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Abstract

With the recent, significant improvement of computational tools for protein in-
teraction prediction, the use of machine learning to support the development of
vaccination regimens brings with it new hope for diseases which, so far, have eluded
our best efforts at finding a cure, like HIV. We here propose BIOVAX, a novel
pipeline combining symbolic optimization with affinity maturation simulation to
generate highly-optimized antigens intended for vaccination development. We
perform an in silico evaluation using real HIV targets, and show that the antigen
designed by BIOVAX elicit estimated antibodies that bind more strongly to a
diverse, global panel of real HIV viruses than both the parent sequence, and other
computationally-designed antigen baselines available in the literature. BIOVAX
is our first step towards a new generation of AI-assisted vaccine development
pipelines.

1 Introduction

The development of an effective vaccine for human immunodeficiency virus-1 (HIV) has remained
elusive, primarily due to the virus’ ability to evade the adaptive immune response by rapidly evolving
into a diverse viral population within the host. Over the past few decades, the isolation and charac-
terization of broadly neutralizing antibodies (bnAbs) from HIV-infected individuals have generated
optimism that the immune system may indeed be capable of defending against this challenging
infection. bnAbs are remarkable within the human antibody repertoire for their ability to retain
neutralization potency across a wide variety of pathogen strains, even as viral surface proteins (anti-
gens) mutate. This unique capability has sparked hope that these antibodies could be induced via
vaccination, providing robust protection against HIV. Since their initial discovery, a plethora of bnAbs
have been identified [22]. However, despite their success in controlling viral populations within their
natural hosts, the induction of bnAbs through vaccination has yet to be demonstrated in vivo [23].

Traditional approaches to antigen design have relied on empirical evidence of neutralizing sera in
response to live-attenuated or inactivated viruses [39]. With the rise in availability of high-quality
structural information, we have entered a new era of structure-based vaccine design, which fueled the
rapid development of vaccines against SARS-CoV-2 in response to the COVID-19 pandemic [33].

Unfortunately, pathogens such as HIV presents additional challenges that have yet to be fully
addressed, including substantial antigenic variability, genomic flexibility, and extensive, diverse
glycosylation patterns. The high degree of immune evasion or escape suggests that a vaccine must
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either induce especially broad bnAbs or a diverse, potent polyclonal response to be sufficiently
protective against HIV.

Given the lack of success with traditional vaccine design approaches [23] and the rapidly growing
suite of bioinformatics software distributions [5, 9, 20, 47], computationally-based approaches are
on the rise. Building upon foundational work on stabilizing the gp160 trimer [27, 41] and previous
efforts in developing mathematical models of affinity maturation [12, 17, 48]–the Darwinian process
of in vivo antibody evolution–we propose a novel pipeline for antigen optimization. This pipeline
features a machine learning (ML)-based antigen sequence optimizer allied with simulations of affinity
maturation to downselect promising vaccine candidate antigens. We primarily focus on HIV as a
model pathogen, but the pipeline is general.

In Section 2, we first review relevant background information on vaccine design, affinity maturation,
and computational protein redesign. We then formalize the problem and approach addressed in this
study in Section 3. In Section 4, we describe in details our proposed pipeline, while in Section 5
we present the empirical evaluation of our proposed pipeline using real HIV targets. Finally, we
conclude the paper in Section 6.

2 Background

2.1 Vaccine Design and Development

Vaccination has proven to be one of the most successful approaches to disease prevention, control,
and treatment to date [31]. Vaccines typically contain either a live-attenuated virus, viral vectors,
protein subunits, or, more recently, mRNA encoding a pathogenic protein [19, 38]. Each of these
approaches comes with potential benefits and pitfalls that must be considered in the design process.
Live-attenuated vaccines, such as the Polio vaccine, have been shown to induce a robust immune
responses, resulting in potent neutralization in the resulting sera, but they may also carry a risk
of breakthrough infections. Most notably, while almost completely eradicated from the human
population, cases of Polio still persist–not due to natural infection, but because of breakthrough
infections following vaccination1.

