
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOC-DECOMP: LLM AUTOFORMALIZATION VIA LO-
GICAL CONCEPT DECOMPOSITION AND ITERATIVE
FEEDBACK CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoformalization—the process of converting natural language mathematical
statements into machine-verifiable formal code—plays a critical role in ensur-
ing the reliability of mathematical reasoning generated by large language models
(LLMs). Recent studies show that LLMs exhibit strong potential in automating
this process, producing formal code for systems such as Lean 4, Coq, and Isabelle.
Despite prominent advances, existing LLM-based autoformalization methods re-
main limited: they lack the ability to provide reliable semantic consistency checks
to ensure that the formal code accurately preserves the meaning of the original
statement. Furthermore, such methods are unable to support iterative improve-
ment through corrective feedback. To address these limitations, we propose Loc-
Decomp, a novel framework that integrates an automatic semantic consistency
checker and the Lean 4 compiler to iteratively refine LLM-generated formaliza-
tions, ensuring both semantic consistency and syntactic correctness. Our approach
introduces three key innovations: (1) A structured and COT-like formalization
template that decomposes complex formalization tasks into modular, foundational
components, and systematically assembles them—like building blocks—into a
complete formal expression. (2) A semantic self-checking mechanism based on
a divide-conquer-merge strategy to detect subtle inconsistencies between the for-
malization and the original statement. (3) An iterative feedback-driven refinement
loop that leverages both semantic and syntactic error signals to guide the LLM
in progressively improving the formal output. By integrating these innovations,
Loc-Decomp significantly enhances the accuracy of LLM-driven formalization,
reduces reliance on human intervention, and moves closer to truly reliable auto-
mated reasoning. Extensive experiments on high-school-level and undergraduate-
level datasets demonstrate that our approach achieves a significantly higher for-
malization success rate compared to baseline methods and state-of-the-art (SOTA)
models. On the PutnamBench dataset, for instance, our method attains a success
rate of 93.09%, representing an improvement of 18 percentage points over the
previous SOTA SFT-based model.

1 INTRODUCTION

Statement formalization(Weng et al., 2025; Gonthier, 2007; Szegedy, 2020) denotes the process
of converting a mathematical statement into a formal language—such as Lean 4, Coq, or Isabelle
(de Moura et al., 2015; Bertot & Castéran, 2004; Paulson, 1994)—which constitutes a necessary step
for the verification of mathematical reasoning in theorem provers(Zhou et al., 2024). A successful
formalization must not only satisfy syntactic correctness, as verified by compiler checks, but also
ensure semantic consistency by faithfully preserving the meaning of the original statement. How-
ever, this task is widely recognized as highly labor-intensive, owing to the inherent flexibility and
ambiguity of natural language, which pose significant challenges to automation (Yang et al., 2024).

Recent studies leveraging large language models (LLMs) (Achiam et al., 2023; Team et al., 2023;
Liu et al., 2024; Azerbayev et al., 2023b) for autoformalization have shown promising progress and
achieved notable results on relatively simple statements. These approaches include both prompt
engineering with candidate scoring using general-purpose LLMs and methods based on supervised

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fine-tuning on domain-specific datasets (Li et al., 2024a; Ying et al., 2024). However, when deal-
ing with more complex mathematical statements—such as those in probability, combinatorics, or
geometry (Trinh et al., 2024)— there is still considerable room for improvement. Key challenges in-
clude accurately detecting subtle semantic inconsistencies and effectively leveraging these detected
inconsistencies to refine the formalization.

To address these two challenges, we proposed an automated LLM-based formalization framework
built upon Logical Concept Decomposition (LoC-Decomp), which integrates a modular formal-
ization template, an automatic semantic consistency check (ASCC) method, and an iterative re-
finement method within Lean 4. Specifically, we instruct the LLM to generate Lean 4 code con-
forming to a predefined template that decomposes the formal statement into multiple declaration
segments,thereby enabling a semantically complete breakdown. A divide-conquer-merge based
back-translation process is then applied to more accurately capture subtle semantics in Lean 4. Sub-
sequently, we perform both segmented and holistic discrepancy detection by prompting the LLM
to identify potential semantic inconsistencies within individual segments and the entire statement.
The detected discrepancies are then evaluated against predefined criteria by LLM, and rectification
suggestions are also provided along with the evaluation procedure. Utilizing these discrepancy de-
scriptions and recommendations as well as compiler error messages, an iterative refinement strategy
is implemented to achieve both semantic consistency and syntactic correctness.

As in previous works, we conducted extensive experiments on widely used mathematical datasets,
MATH-500(Lightman et al., 2024) and miniF2F(Zheng et al., 2022) for example, to evaluate the
effectiveness of our proposed approach. The results indicate that after incorporating the Loc-
Decomp Lean 4 template and few-shot examples, the single-round (pass@1) formalization suc-
cess rate on the miniF2F dataset reached 77.25%. With the further integration of semantic con-
sistency checks, compiler verification, and iterative feedback refinement, the pass rate on miniF2F
increased to 90.16%.1. Experiment results and code are available at https://anonymous.
4open.science/r/auto-Formalization-1784.

In summary, the main contributions of this paper are as follows:

1. We introduced LoC-Decomp, a COT-like Lean 4 template that breaks down the formalization
process into multiple steps, with theoretical guarantees of expressiveness.

2. We introduced a novel semantic consistency checking method by decomposing the formaliza-
tion code. This approach enables LLMs to accurately detect semantic inconsistencies between the
formalized code and the original problem in complex scenarios.

