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Abstract
One explanation for the strong generalization abil-
ity of neural networks is implicit bias. Yet, the
definition and mechanism of implicit bias in non-
linear contexts remains little understood. In this
work, we propose to characterize implicit bias
by the count of connected regions in the input
space with the same predicted label. Compared
with parameter-dependent metrics (e.g., norm or
normalized margin), region count can be better
adapted to nonlinear, overparameterized models,
because it is determined by the function mapping
and is invariant to reparametrization. Empiri-
cally, we found that small region counts align
with geometrically simple decision boundaries
and correlate well with good generalization per-
formance. We also observe that good hyper-
parameter choices such as larger learning rates
and smaller batch sizes can induce small region
counts. We further establish the theoretical con-
nections and explain how larger learning rate can
induce small region counts in neural networks.

1. Introduction
One mystery in deep neural networks lies in their ability
to generalize, despite having significantly more learnable
parameters than the number of training examples (Zhang
et al., 2017a). The choice of network architectures, includ-
ing factors such as nonlinearity, depth, and width, along
with training procedures like initialization, optimization al-
gorithms, and loss functions, can result in vastly diverse
generalization performance (Sutskever et al., 2013; Smith
et al., 2017; Wilson et al., 2017; Li et al., 2019). The varied
generalization abilities exhibited by neural networks are
often explained by many researchers through the theory of
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implicit bias (Brutzkus et al., 2017; Soudry et al., 2018).
Implicit bias refers to the inherent tendencies in how neural
networks learn and generalize from the training data, even
without explicit regularizations or constraints.

The implicit bias of linear neural networks has been exten-
sively studied. One of the classical setting is linear classi-
fication with logistic loss. Brutzkus et al. (2017); Soudry
et al. (2018); Arora et al. (2019) show that the parameter
converges to the direction that maximizes the L2 margin.
For regression problems, it is proved that gradient descent or
stochastic gradient descent converges to a parameter that is
closest to the initialization in terms of L2 norm (Gunasekar
et al., 2018a). The results of the linear regression model can
be extended to deep linear neural networks by generalizing
the definition of min-norm and max-margin solutions (Ji
& Telgarsky, 2018a; Vaskevicius et al., 2019; Woodworth
et al., 2020).

Compared to linear models, defining implicit biases in non-
linear networks poses significant challenges. One line of
work studies homogeneous networks and demonstrates that
gradient flow solutions converge to a KKT point of the max-
margin problem (Lyu & Li, 2019; Ji & Telgarsky, 2020;
Wang et al., 2021; Jacot et al., 2022). Further research ex-
tends this analysis, showing that gradient flow converges to
a max-margin solution under various norms (Ongie et al.,
2019; Chizat & Bach, 2020). Other studies focus on de-
scribing the implicit bias of neural networks using sharp-
ness, such as (Foret et al., 2020; Montúfar et al., 2022;
Andriushchenko et al., 2023).

We note that previous definitions of implicit bias in neural
networks mostly focus on certain metrics of network param-
eters. While these approaches enable explicit analyses of
training trajectories, they encounter new challenges when
applied to nonlinear networks: reparametrization of the net-
work can preserve the function mapping but give completely
different parameters, and consequently, different implicit
biases. We will discuss this point in detail in Section 3.

Motivated by the above studies, we focus on leveraging
decision boundaries in the input space to characterize im-
plicit bias. We adopt a metric called region count, which
measures the average number of connected components in
the decision regions of a predictor (see Figure 1). This idea
was initially introduced by Somepalli et al. (2022), who
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Figure 1: A schematic illustration of main results in this paper. Left: The region counts in 2-dimension input space.
Each distinct region represents an area where the neural network makes the same prediction for all points within that region.
Middle: A strong correlation between region counts and the generalization gap. Right: Larger learning rate or smaller batch
size induces smaller region counts.

used it under the name fragmentation score to study the
double descent phenomenon by counting decision regions
on two-dimensional planes defined by training examples.
In contrast, we extend this idea beyond 2D subspaces and
generalize the region count to arbitrary-dimensional input
subspaces, which enables a more comprehensive geometric
characterization.

To compute region count, we project the input space onto
low-dimensional subspaces, use the trained network to
predict the labels of points within these subspaces, and
count the number of connected regions that share the same
predicted label. Unlike previous studies on linear region
count (Hanin & Rolnick, 2019a;b; Safran et al., 2022),
which focus on activation patterns and representational ca-
pacity, the metric of region count is label-dependent and
reflects the functional behavior of the classifier. We find
that region count correlates strongly with the generalization
gap—defined as the difference between training and test er-
rors. As illustrated in Figure 1, models with fewer decision
regions tend to generalize better.

Furthermore, we show that neural networks trained with
large learning rate or small batch size, which are typically
deemed beneficial for generalization, are biased towards
solutions that have small region counts. Therefore, region
count empirically serves as an accurate generalization met-
ric as well as an implicit bias indicator. We also provide
theoretical analyses to explain this phenomenon. We prove
that for two-layer ReLU neural networks, gradient descent
with large learning rate induces a small region count, which
accords well with our empirical findings.

The main contributions of this paper are listed as follows:

1. We use the region count to to systematically character-
ize implicit bias. Through extensive experiments, we
verify a strong correlation between region count and

the generalization gap. This correlation remains robust
across different learning methods, datasets, training
parameters, and counting methods.

