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Abstract

Model merging aims to combine models with
different capabilities into a single unified
model, providing multiple capabilities with-
out the necessity of retraining with the original
training data. However, as distinctions between
fine-tuned and base models grow, especially for
large language models, current methods suffer
significant performance drops, hindering true
multi-domain capabilities. In this study, we
propose a two-stage method, called Dynamic
Pruning and Partition Amplification (DPPA),
to address the challenge of merging models
with significant distinctions. First, we intro-
duce Dynamic Pruning (DP) to discover signif-
icant parameters and remove redundant ones.
Subsequently, we propose Dynamic Partition
Amplification (DPA) to restore the capability in
the domain. Experimental results demonstrate
that our approach performs outstandingly, im-
proving model merging performance by almost
20%.

1 Introduction

Model merging, or model fusion, combines models
with different capabilities into a unified model. Un-
like multi-task learning, model merging requires no
retraining on the original training data. On the one
hand, model merging can combine models from
different domains into a unified model, thereby
offering multi-domain capabilities (Alonso et al.,
2024). On the other hand, model merging can also
fuse models trained on diverse data within the same
domain, further enhancing overall domain perfor-
mance (Fu et al., 2024). The challenge of model
merging lies in resolving conflicts between the pa-
rameters of different models.

The significance of the parameter varies depend-
ing on the model. Minimal distinctions between
fine-tuned models and their base models do not
degrade the performance of merging model. The
distinctions between fine-tuned models and their

base models become more significant when a large
amount of domain-specific data is used for tuning
in fields such as mathematics (Hendrycks et al.,
2021) and code (Roziere et al., 2023), or with
advancements in techniques like instruction tun-
ing (Mishra et al., 2022). These fine-tuned models
achieve enhanced domain-specific performance, al-
though increased parameter conflicts arise during
model merging. However, current merging meth-
ods (Yu et al., 2023b; Yang et al., 2023a; Yadav
et al., 2023b) experience significant performance
drops with these fine-tuned models, rendering true
multi-domain capabilities unattainable. Further-
more, because significance determination is based
on the distinctions between these fine-tuned mod-
els and their base models, existing methods for
measuring parameter significance (Sun et al., 2023;
Frantar and Alistarh, 2023) are not effective.

In this study, we tackle the challenge of merging
models with significant distinctions by introduc-
ing a two-stage method known as Dynamic Prun-
ing and Partition Amplification (DPPA). First, we
introduce Dynamic Pruning (DP) to discover sig-
nificant parameters and remove redundant ones.
Subsequently, we propose Dynamic Partition Am-
plification (DPA), to further amplify the importance
of these significant parameters, thereby restoring
domain capabilities. Our approach is applied to the
delta parameter, which signifies the weight differ-
ence between the fine-tuned models and the base
model.

Dynamic Pruning (DP) aims to discover signif-
icant parameters and remove redundant ones. A
simple but effective way to measure significance
is based on the magnitude of the delta parameter.
Based on their significance, we adjust the pruning
rate of different linear layers to retain the more cru-
cial parameters. As illustrated in Figure 1, there
are notable differences in significance between lay-
ers, and even within the same layer, different linear
layers exhibit varying levels of significance. For
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Figure 1: Within the left segment of figure, it can be found that Dynamically Pruning (DP) method modifies the
pruning rate at both layer and linear layer levels, distinguishing it from magnitude pruning. On the figure’s right
segment, we can see the integration of DP and Dynamical Partition Amplification (DPA), paralleled with the drop
and rescale operations inherent in the DARE system. This integration enhances complex model performance after

the pruning process significantly.

example, the () and K linear layers in layer O are
more significant than the other linear layers.

Moreover, Dynamic Partition Amplification
(DPA) makes these significant parameters more im-
portant to restore the capability in the domain. We
discover that the necessary factor changes depend-
ing on the varying significance of the parameters.
So we divide parameters based on their significance
levels to get parameter partition. Each partition is
then assigned various factors to enhance its domain
capabilities. To evaluate the effectiveness of these
factors, we use a validation dataset from the cor-
responding domain. As shown in Figure 1, The
factors for the two partitions are /.3 and /.1.