Protein-subunit immunogens mitigate the risk of breakthrough infections, as they contain only one or
a few antigens, rather than the full set of viral machinery. However, they can suffer from reduced
immunogenicity, necessitating multiple vaccinations to confer protection, similar to what was seen
with the prime-boost strategy used against SARS-CoV-2 [3, 37]. Additionally, traditional protein-
subunit vaccinations represent only a single time point in the evolutionary trajectory of a highly
mutable pathogen. These pathogens may therefore evolve to evade the immune response with time,
requiring updates to the antigen sequence and additional immunizations at regular intervals (e.g., the
annual influenza vaccine [40]).

Finally, mRNA technologies offer the advantage of rapid development and strong immunogenicity
by directly delivering the genetic instructions for the host cells to produce the target protein, which
ensures proper folding and post-translational modifications within the host, as well as continued
expression of the antigen [38]. However, mRNA vaccines may present challenges related to the
stability of the mRNA itself, which requires cold-chain logistics and careful formulation to pre-
vent degradation before delivery [34]. This need for stabilization adds a critical bottleneck to the
development and distribution of mRNA vaccines [29].

While all of these strategies are viable, each may be better suited to particular pathogens or diseases.
For example, the risk of breakthrough infection associated with live-attenuated viruses may be too
concerning for HIV, but less so for influenza. Given our current focus on designing antigens for the
HIV surface receptor-binding protein, glycoprotein 120 (gp120) [41], we elected to utilize a protein-
subunit vaccine design approach. This choice not only avoids the potential risk of breakthrough
infections but also avoids the complexity associated with stabilizing and expressing mRNA constructs.
By focusing on a gp120 subunit antigen, we can leverage tractable computational models of the
adaptive immune response for evaluation and screening in the proposed design pipeline.

1https://www.cdc.gov/vaccines/vpd/polio/hcp/vaccine-derived-poliovirus-faq.html
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2.2 Affinity Maturation

Affinity maturation (AM) is the evolutionary process by which antibodies evolve in response to
natural infection or vaccination [43, 50]. Following exposure, B cells with receptors (BCRs) that
have low affinity for the antigen seed microstructures within lymph nodes known as germinal centers
(GCs). GCs can be spatially divided into two regions: the dark zone and the light zone. In the
dark zone, B cells proliferate, and their BCRs undergo mutations induced by activation-induced
cytosine deaminase (AID) in a process known as somatic hypermutation (SHM). After SHM, B
cells migrate to the light zone, where follicular dendritic cells (FDCs) display the antigen. B cells
with functional BCRs then participate in an affinity-based competition to bind the antigen, pry it
from FDCs, and internalize the resulting immune complex. After successfully internalizing and
breaking down the antigen, B cells present the resultant antigen peptides on their surfaces, which
are recognized by helper T (TH ) cells. TH cells then signal the B cells to either (1) return to the
dark zone; (2) differentiate into memory B cells to protect against future exposures; or (3) exit the
GC and enter the plasma to fight the infection by producing soluble BCRs (antibodies; Abs). Upon
receiving survival signals from TH cells, most B cells recycle back to the dark zone to continue
accruing mutations.

When exposed to a single antigen, AM has been shown to result in predominantly "strain-specific"
antibodies (i.e., antibodies capable of neutralizing a narrow subset of viral strains closely related to the
antigen administered in the vaccine or initially encountered during natural exposure) [1]. Conversely,
delivering sequential immunizations with optimally and increasingly variant antigens is expected
to focus BCR evolution on regions of the antigens that are conserved across multiple strains [12],
yielding broadly neutralizing antibodies (bnAbs), which are unique in their ability to recognize a
diverse array of viral strains.

The development of an effective vaccine requires numerous labor-intensive steps including, but not
limited to: (1) in vitro expression, purification, and stabilization of the antigen; (2) in vivo studies of
animal models characterizing the adaptive immune response, and the level of protection conferred in
response to infection challenges; (3) studies in non-human primates (NHP); and (4) clinical trials for
both safety and efficacy in humans.

Each one of these steps adds their own unique challenges, difficulties, and expenses. To increase
the likelihood of translational success, computational pipelines offer a safe and cheap way to screen
vaccine candidates prior to wet-lab experiments.

