match Accuracy (AccP): Measures the average agreement between predicted and
ground-truth high-level plans:

AccP =
1

N

N∑
i=1

1
[
πpred
i = πGT

i

]
(2)

Plan Efficiency (η): Measures the efficiency of symbolic planning by dividing the success rate by
the average plan length:

η =
SR

Len
=

SR
1
N

∑N
i=1 |Ai|

(3)

Action Completion Accuracy (AccC): ssesses semantic interpretability via the QA benchmark, a
metric closely associated with the model’s reflection ability:

AccC =
1

M

M∑
j=1

1 [δ(qj)] (4)

6

Policy Model

Image Encoder Tokenizer

Pick up popcorn

…

Single
InstructionInput Images

VLA Training

Language Model

Image Encoder Tokenizer

Pick up popcorn

…

Instruction &
LabelExecution Video

VLM Training Hierarchical Task Planning and Execution

VLA Model

VLM Model

Planning & Observation Instruction

Memory Bank

Observation

Low-
frequency

High-
frequency

1. Pick up popcorn from
wooden cabinet.
2. Pour popcorn into
black bowl.
3. Place popcorn on
coffee table.
...
10. Put down wine
bottle on coffee table.

Detailed Plan

Updating
Plan & Memory

[Δx, Δθ, ΔGrip] Successful

Figure 4: Overview of our HPE framework. Left: VLA model training uses paired images and
single-step instructions to optimize a visual token policy. VLM training uses execution videos with
success-labeled instructions for temporal grounding. Right: During execution, the VLM processes
low-frequency observations to update low-level plans stored in memory bank, while the VLA
consumes high-frequency observations to execute fine-grained actions based on the detailed plan.

4 Hierarchical Planning and Execution Framework

To fully leverage the complementary strengths of high-level reasoning and low-level control, we
propose a Hierarchical Planning and Execution (HPE) Framework. As shown in Fig. 4, the system
consists of two components: a VLM that operates on low-frequency egocentric observations to
generate and update step-level subgoals, and a VLA that consumes high-frequency inputs to execute
fine-grained actions conditioned on subgoals. A shared memory bank mediates communication
between the two modules, enabling dynamic coordination and closed-loop execution across the task.

4.1 Training Procedure

To support effective coordination within the hierarchical system, we adopt a two-stage supervised fine-
tuning paradigm, providing targeted supervision for both modules. This strategy equips the VLA with
low-level control capabilities and the VLM with high-level reasoning and progress monitoring skills.
In the first stage, we train the VLA to execute fine-grained actions based on egocentric observations
and step-level instructions. Training data is derived from long-horizon demonstrations, where each
(image, instruction) pair is paired with the corresponding robot action. Following OpenVLA [13],
continuous actions are discretized into token sequences, and the model is trained via next-token
prediction. This enables the VLA to acquire reusable visuomotor primitives, forming a reliable
foundation for generalizable low-level control. In the second stage, we train the VLM to interpret
video-instruction pairs and assess task progress. To enable this, we construct a dataset of videos
annotated with step-level instructions, including both successful and incomplete executions. Using
contrastive supervision, the model learns to associate visual sequences with instruction completion
status. This allows the VLM to perform progress-aware planning and re-planning based on real-time
visual feedback. By explicitly modeling execution status, the VLM enhances robustness and facilitates
tighter coordination with the low-level controller during long-horizon tasks.

4.2 Hierarchical Task Planning and Execution

At inference time, the VLM parses a high-level task instruction into a sequence of step-level subgoals,
which are stored in a memory bank. The VLA continuously queries the active subgoal and executes
corresponding low-level actions based on high-frequency visual observations. Concurrently, the
VLM periodically attends to recent observations to monitor execution progress. Upon detecting
subgoal completion or deviation, it updates the memory with the next subgoal or issues a refined
instruction. This closed-loop coordination preserves temporal abstraction while ensuring reactive
control, enabling robust and interpretable performance in long-horizon tasks.

5 Experiments

5.1 Experimental Settings

System 1 Models. To adapt the VLA model to our long-horizon domain, we sample 100 task
instances from the RoboCerebra training set and decompose each into single-step sequences based

7

Table 3: Performance comparison across six sub-tasks. * indicates models fine-tuned on our data.
Average success rates (%) are reported over 10 rollouts for each method on Random Disturbance
(Ran.), Observation Mismatching (Obs.), Memory Exploration (Exp.), Memory Execution (Exe.),
Mix, and Ideal tasks.

Method Avg Dynamic Memory Mix Ideal
Ran. Obs. Exp. Exe.

OpenVLA-Libero100 2.00 4.59 1.35 0.18 1.86 0.00 4.05
OpenVLA* 4.57 7.84 8.65 1.06 2.06 0.00 7.84
Planner+OpenVLA* 16.04 18.63 19.45 8.04 16.69 11.48 21.92
Hierarchical Framework 16.55 18.63 19.18 9.06 17.83 13.21 21.10

on temporal annotations. We fine-tune OpenVLA [13] on this dataset. The model is trained for 200K
steps with a global batch size of 64, an initial learning rate of 5e-5 (decayed after 100K steps), and an
input resolution of 256×256. Training and evaluation are conducted on 8 NVIDIA A100 GPUs.

System 2 Models. We evaluate the reasoning capabilities of different System 2 models across
multiple settings. Specifically, we consider three categories: (1) pre-trained VLMs (GPT-4o [11],
Qwen2.5-VL [21], and LLaVA-Next-Video [22]), (2) blind LLMs (visual input disabled to isolate
language-based reasoning), and (3) a supervised fine-tuned VLM trained on our video-instruction
dataset, labeled for success and failure at the subtask level. Each System 2 model operates as a
high-level controller that generates step-wise instructions executed by a fixed System 1 policy. Thus,
task success primarily reflects the reasoning capability of the System 2 module.

Baselines. We further study System 2’s role across distinct cognitive functions: planning, observation,
and memory. Based on these axes, we implement multiple baselines. For example, a Planner baseline
generates the entire subgoal sequence from the initial instruction without further perception or
feedback. To better exploit the capacity of VLMs, we implement a Hierarchical Framework (Fig. 4)
where System 2 dynamically monitors the environment, updates subgoals, and interfaces with a
memory module for long-horizon planning.