The base model adopted in this work is LLaMA-
2 (Touvron et al., 2023) and Mistral (Jiang et al.,
2023). We focus on two distinct domains: Mathe-
matics and Finance. The results of the experiment
show that our method only keeps 20% of param-
eters while yielding performance comparable to
other methods that maintain up to 90% of parame-
ters. Furthermore, our method shows outstanding
performance, leading to a significant improvement
of almost 20% in model merging performance. Our
method even significantly outperforms others when
fine-tuned models similar to the original, like Abel-
mistral. In the detail analysis section, we examine

the impact of ignoring parameter size and the num-
ber of parameters on performance, compare DPA
with other pruning methods, and demonstrate re-
sults for different initialization methods. Through
parametric analysis, we explain DPPA’s effective-
ness and investigate how increasing the number of
domains affects model performance. We will share
our code on GitHub.

2 Background

The challenge of model merging is resolving con-
flicts between the parameters of different models.
Model merging first goes through the pruning stage,
then the merging stage. For the pruning stage, the
current method (Yu et al., 2023b) aims to reduce
the number of conflicting parameters before param-
eters clash. For the merging stage, the predominant
methods (Yang et al., 2023a; Yadav et al., 2023a;
Jin et al., 2023) focus on resolving conflicts when
parameters clash. In contrast to previous studies,
our method focuses more on the pruning stage.

We review the definition of model merging and
the delta parameter. It should be noted that our
approach is used for the delta parameter, which
represents the weight difference between the fine-
tuned models and their base model.



Notation Description
0 a single parameter
0, A a group of parameters
S a set of group of parameters §
|0 the absolute values of parameter 6
18]l the number of parameter in group &

Table 1: Notation system.

2.1 Model Merging Problem

Model merging combines multiple models derived
from the same base model. It cannot handle the
merging of multiple base models. Specifically, for
models M* ~ M¥, each associated with different
domains D' ~ D¥, where each domain comprises
a set of tasks D* = {T} ~ T'}. Here, k represents
the number of domains, ¢ represents a specific do-
main, and n represents the number of tasks within
that domain.

By merging M ~ M¥, we obtain the integrated
model M™, which possesses the ability to handle
tasks from D' ~ D¥ simultaneously.

2.2 Delta Parameter

Analyzing the delta parameter enables a deeper
understanding of the changes brought by the fine-
tuning process. For each model, we find its com-
mon base model M and the base weight W5,
For model M*, we have the corresponding weight
W' We define the delta parameter as the tran-
sition of the parameter space distribution from
the base model to the fine-tuned model, which is
A=W - WB,

3 Dynamic Pruning and Partition
Amplification (DPPA)

First, we introduce Dynamic Pruning (DP) to dis-
cover significant parameters and remove redundant
ones. Next, we propose Dynamic Partition Am-
plification (DPA), which makes these significant
parameters more important. Finally, we integrate
the delta parameters from various fine-tuned mod-
els into the base model, resulting in a single model
with multiple capabilities.

3.1 Dynamic Pruning

First, we use a single linear layer as an example
to explain the overall notation system, as shown in
Table 1. Next, we define the concept of parameter
significance. Finally, we present the method for ad-
justing the pruning rate based on this significance.

For a fine-tuned model, we first get the delta
parameters A of the model, mentioned at Sec. 2.2.
We do not take into account parameters such as
layer norm, focusing solely on linear layers, such as
Q, K, V, O in Attention, and up/down sampling in
MLP. We separate the linear layer delta parameters
&; from A and denote them as S; by

Sy = {116 C A, ¢ represents a linear layer}.
(D

Parameter Significance We believe that not all
parameters in the delta parameters are significant.
For a group of parameters d; from one linear layer,
the significant parameters J; are N times larger
than the average of absolute values of parameters
(Sl by
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The parameter significance sig(-) is of the sum of
the absolute values of these significant parameters
to the sum of the absolute values of all parameters,
as follows:

Soeq 0

sig(6) = 720 1o (3)
€0y

As demonstrated above, parameter significance pri-
marily focuses on the values of the parameters.

Adjusting Pruning Rate Once the significance
of the parameters has been determined, we can
adjust the pruning rate based on the significance of
various linear layers.