2.3 Computational Redesign of Proteins

Protein design and engineering has, until recently, relied primarily on volume-based methods such
as directed evolution where large mutant libraries are generated, screened, and regenerated until a
sufficiently improved protein has been developed [2, 8]. Directed evolution has been wildly successful
in aiding the design of proteins with a plethora of properties–from enzyme activity to fluorescence
[15, 58]. Rational design, on the other hand, involves using minimal wet-lab assays, and instead
relies on structural information and expert knowledge to engineer improved desired properties [30].
Both approaches, however, still require labor-intensive experiments rendering designing novel protein
therapies and enzymes inefficient and costly.

The recent increases in bio-process modelling efficiency has enabled the development of in silico
protein design platforms [4, 6, 18, 28, 46, 52]. Notably, AlphaFold has revolutionized our ability
to make structurally informed insights of proteins on the nanoscale. More recently, some works
have demonstrated the translational capability of computational protein-design pipelines [14]–greatly
accelerating the speed with which proteins may be rationally designed and screened [28].

Recently, Deep Symbolic Optimization (DSO) [35], has been used with success as, amongst other
applications [36, 44], an antibody redesigner [46, 45] typically by improving an existing antibody
towards improved binding to a pathogen of interest. DSO models protein redesign as a Symbolic
Optimization task, as explained in the remainder of this section. We adapted DSO to redesign antigens
rather than antibodies, as further detailed in Section 4.

DSO searches solutions consisting of a discrete, symbolic sequence of tokens to maximize a scoring
function. Starting from a library of tokens, L = {λ1, . . . , λn}, a sequence, τ , can be built where
τ = ⟨τ1, . . . , τn⟩ (with τi representing the token at position i). The sequence represents a potential
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solution to the problem under investigation. In general, τ may be of any length, and may contain
copies of the same token, λi. After generating a potential solution sequence, a scoring function, or
reward signal, is then computed R : τ → R. All token combinations resulting in valid sequences can
then be scored according to their fitness via the reward function R(τ). Thus, the general solution to a
symbolic optimization problem takes the form:

argmaxn∈N,τ [R(τ)] with τ = ⟨τ1, . . . , τn⟩, and where τi ∈ L (1)

That is, DSO attempts to uncover the sequence which optimizes the reward function. This is typically
performed by optimizing the Risk-Seeking Policy Gradient cost:

J(θ) := Eθ [R(τ) | R(τ) ≥ Qϵ] , (2)

Therefore, DSO aims at searching a huge space of token sequences efficiently. For antibody design
specifically, each token τ consists of an amino acid (from the set of 20 natural amino acids), which
concatenated form the whole antibody sequence to be sampled by DSO. The reward function
is typically an estimation of the binding strength to the pathogen to be targeted (although some
exploratory works have considered additional objectives such as stability and humanness [18]).

Therefore, DSO samples protein aminoacid sequences and learns how to associate sequences to their
binding strength to a particular target, which leads us to improved versions of existing antibodies.

3 Problem Description

Isolates obtained from patients [53, 59] have demonstrated our natural ability to generate potent
bnAbs against HIV. Therefore, it is reasonable to assume that for many diseases we might already
have identified a bnAb we want to elicit in the general population upon vaccination. Likewise,
convergent BCR gene usage has been observed for a variety of diseases in the population, suggesting
commonalities in the human GL repertoire [25].Consequently, we assume we also have identified
the unmutated common ancestor (UCA) of our target antibody (which can be done via tools such as
IgBlast [56]). We then assume this will be the starting point of the immune system for the simulated
vaccination. However, developing an antigen capable of eliciting a desirable immune response is
still a very difficult problem. By starting from a known, patient-derived bnAb, we are able to search
the literature to identify an already-existing promising antigen, which will be considered by us our
starting point for the designed antigens2.

We also assume that the mutation and substitution probability distributions of BCRs are known, so
that we can estimate the mutations that would be introduced in vivo. Those probabilities have already
been characterized in the literature [55].

We also assume we have a way of quickly estimating the free-energy of binding (∆G) between
arbitrary antigens and antibodies. There is a myriad of simulation tools able to perform this task with
varied levels of precision and costs [6, 10, 24, 54].