3. We presented an iterative feedback-based method for semantic and syntactic correction, allow-
ing the LLM to leverage identified semantic inconsistencies from the previous step or compiler-
generated syntax errors to iteratively refine the Lean 4 code.

4. We conducted extensive experiments on two widely adopted datasets and evaluated the results us-
ing an automatic evaluation metric supplemented by human assessment, which collectively demon-
strate the effectiveness of the proposed approach.

2 BACKGROUND AND RELATED WORK

Formal Reasoning: Recently, a number of studies have emerged that employ formal provers such
as Lean 4, Coq, and Isabelle to validate the reasoning processes of LLMs (Yang et al., 2023; Wang
et al., 2024; Li et al., 2024b; Lin et al., 2025a; Alfarano et al., 2024; Huang et al., 2024). As pointed
out in (Yang et al., 2024), leveraging rigorous formal provers to provide feedback can effectively
mitigate data scarcity and counteract hallucinations. Automated theorem provers represent one of
the building blocks of this approach: given a formal proposition, they require the LLM to output
a proof process, which is then verified using a formal proof system. BFS-prover (Xin et al., 2025)
through an optimized Best-First Search framework enhanced by expert iteration and policy refine-
ment. DeepSeek-prover-v2 (Ren et al., 2025) introduces a cold-start reinforcement learning proce-
dure that integrates informal mathematical reasoning with formal proof steps through a recursive
theorem-proving pipeline.

1All these results are under the ASCC-3-MV metric with DeepSeek-V3 as base model, see section 4 for
more information.

2

https://anonymous.4open.science/r/auto-Formalization-1784
https://anonymous.4open.science/r/auto-Formalization-1784

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Autoformalization: Unlike theorem proving, autoformalization does not generate proofs for theo-
rems; rather, it converts natural language statements into formal specifications (Weng et al., 2025).
Autoformalization thus acts as a bridge between informal and formal mathematics.Traditional rule-
based autoformalization methods (Pathak, 2024) are limited by their manual design, fragility to un-
seen constructs, and poor semantic disambiguation. In contrast, methods based on Large Language
Models (LLMs) offer greater flexibility and are capable of capturing subtle or rare linguistic pat-
terns that might be overlooked by human experts during rule design. LLM-based autoformalization
primarily follows two research directions: fine-tuning on synthetically generated data (Jiang et al.,
2025; 2023b;a; Azerbayev et al., 2023a) and prompt-based (in-context learning) approaches. Some
reserchers observed that auto-informalization is easier than autoformalization (Wu et al., 2022). This
observation has motivated subsequent work that employs LLM-based back-translation to verify the
correctness of formalized outputs (Li et al., 2024a). Another line of research, parallel to our work,
explores the use of Retrieval-Augmented Generation to improve the formalization abilities of large
language models (Liu et al., 2025a). A training based evaluation method is proposed by Lu et al.
(2024a) to detect misalignment in formalization, but this method can only provide a numerical score
without targeted revision suggestions. For feedback refinement, several studies have utilized com-
piler error messages to improve the formalization results generated by LLMs(Liu et al., 2025b; Lu
et al., 2024b; Zhang et al., 2024). The work of KELPS (Zhang et al., 2025) introduced an interme-
diate language to facilitate concept decomposition; however, it did not integrate this decomposition
idea into semantic consistency checking. And FIMO(Liu et al., 2023) was the first to introduce a
mechanism that integrates semantic feedback with syntactic error correction. However, a significant
limitation is that their semantic feedback mechanism required manual involvement.In summary, an
automated approach that integrates semantic inconsistency feedback with compiler errors to simul-
taneously achieve semantic consistency and syntactic correctness remains unexplored.

3 LOC-DECOMP BASED ITERATIVELY REFINEMENT FRAMEWORK

As shown in Figure 1, our proposed autoformalization framework consists of four modules: (1)
template-based formal translation (FormalTrans), (2) decomposition-based back translation (Back-
Trans), (3) automatic semantic consistency check and iterative rectification (ASCC-R), and (4) com-
piler check and iterative rectification (CpC-R).

Original Problem
In Natural
Language

Our
Method

Iterative Check
And Rectification

ASCC-R
Module(3)

CpC-R
Module(4)

semantic
error

Rectified

syntax
error

Rectified

Detected by final ASCC
and rectify in next round

BackTrans
Module(2)

Template-Based
FormalTrans
Module (1)

Template-Based
Formal Translation

Original Problem
In Natural
Language

Translate NL
To Lean4 By

General Purpose LLM
Or Fine-tuned LM

Previous
Method

Without further
refinement

Figure 1: Overview of our Loc-Decomp based iteratively refinement framework (bottom) and an
overview of previous method(top). In comparison with previous methods that select one from mul-
tiple generated candidates, our approach introduces iterative feedback and refinement, eliminating
the need to generate multiple candidates and gains cumulative knowledge from each iteration.

