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ABSTRACT

Limited access to dedicated navigation data in visually impaired individuals is a signifi-
cant bottleneck in the development of AI-driven assistive devices. To address this, we have
developped a virtual environment designed to extract various human-like navigation data
from procedurally generated labyrinths. Using reinforcement learning and semantic seg-
mentation, we trained a convolutional neural network to perform obstacle avoidance from
synthetic data. Our model outperformed state-of-the-art backbones including DINOv2-B
in safe pathway identification in real world. In conclusion, despite being trained only on
synthetic data, our model successfully extracted features compatible with safe navigation
in real-world settings, opening new avenues for visually impaired.

1 INTRODUCTION

Globally, millions of people live with blindness, which is associated to severe restrictions in mobility and as
well as a significant increased risk of fall-related injuries (Wood et al., 2011; Brunes & Heir, 2021; Singh &
Maurya, 2022). The recent development of retinal and cortical prostheses has not achieved vision restoration
in blinds yet. As an alternative, Sensory Substitution Devices (SSDs) hold significant promise for aiding
visually impaired individuals by converting environmental sensor data into tactile or auditory stimuli (Bach-
y Rita, 1972; Jicol et al., 2020). However, current SSDs face limitations in conveying complex visual scenes
through skin or ears (Elli et al., 2014), primarily due to the narrow bandwidth of these sensory channels,
which can lead to cognitive burden (De Jong, 2010). Indeed, artificial intelligence (AI), and in particular
deep learning, enables the extraction of relevant information to be conveyed to the blind.

Contrary to autonomous driving (Chen & Krähenbühl, 2022; Toromanoff et al., 2019) and robotics (Shah &
Levine, 2022; Kruse et al., 2013), SSDs have not benefited from the availability of navigation datasets. As
a result, current applications of deep learning for effective navigation aids predominantly rely on general-
purpose datasets for object recognition and classification (Scalvini et al., 2023; Mukhiddinov & Cho, 2021;
Kim et al., 2023; Kerdegari et al., 2016), semantic segmentation (Tapu et al., 2017; Zheng & Weng, 2016), or
depth estimation (Bai et al., 2017; Sharma et al., 2016; Asiedu Asante & Imamura, 2023). While these appli-
cations can extract high-level features that improve environmental understanding for the visually impaired,
they do not convey information about navigation decisions. A few studies have used navigation-specific data
to provide guidance (Zheng & Weng, 2016; Kerdegari et al., 2016), but the amount of data was limited to a
few hundred samples due to the resource-intensive nature of the collection process.

The aim of this study is twofold: (i) To address the unavailability of human navigation data, we propose a
generic method for training AI systems specifically designed for the blind. Our approach relies on synthetic
semantic segmentation maps to optimize SSD outputs in virtual environments, enabling straightforward real-
world transferability without requiring advanced domain adaptation (Xu et al., 2022; Zhu et al., 2023). (ii)
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We evaluate the efficacy of this method by first training an AI-based system for obstacle avoidance in virtual
environments and then demonstrating its ability to enable safe navigation using low-dimensional navigation
cues in both virtual and real-world settings. To support this, we introduce NavIndoor, a new virtual environ-
ment designed for the automatic generation of synthetic human-like navigation data. NavIndoor leverages
procedural generation to create randomized, obstacle-filled mazes with structure similar to real-world indoor
environments, allowing for the simulation of various navigation scenarios in an efficient, safe, and scalable
manner.

In Section 3, we describe our method for optimisation of AI-based SSDs within virtual environments and
deployment in real-world setting. In Section 4, we present the newly proposed virtual environment and
demonstrate that a compact CNN allows safe navigation in it. Finally, in Section 5, we illustrate the model’s
proficiency in real-world settings by estimating the forward navigation boundary in the Active Vision Dataset
and showing that our model outperforms standard backbones in safe pathway identification (AUC 0.92).
Furthermore, we show that incorporating random morphological operators around obstacles during training
in virtual environments improves generalization to real-world data. The scalable and flexible nature of our
method, combined with its potential for generalization to various navigation tasks, underscores its promise
in enhancing feature extraction for future sensory substitution devices.

We summarize our contributions as follows:

• We identify a significant gap in the literature regarding the use of navigation data to improve Sen-
sory Substitution Systems.

• We release NavIndoor, an open-source software for the computationally efficient generation of pro-
cedurally generated, obstacle-filled environments, enabling seamless integration with AI systems.
NavIndoor facilitates the efficient creation of various large-scale, human-like navigation datasets.

