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Abstract

Model merging aims to combine models with001
different capabilities into a single unified002
model, providing multiple capabilities with-003
out the necessity of retraining with the original004
training data. However, as distinctions between005
fine-tuned and base models grow, especially for006
large language models, current methods suffer007
significant performance drops, hindering true008
multi-domain capabilities. In this study, we009
propose a two-stage method, called Dynamic010
Pruning and Partition Amplification (DPPA),011
to address the challenge of merging models012
with significant distinctions. First, we intro-013
duce Dynamic Pruning (DP) to discover signif-014
icant parameters and remove redundant ones.015
Subsequently, we propose Dynamic Partition016
Amplification (DPA) to restore the capability in017
the domain. Experimental results demonstrate018
that our approach performs outstandingly, im-019
proving model merging performance by almost020
20%.021

1 Introduction022

Model merging, or model fusion, combines models023

with different capabilities into a unified model. Un-024

like multi-task learning, model merging requires no025

retraining on the original training data. On the one026

hand, model merging can combine models from027

different domains into a unified model, thereby028

offering multi-domain capabilities (Alonso et al.,029

2024). On the other hand, model merging can also030

fuse models trained on diverse data within the same031

domain, further enhancing overall domain perfor-032

mance (Fu et al., 2024). The challenge of model033

merging lies in resolving conflicts between the pa-034

rameters of different models.035

The significance of the parameter varies depend-036

ing on the model. Minimal distinctions between037

fine-tuned models and their base models do not038

degrade the performance of merging model. The039

distinctions between fine-tuned models and their040

base models become more significant when a large 041

amount of domain-specific data is used for tuning 042

in fields such as mathematics (Hendrycks et al., 043

2021) and code (Rozière et al., 2023), or with 044

advancements in techniques like instruction tun- 045

ing (Mishra et al., 2022). These fine-tuned models 046

achieve enhanced domain-specific performance, al- 047

though increased parameter conflicts arise during 048

model merging. However, current merging meth- 049

ods (Yu et al., 2023b; Yang et al., 2023a; Yadav 050

et al., 2023b) experience significant performance 051

drops with these fine-tuned models, rendering true 052

multi-domain capabilities unattainable. Further- 053

more, because significance determination is based 054

on the distinctions between these fine-tuned mod- 055

els and their base models, existing methods for 056

measuring parameter significance (Sun et al., 2023; 057

Frantar and Alistarh, 2023) are not effective. 058

In this study, we tackle the challenge of merging 059

models with significant distinctions by introduc- 060

ing a two-stage method known as Dynamic Prun- 061

ing and Partition Amplification (DPPA). First, we 062

introduce Dynamic Pruning (DP) to discover sig- 063

nificant parameters and remove redundant ones. 064

Subsequently, we propose Dynamic Partition Am- 065

plification (DPA), to further amplify the importance 066

of these significant parameters, thereby restoring 067

domain capabilities. Our approach is applied to the 068

delta parameter, which signifies the weight differ- 069

ence between the fine-tuned models and the base 070

model. 071

Dynamic Pruning (DP) aims to discover signif- 072

icant parameters and remove redundant ones. A 073

simple but effective way to measure significance 074

is based on the magnitude of the delta parameter. 075

Based on their significance, we adjust the pruning 076

rate of different linear layers to retain the more cru- 077

cial parameters. As illustrated in Figure 1, there 078

are notable differences in significance between lay- 079

ers, and even within the same layer, different linear 080

layers exhibit varying levels of significance. For 081
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Figure 1: Within the left segment of figure, it can be found that Dynamically Pruning (DP) method modifies the
pruning rate at both layer and linear layer levels, distinguishing it from magnitude pruning. On the figure’s right
segment, we can see the integration of DP and Dynamical Partition Amplification (DPA), paralleled with the drop
and rescale operations inherent in the DARE system. This integration enhances complex model performance after
the pruning process significantly.

example, the Q and K linear layers in layer 0 are082

more significant than the other linear layers.083

Moreover, Dynamic Partition Amplification084

(DPA) makes these significant parameters more im-085

portant to restore the capability in the domain. We086

discover that the necessary factor changes depend-087

ing on the varying significance of the parameters.088

So we divide parameters based on their significance089

levels to get parameter partition. Each partition is090

then assigned various factors to enhance its domain091

capabilities. To evaluate the effectiveness of these092

factors, we use a validation dataset from the cor-093

responding domain. As shown in Figure 1, The094

factors for the two partitions are 1.3 and 1.1.095

The base model adopted in this work is LLaMA-096

2 (Touvron et al., 2023) and Mistral (Jiang et al.,097

2023). We focus on two distinct domains: Mathe-098

matics and Finance. The results of the experiment099

show that our method only keeps 20% of param-100

eters while yielding performance comparable to101

other methods that maintain up to 90% of parame-102

ters. Furthermore, our method shows outstanding103

performance, leading to a significant improvement104

of almost 20% in model merging performance. Our105

method even significantly outperforms others when106

fine-tuned models similar to the original, like Abel-107

mistral. In the detail analysis section, we examine108

the impact of ignoring parameter size and the num- 109

ber of parameters on performance, compare DPA 110

with other pruning methods, and demonstrate re- 111

sults for different initialization methods. Through 112

parametric analysis, we explain DPPA’s effective- 113

ness and investigate how increasing the number of 114

domains affects model performance. We will share 115

our code on GitHub. 116

2 Background 117

The challenge of model merging is resolving con- 118

flicts between the parameters of different models. 119

Model merging first goes through the pruning stage, 120

then the merging stage. For the pruning stage, the 121

current method (Yu et al., 2023b) aims to reduce 122

the number of conflicting parameters before param- 123

eters clash. For the merging stage, the predominant 124

methods (Yang et al., 2023a; Yadav et al., 2023a; 125

Jin et al., 2023) focus on resolving conflicts when 126

parameters clash. In contrast to previous studies, 127

our method focuses more on the pruning stage. 128

We review the definition of model merging and 129

the delta parameter. It should be noted that our 130

approach is used for the delta parameter, which 131

represents the weight difference between the fine- 132

tuned models and their base model. 133

2



Notation Description

θ a single parameter
δ, ∆ a group of parameters
S a set of group of parameters δ
|θ| the absolute values of parameter θ
∥δ∥ the number of parameter in group δ

Table 1: Notation system.