Evaluation Protocol. We evaluate each method over 600 rollouts (60 tasks × 10 trials). For fair
comparison across planning models, we define a set of anchor points that determine when System
1 transitions between subgoals. These anchor-aligned transitions decouple step-switching from the
model, allowing consistent temporal granularity across models. Detailed metrics are in Sec. 3.4.

5.2 Main Results

System 1 struggles in long-horizon tasks. As is shown in Tab. 3, the OpenVLA [13] model exhibits
substantial limitations when applied to long-horizon manipulation. In the Ideal setting—designed
to isolate long-horizon reasoning under static and fully observable conditions—it achieves only
a success rate of 4.05%, highlighting its difficulty in executing extended instruction sequences.
Although supervised fine-tuning slightly improves performance to 7.84%, it remains far below the
21.10% achieved by our Hierarchical Framework. These results suggest that OpenVLA’s architecture
lacks the capacity to maintain instruction fidelity across long temporal spans. Furthermore, in the
Mix setting, which introduces both memory demands and dynamic scene variations, the fine-tuned
OpenVLA fails completely with a success rate of 0.00%, reinforcing its inability to handle temporally
extended dependencies and partial observability in complex environments.

System 2 enhances System 1 in more complex tasks. In the Mix setting, where long-term memory
and adaptive planning are essential, both Planner+OpenVLA and HPE show notable gains, achieving
success rates of 11.48% and 13.21%, respectively. These results indicate that incorporating System 2
planning improves performance in memory-intensive scenarios, and that iterative reasoning through
the VLM, as enabled by the hierarchical approach, offers further benefits. However, in the Ideal
setting, the Hierarchical Framework performs slightly below Planner+OpenVLA, with a 0.82% drop
in success rate. This suggests that in simpler, fully observable tasks, the additional reasoning overhead
may introduce unnecessary complexity, potentially leading to suboptimal decisions.

8

Table 4: Ablation Study on Different Planner Model (%). Blind denotes models without visual input,
while GT-plan denotes following the ground-truth plan directly. Bold numbers indicate the best
performance, and underlined numbers indicate the second-best performance.

Planner Model Avg Dynamic Memory Mix Ideal
Ran. Obs. Exp. Exe.

GT-plan 25.16 26.85 30.68 19.47 23.48 19.26 31.23

Qwen2.5-VL-Blind 11.87 18.90 12.88 7.02 10.87 2.55 18.90
LLaVA-Next-Blind 8.00 13.97 12.33 3.54 3.54 0.37 14.25
GPT-4o-Blind 15.10 20.00 17.03 7.02 16.09 10.48 20.00
Qwen2.5-VL 11.19 14.25 14.25 2.63 12.61 6.67 16.71
LLaVA-Next-Video 11.37 16.71 16.16 1.07 10.87 3.70 19.73
GPT-4o 16.04 18.63 19.45 8.04 16.69 11.48 21.92

5.3 Ablation on Planner

As shown in Tab. 4, we conducted ablation studies under different Planner Models. In this set of
experiments, GPT-4o achieved an average success rate of 16.04%, surpassing other VLMs by more
than 4%. Moreover, even with visual inputs removed, GPT-4o still maintained relatively stable
performance, indicating that the reasoning capabilities of VLMs can significantly contribute to
solving long-horizon tasks. However, there remains a performance gap of over 9% between GPT-4o
and the GT-plan, suggesting that the lack of interaction with the environment and the domain gap in
visual understanding may both lead to performance degradation in the system.

Table 5: Evaluation of System 2 capabilities from multiple perspectives, including Average Planning
Accuracy (AccP), Observation Judgment (AccC), Success Rate (SR), Average Plan Length (Len)
and Plan Efficiency (η).

Model AccP ↑ AccC ↑ SR ↑ Len ↓ η ↑
GPT-4o 68.33 32.66 16.04 10.67 1.50
GPT-4o-Blind 61.37 0.00 15.10 10.73 1.41
LLaVA-Next-Video-7B 40.00 37.19 11.37 8.33 1.36
Qwen2.5-VL-7B 44.67 47.74 11.19 8.30 1.34
Qwen2.5-VL-7B-SFT 30.00 66.83 9.33 6.95 1.32

5.4 Evaluation on System 2

As shown in Tab. 5, we evaluate System 2 by switching among different categories of VLMs across
metrics. GPT-4o achieves the best performance in planning accuracy, task success rate, and plan
efficiency, demonstrating that the reasoning capabilities of a System 2 model can directly contribute
to the planning and execution of long-horizon tasks. Although GPT-4o performs relatively poorly
in terms of simulator observation, it still outperforms Qwen2.5-VL-7B-SFT by more than 6.5% in
task success rate. This suggests that environmental observation has not yet played a decisive role
in the completion of long-horizon tasks. AccC is mainly used to evaluate the model’s capability for
reflection, and Qwen2.5-VL significantly improves its reflection ability in the simulation environment
after fine-tuning.

6 Conclusion

In this work, we introduce RoboCerebra, a benchmark for evaluating System 2 capabilities in long-
horizon robotic manipulation. By focusing on multi-step tasks in dynamic environments, it addresses
limitations of prior reactive benchmarks. Through top-down task generation and a hierarchical
planning framework, RoboCerebra enables systematic evaluation of planning, reflection, and memory.
Experiments with state-of-the-art VLMs highlight varying reasoning capabilities, underscoring the
need for more robust, temporally grounded decision-making in robotics.

9

Limitations. This work offers an initial exploration of System 2 capabilities via a plan-memory-based
hierarchical framework. However, the interaction between System 1 and System 2 remains limited.
Future work could support richer bidirectional communication, enabling finer-grained, interpretable
feedback. The evaluation protocol may also be extended with execution-level signals such as subtask
ordering and failure recovery. Lastly, deploying the benchmark in real-world settings would introduce
additional challenges and further validate long-horizon reasoning under realistic conditions.