We translate significance to dynamic pruning
rates rat(-) by using a modified normalization
method. We consider the variations in the num-
ber of parameters among linear layers. Our goal is
to ensure that the product of the adjusted pruning
rates and the number of parameters in each linear
layer averages out to zero, thereby maintaining the
predetermined overall pruning rate. As a result, we
weighted the mean significance by multiplying it
with the number of parameters in each linear layer,
as follows:

rat(d, S1) = sig(6) — Y _ sig(d)
6ES;
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We examine the fluctuations in adjustment rates,
where excessively high adjustments have led to
pruning rates exceeding 100%. We define the max-
imum value of pruning rate fluctuation as A. As a
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Figure 2: We use green and lines to show amplifi-
cation rate trajectories. The blue star marks the optimal
rate at 90% pruning, and the red star marks it at 80%.
Contour lines illustrate performance in the mathemati-
cal domain.

result, We first find the maximum absolute value
of the dynamical pruning rates, rat(-), across all
linear layers. The scaling factor, fac(-), is then
calculated by dividing A by this maximum value,
as illustrated below:

A

arg max abs(rat(6,5;))
0ES;

fac(S)) = ®)

Following the principle that higher parameter
significance corresponds to lower pruning rates,
We modify the pruning rate by applying a scaling
factor, resulting in the final adjusted rate for a linear
layer, oy, as follows:

a; = a— fac(S)) - rat(d;, Sy), 6)

where « represents predetermined overall pruning
rate.

3.2 Dynamic Partition Amplification

First, we apply Dynamic Pruning at various prun-
ing rates to partition the parameters. To restore
performance, we amplify and combine these par-
titions. By acknowledging parameter interactions
during enhancement, we propose two initialization
methods and assess their effectiveness across var-
ious scenarios. Finally, we provide detailed infor-
mation on the data used and the validation metrics
employed during the enhancement process.

Partition of Parameters The number of retained
parameters varies with different pruning rates.

Compared to lower pruning rates, the higher prun-
ing rates retained the fewer but more crucial param-
eters. At lower pruning rates, more parameters are
retained. For example, as shown in Fig. 1, higher
pruning rates retain only the purple parameters,
while lower rates retain both the purple and green
parameters. Therefore, the parameter partition for
the lower rate includes the green parameters. We
set the partition size to 3, implying that when the
low pruning rate is x, the high pruning rate be-
comes x + 5.

Partition Amplification Partitions with higher
pruning rates are considered more important. The
importance of the partitions is ranked based on their
pruning rates. After initialization, we first amplify
the most important partition. By multiplying the
partition parameters by a dynamic factor, an ex-
panded partition is obtained. This dynamic factor
starts at 1 and increases by a hyperparameter, de-
noted as -y, until optimal performance is achieved.
Once the primary parameter partition factor is de-
termined, adjust the secondary parameter partitions
accordingly, and continue this process as needed.

Initialization methods There are interacted
among partition parameters, and our approach only
changes one partition at each stage. Thus, whether
considering the impact of other partitions when
amplifying partition is crucial. We propose two
initialization methods: one ignoring parameter in-
teractions and the other considering them. Use the
first method if performance differences between
partitions are within 5%, otherwise use the second
method. Method 1 adjust parameters within the
90% pruning rate partition, setting the remainder
to zero. The resulting curve from this method is
illustrated by the green line in Fig. 2. Method 2 use
the partition that matches the target pruning rate
while adjusting the 90% partition. The resulting
curve from this method is illustrated by the

line in Fig. 2.

Validation Metrics For adjusted models men-
tioned above, we verify their capabilities using in-
domain datasets. No additional training is required;
we simply infer the model’s performance on the
validation dataset.

To normalize performance differences across
tasks, we introduced the Task-Ratio metric. For
a task 7}, the Task-Ratio is the performance ratio
of the adjusted model M,4; to the dense model



M jep,, defined as:

Per(Mgq;, Tj)

Task-Ratio; =
ask-Ratio; Per(Mden,Tj)’

(7N

where Per(M,T') represents the performance of
model M on task T'. According to the formula, the
Task-Ratio of the dense model is 100%.

We propose Domain-Ratio metrics to evaluate
performance across abundant datasets in a domain.
We use a multiplicative approach to account for all
tasks and avoid obscuring low-performance ones.
To make performance independent of task number
n, we square the product. The formula for Domain-
Accuracy is as follows:

Domain-Ratio = v\/ngleask-Ratioj. (8)

3.3 Model Merging

After applying Dynamic Pruning and Partition Am-
plification, We obtained the pruned delta parame-
ters of different models. In Section 5.3, we refer to
multiple existing methodologies for merging stage.
We employ Ties-Merging (Yadav et al., 2023b),
to resolve parameter conflicts during the merging
stage after the pruning stage. Thus, we get the final
merging model:

W™ = W58 4 Ties(XE_ DPPA(AY))  (9)

4 [Experiments

4.1 Experimental Setup

Pre-Trained Backbone and Fine-tune Models
Considering the need to fine-tune the base model
for different domains and its performance impact,
we chose LLaMa 2 (Touvron et al., 2023) as the
base model over other pre-trained models. For
the mathematics and finance domains, we selected
two high-performing models: Abel (Chern et al.,
2023) and Finance-chat (Cheng et al., 2023). We
chose Mistral despite its few fine-tuning models
to test our method on different base models and
minimal variations from the original. Abel-Mistral
represents such small differences.