2.1 Model Merging Problem134

Model merging combines multiple models derived135

from the same base model. It cannot handle the136

merging of multiple base models. Specifically, for137

models M1 ∼ Mk, each associated with different138

domains D1 ∼ Dk, where each domain comprises139

a set of tasks Di = {T i
1 ∼ T i

n}. Here, k represents140

the number of domains, i represents a specific do-141

main, and n represents the number of tasks within142

that domain.143

By merging M1 ∼ Mk, we obtain the integrated144

model Mm, which possesses the ability to handle145

tasks from D1 ∼ Dk simultaneously.146

2.2 Delta Parameter147

Analyzing the delta parameter enables a deeper148

understanding of the changes brought by the fine-149

tuning process. For each model, we find its com-150

mon base model MB and the base weight WB .151

For model M i, we have the corresponding weight152

W i. We define the delta parameter as the tran-153

sition of the parameter space distribution from154

the base model to the fine-tuned model, which is155

∆i = W i −WB .156

3 Dynamic Pruning and Partition157

Amplification (DPPA)158

First, we introduce Dynamic Pruning (DP) to dis-159

cover significant parameters and remove redundant160

ones. Next, we propose Dynamic Partition Am-161

plification (DPA), which makes these significant162

parameters more important. Finally, we integrate163

the delta parameters from various fine-tuned mod-164

els into the base model, resulting in a single model165

with multiple capabilities.166

3.1 Dynamic Pruning167

First, we use a single linear layer as an example168

to explain the overall notation system, as shown in169

Table 1. Next, we define the concept of parameter170

significance. Finally, we present the method for ad-171

justing the pruning rate based on this significance.172

For a fine-tuned model, we first get the delta 173

parameters ∆ of the model, mentioned at Sec. 2.2. 174

We do not take into account parameters such as 175

layer norm, focusing solely on linear layers, such as 176

Q, K, V, O in Attention, and up/down sampling in 177

MLP. We separate the linear layer delta parameters 178

δl from ∆ and denote them as Sl by 179

Sl = {δl|δl ⊆ ∆, δl represents a linear layer}.
(1) 180

Parameter Significance We believe that not all 181

parameters in the delta parameters are significant. 182

For a group of parameters δl from one linear layer, 183

the significant parameters δ′l are N times larger 184

than the average of absolute values of parameters 185

δl by 186

δ′l = {θ′|θ′ ∈ δl, |θ′| > N ·
∑

θ∈δl |θ|
∥δl∥

}. (2) 187

The parameter significance sig(·) is of the sum of 188

the absolute values of these significant parameters 189

to the sum of the absolute values of all parameters, 190

as follows: 191

sig(δl) =

∑
θ′∈δ′l

|θ′|∑
θ∈δl |θ|

. (3) 192

As demonstrated above, parameter significance pri- 193

marily focuses on the values of the parameters. 194

Adjusting Pruning Rate Once the significance 195

of the parameters has been determined, we can 196

adjust the pruning rate based on the significance of 197

various linear layers. 198

We translate significance to dynamic pruning 199

rates rat(·) by using a modified normalization 200

method. We consider the variations in the num- 201

ber of parameters among linear layers. Our goal is 202

to ensure that the product of the adjusted pruning 203

rates and the number of parameters in each linear 204

layer averages out to zero, thereby maintaining the 205

predetermined overall pruning rate. As a result, we 206

weighted the mean significance by multiplying it 207

with the number of parameters in each linear layer, 208

as follows: 209

rat(δl, Sl) = sig(δl)−
∑
δ∈Sl

sig(δ) · ∥δ∥
∥∆∥

. (4) 210

We examine the fluctuations in adjustment rates, 211

where excessively high adjustments have led to 212

pruning rates exceeding 100%. We define the max- 213

imum value of pruning rate fluctuation as λ. As a 214
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Figure 2: We use green and orange lines to show amplifi-
cation rate trajectories. The blue star marks the optimal
rate at 90% pruning, and the red star marks it at 80%.
Contour lines illustrate performance in the mathemati-
cal domain.

result, We first find the maximum absolute value215

of the dynamical pruning rates, rat(·), across all216

linear layers. The scaling factor, fac(·), is then217

calculated by dividing λ by this maximum value,218

as illustrated below:219

fac(Sl) =
λ

arg max
δ∈Sl

abs(rat(δ, Sl))
. (5)220

Following the principle that higher parameter221

significance corresponds to lower pruning rates,222

We modify the pruning rate by applying a scaling223

factor, resulting in the final adjusted rate for a linear224

layer, αl, as follows:225

αl = α− fac(Sl) · rat(δl, Sl), (6)226

where α represents predetermined overall pruning227

rate.228

3.2 Dynamic Partition Amplification229

First, we apply Dynamic Pruning at various prun-230

ing rates to partition the parameters. To restore231

performance, we amplify and combine these par-232

titions. By acknowledging parameter interactions233

during enhancement, we propose two initialization234

methods and assess their effectiveness across var-235

ious scenarios. Finally, we provide detailed infor-236

mation on the data used and the validation metrics237

employed during the enhancement process.238

Partition of Parameters The number of retained239

parameters varies with different pruning rates.240

Compared to lower pruning rates, the higher prun- 241

ing rates retained the fewer but more crucial param- 242

eters. At lower pruning rates, more parameters are 243

retained. For example, as shown in Fig. 1, higher 244

pruning rates retain only the purple parameters, 245

while lower rates retain both the purple and green 246

parameters. Therefore, the parameter partition for 247

the lower rate includes the green parameters. We 248

set the partition size to β, implying that when the 249

low pruning rate is x, the high pruning rate be- 250

comes x+ β. 251

Partition Amplification Partitions with higher 252

pruning rates are considered more important. The 253

importance of the partitions is ranked based on their 254

pruning rates. After initialization, we first amplify 255

the most important partition. By multiplying the 256

partition parameters by a dynamic factor, an ex- 257

panded partition is obtained. This dynamic factor 258

starts at 1 and increases by a hyperparameter, de- 259

noted as γ, until optimal performance is achieved. 260

Once the primary parameter partition factor is de- 261

termined, adjust the secondary parameter partitions 262

accordingly, and continue this process as needed. 263

Initialization methods There are interacted 264

among partition parameters, and our approach only 265

changes one partition at each stage. Thus, whether 266

considering the impact of other partitions when 267

amplifying partition is crucial. We propose two 268

initialization methods: one ignoring parameter in- 269

teractions and the other considering them. Use the 270

first method if performance differences between 271

partitions are within 5%, otherwise use the second 272

method. Method 1 adjust parameters within the 273

90% pruning rate partition, setting the remainder 274

to zero. The resulting curve from this method is 275

illustrated by the green line in Fig. 2. Method 2 use 276

the partition that matches the target pruning rate 277

while adjusting the 90% partition. The resulting 278

curve from this method is illustrated by the orange 279

line in Fig. 2. 280

Validation Metrics For adjusted models men- 281

tioned above, we verify their capabilities using in- 282

domain datasets. No additional training is required; 283

we simply infer the model’s performance on the 284

validation dataset. 285

To normalize performance differences across 286

tasks, we introduced the Task-Ratio metric. For 287

a task Tj , the Task-Ratio is the performance ratio 288

of the adjusted model Madj to the dense model 289
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Mden, defined as:290

Task-Ratioj =
Per(Madj , Tj)