7 Acknowledgements

This research is supported in part by National Key R&D Program of China (2022ZD0115502),
Ningbo Science and Technology Innovation 2025 Major Project (2025Z034), National Natural
Science Foundation of China (NO. 62461160308, U23B2010), "Pioneer" and "Leading Goose" R&D
Program of Zhejiang (No. 2024C01161). In addition, this research was supported in part by NUS
Start-up Grant A-0010106-00-00.

References
[1] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot learning

benchmark & learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[2] Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, and Xin Wang. Vlmbench: A compositional
benchmark for vision-and-language manipulation. Advances in Neural Information Processing Systems,
35:665–678, 2022.

[3] Ran Gong, Jiangyong Huang, Yizhou Zhao, Haoran Geng, Xiaofeng Gao, Qingyang Wu, Wensi Ai, Ziheng
Zhou, Demetri Terzopoulos, Song-Chun Zhu, et al. Arnold: A benchmark for language-grounded task
learning with continuous states in realistic 3d scenes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 20483–20495, 2023.

[4] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday
tasks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
10740–10749, 2020.

[5] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and Automation
Letters, 7(3):7327–7334, 2022.

[6] Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi, Ajay
Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist robots. In
Robotics: Science and Systems, 2024.

[7] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information Processing
Systems, 36, 2024.

[8] Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue Yin,
Zuxuan Wu, Yu-Gang Jiang, et al. Vlabench: A large-scale benchmark for language-conditioned robotics
manipulation with long-horizon reasoning tasks. arXiv preprint arXiv:2412.18194, 2024.

[9] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. ArXiv preprint,
2023.

[10] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

[11] OpenAI. GPT-4o system card, 2024.

[12] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

[13] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action
model. arXiv preprint arXiv:2406.09246, 2024.

10

[14] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,
Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff,
Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied multimodal language model. 2023.

[15] Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic manip-
ulation through spatial constraints of parts with foundation models. arXiv preprint arXiv:2403.08248,
2024.

[16] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[17] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gonzalez
Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Herzog, Jasmine Hsu, Brian
Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa
Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski, Igor Mordatch, Karl Pertsch,
Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar
Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan
Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In arXiv
preprint arXiv:2307.15818, 2023.

[18] Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James Tanner,
Anna Walling, Haohuan Wang, Niccolo Fusai, et al. Hi robot: Open-ended instruction following with
hierarchical vision-language-action models. arXiv preprint arXiv:2502.19417, 2025.

[19] Rutav Shah, Albert Yu, Yifeng Zhu, Yuke Zhu, and Roberto Martín-Martín. Bumble: Unifying rea-
soning and acting with vision-language models for building-wide mobile manipulation. arXiv preprint
arXiv:2410.06237, 2024.

[20] OpenAI. Introducing chatgpt. 2022.

[21] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[22] Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024.

[23] Songhao Han, Wei Huang, Hairong Shi, Le Zhuo, Xiu Su, Shifeng Zhang, Xu Zhou, Xiaojuan Qi, Yue
Liao, and Si Liu. Videoespresso: A large-scale chain-of-thought dataset for fine-grained video reasoning
via core frame selection. arXiv preprint arXiv:2411.14794, 2024.

[24] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next:
Improved reasoning, ocr, and world knowledge, January 2024.

[25] Songhao Han, Le Zhuo, Yue Liao, and Si Liu. Llms as visual explainers: Advancing image classification
with evolving visual descriptions. arXiv preprint arXiv:2311.11904, 2023.

[26] Yan Shu, Hangui Lin, Yexin Liu, Yan Zhang, Gangyan Zeng, Yan Li, Yu Zhou, Ser-Nam Lim, Harry Yang,
and Nicu Sebe. When semantics mislead vision: Mitigating large multimodal models hallucinations in
scene text spotting and understanding. arXiv preprint arXiv:2506.05551, 2025.

[27] Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong He,
Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for scalable and
intelligent embodied systems. arXiv preprint arXiv:2503.06669, 2025.

[28] Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham Lee,
Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment: Robotic learning
datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 6892–6903. IEEE, 2024.

[29] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics transformer for
real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[30] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. A vision-language-action flow model for general robot
control. arXiv preprint arXiv:2410.24164, 2024.

11

[31] Zhi Hou, Tianyi Zhang, Yuwen Xiong, Haonan Duan, Hengjun Pu, Ronglei Tong, Chengyang Zhao, Xizhou
Zhu, Yu Qiao, Jifeng Dai, et al. Dita: Scaling diffusion transformer for generalist vision-language-action
policy. arXiv preprint arXiv:2503.19757, 2025.

[32] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The International Journal
of Robotics Research, page 02783649241273668, 2023.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] ,

Justification: RoboCerebra comprises: (1) a large-scale manipulation dataset featuring
extended task horizons and the integration of dynamically evolving environments to better
reflect real-world complexity; (2) a dedicated evaluation protocol tailored to measure System
2 performance; and (3) a baseline framework that integrates System 2–System 1 coordination
for hierarchical policy execution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have outlined the limitations related to our work in the Limitation section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

13

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have described the relevant details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are clearly described in the main body of the paper,
including dataset splits, model architectures, hyperparameter choices and tuning strategies,
optimizer types, and training schedules. Additional implementation and configuration details
are also provided in the appendix and supplementary material to ensure full transparency
and reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Specifically, we perform multiple independent runs with different random
seeds and report the mean across these runs.

Guidelines:

• The answer NA means that the paper does not include experiments.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the computing resources used for all experiments. We
report the NVIDIA A100 GPUs with 80GB memory, the 8 of GPUs used per experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

16

https://neurips.cc/public/EthicsGuidelines

Justification: Our work focuses solely on robotic manipulation in controlled environments
and does not involve deployment, interaction with end-users, or sensitive data. As such, we
believe it does not have broader societal impacts beyond its technical contributions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our license name is CC-BY 4.0. We will cite the original works and properly
acknowledge the authors of any existing assets (e.g., code, models, datasets) used in our
paper. We will also ensure that the license terms and usage conditions of these assets are
explicitly stated and respected.