• We show that synthetic data enables the extraction of low-dimensional features for navigation by
individuals with visual impairments.

• We demonstrate that applying basic morphological operators to synthetic semantic segmentation
maps enhances performance in real-world conditions after training.

2 RELATED WORKS

Figure 1: Overview of Sensory Substitution Devices Publications. (Left) Sensor type and their body lo-
calisation. (Middle) Processing methods used in the studies for classic and AI-based approaches. (Right)
Cumulative count of publications over the years for machine learning (ML) or neural networks (NN) and
classic approaches.
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SENSORY SUBSTITUTION DEVICES AND AI FOR THE VISUALLY IMPAIRED

We reviewed the literature on sensory substitution devices and electronic travel aids released from 1970.
The literature review was performed in PubMed and completed with research using arXiv, Elicit, and con-
ventional search engines. Papers proposing new systems for sensory substitution were included, resulting in
61 studies. Detailed methodology and results are presented in Appendix A.

Various SSDs have been proposed to improve navigation for the blind. Traditional visual SSDs often utilized
image mapping through haptic feedback (Bach-y Rita et al., 1998; Kajimoto et al., 2004; 2006; DANILOV
& TYLER, 2005) or audio representations derived from images (Auvray et al., 2007; Meijer, 1992a). How-
ever, these approaches demand substantial attentional resources (Lee, 2019; Theurel et al., 2013), leading
to cognitive overload (De Jong, 2010), and limiting their application to controlled environments (Elli et al.,
2014).

Consequently, image and signal processing have been used to improve extraction of salient features using
infrared, LiDAR, ultrasonic and mostly (50/61, 82%) visual sensors.

The use of machine learning and neural networks were introduced in 2009 and changed drastically the design
of new devices by involving 58% (28/48) studies since then. Applications of neural networks for sensory
substitution devices include image segmentation, object recognition, or classification (Busaeed et al., 2022;
Scalvini et al., 2023; Asiedu Asante & Imamura, 2023; Afif et al., 2020; Sulaman et al., 2023; Bhatlawande
et al., 2022; Chaudhary & Dr. PrabhatVerma, 2023; Mukhiddinov & Cho, 2021), object tracking (Tapu et al.,
2017), speech understanding (Bai et al., 2017), image captioning (Ganesan et al., 2022; Kavitha et al., 2023),
optimization of auditory representation of images with GANs (Kim et al., 2021; 2023; Hu et al., 2019; Port
et al., 2021), and best action prediction (Zheng & Weng, 2016; Kerdegari et al., 2016).

AI-BASED DEVICES FOR OBSTACLE AVOIDANCE

Out of 20 neural-network SSD studies, 9 were aimed at obstacle avoidance tasks, which is critical for safe
navigation. Limitations with such approaches mainly rely on computational and energetic cost, because
such systems often require substantial hardware resources to perform multiple scene understanding tasks
in parallel and in real-time (Mahendran et al., 2021). Also, complex operations such as depth estimation
may require expensive or heavier sensors, such as stereo camera (Caraiman et al., 2017; Asiedu Asante &
Imamura, 2023).

On the other hand, 2 studies (Zheng & Weng, 2016; Kerdegari et al., 2016) proposed to estimate directly
the best possible action for the blind, but such tasks require extensive and costly acquisition of human
navigation data. In (Zheng & Weng, 2016), authors collected 4109 tuples of GPS/visual sensor information
labelled with the best possible action (forward/left/right/stop) predicted with a deep neural network. In
(Kerdegari et al., 2016), authors collected 4051 samples comprising an ultrasonic measurement coupled
with a performed action (forward/left/right) predicted with a multilayer perceptron.