Per(Mden, Tj)
, (7)291

where Per(M,T ) represents the performance of292

model M on task T . According to the formula, the293

Task-Ratio of the dense model is 100%.294

We propose Domain-Ratio metrics to evaluate295

performance across abundant datasets in a domain.296

We use a multiplicative approach to account for all297

tasks and avoid obscuring low-performance ones.298

To make performance independent of task number299

n, we square the product. The formula for Domain-300

Accuracy is as follows:301

Domain-Ratio = n

√
Πn

j=1Task-Ratioj . (8)302

3.3 Model Merging303

After applying Dynamic Pruning and Partition Am-304

plification, We obtained the pruned delta parame-305

ters of different models. In Section 5.3, we refer to306

multiple existing methodologies for merging stage.307

We employ Ties-Merging (Yadav et al., 2023b),308

to resolve parameter conflicts during the merging309

stage after the pruning stage. Thus, we get the final310

merging model:311

Wm = WB + Ties(Σk
i=1DPPA(∆i)) (9)312

4 Experiments313

4.1 Experimental Setup314

Pre-Trained Backbone and Fine-tune Models315

Considering the need to fine-tune the base model316

for different domains and its performance impact,317

we chose LLaMa 2 (Touvron et al., 2023) as the318

base model over other pre-trained models. For319

the mathematics and finance domains, we selected320

two high-performing models: Abel (Chern et al.,321

2023) and Finance-chat (Cheng et al., 2023). We322

chose Mistral despite its few fine-tuning models323

to test our method on different base models and324

minimal variations from the original. Abel-Mistral325

represents such small differences.326

Datasets and Metric For each domain,327

we selected two datasets. In mathematics,328

we chose GSM8k (Cobbe et al., 2021) and329

MATH (Hendrycks et al., 2021), evaluating models330

using zero-shot accuracy with Abel’s testing331

script (Chern et al., 2023). In finance, we chose332

FiQA_SA (Maia et al., 2018) and FPB (Malo333

et al., 2014), also using zero-shot accuracy. For 334

AdaptLLM (Cheng et al., 2023), without a testing 335

script, we deemed a multiple-choice question 336

correct if the predicted sentence included the 337

correct choice. The evaluation metric is detailed in 338

Sec. 3.2. 339

Implementation Details In our study using the 340

vLLM framework, we set a batch size of 32 for 341

GSM8k and MATH, and a batch size of 1 for 342

FiQA_SA and FPB. We used greedy decoding with 343

a temperature of 0 and a maximum generation 344

length of 2048, conducted on an NVIDIA Tesla 345

A100 GPU. We set N to 5, λ to 0.08, and both β 346

and γ to 0.1. 347

4.2 Baseline Method 348

We establish two sample weight averaging meth- 349

ods, one merging-based, and five pruning-based 350

methods as baselines. they are described below: 351

• Model Soups (Wortsman et al., 2022) aver- 352

ages all model parameters. 353

• LM-Cocktail (Xiao et al., 2023) weights mod- 354

els from different domains to select the opti- 355

mal result. 356

• Ties-Merging (Yadav et al., 2023b) resolves 357

parameter conflicts during merging stage. 358

• Wanda (Sun et al., 2023) trims parameters 359

that minimally impact inference. 360

• SparseGPT (Frantar and Alistarh, 2023) ad- 361

justs pruned parameters for better perfor- 362

mance. 363

• Magnitude (Han et al., 2015b) keeps weights 364

with larger absolute values, removing smaller 365

ones. 366

• OWL (Yin et al., 2023) recognizes parameter 367

significance varies across model layers. 368

• DARE (Yu et al., 2023b) starts with random 369

pruning, then expands remaining parameters 370

based on pruning rate. 371

4.3 Main Result of DPPA 372

We present the Domain-Ratio and Task-Ratio re- 373

sults for all datasets. Table 2 displays results for 374

three models with varying pruning rates. Our 375

method performs optimally at high pruning rates 376

on both Llama2 and Mistral, regardless of Domain- 377

Ratio or Task-Ratio. The experimental results show 378

our approach retains only 20% of parameters yet 379

performs comparably to methods retaining 90%, 380
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Sparse Ratio Domain-Ratio Task-Ratio
Magnitude OWL DARE DPPA Task Magnitude OWL DARE DPPA

Abel-Llama

10% 96.46 96.69 96.64 98.86 GSM8k 100.14 99.63 98.23 98.49
Math 92.92 93.84 95.07 99.23

80% 80.12 77.11 87.41 97.08 GSM8k 83.78 82.77 89.49 95.56
Math 76.61 71.84 85.38 98.61

90% 53.41 54.09 73.44 86.85 GSM8k 57.42 57.29 83.28 87.71
Math 49.69 51.07 64.76 86.00

Finance-Llama

10% 90.81 89.12 91.04 97.05 FiQA_SA 88.81 86.95 91.92 95.14
FPB 92.84 91.35 90.16 99.01

80% 71.04 74.92 84.01 96.65 FiQA_SA 75.77 81.36 83.22 94.41
FPB 66.61 69.00 84.79 98.95

90% 54.71 56.74 82.90 92.11 FiQA_SA 53.41 57.76 83.85 88.82
FPB 56.03 55.73 81.96 95.52

Abel-Mistral

10% 99.63 99.67 99.75 99.70 GSM8k 99.82 99.82 99.85 99.82
Math 99.45 99.52 99.66 99.59

80% 93.46 92.52 95.32 99.98 GSM8k 92.50 92.31 94.72 97.38
Math 94.43 92.73 95.92 102.64

90% 81.24 79.92 86.88 94.99 GSM8k 84.90 83.49 88.66 93.15
Math 77.73 76.51 85.13 96.87

Table 2: Domain-Ratio and Task-Ratio of different methods at various pruning rates. Additional results under
remainder pruning rates and the specific performance values for different tasks are presented in Appendix A.

Methods Math Fin Average

Model Soups 15.99 79.46 47.73
LM-Cocktail 76.96 78.80 77.88

Ties-Merging 96.23 22.12 59.18
w/ Wanda 8.30 20.65 14.48
w/ SparseGPT 21.74 18.60 20.17

w/ DARE 90% 21.10 64.88 42.99
w/ DPPA 90% 89.25 79.40 84.33

w/ DARE 80% 58.43 77.16 67.79
w/ DPPA 80% 92.75 95.45 94.10

Table 3: Domain-Ratio of the merged Llama model that
combines domains mathematics and finance. The spe-
cific performance values are presented in Appendix A.

Domains Magnitude OWL DP

Math 53.41 54.09 54.97
Fin 54.71 56.74 62.06

Table 4: Domain-Ratio of DP at a pruning rate of 90%.

guaranteeing over 96% of the domain’s perfor-381

mance.382

Due to space constraints, detailed values, remain-383

der pruning rates, and DPA parameter partition fac-384

tors are included in Appendix A.385

4.4 Main Result of Merge Methods386

We validate our pruning method for model merging387

by integrating models. Table 3 displays results of388

Model Min 10% 90% Max

Abel-Llama -0.01733 -0.00114 0.00114 0.02014
Fin-Llama -0.02612 -0.00160 0.00160 0.02011
Abel-Mistral -0.00127 -0.00010 0.00010 0.00139

Table 5: The offset of different models from the base
model at different position proportions.

two domains at 80% and 90% pruning rates and 389

other baselines. Sample weight averaging methods 390

like Model Soups and LM-Cocktail suffer perfor- 391

mance degradation due to unresolved parameter 392

conflicts. Traditional pruning methods like Wanda 393

and SparseGPT measures the importance of full 394

parameter, unlike the delta parameter, impacting 395

the model after merging. Our method improves 396

performance by over 20% compared to DARE at 397

the same pruning rate, demonstrating its efficacy in 398

model merging. 399

4.5 Detail Analysis 400

We present the performance of DP in Table 4 and 401

discuss cases where DP can replace DARE. Table 6 402

examines the results of disregarding the parameter 403

magnitude considering only the number of parame- 404

ters as the definition of parameter significance and 405

the effects of rounding off fac(·). We compare 406

performance of DPA using other pruning methods 407

in Table 7 and demonstrate the performance of two 408
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Figure 3: After analyzing the pruned parameters of the financial model, it is evident that there is a higher parameter
count in the initial and final 0, 31 layers, while the middle 17 layers have fewer parameters. Additionally, in the Q,
K, V components, it is observed that 90% of the parameters are concentrated in certain dimensions. To facilitate
observation, we have amplified the value by a factor of 1000.