2. We assess the factors that induce small region count,
discovering that training with larger learning rates and
smaller batch sizes typically results in fewer regions.
This provides a possible cause for the implicit bias in
neural networks.

3. We conduct theoretical analyses on region counts, and
show that for two-layer ReLU neural networks, gra-
dient descent with large learning rate induces a small
region count.

2. Related Works
Implicit Bias of Linear Neural Network The implicit
bias in linear neural networks are thoroughly investigated in
recent works. For linear logistic regression on linearly sepa-
rable data, full-batch gradient descent converges in the direc-
tion of the maximum margin solution (Soudry et al., 2018).
This foundational work has various follow-ups, including
extensions to non-linearly-separable data (Ji & Telgarsky,
2018b; 2019), stochastic gradient descent (Nacson et al.,
2019), and other loss functions and optimizers (Gunasekar
et al., 2018a).

These findings in linear logistic regression are generalized to
deep linear networks. For fully-connected neural networks
with linear separable data, Ji & Telgarsky (2018a) shows that
the direction of weight also converges to L2 max-margin
solution. For linear diagonal networks, the gradient flow
maximizes the margin with respect to a specific quasi-norm
that is related to the depth of network (Gunasekar et al.,
2018b; Woodworth et al., 2020; Pesme et al., 2021), leading
to a bias towards sparse linear predictors as the depth goes to
infinity. This sparsity bias also exists in linear convolutional
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networks (Gunasekar et al., 2018b; Yun et al., 2020).

Implicit Bias of Non-linear Neural Network The non-
linearity of modern non-linear neural networks pose chal-
lenges to studying its implicit bias. Initial works in this
area (Lyu & Li, 2019; Ji & Telgarsky, 2020) focus on
homogeneous networks. These studies show that with
exponentially-tailed classification losses, both gradient flow
and gradient descent converge directionally to a KKT point
in a maximum-margin problem. Wang et al. (2021) consider
a more general setup that includes different optimizers and
prove that both Adam and RMSProp are capable of max-
imizing the margin in neural networks while Adagrad is
not. Ongie et al. (2019); Chizat & Bach (2020) showcased a
bias towards maximizing the margin in a variation norm for
infinite-width two-layer homogeneous networks. Lyu et al.
(2021); Jacot et al. (2022) identified margin maximization
in two-layer Leaky-ReLU networks trained with linearly
separable and symmetric data. More recent investigations
into non-linear neural networks, such as (Jacot, 2022), focus
on the homogeneity of the non-linear layer, demonstrating
an implicit bias characterized by a novel non-linear rank.

Region Counts of Neural Network Prior work has ex-
tensively studied the number of linear regions in ReLU
networks (Hanin & Rolnick, 2019a;b), where a linear re-
gion refers to a set of inputs sharing the same activation
pattern. For example, Safran et al. (2022) showed that for a
two-layer ReLU network with width r, gradient flow con-
verges directionally to a network with at most O(r) linear
regions. Other studies (Serra et al., 2018; Cai et al., 2023)
demonstrated that increasing the number of linear regions
can enhance representational capacity and potentially im-
prove performance. However, linear regions are defined
independently of output labels and thus primarily reflect the
expressiveness of the network rather than its generalization
behavior.

In contrast, decision regions are defined as connected sub-
sets of the input space that correspond to the same predicted
label. Nguyen et al. (2018) investigated decision regions
over the full input space and showed that, under certain con-
ditions, each class tends to form a single connected region.
However, connectivity in the full space does not necessarily
imply connectivity in a subspace—for instance, two points
may be connected in 3D but disconnected in a 2D slice.
Subspace analysis thus reveals a richer and more nuanced
structure of decision boundaries.

The paper (Somepalli et al., 2022) is the most relevant to
our work, which is the first to systematically analyze the
number of decision regions in input subspaces. They intro-
duce the fragmentation score, defined as the average number
of decision regions over 2D planes determined by triplets
of training points. Their study focuses on illustrating how

fragmentation varies with network width and its connection
to the double descent phenomenon. While their approach
provides important empirical observations, the analysis re-
mains largely qualitative and limited to specific architectural
variations.

Our work extends this line of research in several key di-
rections. First, we adopt a more general definition of re-
gion count over arbitrary-dimensional subspaces, rather than
restricting to two-dimensional planes. This allows us to
capture more comprehensive geometric information and
supports quantitative analysis. Second, we systematically
investigate the correlation between region count and the
generalization gap across a variety of architectures, training
hyperparameters, and datasets. Third, we further offer a
theoretical analysis of region count and study its behavior
under distribution shifts. To the best of our knowledge, we
are the first to provide a comprehensive empirical and the-
oretical analysis that links region count to generalization
ability.