When processing a mathematical problem formalization task, (1) the FormalTrans module first com-
bines the problem with task requirements, few-shot examples(more details discussion about the few-
shot examples are available in A.6), and a Lean 4 template to form a complete prompt, which is then
provided to the LLM for formalization. (2) The formalization result is then send to the BackTrans
module to get a natural language description of the Lean 4 code. (3,4) An alternating semantic con-
sistency checking with rectification and compilation error checking with rectification are conducted
iteratively by the ASCC-R module and CpC-R module. Inside the ASCC-R module, a submodule

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

named ASCC conduct semantic consistency checking and propose modification suggestions is intro-
duced. These suggestions are then addressed through rectification. The check and the rectification
are iteratively repeated until semantic consistency is achieved (or the maximum iteration count is
reached in the loop which we call inner semantic loop). Subsequently, if the Lean 4 code pass the
semantic check, it is sent to the CpC-R module for compiler check and syntax corrections until the
code passes the compiler check (or the maximum iteration count is reached in the loop which we call
inner syntax loop). The process of semantic checking and correction, as well as compiler check and
correction, must be alternatively repeated (which we call the outer loop) until the code consecutively
passes both semantic and compiler checks. The final formalization result is then output.

In Section 3.1, we introduce the formal translation module which contains a template that decom-
poses Lean 4 code into predefined components, thereby support fine-grained back translation, se-
mantic verification, and targeted rectification in subsequent stages. Section 3.2 then introduces the
back translation module which adopted a divide-conquer-merge strategy and the semantic consis-
tency check submodule which depend on the BackTrans module and serve as a component in the
ASCC-R module. Finally, Section 3.3 concisely describes the compiler check and rectification mod-
ule and introduces how the ASCC-R and CpC-R work in a iterative way.

3.1 FORMAL TRANSLATION MODULE

import Mathlib…

def problem (sol:sometype): Prop:=
∀ s : System,

fst_constraint s ∧
sec_constraint s ∧
solution_constraint s →
solution = s.sol_obj

Enviroment

Problem Statement

inductive aux_inductive_type where
| enum_1
| enum_2

Auxiliary Types

structure System where
obj : aux_inductive_type
sol_obj : sometypeMathmatical system

def fst_constraint(s:System): Prop :=
<expr_body>

def sec_constraint(s:System): Prop :=
<expr_body>

def sol_constraint(s:System): Prop:=
<expr_body>

Constraints

Logical-Decomposition-Based Template

Auxiliary Functions
def aux_fun_pred(v:sometype): Prop:=

<expr_body>

structure MySystem where
(a b : ℝ)
f : ℝ → ℝ
sol_sum_a_b : ℝ

def continuous_at (x₀:ℝ)(f:ℝ→ℝ) : Prop :=
∀ ε > 0, ∃ δ > 0, ∀ x,

|x - x₀| < δ → |f x - f x₀| < ε

def function_constraint (s:System) : Prop :=
s.f = λ x =>

if x > 2 then s.a * x + 3
else if -2 ≤ x ∧ x ≤ 2 then x - 5
else 2 * x - s.b

def continuous_constraint(s:System): Prop :=
∀ x₀ : ℝ, continuous_at x₀ s.f

def solution_constraint (s:System) : Prop :=
s.sol_sum_a_b = s.a + s.b

def problem (sol : ℝ) : Prop :=
∀ s : System,

function_constraint s ∧
continuous_constraint s ∧
solution_constraint s →
solution = s.sol_sum_a_b

Output Formalization

import Mathlib …

--No auxiliary type needed.

User Prompt: Formalize
the following problem
into lean4 and adhereing
to the template provided.

Figure 2: Formalization template and a concrete example. The left is our proposed Template with
place holders, and the right is an example for formalizing a problem about the property of a contin-
uous piecewise function. Please note that the example shown in this figure was manually designed
to demonstrate the template structure. For examples generated by large language models (LLMs),
we refer readers to Appendix F.

Unlike previous works that formulate the Lean 4 formalization as a theorem with sorry, as shown in
Figure 2 we formulate the original statement as a predicate named problem statement, which
relies on a series of previously declared definitions. This design enables LLMs to organize the Lean
4 content in a more structured manner, thereby enhancing performance as demonstrated in our exper-
iments. The formulation this template2 based on the following conceptual insight: any mathematical
problem amounts to an investigation of the properties of some mathematical system (i.e. mathemat-
ical structure). In our work, we represent such a mathematical system as a structure declaration
in Lean 4 named MySystem along with a series of predicates that describing the properties of this
structure. Such a system comprises multiple mathematical objects, together with a set of con-
straints that restrict the properties or relationships among these objects, thereby defining the specific
mathematical structure under study. Such an intuition is kind of based on Discourse Representation

2This template applies to both solving and proof-oriented problems. The main text focuses on solving-type
problems, but the framework can be adapted to proof-type problems with minor adjustments (see A.5).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Theory, which is introduced to mathematical formalization by Ganesalingam (2013). A detailed
explanation for this template is available in A.1.

To make sure the template is fully complied with, a verification method is required. Since this tem-
plate framework imposes requirements beyond the syntax rules of the Lean 4 compiler, a lightweight
parser is implemented to serve as template verifier3. If the requirements are not met, it returns cor-
responding feedback to prompt the LLM to regenerate the code. This process iterates until all
conditions are satisfied or the maximum iteration limit is reached. We emphasis that although this
template is demonstrated using Lean 4, it can be easily adapted to other theorem provers like Coq
or Isabella, a detailed discussion is provided in A.7 and details about the parser and the feedback
strategy are available in A.2.

Since such a template imposes additional requirements on top of Lean syntax, the set of all Lean
4 code that satisfies the template forms a proper subset of all Lean 4 code that meets the syntactic
requirements. This implies that Lean 4’s expressive power may be constrained under this template,
as certain formal declarations might not be convertible into the template’s structure. To provide a
theoretical guarantee for the expressiveness of the template, we propose the following theorem3.1
and provide its proof in the A.4.