Given the inputs described above (an identified bnAb, the corresponding GL antibody sequence, an
initial antigen sequence, and a binding estimation tool) the problem we are trying to solve in this
paper can be described as follows: find a modified version of the antigen in a way that we increase
the probability of a vaccinated person producing a bnAb (be it the exact same sequence or another
with comparable or better binding capabilities).

All of this process is to be performed in silico, while taking into account realistic computational
budgets. We believe this approach will provide novel insights into both the underlying immune
dynamics in response to complex antigens, as well as being realistic a proof-of-concept for a novel
vaccine design pipeline.

4 Vaccine Development through Antigen Redesign

We describe our approach in details in this section. To aid in the rapid, cost-effective development of
novel vaccine antigens against highly mutable pathogens (i.e., solving the problem described in the

2This starting antigen is assumed to have additional desirable properties for a vaccine antigen, such as
stability, solubility, manufacturability, and so forth.
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last section), we propose to tackle this problem with our design pipeline, BIOVAX (Bioinformatics-
Optimized Vaccine Antigen eXplorer).

BIOVAX is illustrated in Figure 1 and works as follows. Starting from the known antigen-antibody
binding pair, and the corresponding germline, a protein-sequence optimizer will propose a number
of modified antigen designs by introducing mutations in the original antigen. The primary metric
followed by the optimizer is the binding affinity between the design and the GL antibody. We
hypothesize that optimizing for tighter binders to the GL will increase the likelihood rare bnAb
precursors will be activated. After a diverse set of antigen designs is generated by the optimizer, the
final screening will be performed by the affinity maturation (AM) module.

The AM model will then predict the resulting panel of antibodies a person will develop when
vaccinated with each one of the designed antigens (single vaccination). In the end, antigens are
selected by providing better HIV protection according to the AM simulation via their predicted
improvements in breadth.

Using the workflow outlined above, we hope this pipeline will alleviate some of the expensive,
cumbersome, and empirical process of vaccine optimization in a manner which compliments and
accelerates the in vitro and in vivo efforts in this field. In the following subsections, we discuss in
more detail the steps in our workflow, the assumptions underlying the model, and the rationale behind
critical components of the maturation simulation.

4.1 Design of antigens using Deep Symbolic Optimization

Our proposed antigen optimizer is an adapted version of the Deep Symbolic Optimization (DSO)
platform (Section 2.3), where we model our problem similarly as it was reported to be used in the
engineering of anti-SARS-CoV2 antibodies [45]. Our motivation of using DSO stemmed from the
knowledge that our antigen optimization step is in many ways similar to antibody optimization, a task
where DSO was shown the excel. Instead of mutating an initial antibody and producing candidate
antibody designs, we design novel antigen candidates by mutating our initial antigen.

To define the antigen residues that can be mutated by DSO we determine a contact surface between
the antigen and the GL antibody (using a distance cutoff) from its structure (which either is available

Figure 1: Overview of the proposed antigen design pipeline, BIOVAX. Primary inputs and outputs
of the process are bolded and underlined. Given an initial broadly-neutralizing antibody, its corre-
sponding GL antibody, and an initial Antigen, the antigen optimizer will design a set of proposed
antigens that optimize binding to the GL Ab. Those antigens will be evaluated and ranked in an
affinity maturation simulation, and the antigen with better estimated resulting protection will be the
output of the pipeline.
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from a solved crystal structure or can be estimated through the use of tools such as AlphaFold2 [28]
or RoseTTAFold [4]).

The remainder of the optimization strategy is executed, as reported in the literature [18, 35, 46, 45],
by optimizing the sampled antigens according to estimated binding affinity between the GL antibody
and the candidate antigen.