3. Motivation
Norm-based and margin-based characterizations belong to
the most popular measures of implicit bias. Various defini-
tions for norm and margin exist. For simplicity, we consider
the following two definitions.
Example 1 (Norm and Margin). Let W = {W1, · · · ,Wl}
denote the post-training weight parameters of an l-layer
neural network fW (x) = Wlσ(Wl−1 · · ·W2σ(W1x)), with
σ(·) as the ReLU activation function. Denote the weight ini-
tialization as W 0 = {W 0

1 , · · · ,W 0
l }. Consider the Frobe-

nious norm between network weights and initialization:

d(W ) =

√√√√ l∑
i=1

∥Wi −W 0
i ∥2F ,

and the output-space margin

γ(W ) = E(x,y)∈Dtrain

[
f(x)y −max

i ̸=y
f(x)i

]
.

d(·) and γ(·) are commonly used indicator for implicit
bias of linear models (Soudry et al., 2018; Ji & Telgar-
sky, 2018b). However, both of them are not invariant to
network reparameterization. We can construct a different
set of network weight parameters by scaling the parame-
ters as Ŵ = {2W1,

1
2W2, · · · ,Wl}, such that fW = fŴ

but d(W ) ̸= d(Ŵ ) in general. Similarly, we can scale
the last layer weights and get W̃ = {W1, · · · , 2Wl}, such
that γ(W̃ ) ̸= γ(W ), but argmaxifW (x) = argmaxifW̃ (x).
This reparameterization trick also works for more compli-
cated norm-based and margin-based generalization metric
in (Jiang et al., 2019), or the sharpness-based metrics (An-
driushchenko et al., 2023).
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Figure 2: Norm-based and margin-based measures may not be predictive of generalization gaps. We train ResNet18 on
the CIFAR-10 dataset using various hyperparameters. These implicit bias measures can be ineffective for general non-linear
neural networks.

We numerically investigate whether they are effective mea-
sures, by training a ResNet18 on CIFAR-10 dataset, using
different hyperparameters as in Table 1. The results are
presented in Figure 2, which indicates that these measures
have a low correlation with the generalization gap in the
deep learning regime. One could choose other definitions
of norms to achieve stronger correlations, but such choices
are often problem-specific and require domain expertise, as
discussed in (Jiang et al., 2019).

The definition of margin may also be improved to the input-
space margin, i.e., the ℓ2 distance of input data x to decision
boundary defined by the classifier, which is able to character-
ize the quality and robustness of the classifier. This metric
is invariant to reparameterization and therefore more intrin-
sic to the underlying classifier. However, due to the highly
nonconvex loss landscape, the input-space margin is NP-
complete to compute and even hard to approximate (Katz
et al., 2017; Weng et al., 2018). Therefore, quantitatively
analyzing the decision boundary of a neural network and
characterizing its implicit bias remains a challenge.

Our motivation stems from a simple idea: although the
margin in the input space is difficult to compute directly, we
can instead quantify the number of regions partitioned by
the decision boundary. This measure is invariant to model
reparameterization and reflects the geometric complexity of
the classifier, which are crucial ingredients for a robust and
scalable indicator of implicit bias.

4. Preliminary
Although region count is a natural measure for the com-
plexity of a predictor, and it depends only on the decision
function rather than the model parameterization, its formal
definition and computability remains unclear. In this sec-
tion, we first provide the definition and low-dimensional
approximation of region counts. We then empirically verify
that region counts correlate with generalization gap.

4.1. Definition of Region Counts

Let d denote the training data dimension and f : Rd →
{1, 2, . . . , N} denote a neural network for a classification
task with N classes. For a subset U ⊂ Rd, we can define
the connectedness of its element as follows:

Definition 4.1 (Connectedness). We say the data points
x1, x2 ∈ U are (path) connected with respect to a neural
network f if they satisfy:

• f(x1) = f(x2) = c,

• There exist a continuous mapping γ : [0, 1] → U ,
γ(0) = x1, γ(1) = x2, and for any t ∈ [0, 1],
f(γ(t)) = c.

Then we define the connected region in this subset:

Definition 4.2 (Maximally Connected Region). We say
V ⊂ U is a maximally connected region in U ∈ Rd with
respect to a neural network f if it satisfies the following
property:

• For any x, y ∈ V , they are connected.

• For any x ∈ V , y ∈ U \ V , they are not connected.

Finally, we formally define the region count as follows:

Definition 4.3 (Region Count). For a subset U ⊆ Rd, we
define its region count RU as the number of maximally
connected regions in U with respect to a neural network f :

RU = card{V ⊂ U |V is a maximally connected region} ,

where card is the cardinality of a set.

4.2. Estimating Region Counts

Calculating the region count in the original high-
dimensional input space can be computationally intractable.
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We follow the estimation method in (Somepalli et al., 2022),
use a computationally efficient surrogate by calculating the
region counts on low dimensional subspace spanned by
training data points.

Definition 4.4 (Region Count in d-Dimensional Subspace).
We randomly sample d + 1 datapoints in the training set
Dtrain to generate a convex region in Rd subspace. The
d-dimensional region count Rd is defined as the expectation
of number of maximally connected regions:

Rd = Ex1,x2,...,xd+1∼Dtrain
[RConv{x1,x2,...,xd+1}] ,

where x1, x2, . . . , xd+1 are sampled from the training
dataset, and Conv{x1, x2, . . . , xd+1} is the convex hull
formed by these d+ 1 points.

Figure 3: Illustrations of region counts in 1D and 2D
subspace. We use different colors to represent different
outputs of the neural network.

This paper primarily focuses on low dimension spaces,
which is illustrated as below. In practice, we randomly
sample training data points for multiple times and take the
average region counts. In Section 7, we show that the choice
of subspace dimension d does not significantly affect the
results. The details on how to count the regions and generate
the polytopes are provided in Appendix B.

Example 2 (Region counts in 1D and 2D subspace). For re-
gion count in 1-dimensional subspace, we randomly sample
two data points, denoted as x1 and x2, from the training set,
and calculate the region count on the line segment connect-
ing them:

{αx1 + (1− α)x2 , 0 ≤ α ≤ 1}.