DOMAIN ADAPTATION FROM SIMULATION TO REAL ENVIRONMENTS

Domain shift is a primary concern when deploying deep learning models trained in simulations into the real-
world. Approaches to enable the transferability of AI systems from virtual to real-world environments have
primarily focused on achieving photorealism by scanning real 3D scenes, as highlighted in (Xia et al., 2018).
This strategy allows AI systems to utilize material textures for executing complex tasks and to leverage
detailed 3D scene representations stored in external memory. Such systems have primarily benefited robotics
(Hirose et al., 2019; Kang et al., 2019), where they enable fully autonomous agents to undertake complex
scene understanding tasks.
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Besides, SSDs are designed to prioritize the transmission of low-dimensional features that can be computed
in real-time and easily interpreted by humans for navigation, and thus do not necessarily need to store a
3D rich representation of the surrounding environments for complex autonomous navigation tasks. Indeed,
on the other hand, semantic segmentation has been proposed as domain-agnostic features to allow better
generalization for robotics navigation in real-world (Hong et al., 2018; Chaplot et al., 2020). In a similar
manner, we propose to use a simple semantic view of the scene as an input for bridging domain gap. However
our approach is not designed to be deployed on fully autonomous agents, and focuses on extraction of low-
dimensional navigation cues that could be interpreted by humans with haptic or auditory feedback. This
approach enables the model to learn better obstacle avoidance as shown in Section 4, and considerably
reduces the domain gap with real-world data. Compared with photorealism approaches, the use of semantic
views also reduces the input dimensionality providing faster training and avoiding texture biases.

Figure 2: Method overview : we leverage training in virtual environments with reinforcement learning, by
equipping a digital twin with sensor(s) to master navigation tasks from domain-invariant features. Post-
training, utilizing the acquired knowledge encoded in Qθ model, we extract navigation features from real-
world data. Such features can finally be conveyed through a sensory substitution device (SSD). Virtual
environment elements are denoted in blue, real-world elements in green, while cross-domain elements are
highlighted in yellow.

EMBODIED AI PLATFORMS FOR ROBOTICS

AI-embodied platforms have primarily been developed for robotics navigation tasks, utilizing either syn-
thetic assets or the scanning of real-world scenes. Scanning real-world scenes has led to the development of
tools including Gibson (Xia et al., 2018; 2019), Habitat (Szot et al., 2021; Ramakrishnan et al., 2021), and
Openroom (Li et al., 2021), providing hundreds of virtual scenes for training. Unity-based environments
have also been developed by the Allen Institute for AI (AI2) (Ehsani et al., 2021; Deitke et al., 2020; 2022).

As proposed in ProcTHOR (Deitke et al., 2022), NavIndoor leverages procedural generation as a key ele-
ment. In the context of mobility assistance, SSDs are expected to function in a wider range of environments
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than those typically encountered in robotics, which necessitates superior generalization abilities. Opting for
procedurally generated environments addresses this need by providing a far greater variety of data com-
pared to photorealistic simulations, thereby increasing reinforcement learning models’ robustness to unseen
scenes, as demonstrated across various 2D (Cobbe et al., 2018; Johansen et al., 2019; Cobbe et al., 2019)
and 3D (Jaderberg et al., 2018; Juliani et al., 2019) environments.

NavIndoor provides automatic generation of both semantic segmentation maps and depth maps as domain-
agnostic features within procedurally generated environments, without the need for additional annotations
or being constrained by a finite number of environments, contrary to existing platforms (Yadav et al., 2022)
(Szot et al., 2021). Also, its design is specifically oriented for blind digital twin navigation including au-
tomatic generation of labeled collision instances. NavIndoor also includes parametrization for both agents
(movement physics, action space, sensors) and environments (size, obstacle filling) and allows very high-
speed rendering by leveraging various optimization features.

3 MATERIALS AND METHOD

We propose a scalable approach that leverages virtual environments, reinforcement learning, and transferable
features to extract navigation-related features for SSDs, as illustrated in Figure 2. The navigation task is
initially learned within a virtual environment by a digital twin equipped with sensor(s) and implemented
through a reward function.

We used semantic segmentation masks as input for learning blind navigation within virtual environments,
because they have lower dimensionality compared with depth maps, but still capture enough information for
allowing navigation as shown in robotics (Hong et al., 2018; Chaplot et al., 2020).

Collection of synthetic navigation data was performed within virtual environments in the form of (st, at, rt),
where st, at, and rt represent a semantic view, memory of actions taken by a blind digital twin, and reward
values at time-step t, respectively. The navigation task is learned through policy learning from the semantic
segmentation maps. Leveraging reinforcement learning, we estimate a parametric model Qθ(st, at) using
Q-learning. The Q-value function represents the expected sum of future rewards an agent would achieve in
state st, choosing action at, and navigating optimally thereafter. Following the training, we evalyated the
performance of Qθ with real-world states.