Methods Math Fin

DP 54.97 62.06
change_sig 53.13 60.57
w/o fac 52.69 61.84

Table 6: Domain-Ratio of the variants of DP at a pruning
rate of 90%.

different initializations in Table 8. We analyzed409

why DPPA is effective, as shown in the Fig. 3. Fi-410

nally, we explore the performance impact of adding411

a domain in Table 9.412

The Effectiveness of DP As seen in Table 4, DP413

outperforms at high pruning rates by adjusting the414

significance of parameters within each layer, re-415

taining crucial ones. The DARE method struggles416

when parameter deviations exceed 0.03, with per-417

formance worsening as offsets increase (see Ta-418

ble 5). More detailed results are in Appendix B.419

When DARE’s performance drops below 90% at420

a 90% pruning rate, our method offers a viable421

alternative.422

The Variants of DP As shown in Table 6,423

change_sig disregards parameter magnitude, con-424

sidering only the number of parameters for sig-425

nificance, while w/o fac ignores effects of fac(·).426

Removing the parameter importance causes a sig-427

nificant performance drop, while the tuning factor428

has a minor effect.429

The Generality of DPA Our experimental re-430

sults are in Table 7. We tested the DPA method on431

DARE and OWL. Since DARE already amplifies432

parameters significantly at high pruning rates (5x433

for 80% and 10x for 90%), we switched to dynamic434

reduction. Since Owl is similar to the DP method,435

Methods Math Fin

DPPA 86.85 92.11
DARE 73.44 82.90

w/DPA 83.63 85.08
OWL 54.09 56.74

w/DPA 84.24 87.56

Table 7: Domain-Ratio of DARE and OWL using DPA
at a pruning rate of 90%.

Domains Method 1 Method 2

Math 88.45 97.08
Fin 96.65 94.89

Table 8: Domain-Ratio of two method in DPA at a
pruning rate of 80%.

its performance with DPA surpasses DARE’s. 436

Initialization methods We show a performance 437

comparison of the two initialization methods at 438

80% pruning rate in Table 8. For models with 439

small performance differences, use method 1; for 440

large differences, use method 2, which offers more 441

significant improvement. 442

why DPPA is effective? To investigate, we ana- 443

lyzed the Delta parameters (see Fig 3), exploring 444

the relationship between remaining parameters af- 445

ter DP at different pruning rates and linear layers. 446

The graph shows that, despite being an unstruc- 447

tured pruning method, DP exhibits aspects of struc- 448

tured pruning at high pruning rates. This dimension 449

partitioning aids in interpreting parameter space 450

distribution within specific domains. Using DPA, 451

we amplify parameters, strengthen domain-specific 452

weights in these dimensions, and restore certain 453

capabilities. 454
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Method & Pruning Rate Math Fin Law

DARE 90% 7.89 51.48 53.86
DPPA 90% 89.95 85.24 122.08

DARE 80% 32.61 74.49 78.11
DPPA 80% 91.28 95.20 146.23

Table 9: Domain-Ratio of the model that combines
domains mathematics, finance and law.

Mergeing more Domain In Table 9, we present455

the merging results for adding law domains. Com-456

paring this with Table 3, it is evident that integrat-457

ing a fine-tuned model from an additional domain458

greatly degrades DARE’s performance. Conversely,459

our method maintains comparable performance de-460

spite the extra domain, though performance de-461

creases at varying pruning rates. This result is ex-462

pected, as parameter conflicts during model merg-463

ing typically cause performance degradation. Rel-464

evant information about the added law domain is465

placed in Appendix C.466

5 Related Work467

5.1 Pruning Techniques468

Traditional pruning techniques aim to reduce model469

parameters (Zhu et al., 2023). Although extensively470

studied (Hubara et al., 2021; Mozer and Smolen-471

sky, 1988; Han et al., 2015a; Lin et al., 2019),472

progress has been slow with large language mod-473

els due to the significant fine-tuning data required.474

LORA fine-tuning (Ma et al., 2023) was proposed475

to restore performance. Newer methods avoid fine-476

tuning: SparseGPT (Frantar and Alistarh, 2023)477

uses the Hessian matrix for pruning and weight478

updates to reduce reconstruction error, Wanda (Sun479

et al., 2023) combines weight magnitudes and input480

activations, DSOT (Zhang et al., 2023c) adjusts pa-481

rameters to minimize discrepancies, and OWL (Yin482

et al., 2023) introduces non-uniform layered spar-483

sity for higher pruning rates.484

5.2 Special Domain Fine-Tuning485

This trend continues with large language models,486

leading to domain-specific models in fields like cod-487

ing (Rozière et al., 2023; Yu et al., 2023c; Luo et al.,488

2023b), mathematics (Luo et al., 2023a; Yue et al.,489

2023; Yu et al., 2023a; Gou et al., 2023; Yuan et al.,490

2023), medicine (Kweon et al., 2023; Chen et al.,491

2023; Toma et al., 2023), and finance (Zhang et al.,492

2023a; Yang et al., 2023b; Xie et al., 2023). How-493

ever, fine-tuning across multiple domains demands494

significant computational resources, prompting in- 495

terest in model merging methods. 496

5.3 Model Merge 497

Model merging methods include alignment (Li 498

et al., 2016), model ensemble (Pathak et al., 2010), 499

module connection (Freeman and Bruna, 2017), 500

and weight averaging (Wang et al., 2020). Of these, 501

only weight averaging reduces model parameters. 502

Approaches within weight averaging include sub- 503

space weight averaging (Li et al., 2023), SWA (Iz- 504

mailov et al., 2018), and task arithmetic (Ilharco 505

et al., 2023). Task arithmetic is notable as it in- 506

volves domain-specific offsets added or subtracted 507

from base model weights. Further developments 508

in task arithmetic focus on LORA (Zhang et al., 509

2023b; Chitale et al., 2023; Chronopoulou et al., 510

2023) and minimizing parameter conflicts via scal- 511

ing coefficients (Ortiz-Jiménez et al., 2023; Yang 512

et al., 2023a; Yadav et al., 2023b; Stoica et al., 513

2023), selective weight retention (Yadav et al., 514

2023a), and vector space adjustments (Jin et al., 515

2023). 516

5.4 Federated Learning 517

Federated learning allows multiple clients to collab- 518

oratively train models under a central aggregator, 519

preserving data privacy (Zhang et al., 2021). This 520

setup aligns well with model merging, as it com- 521

bines locally trained models without risking data 522

leakage. 523

6 Conclusions 524

In this study, we introduce a pruning method called 525

DP, which is an improved approach based on mag- 526

nitude pruning to enhance performance at higher 527

pruning rates. Subsequently, we propose DPA, 528

which focuses on dynamically amplifying parti- 529

tions of parameters based on their varying levels of 530

significance. Using DPPA, we address the chal- 531

lenge of model merging in complex fine-tuned 532

models. The experimental results show that our 533

approach only keep 20% of the specific domain pa- 534

rameters, while achieves comparable performance 535

to other methods that retain 90% of the specific 536

domain parameters. Furthermore, our method also 537

achieves a significant improvement of nearly 20% 538

in model merging. Through parametric analysis, 539

we explain DPPA’s effectiveness and investigate 540

how increasing the number of domains affects 541

model performance. 542
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Limitations543