For the 2-dimensional case, we randomly sample three data
points, x1, x2, and x3, from the training set, and calculate
the region count in the convex hull spanned by them:

{αx1 + βx2 + (1− α− β)x3 , α ≥ 0, β ≥ 0, α+ β ≤ 1} .

We provide an illustration in Figure 3.

5. Region Counts Correlate with
Generalization Gaps

In this section, we present our major empirical findings,
which reveal a strong correlation between region counts and
the generalization error of neural networks.

We conduct image classification experiments on the
CIFAR-10 dataset, using different architectures, including
ResNet18 (He et al., 2016), EfficientNetB0 (Tan & Le,
2019), and SeNet18 (Hu et al., 2018). Results on other
architectures are deferred to ablation studies. We vary the
hyperparameters for training, such as learning rate, batch
size and weight decay coefficient, whose numbers are re-
ported in Table 1. The region count is calculated using
randomly generated 1D hyperplanes, as described in Exam-
ple 2. We run each experiment 100 times and report the
average number.

We plot the region count and generalization gap of different
setups in Figure 4, and calculate the correlation between
them. For each network architecture, we observe a strong
correlation as high as 0.98. The overall correlation for all the
three networks still reaches 0.93. This reveals a remarkably
high correlation between region counts and generalization
gap.

Table 1: The hyperparameters for experiments. We vary
the learning rate, batch size, and weight decay for training
a neural network, to modulate the model’s generalization
ability.

Hyperparameters Value

Learning rate 0.1, 0.01, 0.001
Batch size 256, 512, 1024

Weight decay 10−5, 10−6, 10−7

Figure 4: Strong correlation between region counts and
generalization gap. We conduct experiments using three
neural networks on the CIFAR-10 dataset, with various
hyperparameters. There is a strong correlation between
region counts and the generalization gap, with a correlation
coefficient of 0.98 for each network and 0.93 across all
networks.
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6. Region Counts Quantify Implicit Bias
In this section, we further investigate the implicit bias of
neural networks via region counts. We show both empir-
ically and theoretically that neural networks trained with
appropriate hyperparameters tend to have smaller region
counts, thus achieving better generalization performance.

6.1. The Bias from Training Hyperparameters

Training neural networks requires careful selection of many
hyperparameters, such as learning rates, batch sizes, op-
timizers, epochs and so on. Here, we primarily focus on
learning rate and batch size, and study their impact on the
region count.

Learning Rates. We provide the relationship between the
learning rate and the region count in Figure 5. Our findings
indicate that a larger learning rate tends to simplify the
decision boundary and results in a smaller region count in
the hyperplane. This accords well with real practices, where
large learning rates of 0.1 or 0.01 are often favored for better
generalization.

Batch Sizes. Similarly, the training batch size can impact
the number of regions. As shown in Figure 5, smaller batch
sizes lead to a model with fewer regions. This result reveals
the advantage of small-batch training, which leads to better
generalization accuracy.

Previous studies (Keskar et al., 2016; Jastrzkebski et al.,
2017; Hoffer et al., 2017; Novak et al., 2018; Lewkowycz
et al., 2020) find that certain hyperparameters, such as a
large learning rate and a small batch size, can improve
the generalization of the neural network. Our observations
provide a possible explanation: these good hyperparameter
choices lead to a reduced region count. Such simplicity bias
can decrease the generalization gap of neural networks.

6.2. Theoretical Explanations

Next, we present a theoretical analysis to explain why some
hyperparameter choices, such as large learning rate, can
lead to small region counts.

Consider a two layer ReLU neural network fW (x) =∑p
i=1 aiσ(w

⊤
i x). The second layer weights ai are initial-

ized uniformly from {1,−1} and fixed throughout training.
Let D = {(xi, yi)}1≤i≤N denote the training set. Con-
sider training fW on D using gradient descent (GD) with
learning rate η. We choose the quadratic loss l(W,x, y) =
1
2 (y − fW (x))2 and denote L(W ) = 1

N

∑N
i=1 l(W,xi, yi).

Denote the GD trajectory as {Wt}t≥0. For two input data
xa, xb, Let R(xa, xb,W ) denote the region count on the
line segment connecting them, and N(xa,W ) denote the
number of activated neurons with input xa, i.e., the number

of i such that w⊤
i xa > 0.

We make the following assumption on the data distribution.

Assumption 6.1. The training dataset D =
{(xi, yi)}1≤i≤N satisfies the following two properties:

1. ∥xi∥ ≥ r for all 1 ≤ i ≤ N ,

2. With probability one, any W ∈ {Wt}t≥0 satisfies
w⊤

i xj ̸= 0 for all 1 ≤ i ≤ q, 1 ≤ j ≤ N , where
the randomness comes from weight initialization.

The validity of Assumption 6.1 comes from the fact that
the bifurcation zone (Bertoin et al., 2021) of ReLU neu-
ral networks, which contains its non-differentiable points,
has Lebesgue measure zero (Bolte & Pauwels, 2020; 2021;
Bianchi et al., 2022). Therefore, if the distribution of
weights are absolutely continuous with respect to the
Lebesgue measure, the bifurcation zone can be avoided
with probability one. We conjecture that it can be proved
rigorously, but leave it as an assumption since the proof
diverges from the main content in this paper.