Guidelines:

17

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce a new dataset in our paper. The dataset is accompanied by
detailed documentation, including information about data collection, preprocessing steps,
licensing, and known limitations. We will ensure that the dataset is released alongside the
paper with clear usage guidelines and appropriate anonymization if necessary.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: Data collection and annotation were conducted in collaboration with a profes-
sional third-party data service provider. The provider was compensated at a rate exceeding
three times the local minimum wage, covering recruitment, training, and quality control.
We have confirmed that annotators received at least twice the local minimum wage, in
accordance with fair labor standards.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

18

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study did not involve any research with human subjects. The individuals
involved were engaged solely in data annotation under standard employment terms, and no
personal or sensitive information was collected.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Appendix

A.1 Detailed Task Suite

Dynamic Scene
Observation Mismatching Random Disturbance

1 2 3 4 6 8

Collision & Recovery Process

1 Open the middle region of white cabinet

2 Pick up wine bottle

3 Pour out the contents of wine bottle into akita black bowl

8 Put down the chocolate pudding on plate

…

Oops! Collision

00.0 - 12.4 s

12.4 - 39.5 s

39.6 - 48.0 s

81.0 - 90.0 s

…

Actions List Period

Memorization Scene
Memory Exploration Memory Execution

1 Open the microwave

2 Pick up the popcorn from the coffee table

3 Put down the popcorn into the microwave on heating region

9 Pick popcorn from the heating region of microwave

…

00.0 - 13.7 s

13.7 - 31.4 s

31.4 - 35.8 s

99.5 - 111.0 s

…

Actions List Period

1 2 3 5 7 9

Open & Place Open & Pick

1 2 3 5 8

1 Open the white cabinet in top region

2 Pick up chefmate frypan from white cabinet in top region

3 Place chefmate frypan on coffee table

Place the popcorn into akita black bowl

…

0.0 - 4.8 s

4.8 - 9.5 s

9.5 - 12.7 s

35.3 - 39.6 s

…

Actions List Period

11

11

Ideal Scene
1 2 3 4 6 8

1 Pick up the plate from the coffee table

2 Place the plate onto the wooden tray in contain region

3 Pick up the macaroni and cheese from the coffee table

8 Pour the new salad dressing onto the macaroni and cheese
on the plate

…

0.0 - 5.2 s

5.2 - 11.4 s

11.4 - 20.9 s

57.1 - 75.6 s

…

Actions List Period

1 2 3 5 7 10

1 Move to alphabet soup on coffee table

5 Place butter into basket at basket region

6 Grasp wine bottle from coffee_table

Place chefmate frypan onto rack

…

0.0 - 1.6 s

11.4 - 16.9 s

16.9 – 27.5 s

42.0 - 56.1 s

…

Actions List Period

10

Disturb Disturb Again

……
Oops! Disturbance

Oops! Disturbance Again

1 2 3 5 7 8

1 Pick up popcorn from wooden cabinet

2 Put down popcorn on coffee table

3 Pick up chefmate frypan from coffee table

8 Pick up white yellow mug from coffee table

…

0.0 - 38.5 s
38.5 - 46.0 s

46.0 - 55.8 s

114.7 - 122.5 s

…

Actions List Period

Exploration Process

Exploration

Figure 5: Example from RoboCerebra for different tasks.

Fig. 5 illustrates concrete examples of our defined sub-task categories using the RoboCerebra
benchmark. These scenarios are designed to evaluate the capabilities of System 2 models in memory
retention, adaptive planning, and disturbance recovery within long-horizon manipulation settings. We
group these into three broader categories for analysis:

(1) Dynamic Scene includes Observation Mismatching and Random Disturbance sub-tasks. These
emphasize robustness to environmental inconsistencies and unexpected changes. For example,
Systems must recover from collisions or update plans after items are displaced mid-task.

(2) Memorization Scene covers both Memory Exploration and Memory Execution. In the exploration
phase, VLMs actively probe the environment to build internal representations (e.g., checking cabinet
contents). During execution, perceptual cues are removed and they rely on memory to complete the
task correctly.

(3) Ideal Scene serves as a static, fully observable control condition. It reflects performance in the
absence of memory or disturbance constraints and establishes a baseline for comparison.

20

Each scenario is visualized as a sequence of image snapshots, with numbered action steps, annotated
time segments, and accompanying descriptions of the behavior of System 2. These task compositions
holistically assess core abilities such as long-horizon memory, temporal reasoning, causal inference,
and goal-directed manipulation in evolving environments.

A.2 Study on Different VLA models

Table 6: Performance comparison of VLMs under OpenVLA and π0-fast. Results show that the
current VLM maintains comparable performance across both settings, indicating that its System 2
capability is independent of the specific VLA architecture.

Method Avg Ran. Obs. Exp. Exe. Mix Ideal

Qwen2.5-LM-OpenVLA 11.87 18.90 12.88 7.02 10.87 2.55 18.90
Qwen2.5-LM-π0-fast 11.47 16.32 11.94 9.92 8.27 4.73 17.63
LLaVA-N-Blind-OpenVLA 8.00 13.97 12.33 3.54 3.54 0.37 14.25
LLaVA-N-Blind-π0-fast 5.99 7.89 8.06 5.89 3.85 1.82 8.42
GPT-4o-Blind-OpenVLA 15.10 20.00 17.03 7.02 16.09 10.48 20.00
GPT-4o-Blind-π0-fast 13.63 14.47 15.82 12.27 12.69 11.27 15.26
Qwen2.5-VL-OpenVLA 11.19 14.25 14.25 2.63 12.61 6.67 16.71
Qwen2.5-VL-π0-fast 13.19 20.79 15.45 8.24 6.15 6.91 21.58
LLaVA-N-video-OpenVLA 11.37 16.71 16.16 1.07 10.87 3.70 19.73
LLaVA-N-video-π0-fast 8.79 12.11 12.12 7.73 4.81 2.55 13.42
GPT-4o+OpenVLA 16.04 18.63 19.45 8.04 16.69 11.48 21.92
GPT-4o+π0-fast 15.15 18.95 20.00 10.59 11.73 10.18 19.47
GT-plan-OpenVLA 25.16 26.85 30.68 19.47 23.48 19.26 31.23
GT-plan-π0-fast 23.04 23.68 26.36 18.15 16.92 26.55 26.58

To verify whether the System 2 reasoning capability of the current VLM depends on a specific VLA
architecture, we conducted additional experiments comparing two System 1 modules — OpenVLA
and π0-fast (implemented following the openpi repository).