Datasets and Metric For each domain,
we selected two datasets. In mathematics,
we chose GSM8k (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), evaluating models
using zero-shot accuracy with Abel’s testing
script (Chern et al., 2023). In finance, we chose
FiQA_SA (Maia et al., 2018) and FPB (Malo

et al., 2014), also using zero-shot accuracy. For
AdaptLLM (Cheng et al., 2023), without a testing
script, we deemed a multiple-choice question
correct if the predicted sentence included the
correct choice. The evaluation metric is detailed in
Sec. 3.2.

Implementation Details In our study using the
vLLM framework, we set a batch size of 32 for
GSM8k and MATH, and a batch size of 1 for
FiQA_SA and FPB. We used greedy decoding with
a temperature of 0 and a maximum generation
length of 2048, conducted on an NVIDIA Tesla
A100 GPU. We set N to 5, A to 0.08, and both 3
and v to 0.1.

4.2 Baseline Method

We establish two sample weight averaging meth-
ods, one merging-based, and five pruning-based
methods as baselines. they are described below:

* Model Soups (Wortsman et al., 2022) aver-
ages all model parameters.

* LM-Cocktail (Xiao et al., 2023) weights mod-
els from different domains to select the opti-
mal result.

* Ties-Merging (Yadav et al., 2023b) resolves
parameter conflicts during merging stage.

* Wanda (Sun et al., 2023) trims parameters
that minimally impact inference.

* SparseGPT (Frantar and Alistarh, 2023) ad-
justs pruned parameters for better perfor-
mance.

* Magnitude (Han et al., 2015b) keeps weights
with larger absolute values, removing smaller
ones.

* OWL (Yin et al., 2023) recognizes parameter
significance varies across model layers.

* DARE (Yu et al., 2023b) starts with random
pruning, then expands remaining parameters
based on pruning rate.

4.3 Main Result of DPPA

We present the Domain-Ratio and Task-Ratio re-
sults for all datasets. Table 2 displays results for
three models with varying pruning rates. Our
method performs optimally at high pruning rates
on both Llama?2 and Mistral, regardless of Domain-
Ratio or Task-Ratio. The experimental results show
our approach retains only 20% of parameters yet
performs comparably to methods retaining 90%,



. Domain-Ratio Task-Ratio
Sparse Ratio - -
Magnitude OWL DARE DPPA Task Magnitude OWL DARE DPPA
Abel-Llama
GSMSk  100.14  99.63 9823  98.49
10% 9646 9669 9664 9886 T\, 9292 9384 9507 9923
GSMS8k 8378 8277 8949  95.56
80% 8012 7711 8741 9708 Sy 7661 7184 8538  98.61
GSMS8k 5742 5729 8328 8771
90% 5341 5409 7344 8685 T\ 4969 5107 6476  86.00
Finance-Llama
FiQA_SA 8881 8695 9192 95.14
10% 9081 8912 9104 97.05 " pp 9284 9135 90.16  99.01
FiQA_SA 7577 8136 8322 94.41
80% 7104 7492 8401 9665 U P T oges
FiQA_SA 5341 5776 8385 88.82
20% 471 5674 8290 9211 o 5603 5573 8196  95.52
Abel-Mistral
GSMS8k 99.82 9982 99.85 9982
10% 9963 9967 9975 9970 “hra 9945 9952 99.66  99.59
GSMS8k 9250 9231 9472 97.38
80% 9346 9252 9532 9998  “\ o 9443 9273 9592  102.64
GSMS8k 8490 8349 88.66 93.15
90% 8124 7992 8688 9499  yo4 7773 7651 8513  96.87

Table 2: Domain-Ratio and Task-Ratio of different methods at various pruning rates. Additional results under
remainder pruning rates and the specific performance values for different tasks are presented in Appendix A.

Methods Math Fin Average
Model Soups 1599 79.46 47.73
LM-Cocktail 76.96  78.80 77.88
Ties-Merging 96.23 22.12 59.18
w/ Wanda 830  20.65 14.48
w/ SparseGPT ~ 21.74  18.60 20.17
w/DARE 90% 21.10 64.88 42.99
w/DPPA90%  89.25 79.40 84.33
w/DARE 80% 58.43 77.16 67.79
w/ DPPA 80%  92.75 95.45 94.10

Table 3: Domain-Ratio of the merged Llama model that
combines domains mathematics and finance. The spe-
cific performance values are presented in Appendix A.