The next assumption characterizes the sharpness along the
training trajectory. This is actually from the well-known
edge of stability phenomenon (Cohen et al., 2020; Damian
et al., 2022; Arora et al., 2022; Ahn et al., 2024), which
states that the sharpness of neural networks, characterized
by the ℓ2 norm of the Hessian matrix, hovers around 2

η .

Assumption 6.2 (Edge of Stability). There exist a T ∈ N,
such that for t ≥ T , with we have

λmax(∇2
WL(Wt)) = Θ

(
1

η

)
,

where λmax denotes the maximum eigenvalue of a matrix.

We are now ready to present the main theorem, which estab-
lishes a relationship between region count and learning rate.

Theorem 6.3. Under Assumption 6.1 and 6.2, we have that
for neural net weights Wt at training step t ≥ T , with
probability one, the average region count R(X,X ′,Wt) for
random training data point X,X ′ can be bounded as:

EX,X′ [R(X,X ′,Wt)]

=
1

N2

N∑
i=1

N∑
j=1

R(xi, xj ,Wt) ≤ O

(
N

r2η

)
.

The theorem demonstrates that with a larger learning rate,
gradient descent has the implicit bias to yield solutions with
smaller region counts. This aligns well with the previous
observations. We defer the proof of this theorem to Ap-
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Figure 5: Large learning rate and small batch size reduce region counts. We train three networks on the CIFAR-10
dataset, varying the batch sizes and learning rates. Our findings reveal that a smaller batch size or a higher learning rate
results in smaller region counts, allowing the network to learn a simpler decision boundary and generalize better.

Table 2: Experimental consistency across networks, datasets, and counting methods. We conduct experiments on
various types of networks across multiple datasets. We also alter the method of calculating the region counts. The results of
the correlation indicate that our findings are consistent across different setups.

Network
Dataset Counting Dimension

CIFAR-10 CIFAR-100 ImageNet 2 3 4 5

ResNet18 0.98 0.96 0.91 0.96 0.97 0.97 0.96
ResNet34 0.98 0.98 0.82 0.98 0.98 0.98 0.99
VGG19 0.94 0.85 0.78 0.88 0.86 0.84 0.86

MobileNet 0.95 0.95 0.92 0.99 0.99 0.99 0.99
SENet18 0.98 0.85 0.80 0.97 0.97 0.97 0.93

ShuffleNetV2 0.95 0.92 0.92 0.94 0.95 0.95 0.93
EfficientNetB0 0.98 0.84 0.93 0.99 0.99 0.99 0.98

RegNetX 200MF 0.98 0.87 0.97 0.98 0.99 0.99 0.98
SimpleDLA 0.98 0.94 0.84 0.99 0.99 0.98 0.99

pendix D, and sketch the proof as follows. The proof begins
with bounding the region count using the activation pattern
of ReLU neurons, as stated in the following lemma.

Lemma 6.4. The region counts between a pair of data
points is upper-bounded by the number of active neurons.
For two inputs xa, xb, we have

R(xa, xb,W ) ≤ N(xa,W ) +N(xb,W ) + 2.

Then we prove that the activation pattern gives a bound on
the smoothness of the training loss.

Lemma 6.5. The sharpness of a neural network is lower-
bounded by the number of active neurons:

λmax

(
∇2

WL(W )
)
≥ r2

N2

N∑
i=1

N(xi,W ).

Note that this lemma brings in an additional N in the denom-
inator, which leads to a N -dependent bound in Theorem 6.3.
The N dependency is actually tight in worst case analysis,
by considering N points on a line with alternating labels.

We conjecture that the N -dependency can be optimized un-
der further structural assumptions on the data distribution,
and leave it for further investigations. Equipped with these
two lemmas, Theorem 6.3 is a consequence of the sharpness
condition in Assumption 6.2.

7. Ablation Studies
This section presents an ablation study to validate the ro-
bustness and consistency of our findings. We systematically
vary key aspects of our experimental setup, including the
network architecture, dataset, optimizer, and the method
of computing the plane, and evaluate their impact on our
main results of the correlation between region count and the
generalization gap.

More Architectures, Datasets and Hyperplane Dimen-
sions. We first examine the influence of neural network
architectures and datasets on our results. We provide addi-
tional results on various neural network architectures such
as ResNet34 (He et al., 2016), VGG19 (Simonyan & Zis-
serman, 2014), MobileNetV2 (Sandler et al., 2018), Shuf-

7



Understanding Nonlinear Implicit Bias via Region Counts in Input Space

fleNetV2 (Ma et al., 2018), RegNet200MF (Radosavovic
et al., 2020), and SimpleDLA (Yu et al., 2018). We also
use various datasets such as CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009). Region counts and
generalization gaps are evaluated across various learning
rates, batch sizes, and weight decay parameters as listed in
Table 1.

We also explore the effects of different methods for gen-
erating the hyperplane in the input space. In our previous
experiments, we generate the 1-dimensional plane using
random pairs of samples from the training set and calculate
the region count on them. Here we explore region counts in
higher dimensional planes, that are spanned by 2 to 5 data
randomly-selected points from the training set, using the
CIFAR-10 dataset.

The experiment results of the correlation are presented in
Table 2. We also provide correlation plots for each network
in Appendix A.2. We observe that the strong correlation be-
tween region count and the generalization gap remains con-
sistent in various setups. The consistency indicates that our
findings reveal a fundamental characteristic of non-linear
neural networks.