Definition 3.1. LoC-Decomp counterpart: For a complete Lean 4 proposition string(by complete we
mean that this string contains a proposition defined by theorem or lemma and all it’s dependencies),
we define its LoC-Decomp counterpart as a string that is semantically equivalent to the Lean 4
proposition and satisfies the LoC-Decomp template requirements. Here, satisfying the LoC-Decomp
template requirements means that the string can be accepted by our parser that encodes the syntactic
rules of the template.

Theorem 3.1. For any complete Lean 4 proposition string, there exists at least one LoC-Decomp
counterpart.

3.2 BACK TRANSLATION MODULE AND ASCC SUBMODULE

With the aid of the aforementioned template, we can now back-translate the Lean 4 code into nat-
ural language while preserving its nuanced semantic information through a divide-conquer-merge
strategy, as shown in the top half of Figure 3. This back translation serves as auxiliary informa-
tion to enhance the model’s understanding of the code and to further evaluate its consistency with
the original statement. Specifically, we first convert the Lean 4 code back into its natural language
equivalent, carefully retaining subtle semantic details. Both the back-translated text and the Lean 4
code along with the original statement are then provided to the LLM to assess their consistency.

Given a Lean 4 code which is a formal version of a mathematical statement, the back translation
procedure is to translate the Lean 4 code into natural language while maintaining the semantic
essence. For complex mathematical statements, it is often unreliable to use an LLM to translate
complete Lean 4 code into natural language in one go, because LLMs struggles to detect the subtle
semantic logic implicit in Lean 4 code. To address this difficulty, we adopt an approach that (1)
decomposes(divide) the Lean 4 code into several semantically self-contained segments4; (2) provide
each segment to LLM for translation(conquer), and (3) subsequently integrates them into a cohesive
whole based on the logical relationships among the parts(merge). A detailed discussion of the divide
and merge steps will be presented in Appendix C, omitting the conquer step due to its relative
simplicity.

For the automatic semantic consistency checking submodule, as shown in the bottom half of Figure
3, we employ a four-stage strategy: identifying all potential discrepancies, evaluating the signifi-
cance of each discrepancy, synthesizing critical discrepancies to determine an overall consistency

3Lean4’s expressiveness may be impaired by this mandatory compliance of this template, a detailed
discussion is provided in the A.4

4The term “semantically self-contained” here refers to segments that encapsulate complete and independent
units of meaning, where all necessary semantic components—such as definitions or premises—are explicitly
contained within the segment itself.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

import Mathlib …

structure MySystem where …

def continiuous_ … := …

def solution_constraint … := …

import Mathlib …

structure MySystem where …

def continiuous_at … := …

def continuous_constraint … := …

import Mathlib …

structure MySystem where …

def continiuous_at … := …

def function_constraint … := …

Divide by parser (1)

<Problem statement maintain logical
structure>

<System description>

<NL description for the conjunction
of all constraints>

NL description for problem statement:

Merge (3)

structure MySystem where …

def continuous_at … := …

def function_constraint … := …

def continuous_constraint … := …

def solution_constraint … := …

def problem_statement … := …

import Mathlib …

Original Code

NL description for
function_constraint:
This constraint defines a
picewise function …

Conquer by LLM (2)

NL description for
function_constraint:
This constraint defines a
picewise function …

NL description for
function_constraint:
This constraint defines a
picewise function …

User :Please determine each discrepancy is
acceptable or critical.

Discrepancy 1 is critical …
Discrepancy 2 is acceptable …

User : Determine wether this discrepancy do exist
and provide some recommendations to rectify the
lean4 code.

{“discrepancy_exist_or_not”:“yes”
“recommendations”:“…”}

Per Constraint
Discrepancy Find Out (4)

User : Find out all discrepancies between the
lean4 code and the original problem.

LLM : The discrepancies are …

User : Find out all discrepancies between the
lean4 code and the original problem.

LLM : The discrepancies are …

User : Find out all discrepancies between the
lean4 code and the original problem.

The discrepancies are …

User : Find out any discrepancies between
the given two mathematical problem.
Problem1: <Orininal problem>
Problem2: <NL from lean4>

LLM : The discrepancies are …

Global discrepancy
find out (5)

Discrepancy determination
and provide recommendations (7)

Back Translation Module

Automatic Semantic
Consistency Check

(ASCC) Module

Identify critical discrepancies (6)

Figure 3: Back translation by divide-conquer-merge strategy and the automatic semantic consistency
check.

level, and re-examining each discrepancy in cases not fully consistent—if any discrepancy is con-
firmed, the output is deemed semantically inconsistent.Specifically, (4) segmented and holistic dis-
crepancy detection are employed to identify differences between the formalization and the problem
description. The former targets subtle, localized inconsistencies, whereas the latter focuses on over-
all, structural issues; (5) Collective evaluation of identified discrepancies to classify them as critical
or acceptable based on predefined criteria, followed by determining an overall consistency level
according to all critical discrepancies, the consistency level include: Fully consistent, Consistent
without loss of generality, Inconsistent; (6) Individual re-evaluation of each discrepancy if the code
is not fully consistent; and (7) For each confirmed discrepancy, the LLM must provide correction
suggestions, and the formalization is judged not fully consistent. If any of discrepancy exist, the
formalization is inconsistent. Detailed explanations of each step and judge criteria as well as con-
sistency level definitions are available in Appendix B and prompt used are provided in Appendix I.
The ASCC module enables us to provide targeted discrepancy information and recommendations,
allowing the LLM to rectify the Lean 4 code (as described in following section).