Domains Magnitude OWL  DP
Math 53.41 54.09 54.97
Fin 54.71 56.74  62.06

Table 4: Domain-Ratio of DP at a pruning rate of 90%.

guaranteeing over 96% of the domain’s perfor-
mance.

Due to space constraints, detailed values, remain-
der pruning rates, and DPA parameter partition fac-
tors are included in Appendix A.

4.4 Main Result of Merge Methods

We validate our pruning method for model merging
by integrating models. Table 3 displays results of

Model Min 10% 90% Max

Abel-Llama  -0.01733  -0.00114 0.00114  0.02014
Fin-Llama -0.02612  -0.00160  0.00160 0.02011
Abel-Mistral ~ -0.00127  -0.00010  0.00010  0.00139

Table 5: The offset of different models from the base
model at different position proportions.

two domains at 80% and 90% pruning rates and
other baselines. Sample weight averaging methods
like Model Soups and LM-Cocktail suffer perfor-
mance degradation due to unresolved parameter
conflicts. Traditional pruning methods like Wanda
and SparseGPT measures the importance of full
parameter, unlike the delta parameter, impacting
the model after merging. Our method improves
performance by over 20% compared to DARE at
the same pruning rate, demonstrating its efficacy in
model merging.

4.5 Detail Analysis

We present the performance of DP in Table 4 and
discuss cases where DP can replace DARE. Table 6
examines the results of disregarding the parameter
magnitude considering only the number of parame-
ters as the definition of parameter significance and
the effects of rounding off fac(-). We compare
performance of DPA using other pruning methods
in Table 7 and demonstrate the performance of two
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Figure 3: After analyzing the pruned parameters of the financial model, it is evident that there is a higher parameter
count in the initial and final 0, 31 layers, while the middle 17 layers have fewer parameters. Additionally, in the Q,
K, V components, it is observed that 90% of the parameters are concentrated in certain dimensions. To facilitate
observation, we have amplified the value by a factor of 1000.

Methods Math Fin

DP 54.97 62.06
change_sig 53.13  60.57
w/o fac 52.69 61.84

Table 6: Domain-Ratio of the variants of DP at a pruning
rate of 90%.

different initializations in Table 8. We analyzed
why DPPA is effective, as shown in the Fig. 3. Fi-
nally, we explore the performance impact of adding
a domain in Table 9.

The Effectiveness of DP  As seen in Table 4, DP
outperforms at high pruning rates by adjusting the
significance of parameters within each layer, re-
taining crucial ones. The DARE method struggles
when parameter deviations exceed 0.03, with per-
formance worsening as offsets increase (see Ta-
ble 5). More detailed results are in Appendix B.
When DARE’s performance drops below 90% at
a 90% pruning rate, our method offers a viable
alternative.

The Variants of DP As shown in Table 6,
change_sig disregards parameter magnitude, con-
sidering only the number of parameters for sig-
nificance, while w/o fac ignores effects of fac(-).
Removing the parameter importance causes a sig-
nificant performance drop, while the tuning factor
has a minor effect.

The Generality of DPA Our experimental re-
sults are in Table 7. We tested the DPA method on
DARE and OWL. Since DARE already amplifies
parameters significantly at high pruning rates (5x
for 80% and 10x for 90%), we switched to dynamic
reduction. Since Owl is similar to the DP method,

Methods Math Fin
DPPA 86.85 92.11
DARE 73.44 8290
w/DPA  83.63 85.08
OWL 54.09 56.74
w/DPA 8424 87.56

Table 7: Domain-Ratio of DARE and OWL using DPA
at a pruning rate of 90%.

Domains Method1 Method 2
Math 88.45 97.08
Fin 96.65 94.89

Table 8: Domain-Ratio of two method in DPA at a
pruning rate of 80%.

its performance with DPA surpasses DARE’s.

Initialization methods We show a performance
comparison of the two initialization methods at
80% pruning rate in Table 8. For models with
small performance differences, use method 1; for
large differences, use method 2, which offers more
significant improvement.

why DPPA is effective? To investigate, we ana-
lyzed the Delta parameters (see Fig 3), exploring
the relationship between remaining parameters af-
ter DP at different pruning rates and linear layers.
The graph shows that, despite being an unstruc-
tured pruning method, DP exhibits aspects of struc-
tured pruning at high pruning rates. This dimension
partitioning aids in interpreting parameter space
distribution within specific domains. Using DPA,
we amplify parameters, strengthen domain-specific
weights in these dimensions, and restore certain
capabilities.