4.2 Modeling of Affinity Maturation

The affinity maturation model used herein has been described in rigorous detail elsewhere [12, 48],
here we aim to provide a brief overview of what the model inputs are, and what the model is broadly
doing. Briefly, the primary inputs to the model are: (1) the nucleotide sequence of the relevant
GL BCR; (2) the amino acid sequence for the proposed antigen; (3) the number of antigen copies,
representing a pseudo-concentration; (4) The structure of the complex and, if applicable, additional
information required by the binding simulation (5) probability tables for (a) making a mutation
at a given position, and (b) likely substitutions at this position. The simulation is then initialized
by generating GCs which contain B cells with the relevant GL sequence(s). B cells then undergo
proliferation and somatic hypermutation, simulating the GC dark zone replication and activation of
AID [42]. After acquiring mutations, the ∆G of each BCR population is computed, and the binding
affinity is then used to determine the amount of antigen each B cell is able to internalize (see below
for details). Following binding selection, help from TH cells is sought and allocated. The B cells
then can recycle for further rounds of maturation, or exit the GC and differentiate into (a) plasma B
cells, or (b) memory B cells to be activated upon subsequent immunizations. The remainder of this
section will outline additional important details of the model, followed by system-specific parameters
and experimental procedures in Section 5.

Germinal centers are initially seeded with a single germline (GL) B cell lineage from the identified
mature bnAb family targeting. The GL population begins with 100 cells split evenly across ten
identical clonal populations. Additionally, to model vaccination or exposure, the Ag amino acid
sequence is provided when seeding the GC to stimulate the immune response. While the selection
criteria operates on the level of the protein amino acid sequence, mutations are introduced via AID
into the BCR nucleotide sequence in a biased manner [55].

To gain insights into possible paths the antibody sequence may take, we provide the model with
the nucleotide sequence of the naive BCR. Recently, Yaari et al. developed an emprical model
characterizing the relative probability of mutation (mutability) at a given nucleotide position, and the
likelihood of each nucleotide substitution at the central location given the local sequence identity
[55]. By examining over 1 million sequences before and after AM, they determined AID depends on
the local nucleotide environment in five nucleotide segments (fivemers). To capture these dynamics,
we determine all relevant fivemers via a sliding window then obtain the corresponding mutability via
a simple lookup table. The mutability and substitution scores are then normalized, and a mutation is
selected based on these probabilities via a random binomial.

Mutations are introduced at a rate of 0.14 mutations per sequence per division [7]. Further, to reduce
the computational load at runtime we consider only mutations in the complementarity-determining
regions (CDRs) are considered to impact the BCR-Ag binding free-energy (∆G). For the purposes
of this study, framework region (FRW) mutations were not modeled, as our scoring function does not
capture potential changes in stability or flexibility associated with these mutations [32]. We set the
probability of mutating the CDR, PCDR, to 0.85, and assume 30% of all mutations to be lethal [57].

Upon generating mutant populations in each GC cycle, B cells with functional BCRs then compete
with one another for the binding and internalization of Ag before seeking aid from TH cells. The
level of internalization has been shown to influence the number of times a particular clone will divide
to generate progeny [21]. To represent the relationship between binding affinity, available Ag, and
the probability of internalization we propose the following:

Pcapture = (l − Agi
1 +Agi

)Agi) ∗ pscale (3)

where Agi is the current number of Ag copies remaining, pscale is an empirical scaling parameter,
and l is defined as:

l = 1− 1

1 + Agi
Ag0

∗ e−escale(Eij−Ea)
(4)
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with Ag0 being the initial number of Ag copies, Eij is the ∆G of clone j on cycle i, Ea is the
activation energy, and escale is a pseudo-inverse temperature. The value of escale was set to 0.9 kcal

mol
to ensure BCRs were capable of capturing adequate antigen, while simultaneously ensuring a single
immunization would produce primarily low-breadth antibodies–mimicking the finding that bnAbs
often require many evolutionary cycles to evolve [16, 51].

For simplicity, we assume B cells have 100 BCRs on their surface with two Fab domains per receptor–
resulting in 200 potential binding events per B cell (nmax). We assume each Fab has one opportunity
to recognize and bind the Ag displayed by the FDC, defined by Pcapture. Thus, we perform 200
independent Bernoulli trials for each BCR per GC cycle. The number of antigen copies captured by
each B cell, in turn, determines how many divisions each population will undergo at the start of the
following GC cycle when the B cells "return" to the dark zone via:

divisions = round(divmax
R

1
A∗ncap+A +R

+B) (5)

Here, divmax is set to six to replicate experimental findings [21], R is the ratio of the number of
antigens captured, ncap, and nmax, and both A and B are empirical scaling parameters. The value
obtained is then rounded to the nearest whole number.