Our method performs less effectively than DARE544

on fine-tuned models with minimal differences545

compared to the original model.546

DAP requires a longer time to find the optimal547

ratio.548

While it mitigates parameter conflicts in model549

merging, there remains the issue of performance550

degradation.551

References552

Iñigo Alonso, Maite Oronoz, and Rodrigo Agerri. 2024.553
Medexpqa: Multilingual benchmarking of large lan-554
guage models for medical question answering. CoRR,555
abs/2404.05590.556

Zeming Chen, Alejandro Hernández-Cano, Angelika557
Romanou, Antoine Bonnet, Kyle Matoba, Francesco558
Salvi, Matteo Pagliardini, Simin Fan, Andreas559
Köpf, Amirkeivan Mohtashami, Alexandre Sallinen,560
Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk,561
Deniz Bayazit, Axel Marmet, Syrielle Montariol,562
Mary-Anne Hartley, Martin Jaggi, and Antoine563
Bosselut. 2023. MEDITRON-70B: scaling medi-564
cal pretraining for large language models. CoRR,565
abs/2311.16079.566

Daixuan Cheng, Shaohan Huang, and Furu Wei. 2023.567
Adapting large language models via reading compre-568
hension. CoRR, abs/2309.09530.569

Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu, Ke-570
hua Feng, Junlong Li, and Pengfei Liu. 2023. Gen-571
erative ai for math: Abel. https://github.com/572
GAIR-NLP/abel.573

Rajas Chitale, Ankit Vaidya, Aditya Kane, and Archana574
Ghotkar. 2023. Task arithmetic with lora for contin-575
ual learning. CoRR, abs/2311.02428.576

Alexandra Chronopoulou, Jonas Pfeiffer, Joshua577
Maynez, Xinyi Wang, Sebastian Ruder, and Priyanka578
Agrawal. 2023. Language and task arithmetic with579
parameter-efficient layers for zero-shot summariza-580
tion. CoRR, abs/2311.09344.581

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,582
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias583
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro584
Nakano, Christopher Hesse, and John Schulman.585
2021. Training verifiers to solve math word prob-586
lems. CoRR, abs/2110.14168.587

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-588
sive language models can be accurately pruned in589
one-shot. In International Conference on Machine590
Learning, ICML 2023, 23-29 July 2023, Honolulu,591
Hawaii, USA, volume 202 of Proceedings of Machine592
Learning Research, pages 10323–10337. PMLR.593

C. Daniel Freeman and Joan Bruna. 2017. Topology 594
and geometry of half-rectified network optimization. 595
In 5th International Conference on Learning Rep- 596
resentations, ICLR 2017, Toulon, France, April 24- 597
26, 2017, Conference Track Proceedings. OpenRe- 598
view.net. 599

Tingchen Fu, Deng Cai, Lemao Liu, Shuming Shi, and 600
Rui Yan. 2024. Disperse-then-merge: Pushing the 601
limits of instruction tuning via alignment tax reduc- 602
tion. arXiv preprint arXiv:2405.13432. 603

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 604
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 605
Chen. 2023. Tora: A tool-integrated reasoning 606
agent for mathematical problem solving. CoRR, 607
abs/2309.17452. 608

Song Han, Jeff Pool, John Tran, and William J. Dally. 609
2015a. Learning both weights and connections for 610
efficient neural network. In Advances in Neural In- 611
formation Processing Systems 28: Annual Confer- 612
ence on Neural Information Processing Systems 2015, 613
December 7-12, 2015, Montreal, Quebec, Canada, 614
pages 1135–1143. 615

Song Han, Jeff Pool, John Tran, and William J. Dally. 616
2015b. Learning both weights and connections for 617
efficient neural networks. CoRR, abs/1506.02626. 618

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 619
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja- 620
cob Steinhardt. 2021. Measuring mathematical prob- 621
lem solving with the MATH dataset. In Proceedings 622
of the Neural Information Processing Systems Track 623
on Datasets and Benchmarks 1, NeurIPS Datasets 624
and Benchmarks 2021, December 2021, virtual. 625

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, 626
Joseph Naor, and Daniel Soudry. 2021. Acceler- 627
ated sparse neural training: A provable and efficient 628
method to find N: M transposable masks. In Ad- 629
vances in Neural Information Processing Systems 34: 630
Annual Conference on Neural Information Process- 631
ing Systems 2021, NeurIPS 2021, December 6-14, 632
2021, virtual, pages 21099–21111. 633

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Worts- 634
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali 635
Farhadi. 2023. Editing models with task arithmetic. 636
In The Eleventh International Conference on Learn- 637
ing Representations, ICLR 2023, Kigali, Rwanda, 638
May 1-5, 2023. OpenReview.net. 639

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, 640
Dmitry P. Vetrov, and Andrew Gordon Wilson. 2018. 641
Averaging weights leads to wider optima and better 642
generalization. In Proceedings of the Thirty-Fourth 643
Conference on Uncertainty in Artificial Intelligence, 644
UAI 2018, Monterey, California, USA, August 6-10, 645
2018, pages 876–885. AUAI Press. 646

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 647
sch, Chris Bamford, Devendra Singh Chaplot, Diego 648
de Las Casas, Florian Bressand, Gianna Lengyel, 649

9

https://doi.org/10.48550/ARXIV.2404.05590
https://doi.org/10.48550/ARXIV.2404.05590
https://doi.org/10.48550/ARXIV.2404.05590
https://doi.org/10.48550/ARXIV.2311.16079
https://doi.org/10.48550/ARXIV.2311.16079
https://doi.org/10.48550/ARXIV.2311.16079
https://doi.org/10.48550/ARXIV.2309.09530
https://doi.org/10.48550/ARXIV.2309.09530
https://doi.org/10.48550/ARXIV.2309.09530
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
https://doi.org/10.48550/ARXIV.2311.02428
https://doi.org/10.48550/ARXIV.2311.02428
https://doi.org/10.48550/ARXIV.2311.02428
https://doi.org/10.48550/ARXIV.2311.09344
https://doi.org/10.48550/ARXIV.2311.09344
https://doi.org/10.48550/ARXIV.2311.09344
https://doi.org/10.48550/ARXIV.2311.09344
https://doi.org/10.48550/ARXIV.2311.09344
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://proceedings.mlr.press/v202/frantar23a.html
https://openreview.net/forum?id=Bk0FWVcgx
https://openreview.net/forum?id=Bk0FWVcgx
https://openreview.net/forum?id=Bk0FWVcgx
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://doi.org/10.48550/ARXIV.2309.17452
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/b0490b85e92b64dbb5db76bf8fca6a82-Abstract.html
https://openreview.net/pdf?id=6t0Kwf8-jrj
http://auai.org/uai2018/proceedings/papers/313.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf
http://auai.org/uai2018/proceedings/papers/313.pdf