To show the effectiveness of our approach, we propose to learn obstacle avoidance from a single head-
mounted visual sensor, aligning with current start-of-the-art (see Figure 1) but without extensive real-world
data collection and annotation. Semantic segmentation maps were processed to regroup obstacles in a single
class and processed as 1 × 128 × 128 tensors to reduce input dimensionality. We also leveraged proce-
dural generation, allowing for randomization of virtual environments, semantic-segmentation specific data
augmentation and used a compact convolutional neural network for Q-value estimation (1.6M parameters).
These features aimed at improve model robustness and allow extraction of relevant feedback in real-time in
a sensor-lightweight and energy-efficient pipeline.

For synthetic data generation, we developed a virtual environment, NavIndoor, encompassing the necessary
features, and in which training was performed (Section 4). The following section presents the experimental
setup employed for learning obstacle avoidance, including design of reward function, virtual environment,
data randomization mechanisms, model architecture, hyperparameters optimisation as well as the model’s
results within virtual setting.
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Figure 3: From left to right. The maze generation procedure initiates with a grid of closed cells and a
randomly positioned agent. Subsequently, depth-first search algorithm is applied to its graph structure and
cells are randomly filled with obstacles and collectibles. The agent wears a forehead RGB camera and a
semantic segmentation camera.

4 TRAINING IN VIRTUAL ENVIRONMENT

3D ENVIRONMENT AND BLIND DIGITAL TWIN

NavIndoor is built upon Unity and MLAgents library (Juliani et al., 2018). It was developed as a platform
for generation of synthetic data from navigation of a blind digital twin. NavIndoor is designed to create
sequential, partially observable, static, procedurally generated environments filled with walls, obstacles, and
collectibles. The environment generation includes maze generation and the sampling of a random starting
point where the agent begins its exploration, in order to prevent memorization biases (Zhang et al., 2018).
The generation procedure for mazes is based on the Depth First Search algorithm (Tarjan, 1972) and de-
picted in Figure 3. Obstacles include both cuboids of various shapes and open-source low-polygons assets.
The environment was designed in Unity to allow for easy parametrization integration through Python for
generation of mazes, agents and sensors with different properties.

A blind digital twin was designed to navigate these mazes. It has a discrete action space A =
{forward, backward, rotate left, rotate right}. The agent is equipped with a frontal monocular camera hat
has a field of view (FOV) of 115◦ × 100◦. The camera sensor is configured to return 128 × 128 semantic
segmentation maps along with RGB views of the current scene.

REWARD DESIGN AND OBSERVATIONS

We propose using collectibles located at the center of the maze’s cells to design the reward function. The
agent receives a positive reward when collecting a coin, which encourages exploration of the maze. It
receives a negative reward when colliding with a wall or an obstacle. At each timestep, the environment
returns a semantic map of the current view segt as well as an RGB view ft. The semantic map has five labels:
floor, obstacles, walls, coins, other. At timestep t, the state st = (segt−2, segt−1, segt, (ai)i∈[t−m,t−1]) is
extracted, where segi is the semantic segmentation map at timestep i, ai is a one hot encoding of action
taken at timestep i, and m is an action memory length parameter. Encoding semantic maps as 2D arrays
by associating a single value to walls (-0.5), floor (0.5), and obstacles (-1) provided better stability during
training compared to multi-channel semantic encoding. Additionally, our experiments showed that providing
time context through previously performed actions allowed the agent to escape situations where it would get
stuck during learning, leading to better obstacle avoidance strategies.
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+

Figure 4: The Q-network architecture consists of six convolutional layers, followed by fully connected layers
to estimate Qθ(s). Given the state st, the deep Q-network estimates both the value and advantage functions,
which can be interpreted as indicators of safety and guidance on potential actions, respectively..

TRAINING

Obstacle avoidance was learned using Double Dueling Deep Q Network (D3QN) (Wang et al., 2015), with
each episode taking place in a new procedurally generated maze. The model architecture processing st is
presented in Figure 4. It is composed of image and actions encoders followed with fully connected layers.
The D3QN architecture offers an estimation Vθ of expected sum of discounted rewards, which relates directly
to the safety level for obstacle avoidance. An extensive grid search was conducted over training hyper-
parameters and then agent and environment parameters (speed, obstacle proportion, progressive increase in
difficulty) to determine the best training setting. Details on training and grid search are given in Appendix B.
The best trained model (VC) setup was then used to trained another model (VCD) using data augmentation.
Data augmentation included erosion and/or dilatation morphological operators around obstacle shapes using
a fixed 3x3 square kernel with probability p = 0.2 for each image and operator. Morphological augmentation
was followed by random uniform changes in each pixel label with probability p = 0.05. These changes aim
to simulate potential errors during semantic segmentation of real-world images and to make the model robust
to various obstacle shapes. Training setups included a model was trained from standard RGB views of the
camera and a model trained with unvisible collectibles (NVC).