As shown in Table 6, the model exhibits comparable performance under both configurations across
all evaluated metrics. This consistency suggests that the higher-level cognitive and planning abilities
of the VLM function independently of the underlying low-level control mechanism. Although slight
variations can be observed in metrics such as Execution and Exploration, the overall performance
trend remains stable. These results demonstrate that the reasoning and decision-making processes of
the VLM are robust and transferable across different embodied control implementations, confirming
the generality and architecture-independence of its System 2 module.

A.3 Study on Different Planners

Table 7: Comparison of specialized embodied VLMs with general-purpose models. Specialized
VLMs show stronger performance on Embodied-QA benchmarks and complex scenarios (Exp. and
Mix), though their abilities have not fully generalized to Embodied Planning.

Method Para. Avg Ran. Obs. Exp. Exe. Mix Ideal

LLaVA-N-Blind 7B 8.00 13.97 12.33 3.54 3.54 0.37 14.25
Cosmos-Reason1 7B 8.41 7.63 10.45 5.55 7.31 8.73 10.79
VeBrain 8B 9.41 12.89 12.35 7.06 3.65 4.21 16.32
Qwen2.5-VL 7B 11.19 14.25 14.25 2.63 12.61 6.67 16.71
LLaVA-N-Video 7B 11.37 16.71 16.16 1.07 10.87 3.70 19.73
RoboBrain-2.0 7B 11.40 12.11 12.06 9.92 10.96 7.27 16.05
GPT-4o - 16.04 18.63 19.45 8.04 16.69 11.48 21.92

As shown in Table 7, VLMs specifically designed for embodied tasks—such as RoboBrain-2.0,
Cosmos-Reason1, and VeBrain—generally outperform general-purpose VLMs on the Embodied-QA
benchmark. These specialized models also exhibit superior adaptability in our constructed complex
tasks, particularly in challenging scenarios such as Memory Exploration and Mix, which require
long-horizon reasoning and dynamic decision-making.

21

However, this specialization has not yet fully transferred to the domain of Embodied Planning,
where limitations remain in generating coherent planning sequences and decomposing actions into
fine-grained steps. This observation suggests that, while task-specific VLMs demonstrate stronger
contextual understanding and perception-grounded reasoning, their higher-level planning and general
reasoning abilities are still developing. These results highlight an important direction for future
research on embodied intelligence — achieving deeper integration between perception, reasoning,
and long-term planning.

A.4 Results on Memory Tasks

Table 8: Evaluation of different VLMs under the Hierarchical Framework, including Memory
Exploration Success Rate (SRExp.), Exploration-only Success Rate (SRExp.−only), Exploration
Efficiency (ηExp.), Memory Execution Success Rate (SRExe.), and Decision Accuracy (AccDec.).

VLM SRExp. ↑ SRExp.−only ↑ ηExp. ↑ SRExe. ↑ AccDec. ↑
Qwen2.5-VL 3.54 50.0 0.17 12.39 10.0
GPT-4o 9.06 80.0 0.32 17.83 30.0

To further evaluate the role of System 2 reasoning in Memory-based manipulation tasks, we design a
set of fine-grained experiments to analyze how different reasoning capabilities affect performance
under a unified Hierarchical Framework. The detailed memory mechanism is illustrated in Alg. 1
Beyond the overall success rates of the Memory Exploration and Memory Execution tasks, we
introduce several intermediate metrics that assess the internal reasoning process:

To evaluate the ability of System 2 to discover the target object during the exploration phase, we
utilize the Exploration-only Success Rate (SRExp.−only), which measures whether the VLMs
successfully locates the object regardless of overall task completion.

To assess the efficiency of object discovery during exploration, we utilize the Exploration Efficiency
metric (ηExp.), which jointly considers the correctness and conciseness of the predicted exploration
plan. Specifically, we define it based on the normalized overlap between the predicted plan πG and
the ground truth plan πGT for each task i, referred to as the completeness of the plan:

CompExp. =
|πG ∩ πGT|

|πGT|
(5)

The exploration efficiency is then computed by normalizing the completeness score by the length of
the predicted plan and averaging over all N tasks:

ηExp. =
1

N

N∑
i=1

CompExp.

|πG|
(6)

To measure the correctness of high-level decision-making during execution, we utilize the Decision
Accuracy (AccDec.), which quantifies the proportion of correct identifications of the target object
and appropriate plan selections.

A.5 Prompt Details of Task Generation

To support structured generation of long-horizon manipulation tasks, we employ a multi-stage
prompting pipeline to elicit detailed, consistent, and actionable representations from large language
models. Each stage is designed to incrementally refine the task definitions, ensuring coherence,
atomicity, and alignment with robotic capabilities. The full set of prompt templates used in our
pipeline is shown in Fig. 6–10.

Specifically, Fig. 6 shows the Task and Steps Generation Prompt, which outlines the high-level goal
and asks the model to break it down into discrete procedural steps. Following this, the Task and Steps
Verification Prompt verifies the semantic and logical validity of these decomposed steps (Fig. 7).
Once verified, we proceed with Primitive Actions Generation (Fig. 8), where each high-level step is

22

Algorithm 1 Task-Aware Memory Mechanism

1: Input: Task specification T , current environment state s
2: Output: Success or Failure
3: Determine whether T requires memory (e.g., exploration, history tracking)
4: Define goal condition G from T
5: Identify goal-relevant steps {s(1), s(2), . . . , s(k)}
6: Generate complete sub-plan πG to achieve G
7: for each step at in πG do
8: Execute at in environment
9: if ψ(st) = True and st satisfies goal G then

10: return Success
11: end if
12: end for
13: return Failure

further grounded into low-level robot-executable primitives. Subsequently, the Affordance Generation
Prompt (Fig. 9) augments the plan with relevant object affordances, aiding visual grounding and
interaction feasibility. Finally, a Format Verification Prompt (Fig. 10) ensures that the entire structured
output adheres to the expected schema, enabling seamless downstream parsing and simulation.