Guillaume Lample, Lucile Saulnier, Lélio Re-650
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,651
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-652
thée Lacroix, and William El Sayed. 2023. Mistral653
7b. CoRR, abs/2310.06825.654

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and655
Pengxiang Cheng. 2023. Dataless knowledge fu-656
sion by merging weights of language models. In The657
Eleventh International Conference on Learning Rep-658
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,659
2023. OpenReview.net.660

Sunjun Kweon, Junu Kim, Jiyoun Kim, Sujeong Im,661
Eunbyeol Cho, Seongsu Bae, Jungwoo Oh, Gyubok662
Lee, Jong Hak Moon, Seng Chan You, Seungjin663
Baek, Chang Hoon Han, Yoon Bin Jung, Yohan Jo,664
and Edward Choi. 2023. Publicly shareable clinical665
large language model built on synthetic clinical notes.666
CoRR, abs/2309.00237.667

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng668
Liu, and Xiaolin Huang. 2023. Low dimensional669
trajectory hypothesis is true: Dnns can be trained670
in tiny subspaces. IEEE Trans. Pattern Anal. Mach.671
Intell., 45(3):3411–3420.672

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and673
John E. Hopcroft. 2016. Convergent learning: Do674
different neural networks learn the same representa-675
tions? In 4th International Conference on Learning676
Representations, ICLR 2016, San Juan, Puerto Rico,677
May 2-4, 2016, Conference Track Proceedings.678

Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang679
Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and680
David S. Doermann. 2019. Towards optimal struc-681
tured CNN pruning via generative adversarial learn-682
ing. In IEEE Conference on Computer Vision and683
Pattern Recognition, CVPR 2019, Long Beach, CA,684
USA, June 16-20, 2019, pages 2790–2799. Computer685
Vision Foundation / IEEE.686

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-687
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei688
Lin, Shifeng Chen, and Dongmei Zhang. 2023a. Wiz-689
ardmath: Empowering mathematical reasoning for690
large language models via reinforced evol-instruct.691
CoRR, abs/2308.09583.692

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo693
Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-694
wei Lin, and Daxin Jiang. 2023b. Wizardcoder:695
Empowering code large language models with evol-696
instruct. CoRR, abs/2306.08568.697

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.698
Llm-pruner: On the structural pruning of large lan-699
guage models. CoRR, abs/2305.11627.700

Macedo Maia, Siegfried Handschuh, André Freitas,701
Brian Davis, Ross McDermott, Manel Zarrouk, and702
Alexandra Balahur. 2018. Www’18 open challenge:703
Financial opinion mining and question answering. In704
Companion of the The Web Conference 2018 on The705
Web Conference 2018, WWW 2018, Lyon , France,706
April 23-27, 2018, pages 1941–1942. ACM.707

Pekka Malo, Ankur Sinha, Pekka J. Korhonen, Jyrki 708
Wallenius, and Pyry Takala. 2014. Good debt or bad 709
debt: Detecting semantic orientations in economic 710
texts. J. Assoc. Inf. Sci. Technol., 65(4):782–796. 711

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 712
Hannaneh Hajishirzi. 2022. Cross-task generaliza- 713
tion via natural language crowdsourcing instructions. 714
In Proceedings of the 60th Annual Meeting of the 715
Association for Computational Linguistics (Volume 716
1: Long Papers), ACL 2022, Dublin, Ireland, May 717
22-27, 2022, pages 3470–3487. Association for Com- 718
putational Linguistics. 719

Michael Mozer and Paul Smolensky. 1988. Skeletoniza- 720
tion: A technique for trimming the fat from a network 721
via relevance assessment. In Advances in Neural In- 722
formation Processing Systems 1, [NIPS Conference, 723
Denver, Colorado, USA, 1988], pages 107–115. Mor- 724
gan Kaufmann. 725

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pas- 726
cal Frossard. 2023. Task arithmetic in the tan- 727
gent space: Improved editing of pre-trained models. 728
CoRR, abs/2305.12827. 729

Manas A. Pathak, Shantanu Rane, and Bhiksha Raj. 730
2010. Multiparty differential privacy via aggrega- 731
tion of locally trained classifiers. In Advances in 732
Neural Information Processing Systems 23: 24th An- 733
nual Conference on Neural Information Processing 734
Systems 2010. Proceedings of a meeting held 6-9 De- 735
cember 2010, Vancouver, British Columbia, Canada, 736
pages 1876–1884. Curran Associates, Inc. 737

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 738
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 739
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom 740
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man- 741
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, 742
Wenhan Xiong, Alexandre Défossez, Jade Copet, 743
Faisal Azhar, Hugo Touvron, Louis Martin, Nico- 744
las Usunier, Thomas Scialom, and Gabriel Synnaeve. 745
2023. Code llama: Open foundation models for code. 746
CoRR, abs/2308.12950. 747

George Stoica, Daniel Bolya, Jakob Bjorner, Taylor 748
Hearn, and Judy Hoffman. 2023. Zipit! merging 749
models from different tasks without training. CoRR, 750
abs/2305.03053. 751

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. 752
2023. A simple and effective pruning approach for 753
large language models. CoRR, abs/2306.11695. 754

Augustin Toma, Patrick R. Lawler, Jimmy Ba, Rahul G. 755
Krishnan, Barry B. Rubin, and Bo Wang. 2023. Clin- 756
ical camel: An open-source expert-level medical lan- 757
guage model with dialogue-based knowledge encod- 758
ing. CoRR, abs/2305.12031. 759

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 760
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 761
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 762
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton- 763
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 764

10

https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://openreview.net/pdf?id=FCnohuR6AnM
https://openreview.net/pdf?id=FCnohuR6AnM
https://openreview.net/pdf?id=FCnohuR6AnM
https://doi.org/10.48550/ARXIV.2309.00237
https://doi.org/10.48550/ARXIV.2309.00237
https://doi.org/10.48550/ARXIV.2309.00237
https://doi.org/10.1109/TPAMI.2022.3178101
https://doi.org/10.1109/TPAMI.2022.3178101
https://doi.org/10.1109/TPAMI.2022.3178101
https://doi.org/10.1109/TPAMI.2022.3178101
https://doi.org/10.1109/TPAMI.2022.3178101
http://arxiv.org/abs/1511.07543
http://arxiv.org/abs/1511.07543
http://arxiv.org/abs/1511.07543
http://arxiv.org/abs/1511.07543
http://arxiv.org/abs/1511.07543
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2308.09583
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2305.11627
https://doi.org/10.48550/ARXIV.2305.11627
https://doi.org/10.48550/ARXIV.2305.11627
https://doi.org/10.1145/3184558.3192301
https://doi.org/10.1145/3184558.3192301
https://doi.org/10.1145/3184558.3192301
https://doi.org/10.1002/ASI.23062
https://doi.org/10.1002/ASI.23062
https://doi.org/10.1002/ASI.23062
https://doi.org/10.1002/ASI.23062
https://doi.org/10.1002/ASI.23062
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
https://doi.org/10.18653/V1/2022.ACL-LONG.244
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
https://doi.org/10.48550/ARXIV.2305.12827
https://doi.org/10.48550/ARXIV.2305.12827
https://doi.org/10.48550/ARXIV.2305.12827
https://proceedings.neurips.cc/paper/2010/hash/0d0fd7c6e093f7b804fa0150b875b868-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/0d0fd7c6e093f7b804fa0150b875b868-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/0d0fd7c6e093f7b804fa0150b875b868-Abstract.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2305.03053
https://doi.org/10.48550/ARXIV.2305.03053
https://doi.org/10.48550/ARXIV.2305.03053
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2306.11695
https://doi.org/10.48550/ARXIV.2305.12031
https://doi.org/10.48550/ARXIV.2305.12031
https://doi.org/10.48550/ARXIV.2305.12031
https://doi.org/10.48550/ARXIV.2305.12031
https://doi.org/10.48550/ARXIV.2305.12031
https://doi.org/10.48550/ARXIV.2305.12031
https://doi.org/10.48550/ARXIV.2305.12031


Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,765
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-766
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan767
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,768
Isabel Kloumann, Artem Korenev, Punit Singh Koura,769
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-770
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-771
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-772
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-773
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,774
Ruan Silva, Eric Michael Smith, Ranjan Subrama-775
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-776
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,777
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,778
Melanie Kambadur, Sharan Narang, Aurélien Ro-779
driguez, Robert Stojnic, Sergey Edunov, and Thomas780
Scialom. 2023. Llama 2: Open foundation and fine-781
tuned chat models. CoRR, abs/2307.09288.782

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dim-783
itris S. Papailiopoulos, and Yasaman Khazaeni. 2020.784
Federated learning with matched averaging. In 8th785
International Conference on Learning Representa-786
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-787
30, 2020. OpenReview.net.788

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak789
Gadre, Rebecca Roelofs, Raphael Gontijo Lopes,790
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi,791
Yair Carmon, Simon Kornblith, and Ludwig Schmidt.792
2022. Model soups: averaging weights of multiple793
fine-tuned models improves accuracy without increas-794
ing inference time. In International Conference on795
Machine Learning, ICML 2022, 17-23 July 2022, Bal-796
timore, Maryland, USA, volume 162 of Proceedings797
of Machine Learning Research, pages 23965–23998.798
PMLR.799

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xin-800
grun Xing. 2023. Lm-cocktail: Resilient tuning801
of language models via model merging. CoRR,802
abs/2311.13534.803

Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao804
Lai, Min Peng, Alejandro Lopez-Lira, and Jimin805
Huang. 2023. PIXIU: A large language model, in-806
struction data and evaluation benchmark for finance.807
CoRR, abs/2306.05443.808

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raf-809
fel, and Mohit Bansal. 2023a. Resolving interference810
when merging models. CoRR, abs/2306.01708.811

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A.812
Raffel, and Mohit Bansal. 2023b. Ties-merging: Re-813
solving interference when merging models. In Ad-814
vances in Neural Information Processing Systems 36:815
Annual Conference on Neural Information Process-816
ing Systems 2023, NeurIPS 2023, New Orleans, LA,817
USA, December 10 - 16, 2023.818

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guib-819
ing Guo, Xingwei Wang, and Dacheng Tao. 2023a.820
Adamerging: Adaptive model merging for multi-task821
learning. CoRR, abs/2310.02575.822

Hongyang Yang, Xiao-Yang Liu, and Christina Dan 823
Wang. 2023b. Fingpt: Open-source financial large 824
language models. CoRR, abs/2306.06031. 825

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, 826
Yaqing Wang, Yiling Jia, Mykola Pechenizkiy, 827
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2023. 828
Outlier weighed layerwise sparsity (OWL): A miss- 829
ing secret sauce for pruning llms to high sparsity. 830
CoRR, abs/2310.05175. 831

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023a. 832
Outcome-supervised verifiers for planning in mathe- 833
matical reasoning. CoRR, abs/2311.09724. 834

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin 835
Li. 2023b. Language models are super mario: Ab- 836
sorbing abilities from homologous models as a free 837
lunch. CoRR, abs/2311.03099. 838

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang, 839
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng 840
Yin. 2023c. Wavecoder: Widespread and versatile 841
enhanced instruction tuning with refined data genera- 842
tion. CoRR, abs/2312.14187. 843

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting 844
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scaling 845
relationship on learning mathematical reasoning with 846
large language models. CoRR, abs/2308.01825. 847

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao 848
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2023. 849
Mammoth: Building math generalist models through 850
hybrid instruction tuning. CoRR, abs/2309.05653. 851

Boyu Zhang, Hongyang Yang, and Xiao-Yang Liu. 852
2023a. Instruct-fingpt: Financial sentiment analy- 853
sis by instruction tuning of general-purpose large 854
language models. CoRR, abs/2306.12659. 855

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, 856
and Yuan Gao. 2021. A survey on federated learning. 857
Knowl. Based Syst., 216:106775. 858

Jinghan Zhang, Shiqi Chen, Junteng Liu, and Junxian 859
He. 2023b. Composing parameter-efficient modules 860
with arithmetic operations. CoRR, abs/2306.14870. 861

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, 862
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu, 863
and Rongrong Ji. 2023c. Dynamic sparse no train- 864
ing: Training-free fine-tuning for sparse llms. CoRR, 865
abs/2310.08915. 866

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping 867
Wang. 2023. A survey on model compression for 868
large language models. CoRR, abs/2308.07633. 869

A Main Result of Various Pruning 870

Methods on Specific Tasks 871

We presented all pruning results of Llama-based 872

model in Table 13 and Mistral-based model in Ta- 873

ble 11. The table displays the performance of two 874

11

https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://openreview.net/forum?id=BkluqlSFDS
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://doi.org/10.48550/ARXIV.2311.13534
https://doi.org/10.48550/ARXIV.2311.13534
https://doi.org/10.48550/ARXIV.2311.13534
https://doi.org/10.48550/ARXIV.2306.05443
https://doi.org/10.48550/ARXIV.2306.05443
https://doi.org/10.48550/ARXIV.2306.05443
https://doi.org/10.48550/ARXIV.2306.01708
https://doi.org/10.48550/ARXIV.2306.01708
https://doi.org/10.48550/ARXIV.2306.01708
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1644c9af28ab7916874f6fd6228a9bcf-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2310.02575
https://doi.org/10.48550/ARXIV.2310.02575
https://doi.org/10.48550/ARXIV.2310.02575
https://doi.org/10.48550/ARXIV.2306.06031
https://doi.org/10.48550/ARXIV.2306.06031
https://doi.org/10.48550/ARXIV.2306.06031
https://doi.org/10.48550/ARXIV.2310.05175
https://doi.org/10.48550/ARXIV.2310.05175
https://doi.org/10.48550/ARXIV.2310.05175
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.09724
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2309.05653
https://doi.org/10.48550/ARXIV.2309.05653
https://doi.org/10.48550/ARXIV.2309.05653
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.48550/ARXIV.2306.12659
https://doi.org/10.1016/J.KNOSYS.2021.106775
https://doi.org/10.48550/ARXIV.2306.14870
https://doi.org/10.48550/ARXIV.2306.14870
https://doi.org/10.48550/ARXIV.2306.14870
https://doi.org/10.48550/ARXIV.2310.08915
https://doi.org/10.48550/ARXIV.2310.08915
https://doi.org/10.48550/ARXIV.2310.08915
https://doi.org/10.48550/ARXIV.2308.07633
https://doi.org/10.48550/ARXIV.2308.07633
https://doi.org/10.48550/ARXIV.2308.07633