After the antigen capture process, the B cells then move on to seeking T cell help. We assume the
top 70% (w.r.t. ∆G) are capable of finding and soliciting help from the TH cell population. From
here, B cells may differentiate into memory cells (Bmem cells) or plasma cells (Bplasma cells) with a
probability of 30%. The remaining 70% are then recycled to continue the maturation process. During
each cycle, sequences describing the plasma B cells exiting the GC are then written to a log file.

5 Empirical Evaluation

To evaluate the efficacy of our proposed pipeline, we perform an experiment aiming at improving an
HIV antigen. Our base antigen is the BG505 SOSIP.664 (BG505) gp120 sequence [41]. BG505 has
been shown previously to both stably express in the native trimeric form [27] and elicit a productive
immune response in humans and a variety of animal models [41]. Further, BG505 has been used
previously in the design of anti-CD4bs antigens for potential vaccine regimens [11]. The antigens
presented in Conti et al. [11], EU577271 (EU), HQ217523 (HQ), and KR423280 (KR), provide
additional baseline antigens to compare against the output of the computational pipeline presented
here. Our experiment evaluates our pipeline by letting it improve BG505, simulating a one-shot
vaccination protocol using the designed antigen, then computing the binding strength of the resulting
antibody population against an experimentally derived panel of diverse, circulating HIV viruses [13].
A successful HIV vaccine must elicit high-breadth antibodies, therefore we are seeking "generalist"
antigens, which elicit improvement in the binding affinity across the entire panel, rather than strain-
or subtype-specific responses to certain viruses. Our chosen input antibody is the germline of the
broadly neutralizing VRC01, which in the literature has both been isolated in immune patients and
had its germline antibody identified [53, 59].

To calculate the free energy of our complexes, we utilized the PRODIGY implementation in the
high-throughput package, ppdx [10, 54]. To further increase the efficiency of our simulations, we
elected to compute all binding affinities using the sum of single-points approach whereby the effects
of a multi-point mutation is estimated as a linear combination of the single-point mutational impacts
[26]. Estimates of the binding affinity were obtained via homology modeling all possible substitutions
onto a known structure (PDB: 5FYJ [49]) individually. The resulting table of ∆∆G values for the
GL-BG505 complex was then used to compute the scores of each antigen construct designed by the
DSO agent. The optimization process was performed using a batch size of 1,000 sequences for 1,000
iterations, generating a total of 1,000,000 samples.

To narrow the mutational landscape being explored by the DSO agent, we began by defining the
epitope-paratope interface using a simple distance cutoff of 10A between gp120 (antigen) and VRC01
(antibody)–reducing the number of mutable positions from approx. 400 to 76. To increase the
likelihood the mutations introduced to the antigen do not disrupt the glycosylation on the protein
surface, we limited the mutations around any potential N-linked glycosylation site (PNGS) to further
reduce the number of mutable positions to 59. Finally, we limited the DSO agent to a maximum
of three simultaneous mutations, and did not allow mutations to cysteine, proline, or tryptophan to
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prevent the formation of new disulfide bonds and due to a bias toward large, bulky, and hydrophobic
residues in our scoring function. After obtaining the DSO designed antigens, we selected ten diverse
sequences (w.r.t. position and residue) for further evaluation in the affinity maturation simulation. In
Table 1, we present the results from the top-performing design in the affinity maturation simulation
from this initial set of ten.

The antigen-antibody interface is shown in Figure 2, with the residues within the distance cutoff
highlighted in yellow. The residues mutated (HXB2 numbering: R191D, E379V, and Q437Y)
in our antigen design, BV1, are shown in the ball-and-stick representation. We hypothesize the
improvement in binding affinity arises from improved charge-charge interactions by removing an
acidic residue buried at the interface (E379V) and by inverting the charge on the periphery of
the complementarity-determining regions (CDRs) of the antibody (R191D). Additionally, Q437Y
appears to aid by providing a large, polar surface capable of stabilizing both hydrogen bond networks
and preventing the water layer surrounding the protein from penetrating into the hydrophobic core.
Further molecular dynamics simulations and in vitro experiments are warranted to characterize the
impacts these mutations have on the structure and stability of the gp120 antigen, as well as the
antigen-antibody complex.