Stage 1: Task and Step Generation Prompt

You are an imaginative robotic arm scene designer. You need to construct a long-sequence task
based on the item list provided below, which includes multiple steps（no more than 8 steps),
with each step being an action (such as "open the xxx", "Pick up the xxx from xxx", "open the
xxx" etc.). All the items were initially placed on the {workspace} or stored inside other objects.
Note:
1. Except for items that offer executable actions, other items can only be picked up, moved, and

put down. You are not allowed to open any food packaging boxes. If you wish to pour out
any liquid from the container, simply pour it out—there's no need to open the packaging. The
scene does not contain any real liquids.

2. This long sequence of tasks does not necessarily require a complete chain of events.
3. You don't have to use all the items—please prioritize ensuring that the constructed task logic

is reasonable.
4. Can_fit is a boolean value, which indicates whether the object can be stored in any storage

container.
5. In 'Related object', list and only list all the NAME of objects involved in the step, including

the object being operated on and the object being moved.
6. DONOT output any irrelevant replies. The format of the replies is as follows:

Task: xxx
Step: xxx
Related Objects: xxx
Step: xxx
Related Objects: xxx
....
The item table is as follows:
Item Category Action Affordance Can_fit

Figure 6: Task and Steps Generation Prompt.

23

Stage 1 Verification: Rationality Check

Please help me check and correct the previously generated task.
Note:
1. The robot only has one robotic arm, it is fixed to the table. After picking up an item, it

must place it first before picking up another item.
2. DONOT output any irrelevant replies. The format of the replies is as follows:

Task: xxx
Step: xxx
Related Objects: xxx
Step: xxx
Related Objects: xxx
....
Here is the task and steps:
....

Figure 7: Task and Steps Verification Prompt.

Stage 2:Primitive Actions Generation

Please break down each of the following steps into atomic tasks, such as "open the xxx", "Pick
up the xxx", "Put the xxx" etc.
Note:
1. DONOT output any irrelevant replies. The format of the replies is as follows:

Task: xxx
Step: xxx
Related Objects: xxx
Step: xxx
Related Objects: xxx
....
Here is the task and steps:
....

Figure 8: Primitive Actions Generation Prompt.

A.6 Prompt Details of Hierarchical Framework

To support reasoning over long-horizon manipulation tasks involving memory and dynamic scene
understanding, we adopt a hierarchical prompting framework that decomposes planning into seman-
tically modular components. This design enables the VLMs to perform goal decomposition, plan
generation, and state tracking in a structured and interpretable manner. Fig. 11 to 13 illustrate the key
prompts used in this hierarchical process.

As shown in Fig. 11, the VLM Planner Prompt guides a vision-language model to generate high-level
plans based on multimodal inputs, including current visual observations and task descriptions. This
prompt leverages the VLM’s capability to contextualize semantic goals within visual environments.

Fig. 12 presents the Memory-Related Goal Generation Prompt, which is used to infer intermediate or
hidden sub-goals that depend on past interactions or occluded states. This is particularly important in
scenarios where successful execution requires recalling previously explored regions or remembering
the contents of closed containers.

Finally, the Plan and Memory Updating Prompt (Fig. 13) enables continual re-planning by integrating
updated perceptions and internal memory states. This prompt ensures that the VLMs maintains
coherence between its execution state and the evolving environment, allowing it to revise intentions
and recover from deviations or external disturbances.

24

Stage 3 :Affordance Generation

Please add the region where the object is located in each sentence that describes the step. The
region refers to those listed in the “affordance” column.
Note:
1. Please keep the format of this response consistent with the input task and step format.
2. The 'region' in the 'affordance' column refers to the region that belongs to the object, not the

area where the object is located.
3. Do not modify the sentence that describs the related objects.
4. You can't place 2 object in the same region.
5. DONOT output any irrelevant replies. The format of the replies is as follows:

Task: xxx
Step: xxx
Related Objects: xxx
Step: xxx
Related Objects: xxx
....
Here is the task and steps:
Item Category Action Affordance Can_fit

Figure 9: Affordance Generation Prompt.

A.7 Case Study on Planning

To better understand the planning capabilities of different vision-language models, we conduct a
qualitative comparison across GPT-4o [11] (GPT), Qwen2.5-VL [21] (Qwen), and LLaVA-Next-
Video [24] (LLaVA) on complex household manipulation tasks, as illustrated in Fig. 14 and Fig. 15.
These examples highlight notable differences in plan completeness, action granularity, and semantic
correctness.

GPT consistently generates the most detailed and coherent plans across both tasks. In Fig. 14,
GPT not only identifies the correct goal ("placing the plates between the knife and fork") but also
incorporates contextual spatial cues and restores objects to their original positions (e.g., placing the
wine bottle back to the far-left side), reflecting strong planning fidelity and environmental awareness.
Similarly, in Fig. 15, GPT successfully decomposes a long-horizon task into logically ordered steps
while preserving semantic consistency across diverse object types and destinations, demonstrating
robustness in long-sequence planning.

Qwen produces generally correct but less detailed plans. In both examples, Qwen omits several con-
textual elements, such as spatial descriptors or placement constraints, which reduces interpretability
and precision. Notably, in Fig. 15, it fails to include important object transitions (e.g., placing the
mug into the tray), indicating partial task understanding and missing intermediate steps.

LLaVA, in contrast, struggles with both semantic accuracy and action decomposition. It introduces
several unnecessary or incorrect steps—such as manipulating objects irrelevant to the goal or reversing
object trajectories. For example, it incorrectly places the white-yellow mug into the wooden tray from
the wrong starting location and includes object movements not specified in the task. This suggests
that LLaVA lacks grounded task representations and often fails to maintain consistency with the
initial instructions.

A.8 Case Study on Sub-Plan

Fig. 16 presents a comparison of sub-task decomposition quality between GPT and Qwen, focusing
on the process of locating and retrieving butter from a multi-compartment cabinet. The results
highlight distinct differences in the models’ ability to reason hierarchically and generate coherent
sub-plans.