We also provide evaluations by varying the optimizer and
hyperplane generation algorithms. The results are deferred
to Appendix C.

Data Augmentations. Mixup (Zhang et al., 2017b) is a
data augmentation technique that creates training samples
by linearly interpolating pairs of input data and their corre-
sponding labels. We train a ResNet-18 model using mixup,
with other hyperparameters in Table 1. The plot in Figure 6
illustrates that Mixup induces smoother decision boundaries
with smaller region count and has a better generalization
performance. Random crop and random horizontal flip is
another way to enhance the diversity of the training dataset.
We apply random crop of size 32×32 with padding 4 and
random horizontal flip with a probability of 0.5 as data
augmentations. As depicted in Figure 7, we observe that
compared with mixup, random crop and random flip result
in a more evident vertical shift in the performance curve.

Although mixup and random crop affect region count dif-
ferently, the correlation between region count and general-
ization remains high after applying these data augmentation
techniques. Detailed correlation results can be found in
Appendix C. We will explore the underlying principles of
this experimental phenomenon as a future direction.

Evolution of Region Counts during Training. Next we
study how the region count, generalization gap and their
correlation evolve during training. Following the setup in
Section 5, we train a ResNet18 model on CIFAR-10 dataset,
and report the region count and generalization gap during the

Figure 6: The impact of mixup. This figure shows that
mixup improves the model’s generalization ability and re-
duces the number of regions in the hyperplane.

Figure 7: The impact of random crop and random flip.
Unlike mixup, data augmentation results in a vertical shift
in the performance curve, accompanied by a decrease in the
number of regions and a more significant enhancement in
test accuracy.

training process. The statistics are averaged over different
hyperparameter choices as in Table 1.

The results are provided in Table 3. We recorded the aver-
age values of region count and generalization gap for these
data points in the second and third columns to show their
changes during the training process. We observe that the
correlation is very low at initialization, but steadily increases
during training. This suggests that the metric of region count
is not a property of the neural network initialization, but
rather inherently involved with the neural network training
algorithm.
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Table 3: The evolution of region count, generalization
gap and their correlation. The correlation is very low at
initialization, but steadily increases during training.

Epoch Region Counts Generalization Gap Correlation

0 1.13 N/A N/A
20 3.14 11.2 -0.53
40 3.02 7.3 -0.29
60 3.10 18.2 0.35
80 3.22 26.7 0.77

100 3.25 30.4 0.98
130 3.28 31.2 0.97
160 3.27 31.7 0.98
200 3.26 31.6 0.98

8. Conclusions and Future Directions
This paper introduces a novel approach to characterizing the
implicit bias of neural networks. We study the region counts
in the input space and identify its strong correlation with
generalization gap in non-linear neural networks. These
findings are consistent across various network architectures,
datasets, optimizers. Our analysis offers a new perspective
to quantify and understand the generalization property and
implicit bias of neural networks.

Our paper suggests several promising directions for future
research. Firstly, our analyses of why large learning rate
induces small region counts mainly focus on a simplified
setup. The analyses for more general settings remain open.
Secondly, extending the definition of region count to non-
classification tasks, such as natural language generation,
would be a worthwhile direction. Lastly, region count can
be leveraged to design new architectures or regularization,
that can potentially improve the generalization performance
of neural networks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Experiment details
In this section, we provide the detailed experiment settings.

A.1. Details on Architectures and Datasets

We conduct experiments on different neural network architectures, including ResNet18 and ResNet34 (He et al., 2016),
EfficientNetB0 (Tan & Le, 2019), SENet18 (Hu et al., 2018), VGG19 (Simonyan & Zisserman, 2014), MobileNetV2 (Sandler
et al., 2018), ShuffleNetV2 (Ma et al., 2018), RegNet200MF (Radosavovic et al., 2020), SimpleDLA (Yu et al., 2018). We
conduct all experiments using NVIDIA RTX 6000 graphics card.

We use CIFAR-10/100 (Krizhevsky et al., 2009) and Imagenet-1k (Deng et al., 2009) as datasets. For CIFAR-10 and
CIFAR-100 dataset, each network was trained for 200 epochs using the Stochastic Gradient Descent (SGD) algorithm with
cosine learning rate schedule. We choose 27 combinations of hyperparameters in Table 1, and for each hyperparameter we
use 3 random seeds and report the average metrics. For the Imagenet-1k dataset, each network was trained for 50 epochs
with random data crop and random flip. We use the same optimizer and 27 combinations of hyperparameters as in CIFAR-10
and CIFAR-100 experiments. It is worth noting that we make minor adjustments on hyperparameters for certain networks to
ensure stable training. For example, in the case of VGG19, the training is unable to converge when the learning rate is set to
0.1; therefore, we adjust it to 0.05.

A.2. Correlation Plots

We show the correlation plot of average regions and test accuracy in Figure 8. The figure consists of results from training
different networks on CIFAR-10 dataset with SGD for 200 epochs, using the hyperparameters specified in Table 1. The
results show that different networks have different number of regions, ranging from 2 to 20. However, the correlation of test
accuracy and average number of regions are consistently high in all the networks.

B. How to Calculate the Number of Regions
In this section, we study different methods to calculate the region count, and discuss their impact on the results. Since it is
impossible in practice to calculate the predictions of an infinite number of data points on the hyperplane, we select grid
points from the hyperplane to calculate the region count.