Two human individuals were also trained to collect the maximum amount of coins while avoiding collisions
in to assess human performance and compare it to our models. Human performance was evaluated under
settings with both visible and invisible collectibles, as well as RGB inputs, with 10 episodes for each indi-
vidual. Each episode lasted for 24 seconds (corresponding to 400 decision timesteps) and humans navigated
in the NavIndoor using the keyboard’s directional arrows.
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RESULTS IN NAVINDOOR

Table 1: Mean reward for final models vs. humans

Best Model Humans Ratio

Visible coins 74.34 (VC) 102.36 0.73
73.18 (VCD) / 0.71

Invisible coins 47.44 (NVC) 83.82 0.56
RGB views 63.98 101.34 0.63

Results after training are presented in Table 1.
The best-trained model (VC) reached 73% of
human-level performance. It had a mean re-
ward of 74.34 and was obtained using visible
collectibles and progressive increase in difficulty
during training. The model trained with RGB
views achieved a mean reward of 57.73, which
was the lowest among models trained using se-
mantic segmentation maps, showcasing the rel-
evance of semantic segmentation for obstacle
avoidance during visual-based navigation.

5 RESULTS

Figure 5: (a) AVD samples showing various distances to the navigation boundary. (b) A top-down view of
two AVD rooms. Points mark the locations where photographs were captured. Qθ(s, forward) was computed
for each state s, indicating the same direction (orange arrows). Blue (big) points indicates high values of
Qθ(s, forward) and red (small) points low values.

We identified the Active Vision Dataset (AVD) as a good dataset for evaluating our model, because it offers
indoor views coupled with spatial metadata, including coordinates and viewpoint angles for each navigable
location. We computed for each image its distance to navigation boundary d, representing the number of
possible forward steps from a given view. This value can be seen as a path clearance level. Samples from
the AVD are illustrated in Figure 5 (a).

We conducted image segmentation as a pre-processing step using SegFormer-b2 on each AVD image. Next,
we extracted features from VC and VCD models trained in NavIndoor using the initial state configuration
(no previous action in the action memory buffer, and stacking the 3 same images). The process ran at 179
FPS in our setting (RTX 4090) without further optimization.

The model’s output for VC correlated well with the path clearance level. In particular, the safety level
Vθ(s) and the rotation advantage relative to going forward, Rθ(s), defined as the difference between
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Qθ(s, forward) and the maximum between Qθ(s, rotate left) and Qθ(s, rotate right), correlated well with
the path clearance level d as depicted in Figure 6. We observed a mean increase of Vθ with respect to d,
indicating the model’s ability to assign better values to states with clearer pathways. Similarly, we noticed
a mean decrease of Rθ(s) with respect to d, suggesting its potential as a navigation insight to indicate when
rotfation is a favorable option. Additionally, we generated schemes of two AVD scenes and colored photo-
graph locations for a specific direction based on Qθ(s, forward) in Figure 5 (b), showcasing high correlation
with the forward pathway clearance.

The same processing method was applied on a video captured by a sighted individual wearing a camera on
their forehead, and results showcased a high correlation between the forward distance to walls or obstacles
with Qθ(s) and Vθ(s). As depicted in Figure 8, Vθ(s) decreases when the individual approached obstacles,
showcasing features relevance for feedback integration in real sensory substitution devices.

Figure 6: (Left) Mean values of Vθ on images within each scene (gray) and the overall average (green) are
plotted with respect to d. (Right) Mean values of Rθ on images within each scene (gray) and the overall
average (purple) are shown with respect to d (left). Both Vθ and Rθ are single-dimensional features that
significantly correlate with the distance to the navigation boundary in the real-world.

LINEAR PROBING

Quantitative evaluation was conducted through linear probing, involving binary classification of images
based on their forward navigation boundary. Labels ydi were determined by applying a threshold to the
maximum reachable forward distance before encountering a wall or an obstacle. Specifically, ydi was set to
1 if di > d, indicating a boundary within the next d forward steps. This approach simulates the need to alert
users when they approach obstacles with a binary feedback with alert distances d varying from 0 to 6. Linear
classifiers were trained on 9 indoor scenes and tested on 5 unseen scenes from different buildings (details in
Appendix C).