3.3 JOINT SYN-SEM ITERATIVE RECTIFICATION MODULE

As shown in Figure 4 The iterative rectification procedure is a alternating process of the semantic
inconsistency correction and compilation error (i.e., syntax error) correction. Each approach utilizes
error feedback to prompt the LLM to reassess its prior output and produce a revised solution. The
primary distinction lies in the source of the feedback: semantic error information is derived from
semantic consistency checks, while compilation error information is provided by the compiler.In
both cases, once error information is obtained, it is appended to the context supplied to the LLM for
revision. The updated output then undergoes another round of semantic consistency verification or
compilation checking. This iterative cycle continues until the code passes both checks consecutively
or the maximum iteration count is reached.

More specifically, our approach involves an iterative process that alternates between semantic
and syntactic correction, with the objective of steering the formalization toward semantic con-
sistency and syntactic correctness. For a semantically inconsistent formalization, we first run an
inner semantic loop, where semantic corrections are made and re-validated iteratively until success
or until reaching the maximum semantic iterations (K-sem). After passing semantic validation,
it enters the inner syntactic loop, undergoing compilation checks and syntactic fixes until it com-
piles successfully or exceeds the allowed syntactic iterations (K-syn). One inner semantic loop
followed by one inner syntactic loop forms a Sem–Syn Iter Unit. If the formalization fails to pass
both checks consecutively within one unit, it triggers another Sem–Syn Iter Unit; this multi-unit

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ASCC-1
Consistency

Check

OUTER LOOP

Inconsistent
Formalization

Semantic error
rectified

ASCC-R
Module

Inner
semantic

loop

CpC-R
Module

Inner
syntactic

loop

Syntactic error
rectified

Sem-Syn
Iter Unit

Consistent
Formalization

ONE ROUND

PASS

NOT
PASS

Another round

Figure 4: Joint Syn-Sem iterative rectification

process is the OUTER LOOP, which can run up to N times. After the OUTER LOOP, a final
validation for both semantic and syntactic erroes is performed—this entire sequence, including at
most N outer loops plus the final check, constitutes one ROUND. Failed cases proceed to the
next ROUND, with the entire process repeating for up to M rounds. A detailed description of this
process is provided in Algorithm 1. In this algorithm, the function ASCC(·) returns the result of
the ASCC check, denoted as ASCCLevel, which can take one of three values: Fully Consistent,
Consistent Without Loss of Generality, or Inconsistent. Here, ASCC-R(·) refers to the ASCC check
with rectification, and CpC-R(·) denotes the compiler check with rectification.

Algorithm 1 Iterative check and rectification
Input: problem, Lean4;
Output: rectifiedLean4, finalASCC;

1: ASCCLevel← ASCC(Lean4), m← 0;
2: while (ASCCLevel = Inconsistent or compiler check not pass) and m < M do
3: while (ASCCLevel = null or Inconsistent) and iteration limit not reached do
4: while ASCCLevel ̸= Fullyconsistent and iteration limit not reached do
5: Lean4ToNL← Informalization(Lean4);
6: Lean4, ASCCLevel← ASCC-R(Lean4ToNL,Lean4, problem);
7: end while
8: if ASCCLevel ̸= Inconsistent and compiler check not pass then
9: while compiler check not pass and iteration limit not reached do

10: Lean4← CpC-R(Lean4);
11: end while
12: ASCCLevel← null;
13: end if
14: end while
15: rectifiedLean4← Lean4, m← m+ 1;
16: end while
17: return rectifiedLean4, ASCC(rectifiedLean4);

4 EVALUATION

4.1 EXPERIMENT SETUP

Datesets: To evaluate our methods, we employed two widely used public datasets—MATH-
500(Lightman et al., 2024) and miniF2F(Zheng et al., 2022) as well as two custom datasets:
MATH-ASCC-Eval-150 and MATH-Level5-50.The MATH-500 dataset comprises 500 problems
sampled from the MATH-12500(Hendrycks et al., 2021) dataset, covering a variety of problem
types and difficulty levels. The miniF2F dataset contains 488 problems sourced from AIME,
AMC, and IMO competitions, which is specifically designed for autoformalization by convert-
ing solve-type problems into proof-type problems. To evaluate the performance of our method
on more complex mathematical problems, we also adopted PutnamBench(Tsoukalas et al., 2024)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and ProofNet(Azerbayev et al., 2023a) as test datasets for further evaluation. PutnamBench and
ProofNet contain 522 and 371 undergraduate-level mathematical problems respectively, presenting
additional challenges for the autoformalization by LLMs.

The MATH-ASCC-Eval-150 dataset comprises 150 problems sampled from MATH-500 across dif-
ficulty levels, each accompanied by Lean 4 formalizations and human annotations (91 positive,
59 negative). The negative cases predominantly contain subtle errors, making this dataset suitable
for evaluating automated consistency-checking methods (see Appendix Appendix E for details).
In contrast, the MATH-Level5-50 subset consists of 50 randomly selected level-5 problems from
MATH-500, designed to assess the formalization capability on challenging problems.

Models: Experiments were conducted using three open source LLMs—including DeepSeek-V3,
KIMI-K2 and Qwen3-235B(Liu et al., 2024; Yang et al., 2025; Kimi Team et al., 2025)—to validate
the effectiveness of the proposed method across different LLMs.