Assume we have divided a region of the hyperplane into several equidistant small squares. We can use an algorithm similar
to breadth-first search to calculate the number of connected components within these small squares, thereby determining the
number of regions. Here, we use a 2-dimensional hyperplane as an example (the 1-dimensional case can be considered
a degenerate version of this algorithm). The algorithm for calculating the number of regions in this setup is given in
Algorithm 1.

Therefore, it is necessary to determine the granularity of splits for the plane. We experimented with different setups of
splitting parameters, and the results averaged by 100 independent trials are presented in Table 4. From the results, using 200
grid points in the 1D case and 30x30 grid points in the 2D case is an optimal choice. Splitting the plane into fewer points
results in an inadequate approximation of regions, while increasing the number of points does not significantly enhance
accuracy but incurs greater computational costs. Therefore, in our experiments, we split the plane into 200 grid points for
the 1D case and 30x30 grid points for the 2D case.

Table 4: The mean value of region counts with different splitting numbers in 1d (left) and 2d (right) planes.

Splitting Numbers Region Counts

50 2.74
100 2.76
200 2.78
300 2.78
500 2.78

Splitting Numbers Region Counts

10×10 2.76
20×20 2.76
30×30 2.78
40×40 2.78
50×50 2.78

Subsequently, we study the number of random samples in calculating the average number of regions. We experiment with
different numbers of hyperplanes, and the results are presented in Table 5. From the results, we know that using 100 samples
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Figure 8: The correlation plot of all networks between average regions and test accuracy for CIFAR-10 dataset with optimizer
SGD. From the graph we know that the correlations are all very high for different non-linear networks. Different structures
of neural networks incur different scope of the average regions.

to calculate the average provides a reliable answer with relatively low computational costs. Therefore, in the experiments we
randomly generate 100 lines or planes and calculate the average number of regions.

In our paper we use the convex hull of two points {αx1 + (1 − αx2)} to calculate the region counts in 1D case with
α ∈ [0, 1]. We also conduct ablation studies with varied coordinate ranges α. We train ResNet18 on CIFAR10 using
hyperparameter in Table 1 in our manuscript, where we vary the range of α and analyze the correlation. The results are
shown in Table 6. These studies confirm that expanding the range does not influence the strong correlation between region
counts and test accuracy.

Table 6: The impact of interpolation range on region counts.

The range of α Region Counts Correlation

[0, 1] 3.56 0.98
[−1, 2] 4.47 0.96
[−2, 3] 5.86 0.92
[−3, 4] 6.39 0.93
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Algorithm 1 Calculate the Number of Region

Input: Prediction Matrix P with dimension(w, h).
Output: Number of connected regions N .

1: Initialize a mark matrix M to a zero matrix, with the same dimensions as P
2: Initialize count of connected regions N ← 0
3: for i← 0 to w − 1 do
4: for j ← 0 to h− 1 do
5: if M [i][j] is already marked then
6: continue
7: end if
8: Mark position (i, j) in M as visited
9: Perform Breadth-First Search (BFS) starting from position (i, j)

10: In BFS, enqueue all neighboring points that have the same value as (i, j) in P and mark them as visited in M
11: Continue BFS until the queue is empty
12: Increment count of connected regions N ← N + 1
13: end for
14: end for
15: return N

Table 5: The mean value of region counts with different number of random samples.

Number of Samples Region Counts

10 2.24
50 2.56

100 2.78
300 2.80
500 2.79

C. More ablation studies
Gradient Optimizers. We calculate the region count of models trained by different optimizers, including SGD, Adam,
and Adagrad. The correlation between region count and the generalization gap is consistent for them, as detailed in Table 7.

Table 7: The impact of optimizers on the correlation between region counts and generalization gap.

Network
Optimizer SGD Adam Adagrad

ResNet18 0.98 0.92 0.96
ResNet34 0.98 0.92 0.91
VGG19 0.94 0.92 0.87

MobileNet 0.95 0.95 0.99
SENet18 0.98 0.78 0.91

ShuffleNetV2 0.95 0.83 0.99
EfficientNetB0 0.98 0.97 0.99

RegNetX 200MF 0.98 0.95 0.99
SimpleDLA 0.98 0.95 0.88

Hyperplane Generation Methods. We explore the effects of different methods for generating the hyperplane in the input
space. In the main experiments, we generate a 1-dimensional plane using random pairs of samples from the training set and
calculated the number of distinct regions between them. In this section, we apply various techniques for plane generation:
selecting two data points from the test set, choosing one data point from the training set and extending it in a random
direction by a fixed length. We calculate the number of regions for each of these setups. The results in Table 8 are consistent
across different hyperplane computational approaches.
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Table 8: The impact of calculation methods on the correlation between region counts and generalization gap.

Network
Counting Test Train Random

ResNet18 0.98 0.98 0.98
ResNet34 0.98 0.96 0.94
VGG19 0.94 0.89 0.78

MobileNet 0.95 0.94 0.88
SENet18 0.98 0.96 0.99

ShuffleNetV2 0.95 0.95 0.92
EfficientNetB0 0.98 0.98 0.92

RegNetX 200MF 0.98 0.97 0.92
SimpleDLA 0.98 0.97 0.96

Data Augmentations. Here, we present the correlation curves after applying mixup and random crop. The results show
that the correlation between region count and generalization gap remains high after using these data augmentation techniques.