Performance comparisons were made with other state-of-the-art models, including self-supervised back-
bones (DINOv2 distilled (Oquab et al., 2024), ConvNext V2 (Woo et al., 2023)) and supervised models
(SegFormer-b2 (Xie et al., 2021), EfficientNet-b7 (Tan & Le, 2019)). For transformers models, the latent
space of every image patch was used because it gave better performances compared with using only the cls
token.

The results for AUCs of each classifier are depicted in Figure 7. Table 2 presents the mean evaluation metrics
accross all trained classifiers. VCD classifiers consistently outperformed the other models for d > 2. Indeed,
the use of morphological operators coupled with random changes in the unified semantic segmentation
images thus provided with significantly better generalization with real-world semantic segmentation maps,
which are naturally prone to errors. Although evaluation of VCD relied on pre-processing using SegFormer-
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Table 2: Linear probing binary classifiers for forward navigation boundary detection. Mean metrics on test
set.

Model Features F1 AUC

ConvNext V2 (Woo et al., 2023) 15680 0.63 0.82
SegFormer-b2 (Xie et al., 2021) 131072 0.72 0.87
EfficientNet-b7 (Tan & Le, 2019) 231040 0.71 0.80
DINOv2-B (Oquab et al., 2024) 197376 0.75 0.86

(Ours) VCD 768 0.77 0.88
(Ours) VC 768 0.74 0.86
(Ours) NVC 768 0.69 0.85

b2, the results show significantly higher AUCs using VCD for d > 3 and higher F1 score, demonstrating our
model performance in understanding structure of real-world indoor places.

Figure 7: AUCs for different distance thresholds
(binary classification) on test set for state-of-the-
art models and VC, NVC, VCD.

Figure 8: Value function estimate Vθ across the
real-world video sample. Image samples from the
video are displayed with their associated Vθ (top
arrow) and Aθ (bottom arrows) outputs.

6 CONCLUSION

In this study, we introduced a new framework aimed at improving mobility for visually impaired people
through the use of synthetic data. We proposed a virtual environment specifically designed for generating
human-like navigation data, which can be used for training and evaluating deep learning models for SSDs.
Compared to previous approaches, our method offers scalability and real-time extraction of low-dimensional
features for safe navigation from a single visual sensor. Indeed, the proposed method ensures a high compat-
ibility with the lightweightness, cognitive and hardware constraints associated with SSDs. These advances
represent a significant step in the development of robust AI-based assistive technologies and pave the way
for further research aimed at improving mobility for visually impaired individuals.
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A LITERATURE REVIEW

To assess the relevance of AI methods for sensory substitution devices, we conducted a literature review on
sensory substitution devices and electronic travel aids published since 1970. The review was performed in
PubMed using binary strings that combined one sensory substitution-related term (e.g., sensory substitution,
electronic travel aid) with a signal-processing-related term (e.g., deep learning, computer vision, machine
learning, image processing, signal processing, artificial intelligence, neural networks). The results were
supplemented with research from Elicit, various search engines, and arXiv. We included papers proposing
new systems for sensory substitution, resulting in a total of 61 studies. Each paper was analyzed and labeled
according to the information detailed in Table 3, including the type of image or signal processing used, as
well as additional information such as the device’s purpose, type of sensors, and sensor location. The full
review results are presented in Tables 4,5.

Reviewed Prop-
erty

Description and acronyms

Year Publish year.
Sensor (S) Sensors used for environment information acquisition.

RGB Camera (CAM), RGB-Depth Camera(s) (D-CAM), Ultrasonic (US), LIDAR, In-
frared (IR), Externally added Geographic Information (GI), GPS, Laser Beam (LB).

Purpose Purpose of the SSD.
Generic Use for any application (GU), Obstacle Avoidance (OA), Navigation (NAV),
Object Recognition (OR), Localization (LOC).

Processing Tools
(TOOLS)

Methodological Tools used for information extraction.
Neural Networks (NN), Computer Vision (CV), Machine Learning traditional approach
(ML), Signal Processing (SP).

Sensor Location
(SLOC)

Location of the acquisition sensors.