Model Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Abel-Llama -0.0173 -0.0011 -0.0007 -0.0004 -0.0002 1.1e-08 0.0002 0.0004 0.0007 0.0011 0.0201
Finance-Llama -0.0261 -0.0016 -0.0010 -0.0006 -0.0003 0.0 0.0003 0.0006 0.0010 0.0016 0.0201
Abel-Mistral -0.0012 -0.0001 -7.1e-05 -4.4e-05 -2.1e-05 -5.8e-10 2.1e-05 4.4e-05 7.1e-05 0.0001 0.0013

Table 10: The offset of different models from the base model at different position proportions.

Sparse ratio Magnitude OWL DP DARE

gsm8k
0.1 0.806671721 0.806671721 0.804397271 0.806887854
0.2 0.806671721 0.805155421 0.803639121 0.805155421
0.3 0.805155421 0.808188021 0.808188021 0.806671721
0.4 0.806671721 0.807429871 0.808188021 0.803639121
0.5 0.794541319 0.80288097 0.79681577 0.805913571
0.6 0.785443518 0.782410917 0.784685368 0.809704321
0.7 0.761182714 0.762699014 0.760424564 0.780136467
0.8 0.747536012 0.746019712 0.746777862 0.765432321
0.9 0.686125853 0.674753601 0.683093252 0.716461463

MATH
0.1 0.2930 0.2932 0.2930 0.2936
0.2 0.2916 0.2916 0.2910 0.2924
0.3 0.2938 0.2936 0.2926 0.2944
0.4 0.2982 0.2964 0.2968 0.2932
0.5 0.2948 0.2954 0.2946 0.2966
0.6 0.2900 0.2950 0.2934 0.2958
0.7 0.2866 0.2876 0.2902 0.2914
0.8 0.2782 0.2732 0.2746 0.2826
0.9 0.2290 0.2254 0.2250 0.2508

Table 11: All pruning result for Abel-Mistral model in math domain.

llama2-based models in their respective domains,875

including DP performance and DPA search results876

in various domains.877

We show the factor of DPA and the correspond-878

ing results on each dataset. For Abel-Llama, the879

amplification factor is 1.3 for 80% and 1.1 for 90%880

of the partitions; for gsm8k is 0.5716, for Math881

is 0.1282. For Finance-Llama, the factor is 1.0882

for 80% and 1.1 for 90% of the partitions; for883

FiQA_SA is 0.646808511, for FPB is 0.684536082.884

For Abel-Mistral, the factor is 1.0 for 80% and 1.7885

for 90% of the partitions; for gsm8k is 0.7870, for886

Math is 0.3024.887

And, we show the numerical results after the888

Merging of each method as shown in the Table 12.889

B The Offset of Models890

We presented ten different percentage values in891

Table 10.892

C Law893

Our method achieves performance close to the894

dense model but may fall short for tasks requir-895

ing superior performance. Interestingly, in the law896

domain, pruned models significantly outperformed897

the dense model, achieving 120-140% of its per- 898

formance at pruning rates of 10-90%. We attribute 899

this to the low performance of the law domain fine- 900

tune model and the potential enhancement from 901

offsetting a local minimum through pruning. 902
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Methods GSM8k MATH FiQA_SA FPB

Model Soups 0.121304018 0.0164 0.544680851 0.549484536
LM-Cocktail 0.473843821 0.0972 0.527659574 0.557731959

Ties-Merging 0.576952236 0.1248 0.208510638 0.111340206
w/ Wanda 0.039423805 0.0136 0.132471678 0.169123487
w/ SparseGPT 0.062816479 0.0528 0.12158879 0.134876196

w/ DARE 90% 0.154662623 0.0224 0.455319149 0.43814433
w/ DPPA 90% 0.557998484 0.111 0.591489362 0.505154639

w/ DARE 80% 0.392721759 0.0676 0.523404255 0.539175258
w/ DPPA 80% 0.577710387 0.1158 0.663829787 0.650515464

Table 12: The specific performance values of the merged Llama model that combines domains mathematics and
finance.

Sparse ratio Magnitude OWL DP DARE

gsm8k
0.1 0.59893859 0.595905989 0.589082638 0.587566338
0.2 0.593631539 0.592873389 0.59893859 0.585291888
0.3 0.590598939 0.589082638 0.594389689 0.586808188
0.4 0.578468537 0.579984837 0.588324488 0.567096285
0.5 0.584533738 0.589840788 0.587566338 0.563305534
0.6 0.578468537 0.574677786 0.570128886 0.557240334
0.7 0.546626232 0.542835481 0.545109932 0.558756634
0.8 0.501137225 0.495072024 0.489006823 0.53525398
0.9 0.343442002 0.342683851 0.351781653 0.498104625

MATH
0.1 0.1208 0.122 0.129 0.1236
0.2 0.1218 0.1212 0.1232 0.1298
0.3 0.125 0.1232 0.1238 0.1274
0.4 0.1262 0.1258 0.1276 0.1264
0.5 0.122 0.125 0.1248 0.1216
0.6 0.1254 0.124 0.1194 0.1184
0.7 0.1176 0.1148 0.1142 0.1134
0.8 0.0996 0.0934 0.095 0.111
0.9 0.0646 0.0664 0.0668 0.0842

FiQA_SA
0.1 0.608510638 0.595744681 0.635744681 0.629787234
0.2 0.612765957 0.642553191 0.629787234 0.621276596
0.3 0.629787234 0.646808511 0.621276596 0.634042553
0.4 0.629787234 0.621276596 0.629787234 0.625531915
0.5 0.582978723 0.561702128 0.34893617 0.561702128
0.6 0.595744681 0.540425532 0.54893617 0.685106383
0.7 0.540425532 0.510638298 0.195744681 0.587234043
0.8 0.519148936 0.557446809 0.493617021 0.570212766
0.9 0.365957447 0.395744681 0.438297872 0.574468085

FPB
0.1 0.642268041 0.631958763 0.62556701 0.62371134
0.2 0.620618557 0.616494845 0.611340206 0.634020619
0.3 0.597938144 0.608247423 0.628865979 0.627835052
0.4 0.610309278 0.609278351 0.601030928 0.644329897
0.5 0.590721649 0.57628866 0.605154639 0.611340206
0.6 0.597938144 0.579381443 0.579381443 0.615463918
0.7 0.534020619 0.550515464 0.537113402 0.607216495
0.8 0.460824742 0.477319588 0.471134021 0.586597938
0.9 0.387628866 0.38556701 0.416494845 0.567010309

Table 13: All pruning result for Llama-based model in two domain.
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