25

Stage 3 Verification :Format Check

Please help me check whether there are any formatting issues in the output below.
You are a helpful assistant that converts high-level tasks into detailed, step-by-step physical
actions.
For each task, output a series of action steps in the following format:
Steps:
xxxxx (only a sentence of instruction)

Example:
Task: Took a plate from the wooden cabinet, set it on the coffee table, turned on the stove,
poured wine from a bottle onto the plate, and placed a red coffee mug next to it.

Steps:
Open the wooden cabinet top region
Pick up the plate from wooden cabinet top region
Place the plate on the coffee table
Turn on the flat stove cook region
Pick up the wine bottle from coffee table
Pour out the wine bottle onto the plate
Place the wine bottle on the coffee table
Pick up the red coffee mug from coffee table
Place the red coffee mug beside the plate on the coffee table

Make sure to:
- Identify all relevant objects in the scene
- Choose appropriate locations and relative positions
- The wooden cabinet has top, middle, and bottom regions that can store objects and be opened
- Maintain a logical and efficient order
- Ensure that all objects used in each step must come exclusively from the list of "Objects on the
table"
- DONOT output any content except steps
Now complete the following task step-by-step:
Task: {task_input}.
Object on the table: {obj_input}
Steps:

Figure 10: Format Verification Prompt.

GPT demonstrates a thorough and methodical decomposition strategy. It systematically explores all
cabinet compartments in a top-down order, includes both opening and closing actions, and maintains
logical sequencing. This behavior reflects robust sub-task planning and a clear understanding of both
spatial structure and task completion integrity. In contrast, Qwen exhibits incomplete and less stable
sub-plan generation. It assumes the butter is in the first compartment without exploration and omits
intermediate or fallback steps entirely. This leads to a plan that may work in specific instances but
lacks generality and reliability in realistic or uncertain environments.

A.9 Case Study on Memory Tasks

We evaluate models’ capabilities to reason about memory-related goals and update task completion
status accordingly. As shown in Fig. 17 and 18, we compare GPT and Qwen on two representative
settings: memory exploration and memory execution.

In the memory exploration task (Fig. 17), the VLMs need to track visual progress and determine
when a goal—retrieving butter from a cabinet—has been fulfilled. GPT demonstrates clear task
completion awareness, identifying in the third step that the butter has been found inside the open

26

VLM Planner

You are a helpful assistant that converts high-level tasks into detailed, step-by-step physical
actions.
For each task, output a series of action steps in the following format:
Steps:
xxxxx (only a sentence of instruction)
Example:
Task: Took a plate from the wooden cabinet, set it on the coffee table, turned on the stove,
poured wine from a bottle onto the plate, and placed a red coffee mug next to it.
Steps:
Open the wooden cabinet top region
Pick up the plate from wooden cabinet top region
Place the plate on the coffee table
Turn on the flat stove cook region
Pick up the wine bottle from coffee table
Pour out the wine bottle onto the plate
Place the wine bottle on the coffee table
Pick up the red coffee mug from coffee table
Place the red coffee mug beside the plate on the coffee table
Make sure to:
- Identify all relevant objects in the scene
- Choose appropriate locations and relative positions
- The wooden cabinet has top, middle, and bottom regions that can store objects and be opened
- Maintain a logical and efficient order
- Ensure that all objects used in each step must come exclusively from the list of "Objects on the
table"
- DONOT output any content except steps
Now complete the following task step-by-step:
Task: {task_input}.
Object on the table: {obj_input}
Steps:

Figure 11: VLM planner Prompt.

cabinet and marking the goal as completed. This reflects its ability to connect visual observations
with memory-dependent goals and dynamically update task status. In contrast, Qwen remains task
completion-unaware, repeatedly denying goal fulfillment despite the presence of the butter in view.
This suggests difficulty in grounding visual evidence against prior memory constraints.

In the memory execution task (Fig. 18), the goal is to check whether a previously interacted cabinet
contains any remaining objects. GPT again shows strong reasoning, correctly concluding the goal is
satisfied when the cabinet is observed to be empty. Its output highlights an understanding of absence
as valid evidence. On the other hand, Qwen fails to interpret the empty cabinet scene as sufficient for
task completion, citing uncertainty and lack of confirmation. This highlights a limitation in negative
inference, where models must reason not just over what is visible, but also over what is not.

27

Hierarchical Framework: Memory Related Goal Generation

You are a helpful assistant that can decide whether a task requires memory to finish.

Generate a goal that requires memory to complete — for example, it might involve searching
through multiple compartments or drawers to find an object, where the agent needs to remember
which areas have already been searched to avoid redundant actions.

Make sure that:
- Identify all relevant objects in the scene
- The wooden cabinet has top, middle, and bottom regions that can store objects and be opened

Example1:
 -Task:
 Take the white bowl from the wooden cabinet, pour in the chocolate pudding and cookies, and
put it on top of the wooden cabinet.
 -Output Format:
 MEMORY RELATED GOAL:Take the white bowl in the cabinet.
 -Reason for Output(DO NOT output this part):
 This instruction guides the user to complete a goal-oriented task. To achieve the goal, the user
must search through the top, middle, and bottom compartments of the wooden cabinet. Since the
red mug is located in only one of the compartments, the user needs to avoid opening the same
compartment twice. This encourages careful planning and memory use to efficiently complete
the task.

Example2:
 -Task:
 Task: After putting the butter and mug on the rack, pour in the milk, and check the wooden
cabinet top region for any previously handled objects, placing them on the table if found.
 -Output Format:
 MEMORY RELATED GOAL:Check the wooden cabinet top region for any previously
handled objects, placing them on the table if found.
 -Reason for Output(DO NOT output this part):
 To achieve the goal, the user must remember previously handled objects.

Please answer and ONLY ANSWER MEMORY RELATED GOAL!DO NOT OUTPUT
REASON!

Here is the task:
{{task}}

Figure 12: Memory Related Goal Generation Prompt.