Table 1 shows the improvement in potency of the antibody response over the germline upon vaccina-
tion with a given antigen (BG505, EU, HQ, KR, or BV1). Values were calculated against the global
panel [13], where each row in the table corresponds a given panel viral strain with their accession
numbers listed. For the protocol using the parental BG505 sequence, the values presented represent
the ∆∆G [kcalmol ] of the evolved antibody response, compared to the GL affinity. As the remaining
antigens are variants of BG505, the values shown in Table 1 represent the percent change in ∆∆G
relative to BG505.

There is an improvement in the binding strength to all of the panel sequences compared to BG505
when using BV1, with a maximum improvement of 28%. Notably, our antigen outperforms the other
computationally designed antigens in binding to each of the panel sequences but one (FJ444437),
where both KR and BV1 showed 25% and 21% improvement, respectively. In these experiments,
BV1 is clearly the top overall performing antigen with respect to binding improvement to diverse
panel viruses. We expect this will correlate to a substantial improvement in the neutralization capacity
of the immune response against HIV viruses in vivo. Further, the improved immune response was

R191

Q437
E379

Figure 2: Crystal structure of gp120 (purple) in complex with VRC01 (VH : blue; VL: orange) with
the region within the 10A cutoff highlighted (yellow) (PDB: 5FYJ [49]). The mutated positions in
BV1 (R191D, E379Y, Q437Y) are shown in the ball and stick representation.
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Panel Ag BG505 EU HQ KR BV1 (ours)
AY835445 0.753 -8% 4% 1% 16%
EF117261 0.502 -6% 3% 5% 24%
EF117271 0.997 9% 11% 14% 26%
FJ443575 1.116 1% 4% 1% 18%
FJ444437 0.787 11% 19% 25% 21%
FJ817366 0.739 -8% -6% 4% 11%
FJ817370 0.688 -8% -3% 2% 16%

HM215279 0.562 -11% -7% -2% 7%
HM215312 0.749 -10% -3% 0% 12%
HM215364 0.559 7% 17% 14% 21%
HM215418 0.673 0% 10% 6% 28%
HM215427 0.798 -11% -2% 1% 17%

Table 1: The average ∆∆G [kcalmol ] against a global HIV panel [13] inoculating with the BG505
parent sequence, and the percent change of the induced antibody response when using the BIOVAX
designed antigen, BV1, or previously optimized BG505 antigens (EU, HQ, KR) [cite], over the
wildtype BG505 parental sequence. We show the best results per panel Ag in green and the worst
results in red.

observed across almost all (11/12) viruses in the panel, indicating BV1 may serve as a route to induce
and promote the formation of bnAbs.

While further in vivo and in vitro validations of antigens developed by our pipeline is necessary to
confirm the benefits of the specific antigens developed, this positive result showcases the power of
our AI-based pipeline in assisting in the development of antigens for vaccination.

6 Conclusion

The development of better vaccine design pipelines is of utmost importance for public health, both
because many pathogens (e.g., HIV) still elude effective vaccination, and because some existing
vaccines either lack in breadth of variants covered or suffer from low protection effectiveness (e.g.,
influenza vaccines).

We here propose BIOVAX (Bioinformatics-Optimized Vaccine Antigen eXplorer), a computational
AI-based pipeline to develop effective antigens for vaccination. Starting from a functional antigen,
we perform Symbolic Optimization to design a diverse set of antigens that bind strongly to a broadly
neutralizing antibody. Those designs are further evaluated in an affinity maturation simulation, and
our final proposed design is the one with highest estimated breadth of protection. Further validation
of the model outputs both in vivo and in vitro are warranted for the antibody repertoire and the binding
characteristics therein, as well as considerations for other potential bnAb targets.

We perform an in silico evaluation of BIOVAX using real HIV targets and show that the designed
antigen improves the binding of the estimated immune response for every single (real) virus in
our test set when compared to the wildtype, and is a clear winner when compared against other
computationally developed antigens from the literature. BIOVAX is a powerful tool to perform
AI-assisted vaccine development.
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