Figure 9: The correlation graph after using data augmentation techniques. We train Resnet18 on the CIFAR-10 dataset,
varying the hyperparameters in Table 1. Our findings reveal that the correlation between region count and generalization gap
remains high after using these techniques.

D. Proof
This section contains the proof of the theorem in this paper.

We first prove two lemmas.

Lemma 6.4. The region counts between a pair of data points is upper-bounded by the number of active neurons. For two
inputs xa, xb, we have

R(xa, xb,W ) ≤ N(xa,W ) +N(xb,W ) + 2.

Proof. If R(xa, xb,W ) ≤ 2, then the equation naturally holds. Next we consider R(xa, xb,W ) > 2. From the definition of
region count, one can find R := R(xa, xb,W ) points on the line segment between xa and xb, such that the neural network
gives different predictions. Denote these points as x̃1, · · · , x̃R. We have

fW (x̃i)fW (x̃i+1) < 0, 0 ≤ i ≤ R− 1.

Consider x̃i, x̃i+1, x̃i+2. Since the neural network gives alternating predictions on these three points, it is nonlinear and
has activation sign changes on the line segment connecting them. Therefore, we can find a 1 ≤ n(i) ≤ p, such that
(w⊤

n(i)x̃i)(w
⊤
n(i)x̃i+2) < 0.

We prove it by contradiction. If for all 1 ≤ i ≤ p, such that (w⊤
i x̃i)(w

⊤
i x̃i+2) ≥ 0. Suppose x̃i+1 = λx̃i + (1− λ)x̃i+2,
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then we have

fW (x̃i+1) =

p∑
i=1

aiσ(w
⊤
i xi+1)

=

p∑
i=1

ai[λσ(w
⊤
i xi) + (1− λ)σ(w⊤

i xi+2)]

= λfW (x̃i) + (1− λ)fW (x̃i+2) .

Therefore fW (x̃i+1) has the same sign of fW (x̃i) and fW (x̃i+2), contradict with the condition that they have alternative
signs. So we can find a 1 ≤ n(i) ≤ p, such that (w⊤

n(i)x̃i)(w
⊤
n(i)x̃i+2) < 0.

Since w⊤
n(i)x is linear in x, this implies that

(w⊤
n(i)xa)(w

⊤
n(i)xb) < 0.

We also prove it by contradiction. If they have the same sign then the convex combination of them have the same sign so
(w⊤

n(i)x̃i)(w
⊤
n(i)x̃i+2) ≥ 0.

We have the following two observations about n(i). Firstly, we can choose an n(i) such that an(i)w⊤
n(i)x̃i+2 and fW (x̃i+2)

have the same sign, since there exists at least one such neuron that contributes to the sign change of fW . This implies that
n(i) ̸= n(i+ 1), since fW (x̃i) have alternating signs. Secondly, since w⊤

n(i)x is a linear function in x, it can only changes
sign for at most one time. This implies that n(i) ̸= n(j) if j − i ≥ 2. Putting them together, we know that n(i) ̸= n(j) for
i ̸= j.

Recall that for each 1 ≤ i ≤ R − 2, we have (w⊤
n(i)xa)(w

⊤
n(i)xb) < 0. Therefore, there exists R − 2 neurons that are

activated for either xa or xb. This gives N(xa,W ) +N(xb,W ) ≥ R− 2, which completes the proof.

Lemma 6.5. The sharpness of a neural network is lower-bounded by the number of active neurons:

λmax

(
∇2

WL(W )
)
≥ r2

N2

N∑
i=1

N(xi,W ).

Proof. The Hessian of l(W,x, y) can be expressed as

∇2
W l(W,x, y) =

v1v
⊤
1 · · · v1v

⊤
p

...
...

vpv
⊤
1 · · · vpv

⊤
p

 ,

where vi = aiσ
′(w⊤

i x)x. Suppose V = [v⊤1 , · · · , v⊤p ]. As the nonzero eigenvalue of V ⊤V and V V ⊤ is the same, this
implies that

λmax(∇2
W l(W,x, y)) = λmax(V V ⊤) =

p∑
i=1

∥vi∥22 =

p∑
i=1

σ′(w⊤
i x)∥x∥2 ≥

p∑
i=1

σ′(w⊤
i x)r

2.

From the definition of∇2
WL(W ) and the positive definiteness of Hessian matrices, we know that

λmax

(
∇2

WL(W )
)
=

1

N
λmax

(
N∑
i=1

∇2
W l(W,xi, yi)

)
≥ 1

N2

N∑
i=1

λmax

(
∇2

W l(W,xi, yi)
)
.

Plug in the previous calculation and use the definition of N(x), we have

λmax

(
∇2

WL(W )
)
≥ r2

N2

N∑
i=1

p∑
j=1

σ′(w⊤
i xj) =

r2

N2

N∑
i=1

N(xi,W ).
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Proof of Theorem 6.3. Theorem 6.3 is a direct consequence of Assumption 6.2 and the following two lemmas.

EX,X′ [R(X,X ′,Wt)] =
1

N2

N∑
i=1

N∑
j=1

R(x1, x2,Wt)

≤ 1

N2

N∑
i=1

N∑
j=1

(N(xi,Wt) +N(xj ,Wt) + 2)

=
2

N

N∑
i=1

(N(xi,Wt) + 1)

≤ 2N

r2
λmax(∇2

WL(Wt)) + 2

= O

(
N

r2η

)
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