Table 3: List of reviewed aspects for prosthetic vision studies and their acronyms
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Ref Year S Purpose Tools SLOC
Collins (1970) 1970 CAM GU CV back
Meijer (1992b) 1992 CAM GU CV NA
Bach-y Rita et al. (1998) 1998 CAM GU CV NA
Shoval et al. (1998) 1998 US OA SP belt
Rodrı́guez-Ramos (2009) 1999 D-CAM GU CV glasses
Arno et al. (1999) 1999 CAM GU CV Head
Ulrich & Borenstein (2001) 2001 US OA SP A-Cane
Kuc (2002) 2002 US OA,OR SP NA
Segond et al. (2005) 2005 CAM OA CV abdomen
DANILOV & TYLER (2005) 2006 CAM GU NA head
Kajimoto et al. (2006) 2006 CAM GU CV head
Johnson & Higgins (2006) 2006 D-CAM OA CV belt
Dakopoulos et al. (2007) 2007 D-CAM OA CV glasses
Tekin & Coughlan (2009) 2009 CAM OR ML NA
Coughlan & Manduchi (2009) 2009 CAM,GI WF CV hand
Winlock et al. (2010) 2010 CAM OR ML NA
Khan et al. (2012) 2012 D-CAM OR,OA CV belt
Rodrı́guez et al. (2012) 2012 D-CAM OA CV chest
Vera et al. (2014) 2013 CAM,LB OA SP hand
Tapu et al. (2013) 2014 CAM OA ML chest
Elloumi et al. (2013) 2014 CAM,GI WF ML chest
Maidenbaum et al. (2014) 2014 IR OA SP hand
Kajimoto et al. (2014) 2014 CAM GU CV hand
Garcia & Nahapetian (2015) 2015 CAM OA CV glasses
Zheng & Weng (2016) 2016 CAM,GPS OA NN hand
Bulat & Glowacz (2016) 2016 D-CAM OA CV NA
Ivanchenko et al. (2008) 2016 CAM OR ML hand
Schwarze et al. (2015) 2016 D-CAM,IS OA CV helmet
Kerdegari et al. (2016) 2016 US OA NN helmet
Ko & Kim (2017) 2017 CAM,IS,GI WF ML hand
Rituerto et al. (2016) 2017 CAM,IS,GI LOC CV chest
Tapu et al. (2017) 2017 CAM OA NN belt

Bai et al. (2017) 2017 D-CAM,
CAM,GI NAV NN helmet

Sharma et al. (2016) 2017 CAM OR,OA NN chest
Agarwal et al. (2017) 2017 US OA SP glasses
Dasila et al. (2017) 2018 D-CAM OR,OA CV NA

Table 4: Review Results part.1
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Ref Year S Purpose Tools SLOC

Caraiman et al. (2017) 2018 IR,D-CAM OA,OR,
TR ML abdomen

Mancini et al. (2018) 2018 CAM WF CV Gloves
Bhat et al. (2017) 2018 CAM OR,TR ML NA
Lobo et al. (2019) 2019 IR OA SP hand
Hu et al. (2019) 2019 CAM GU NN NA

Rahman et al. (2020) 2020 US,IR,
IS,GI OA SP shin

Port et al. (2021) 2020 CAM OR NN NA
Afif et al. (2020) 2020 CAM OR NN None
Zhao et al. (2020) 2020 CAM,GPS WF,OA NA glasses

Kavya & G C (2020) 2020 CAM,US,
GPS

OA,OR,
TR NN A-Cane

Kim et al. (2021) 2021 CAM GU NN glasses
Dernayka et al. (2021) 2021 LIDAR,IR OA SP A-Cane
Mukhiddinov & Cho (2021) 2021 CAM OR,TR NN NA
Wright & Ward (2013) 2021 CAM GU ML NA

Busaeed et al. (2022) 2022 LIDAR,LB,
US,GPS OA NN glasses

Ganesan et al. (2022) 2022 CAM OR NN NA
Roy & Shah (2022) 2022 GPS,US OA,LOC SP A-Cane
Bhatlawande et al. (2022) 2022 CAM,US OR,OA NN Hand

Scalvini et al. (2023) 2023 D-CAM,
GPS,IS NAV NN helmet

Asiedu Asante & Imamura (2023) 2023 D-CAM OA NN abdomen
Kim et al. (2023) 2023 CAM GU NN NA

Sulaman et al. (2023) 2023 CAM,US,
GPS,IF

OA,OR,
LOC NN A-Cane

Chaudhary & Dr. PrabhatVerma (2023) 2023 CAM OR NN None
Kavitha et al. (2023) 2023 CAM OR NN None

Kumar et al. (2023) 2023 CAM,US,
GPS,IS

OA,OR,
LOC CV A-Cane

Table 5: Review Results part.2
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B GRID SEARCH IN NAVINDOOR

Training was conducted alongside the agent’s exploration of the environment, utilizing an ϵ-greedy policy.