28

Hierarchical Framework: Updating Plan & Memory

Analyze this image and determine if the following Memory related goal has been completed:
Current step: {step_text}
Previously completed steps: {completed_steps_text}
Memory related goal: {memory_related_goal}
Based on the image, has the Memory related goal been completed? Answer with 'Yes' or 'No' and
explain your reasoning.
Note:
1. When you check cabinet top region for any previously handled objects,an object is considered
previously handled if it also appears on the table.
2. When you check cabinet top region for any previously handled objects, consider the task
complete if no objects are found inside the cabinet.
3. As long as you see any object in the opened cabinet, you can consider that you have found the
item you need.
4. The butter looks like a red box.
5. The cream cheese looks like a blue box.

Figure 13: Plan & Memory Updating Prompt.

Task: Place the plates neatly between the knife and fork, and pour all the snacks and drinks into the plates.

GPT:
...
Step: Place the popcorn box back to the far-right side of the table
Step: Pick up the wine bottle from the far-left side of the table
Step: Pour wine onto the plate positioned between the knife and fork
Step: Place the wine bottle back to the far-left side of the table

Comparison of Plan Quality

Qwen:
...
Step: Place the popcorn box back on the table.
Step: Pick up the wine bottle.
Step: Pour the wine into the plate.

LLaVA：
Step: Pick up the dining set from the wooden cabinet.
Step: Place the dining set on the table.
...
Step: Arrange the plates neatly between the knife and fork.

More complete action descriptions

Unnecessary steps
Unnecessary steps

Incomplete decomposition

Figure 14: Comparison of Planning Quality.

29

Task: Place the cookies into the basket, pour the tomato sauce and BBQ sauce into the frying pan, pour
the wine into the red coffee mug, and place the white-yellow mug into the wooden tray.

GPT:
Step: Pick up the cookies from the table
Step: Place the cookies into the basket on the table
Step: Pick up the tomato sauce from the table
Step: Pour the tomato sauce into the frypan on the table
Step: Place the tomato sauce back on the table
...
Step: Pick up the white-yellow mug from the table
Step: Place the white-yellow mug into the wooden tray on the table

Comparison of Plan Quality

Qwen:
Step: Pick up the cookies from the table.
Step: Place the cookies into the basket.
Step: Pick up the tomato sauce bottle from the table.
Step: Pour the tomato sauce into the frying pan.
...
Step: Pick up the wine bottle from the table.
Step: Pour the wine into the red coffee mug.
Step: Pick up the white-yellow mug from the table.

LLaVA:
Step: Open the wooden tray region
Step: Pick up the white-yellow mug from the wooden tray
Step: Pour the tomato sauce from the bottle into the frying pan
...
Step: Pick up the basket from the table
Step: Place the cookies in the basket
Step: Pour the white-yellow mug into the wooden tray

Maintains completeness in long sequences

Incorrect steps
Incorrect steps

Incorrect steps
Incorrect steps

Incorrect steps

Missing some steps

Figure 15: Comparison of Planning Quality.

Task: Find the butter from the white cabinet, pour it and the barbecue sauce into the frying pan, and prepare a mug of
orange juice.

GPT:
Sub-plan:
Step: Open the white cabinet top region
Step: Close the white cabinet top region
Step: Open the white cabinet middle region
Step: Close the white cabinet middle region
Step: Open the white cabinet bottom region
Step: Pick up the butter from the white cabinet

Comparison of Sub Plan Quality

Qwen:
Sub-plan:
Step: Open the white cabinet top region
Step: Pick up the butter from the white cabinet top region
Step: Close the white cabinet top region.

Robust sub-task decomposition with
consistently comprehensive sub-plans

Instability in sub-task decomposition
with incomplete sub-plans

Figure 16: Comparison of Sub Plan Quality

30

Task: Take the butter from the wooden cabinet, melt it in a Chefmate frypan, and serve wine in a white-
and-yellow mug.

GPT:
Step 1:
No, the Memory related goal has not been completed.
...
Step 2:
No, the Memory related goal has not been completed.
...
Step 3:
Yes, the Memory related goal has been completed. In the image, the wooden cabinet middle region is open, and there
is a red box inside the cabinet, which matches the description of the butter. Therefore, the butter has been found and
the goal achieved.

Comparison of Task Completion Update Capabilities in Memory Exploration Task

Qwen:
Step1:
No
...
- Therefore, the Memory related goal "Take the butter from the wooden cabinet" has not been completed.
Step 2:
No
...
Since no objects are found inside the open cabinet, the goal has not been completed.
Step 3:
No
Reasoning:
…
Since one of the key elements to completing the goal (finding the butter) has not been visually confirmed in the
current image, the goal has not been fully completed.

Task completion-aware

Task completion-unaware

Figure 17: Comparison of Task Completion Update Capabilities in Memory Exploration Task.

31

Qwen:
Step 1:
No
Reasoning:
...
- However, we do not know if the check for the top region of the cabinet was completed. There are no explicit signs,

such as an empty cabinet or the placement of objects, to support the claim that the check was finished.
...
Therefore, based on the information provided in the image, the Memory related goal cannot be conclusively stated as
completed.

Task: After putting the butter and mug on

the rack, pour in the milk, and check the

wooden cabinet top region for any

previously handled objects, placing them on

the table if found.

GPT:
Step 1:
Yes, the Memory related goal has been completed. The cabinet top region appears to be open, and there are no
objects visible inside the cabinet. The task is considered complete if no objects are found inside the cabinet, which is
the case here.

Comparison of Task Completion Update Capabilities in Memory Execution Task

Correct inference in empty-cabinet scenarios

Difficulty recognizing empty-cabinet scenarios

Figure 18: Comparison of Task Completion Update Capabilities in Memory Execution Task.

32

	Introduction
	Related Work
	RoboCerebra
	Task setting
	Dataset construction pipeline
	Data Analysis
	Multi-dimensional Evaluation

	Hierarchical Planning and Execution Framework
	Training Procedure
	Hierarchical Task Planning and Execution

	Experiments
	Experimental Settings
	Main Results
	Ablation on Planner
	Evaluation on System 2

	Conclusion
	Acknowledgements
	Appendix
	Detailed Task Suite
	Study on Different VLA models
	Study on Different Planners
	Results on Memory Tasks
	Prompt Details of Task Generation
	Prompt Details of Hierarchical Framework
	Case Study on Planning
	Case Study on Sub-Plan
	Case Study on Memory Tasks