Method & Pruning Rate  Math Fin Law
DARE 90% 7.89 5148 53.86
DPPA 90% 89.95 8524 122.08
DARE 80% 32.61 7449 78.11
DPPA 80% 91.28 9520 146.23

Table 9: Domain-Ratio of the model that combines
domains mathematics, finance and law.

Mergeing more Domain In Table 9, we present
the merging results for adding law domains. Com-
paring this with Table 3, it is evident that integrat-
ing a fine-tuned model from an additional domain
greatly degrades DARE’s performance. Conversely,
our method maintains comparable performance de-
spite the extra domain, though performance de-
creases at varying pruning rates. This result is ex-
pected, as parameter conflicts during model merg-
ing typically cause performance degradation. Rel-
evant information about the added law domain is
placed in Appendix C.

5 Related Work

5.1 Pruning Techniques

Traditional pruning techniques aim to reduce model
parameters (Zhu et al., 2023). Although extensively
studied (Hubara et al., 2021; Mozer and Smolen-
sky, 1988; Han et al., 2015a; Lin et al., 2019),
progress has been slow with large language mod-
els due to the significant fine-tuning data required.
LORA fine-tuning (Ma et al., 2023) was proposed
to restore performance. Newer methods avoid fine-
tuning: SparseGPT (Frantar and Alistarh, 2023)
uses the Hessian matrix for pruning and weight
updates to reduce reconstruction error, Wanda (Sun
et al., 2023) combines weight magnitudes and input
activations, DSOT (Zhang et al., 2023c) adjusts pa-
rameters to minimize discrepancies, and OWL (Yin
et al., 2023) introduces non-uniform layered spar-
sity for higher pruning rates.

5.2 Special Domain Fine-Tuning

This trend continues with large language models,
leading to domain-specific models in fields like cod-
ing (Roziere et al., 2023; Yu et al., 2023c; Luo et al.,
2023b), mathematics (Luo et al., 2023a; Yue et al.,
2023; Yu et al., 2023a; Gou et al., 2023; Yuan et al.,
2023), medicine (Kweon et al., 2023; Chen et al.,
2023; Toma et al., 2023), and finance (Zhang et al.,
2023a; Yang et al., 2023b; Xie et al., 2023). How-
ever, fine-tuning across multiple domains demands

significant computational resources, prompting in-
terest in model merging methods.

5.3 Model Merge

Model merging methods include alignment (Li
et al., 2016), model ensemble (Pathak et al., 2010),
module connection (Freeman and Bruna, 2017),
and weight averaging (Wang et al., 2020). Of these,
only weight averaging reduces model parameters.
Approaches within weight averaging include sub-
space weight averaging (Li et al., 2023), SWA (Iz-
mailov et al., 2018), and task arithmetic (Ilharco
et al., 2023). Task arithmetic is notable as it in-
volves domain-specific offsets added or subtracted
from base model weights. Further developments
in task arithmetic focus on LORA (Zhang et al.,
2023b; Chitale et al., 2023; Chronopoulou et al.,
2023) and minimizing parameter conflicts via scal-
ing coefficients (Ortiz-Jiménez et al., 2023; Yang
et al., 2023a; Yadav et al., 2023b; Stoica et al.,
2023), selective weight retention (Yadav et al.,
2023a), and vector space adjustments (Jin et al.,
2023).

5.4 Federated Learning

Federated learning allows multiple clients to collab-
oratively train models under a central aggregator,
preserving data privacy (Zhang et al., 2021). This
setup aligns well with model merging, as it com-
bines locally trained models without risking data
leakage.

6 Conclusions

In this study, we introduce a pruning method called
DP, which is an improved approach based on mag-
nitude pruning to enhance performance at higher
pruning rates. Subsequently, we propose DPA,
which focuses on dynamically amplifying parti-
tions of parameters based on their varying levels of
significance. Using DPPA, we address the chal-
lenge of model merging in complex fine-tuned
models. The experimental results show that our
approach only keep 20% of the specific domain pa-
rameters, while achieves comparable performance
to other methods that retain 90% of the specific
domain parameters. Furthermore, our method also
achieves a significant improvement of nearly 20%
in model merging. Through parametric analysis,
we explain DPPA’s effectiveness and investigate
how increasing the number of domains affects
model performance.