Each episode took place in a new maze and lasted for 400 decision timesteps, for both training and eval-
uation. At a fixed frequency, data was sampled from a replay buffer and used for Qθ parameters update.
Semantic maps used for training were encoded as 2D arrays with values: 1 for coins, 0.5 for floor, −0.5 for
walls, −1 for obstacles, and 0 elsewhere. Training lasted for 250 episodes. The model was implemented
with PyTorch and trained using NVIDIA RTX 4090.

Obstacle avoidance was learned using Double Dueling Deep Q Network (D3QN) Wang et al. (2015) which
the associated loss function L is given by:

L(θ) = E
[
(y −Qθ(s, a))

2
]
, (1)

where the target value y for the Double Q-Learning approach is defined as:

y = r + γQθ−

(
s′, argmax

a′
Qθ(s

′, a′)

)
, (2)

and in the Dueling Network architecture, the Q function is decomposed into:

Qθ(s, a) = Vθ(s) +

(
Aθ(s, a)−

1

|A|
∑
a′

Aθ(s, a
′)

)
, (3)

where Vθ(s) represents the value function, A(s, a; θ) the advantage function, |A| the number of possible
actions, θ and θ− the parameters for current and target networks, respectively.

Considering the complexity of reinforcement learning in 3D environments, we performed a grid search to
understand the model’s sensitivity to training parameters. The parameters considered for the grid search,
along with their associated best values, are as follows: model size (1.1, 1.6M, 2.4 parameters), learning rate
(0.0001,0.0005,0.001), batch size (64,128,256), discount factor γ (0.95,0.97,0.99), action memory length m
(10,20), ϵmin (0.15,0.3), training proportion of linear decrease ratio for ϵ (0.25,0.33,0.5), training iteration
frequency (5,10), coin reward value (1,5,10), update type of Qθ− (hard update every 50 training steps,
hard update every 10 training steps, soft update). This grid search, as well as all evaluation results use a
default setting specified below. After the grid search, we conducted training sessions with the best-found
hyper-parameters. A total of 16 training sessions were performed, considering 4 binary settings, and the
best models for visible/invisible collectibles were designated as VC/NVC, respectively. Then, using the VC
settings, 2 additional training sessions were conducted to train the RGB model with data augmentation for
VCD.

The first binary setting examined fixed moving speed (default, fixed to 1) vs random moving speed (sampled
between 0.75 and 1.25) to assess the model’s ability to generalize to agents with different speeds. The
second binary setting investigated the need for visual cues by training with visible (default) vs invisible
coins. Visual cues assist the model in navigation but also introduce a bias for generalization to real-world
semantic segmentation maps, which may not include such visual cues. The third binary setting implemented
decreasing rewards only at collision time (default) vsdecreasing rewards when staying near an obstacle. This
study aims to determine if this approach could prevent situations where the agent becomes stuck by colliding
with an obstacle.
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Figure 9: Mean cumulative rewards are shown for fixed vs variable difficulty during training (left) and for
visible vs invisible coin settings (right). The mean cumulative reward was computed over the 8 models in

each group.

The last binary setting aimed to study potential improvements in performance by progressively increasing
task difficulty through obstacle proportion, in accordance with previous studies Kulhánek et al. (2019);
Justesen et al. (2018). We compared a fixed proportion of obstacles throughout training (default) with a
linear increase in obstacle proportion during training. Following training, each of the 16+2 models was
evaluated on 500 unseen mazes under the default setting.

Two subgroups showed significant differences compared to their binary counterparts. First, the coin visibility
group demonstrated better performance (mean reward of 72.76), while the model still exhibited learning
capabilities even without visual cues (mean reward of 45.22). Although the gradual increase in difficulty
did not significantly enhance the mean reward, it accelerated the convergence of the models. These results
can be observed in the cumulative rewards of these subgroups throughout training, as shown in Figure 9.
Cumulative rewards and mean rewards after training showed no significant differences for the other two
binary settings.

C TRAIN/TEST SPLIT IN ACTIVE VISION DATASET

Linear probing was performed using the currently available data from the Active Vision Dataset Houses.
Scenes from Houses 1, 2, 3, 4, and 7 were used for training, while Houses 10, 11, 13, 15, and 16 were used
for testing.
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