Baseline: For a fair comparison with our method, we implemented several baseline methods for
three tasks. For the semantic consistency checking task, we introduced two baselines: (1) SC-
Baseline, where the LLM is provided with both the original problem and its corresponding Lean 4
code then prompted to assess semantic consistency; and (2) SC-Baseline-BackTrans, which addi-
tionally supplies a back translation of the Lean 4 code. For the pass@1 formalization task, we de-
veloped (3) Baseline, which employs a basic few-shot prompt to guide the LLM in formalizing the
given problem. For the iterative formalization task, we designed (4) Baseline-iter, which implements
an iterative method identical to ours but employs a basic semantic checker like the SC-Baseline. To
compare our method with the Supervised Fine-Tuning based models, we designed SFT-Baseline by
selecting DeepSeek-Prover-V2(Ren et al., 2025) as the base model, and other configurations are ex-
actly the same with the Formal-Baseline. The prompts and detailed configurations for these baseline
methods are provided in the Appendix I.

Metrics: For the semantic consistency evaluation, we assessed the ASCC method on the MATH-
ASCC-Eval-150 dataset as well as the PutnamBench-ASCC-Eval-50 dataset using recall, precision,
and F1-score. For the back translationi task, we assess the metric of translation success rate by
human evaluation. For the iterative rectification task, the primary evaluation metric was the ASCC-
3-MV pass rate—determined through majority voting over three rounds of ASCC—supplemented
by human-evaluated pass rates. In addition to ASCC-3-MV, we also report the ASCC-3-SV pass
rate—based on single veto over three rounds of ASCC—as a reference metric, due to its high preci-
sion but low recall.

Implementation: In multi-round iterative testing, we set the maximum iteration numbers as
K-sem = 2, K-syn = 3, N = 5, M = 3. Across all evaluations, the temperature parameter
was set to 0.7 for ASCC and 0.3 for all other requests, consistently applied to all LLMs. And all the
baseline methods are conducted with DeepSeek-V3.

4.2 EXPERIMENT RESULTS

ASCC-3 Evaluation. We first evaluate the alignment between the ASCC and human judgment
criteria for assessing formalization semantic consistency. As shown in Figure 5, on the MATH-
ASCC-Eval-150 dataset, the ASCC-3-MV metric achieves a precision of 0.90, a recall of 0.82,
and a F1-score of 0.86. Compared to the baseline, precision shows significant improvement—a
key focus, as it reflects the method’s capability to accurately identify errors. Although precision
slightly decreases relative to ASCC-3-SV, recall remains at a reasonably high level. We therefore
conclude that ASCC-3-MV aligns most closely with human evaluation criteria. Owing to its strong
performance in detecting negative instances, we propose ASCC-3-MV as a standard for evaluating
the performance of our methods, while still providing ASCC-3-SV as a more stringent reference.

Pass@1 with the template and few-shot examples. As an ablation study, we evaluate our approach
without the iterative rectification process to assess the contribution of LoC-Decomp template to the
overall pass rate. The results in Table 1 indicate that even without iterative rectification, our method
still achieves a relatively high pass rate. We attribute this performance to the chain-of-thought-style
template and the use of few-shot examples based on classification. This comparison confirms that
our iterative rectification strategy results in a clear performance improvement, with increases in all
evaluated items.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Pos Neg
Predicted Label

Po
s

N
eg

H
um

an
 L

ab
el 80 17

9 44

80 17

9 44

P: 0.90 R: 0.82 F1: 0.86

ASCC-3-MV

Pos Neg
Predicted Label

Po
s

N
eg

54 43

3 50

54 43

3 50

P: 0.95 R: 0.56 F1: 0.70

ASCC-3-SV

Pos Neg
Predicted Label

Po
s

N
eg

96 1

45 8

96 1

45 8

P: 0.68 R: 0.99 F1: 0.81

SC-Baseline

Pos Neg
Predicted Label

Po
s

N
eg

95 2

41 12

95 2

41 12

P: 0.70 R: 0.98 F1: 0.82

SC-Baseline-BackTrans

Figure 5: Confusion matrix of the ASCC-3-MV, ASCC-3-SV, SC-Baseline and SC-Baseline-
BackTrans (basline with back translation) evaluation result.

Table 1: Results without iterative rectification

Items DeepSeek-V3 KIMI-K2 Qwen3-235B

MV SV MV SV MV SV

MATH-500 63.20 44.80 60.20 43.40 65.40 45.60
miniF2F 77.25 54.30 78.57 60.29 76.90 60.29

Joint Syn-Sem iterative rectification evaluation. The results of the iterative rectification method
are summarized in Table 2, where MV denotes the ASCC-3-MV pass rate, and SV denotes the
ASCC-3-SV pass rate. The best-performing method is underlined. After three iterations, our ap-
proach achieved a ASCC-3-MV pass rate of 84.00% on MATH-500 and 90.16% on miniF2F when
combined with DeepSeek-V3, representing the highest performance among all three models eval-
uated. The result with iterative correction demonstrates a significant improvement over pass@1,
which confirms the effectiveness of our proposed method5.