Limitations

Our method performs less effectively than DARE
on fine-tuned models with minimal differences
compared to the original model.

DAP requires a longer time to find the optimal
ratio.

While it mitigates parameter conflicts in model
merging, there remains the issue of performance
degradation.
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A Main Result of Various Pruning
Methods on Specific Tasks

We presented all pruning results of Llama-based
model in Table 13 and Mistral-based model in Ta-
ble 11. The table displays the performance of two


https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://openreview.net/forum?id=BkluqlSFDS
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://doi.org/10.48550/ARXIV.2311.13534
https://doi.org/10.48550/ARXIV.2311.13534
https://doi.org/10.48550/ARXIV.2311.13534
https://doi.org/10.48550/ARXIV.2306.05443
https://doi.org/10.48550/ARXIV.2306.05443
https://doi.org/10.48550/ARXIV.2306.05443
https://doi.org/10.48550/ARXIV.2306.01708
https://doi.org/10.48550/ARXIV.2306.01708
https://doi.org/10.48550/ARXIV.2306.01708
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2310.02575
https://doi.org/10.48550/ARXIV.2310.02575
https://doi.org/10.48550/ARXIV.2310.02575
https://doi.org/10.48550/ARXIV.2306.06031
https://doi.org/10.48550/ARXIV.2306.06031
https://doi.org/10.48550/ARXIV.2306.06031
https://doi.org/10.48550/ARXIV.2310.05175
https://doi.org/10.48550/ARXIV.2310.05175
https://doi.org/10.48550/ARXIV.2310.05175
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2309.05653
https://doi.org/10.48550/ARXIV.2309.05653
https://doi.org/10.48550/ARXIV.2309.05653
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.1016/J.KNOSYS.2021.106775
https://doi.org/10.48550/ARXIV.2306.14870
https://doi.org/10.48550/ARXIV.2306.14870
https://doi.org/10.48550/ARXIV.2306.14870
https://doi.org/10.48550/ARXIV.2310.08915
https://doi.org/10.48550/ARXIV.2310.08915
https://doi.org/10.48550/ARXIV.2310.08915
https://doi.org/10.48550/ARXIV.2308.07633
https://doi.org/10.48550/ARXIV.2308.07633
https://doi.org/10.48550/ARXIV.2308.07633

Model Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Abel-Llama -0.0173  -0.0011  -0.0007  -0.0004  -0.0002 1.1e-08  0.0002  0.0004  0.0007 0.0011 0.0201
Finance-Llama  -0.0261 -0.0016  -0.0010  -0.0006  -0.0003 0.0 0.0003  0.0006  0.0010 0.0016 0.0201
Abel-Mistral -0.0012  -0.0001 -7.1e-05 -4.4e-05 -2.1e-05 -5.8¢-10 2.1e-05 4.4e-05 7.1e-05 0.0001 0.0013

Table 10: The offset of different models from the base model at different position proportions.

Sparse ratio ~ Magnitude OWL DP DARE
gsm8k

0.1 0.806671721  0.806671721  0.804397271  0.806887854
0.2 0.806671721  0.805155421 0.803639121 0.805155421
0.3 0.805155421 0.808188021  0.808188021 0.806671721
0.4 0.806671721  0.807429871  0.808188021 0.803639121
0.5 0.794541319  0.80288097 0.79681577  0.805913571
0.6 0.785443518  0.782410917  0.784685368  0.809704321
0.7 0.761182714  0.762699014  0.760424564  0.780136467
0.8 0.747536012  0.746019712  0.746777862  0.765432321
0.9 0.686125853  0.674753601  0.683093252  (0.716461463
MATH

0.1 0.2930 0.2932 0.2930 0.2936
0.2 0.2916 0.2916 0.2910 0.2924
0.3 0.2938 0.2936 0.2926 0.2944
0.4 0.2982 0.2964 0.2968 0.2932
0.5 0.2948 0.2954 0.2946 0.2966
0.6 0.2900 0.2950 0.2934 0.2958
0.7 0.2866 0.2876 0.2902 0.2914
0.8 0.2782 0.2732 0.2746 0.2826
0.9 0.2290 0.2254 0.2250 0.2508

Table 11: All pruning result for Abel-Mistral model in math domain.

llama2-based models in their respective domains,
including DP performance and DPA search results
in various domains.