Table 2: Iterative rectification round-3 results

Items DeepSeek-V3 KIMI-K2 Qwen3-235B

MV SV MV SV MV SV

MATH-500 84.00 61.60 77.80 55.60 75.60 57.80
miniF2F 90.16 67.00 91.60 72.90 80.25 61.07

Human evaluation. As a supplement to the ASCC-3-MV and ASCC-3-SV metrics, we performed
a human evaluation on the MATH-Level5-50 dataset. For comparison, three baseline methods—as
outlined in Section 4.1—were implemented. The results indicate that, using only template guidance
and few-shot examples, our approach achieves a formalization pass rate that exceeds the baseline
by 18% under human evaluation. After three rounds of iterative refinement, the pass rate further
increased to 84%, surpassing the baseline by 30%. Even when compared to models fine-tuned with
expert iteration, our method achieves a higher pass rate. The results are summarized in Table 3,
where ”Ours-no-iter” refers to our LoC-Decomp method without iterative rectification, and ”Ours-
iter” denotes the version with iterative rectification. A case study illustrating the rectification process
is provided in Appendix F.

Table 3: Human evaluation on MATH-Level5-50
Items Ours-no-iter Ours-iter Baseline Baseline-iter SFT-Baseline

pass rate 70.00 84.00 52.00 54.00 66.00

Evaluation on undergraduate-level problems. For undergraduate-level mathematical problems,
our experimental results indicate that under the ASCC-3-MV evaluation standard, our method still

5Additional experimental results about the iterative process are available in Appendix G

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

demonstrates a notably high accuracy rate, further evidencing the universality and generalizability
of our approach. See Table 4 and Table 5 for the results.

Table 4: Results without iterative rectification on PutnamBench and ProofNet

Items DeepSeek-V3 KIMI-K2

MV SV MV SV

PutnamBench 48.37 31.71 53.66 35.16
ProofNet 38.42 27.79 43.05 29.16

Table 5: Iterative rectification round-3 results on PutnamBench and ProofNet

Items DeepSeek-V3 KIMI-K2

MV SV MV SV

PutnamBench 81.50 58.33 72.36 48.78
ProofNet 67.03 48.50 70.57 52.59

Comparative Analysis. To compare our method with existing approaches, we selected DeepSeek-
Prover-V2-671B, Goedel-Formalizor-V2-32B(Lin et al., 2025b), and Kimina-Autoformalizer-7B
for evaluation. To ensure a fair comparison, we adopted the conventional LLM-as-a-judge eval-
uation framework. The results are summarized in the Table 6.

Table 6: Performance comparison of different theorem provers
Items Ours DeepSeek-Prover Goedel-Formalizor Kimina-AutoFormalizor

MATH-500 96.60 84.60 90.20 63.40
mini-F2F 97.54 87.18 93.28 87.23
PutnamBench 93.09 75.41 78.66 61.99
ProofNet 73.57 83.10 71.39 61.31

A notable observation is that our method’s performance on the ProofNet dataset is significantly
lower than that of DeepSeek-Prover-V2. Analysis reveals that the compilation check pass rate of
our method on ProofNet is only 74%, considerably lower than the over 95% pass rate achieved on
other benchmark datasets. Manual inspection indicates that most compilation failures are due to
unresolved type class instances (e.g., ”failed to synthesize” errors). We hypothesize that this issue is
related to ProofNet’s heavy reliance on advanced Mathlib usage patterns. Since the current method
does not incorporate a retrieval-augmented generation (RAG) mechanism, the large language model
struggles to accurately retrieve and incorporate relevant Mathlib definitions, thereby compromising
compilation success. It should be noted that this limitation is not an inherent flaw of the method
itself, but rather an orthogonal challenge that can be effectively addressed by integrating RAG-based
extensions.

5 LIMITATION

Human evaluation in this study was conducted on a dataset of limited scale, a constraint commonly
encountered in this field due to the labor-intensive nature of such evaluations. While this is con-
sistent with the practices of related works that face similar scalability challenges, expanding the
size of the human-evaluated dataset in future research could further strengthen the reliability and
generalizability of our proposed approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 THE USE OF LARGE LANGUAGE MODELS

This study utilized Large Language Models (LLMs) in two distinct roles:

1. Language Polishing and Editing: LLMs were employed as an assistive tool to enhance the lan-
guage quality and clarity of the manuscript. The initial draft was entirely authored by the researcher,
after which the LLM provided suggestions to improve sentence fluency, grammar, and academic
tone. All conceptual contributions, arguments, and factual assertions originated from the author.
The final manuscript was thoroughly reviewed and approved by the author, who takes full responsi-
bility for its content.

2. LLM as a Research Subject: A key aspect of this research involves the evaluation of LLM
capabilities. The outputs generated by the model were systematically analyzed as a primary focus
of the study. The corresponding methodology is elaborated in the main text.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made our complete codebase, along with the raw
experimental results and detailed instructions for setting up the environment, publicly available. All
materials have been submitted to an anonymous repository for blind peer review and will be retained
upon publication.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alberto Alfarano, François Charton, and Amaury Hayat. Global lyapunov functions: a long-standing
open problem in mathematics, with symbolic transformers. Advances in Neural Information Pro-
cessing Systems, 37:93643–93670, 2024.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev,
and Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level math-
ematics. CoRR, abs/2302.12433, 2023a. doi: 10.48550/ARXIV.2302.12433. URL https:
//doi.org/10.48550/arXiv.2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.10631, 2023b.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004. ISBN 978-3-642-05880-6. doi: 10.1007/978-3-662-07964-5. URL
https://doi.org/10.1007/978-3-662-07964-5.

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. The lean theorem prover (system description). In Amy P. Felty and Aart Middel-
dorp (eds.), Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in
Computer Science, pp. 378–388. Springer, 2015. doi: 10.1007/978-3-319-21401-6\ 26. URL
https://doi.org/10.1007/978-3-319-21401-6_26.