We show the factor of DPA and the correspond-
ing results on each dataset. For Abel-Llama, the
amplification factor is 1.3 for 80% and 1.1 for 90%
of the partitions; for gsm8k is 0.5716, for Math
is 0.1282. For Finance-Llama, the factor is 1.0
for 80% and 1.1 for 90% of the partitions; for
FiQA_SA is 0.646808511, for FPB is 0.684536082.
For Abel-Mistral, the factor is 1.0 for 80% and 1.7
for 90% of the partitions; for gsm8k is 0.7870, for
Math is 0.3024.

And, we show the numerical results after the
Merging of each method as shown in the Table 12.

B The Offset of Models

We presented ten different percentage values in
Table 10.

C Law

Our method achieves performance close to the
dense model but may fall short for tasks requir-
ing superior performance. Interestingly, in the law
domain, pruned models significantly outperformed
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the dense model, achieving 120-140% of its per-
formance at pruning rates of 10-90%. We attribute
this to the low performance of the law domain fine-
tune model and the potential enhancement from
offsetting a local minimum through pruning.



Methods GSM8k MATH FiQA_SA FPB

Model Soups 0.121304018  0.0164  0.544680851  0.549484536
LM-Cocktail 0.473843821  0.0972  0.527659574  0.557731959
Ties-Merging 0.576952236  0.1248  0.208510638  0.111340206

w/ Wanda 0.039423805 0.0136  0.132471678  0.169123487

w/ SparseGPT  0.062816479  0.0528  0.12158879  0.134876196

w/ DARE 90%  0.154662623  0.0224  0.455319149  0.43814433
w/ DPPA 90%  0.557998484  0.111  0.591489362  0.505154639

w/ DARE 80%  0.392721759  0.0676  0.523404255 0.539175258
w/ DPPA 80%  0.577710387 0.1158  0.663829787  0.650515464

Table 12: The specific performance values of the merged Llama model that combines domains mathematics and
finance.

Sparse ratio Magnitude OWL DP DARE
gsm8k

0.1 0.59893859  0.595905989  0.589082638  0.587566338
0.2 0.593631539  0.592873389  0.59893859  0.585291888
0.3 0.590598939  0.589082638  0.594389689  0.586808188
04 0.578468537  0.579984837  0.588324488 0.567096285
0.5 0.584533738  0.589840788  0.587566338  0.563305534
0.6 0.578468537 0.574677786  0.570128886  0.557240334
0.7 0.546626232  0.542835481 0.545109932  0.558756634
0.8 0.501137225 0.495072024  0.489006823  0.53525398
0.9 0.343442002  0.342683851 0.351781653  0.498104625
MATH

0.1 0.1208 0.122 0.129 0.1236
0.2 0.1218 0.1212 0.1232 0.1298
0.3 0.125 0.1232 0.1238 0.1274
0.4 0.1262 0.1258 0.1276 0.1264
0.5 0.122 0.125 0.1248 0.1216
0.6 0.1254 0.124 0.1194 0.1184
0.7 0.1176 0.1148 0.1142 0.1134
0.8 0.0996 0.0934 0.095 0.111

0.9 0.0646 0.0664 0.0668 0.0842
FiQA_SA

0.1 0.608510638  0.595744681  0.635744681 0.629787234
0.2 0.612765957  0.642553191  0.629787234  0.621276596
0.3 0.629787234  0.646808511  0.621276596  0.634042553
0.4 0.629787234  0.621276596  0.629787234  0.625531915
0.5 0.582978723  0.561702128  0.34893617  0.561702128
0.6 0.595744681  0.540425532  0.54893617  0.685106383
0.7 0.540425532  0.510638298  0.195744681  0.587234043
0.8 0.519148936  0.557446809  0.493617021 0.570212766
0.9 0.365957447  0.395744681 0.438297872  0.574468085
FPB

0.1 0.642268041 0.631958763  0.62556701 0.62371134
0.2 0.620618557  0.616494845  0.611340206  0.634020619
0.3 0.597938144  0.608247423  0.628865979  0.627835052
0.4 0.610309278  0.609278351  0.601030928  0.644329897
0.5 0.590721649  0.57628866  0.605154639  0.611340206
0.6 0.597938144  0.579381443  0.579381443  0.615463918
0.7 0.534020619  0.550515464  0.537113402  0.607216495
0.8 0.460824742  0.477319588  0.471134021 0.586597938
0.9 0.387628866  0.38556701 0.416494845 0.567010309

Table 13: All pruning result for Llama-based model in two domain.
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