Mohan Ganesalingam. The Language of Mathematics: A Linguistic and Philosophical Investigation.
Lecture Notes in Computer Science. Springer Berlin, Heidelberg, 1 edition, 2013. ISBN 978-
3-642-37011-3. doi: 10.1007/978-3-642-37012-0. URL https://doi.org/10.1007/
978-3-642-37012-0.

Georges Gonthier. The four colour theorem: Engineering of a formal proof. In Asian Symposium
on Computer Mathematics, pp. 333–333. Springer, 2007.

11

https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-642-37012-0
https://doi.org/10.1007/978-3-642-37012-0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof
data, 2024. URL https://arxiv.org/abs/2402.08957.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multilingual mathematical autoformalization. arXiv
preprint arXiv:2311.03755, 2023a.

Albert Q. Jiang, Wenda Li, and Mateja Jamnik. Multi-language diversity benefits autoformalization.
In Proceedings of the 38th International Conference on Neural Information Processing Systems,
NIPS ’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2023b. URL https://openreview.net/forum?id=SMa9EAovKMC.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025. URL https://arxiv.org/abs/2507.20534.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Aut-
oformalize mathematical statements by symbolic equivalence and semantic consistency. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a. URL
https://openreview.net/forum?id=8ihVBYpMV4.

Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng Li, Chun Cao, Fan Yang, and Xiaoxing Ma.
Neuro-symbolic data generation for math reasoning. Advances in Neural Information Processing
Systems, 37:23488–23515, 2024b.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025a.

12

https://arxiv.org/abs/2402.08957
https://openreview.net/forum?id=SMa9EAovKMC
https://arxiv.org/abs/2507.20534
https://openreview.net/forum?id=8ihVBYpMV4
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan
Geng, Jiawei Ge, Jingruo Sun, Jiayun Wu, Jiri Gesi, Ximing Lu, David Acuna, Kaiyu Yang,
Hongzhou Lin, Yejin Choi, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-prover-v2: Scaling
formal theorem proving with scaffolded data synthesis and self-correction, 2025b. URL https:
//arxiv.org/abs/2508.03613.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. Fimo: A challenge for-
mal dataset for automated theorem proving, 2023. URL https://arxiv.org/abs/2309.
04295.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and improving
autoformalization: Towards a faithful metric and a dependency retrieval-based approach. In
The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=hUb2At2DsQ.

Xiaoyang Liu, Kangjie Bao, Jiashuo Zhang, Yunqi Liu, Yuntian Liu, Yu Chen, Yang Jiao, and
Tao Luo. Atlas: Autoformalizing theorems through lifting, augmentation, and synthesis of data,
2025b. URL https://arxiv.org/abs/2502.05567.

Jianqiao Lu, Yingjia Wan, Yinya Huang, Jing Xiong, Zhengying Liu, and Zhijiang Guo. For-
malalign: Automated alignment evaluation for autoformalization, 2024a. URL https://
arxiv.org/abs/2410.10135.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
driven autoformalization in lean 4, 2024b. URL https://arxiv.org/abs/2406.01940.

Shashank Pathak. Gflean: An autoformalisation framework for lean via gf, 2024. URL https:
//arxiv.org/abs/2404.01234.

Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow),
volume 828 of Lecture Notes in Computer Science. Springer, 1994. ISBN 3-540-58244-4. doi:
10.1007/BFB0030541. URL https://doi.org/10.1007/BFb0030541.

Z. Z. Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue
Zhang, Zhe Fu, Qihao Zhu, Dejian Yang, Z. F. Wu, Zhibin Gou, Shirong Ma, Hongxuan Tang,
Yuxuan Liu, Wenjun Gao, Daya Guo, and Chong Ruan. Deepseek-prover-v2: Advancing for-
mal mathematical reasoning via reinforcement learning for subgoal decomposition, 2025. URL
https://arxiv.org/abs/2504.21801.

Christian Szegedy. A promising path towards autoformalization and general artificial intelligence.
In International Conference on Intelligent Computer Mathematics, pp. 3–20. Springer, 2020.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry with-
out human demonstrations. Nature, 625(7995):476–482, 2024. ISSN 1476-4687. doi: 10.1038/
s41586-023-06747-5. URL https://doi.org/10.1038/s41586-023-06747-5.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition, 2024. URL https://arxiv.org/abs/2407.11214.

13

https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2508.03613
https://arxiv.org/abs/2309.04295
https://arxiv.org/abs/2309.04295
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://arxiv.org/abs/2502.05567
https://arxiv.org/abs/2410.10135
https://arxiv.org/abs/2410.10135
https://arxiv.org/abs/2406.01940
https://arxiv.org/abs/2404.01234
https://arxiv.org/abs/2404.01234
https://doi.org/10.1007/BFb0030541
https://arxiv.org/abs/2504.21801
https://doi.org/10.1038/s41586-023-06747-5
https://arxiv.org/abs/2407.11214

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.510. URL https://aclanthology.org/2024.acl-long.510/.

Ke Weng, Lun Du, Sirui Li, Wangyue Lu, Haozhe Sun, Hengyu Liu, and Tiancheng Zhang. Aut-
oformalization in the era of large language models: A survey, 2025. URL https://arxiv.
org/abs/2505.23486.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jamnik, and Chris-
tian Szegedy. Autoformalization with large language models. In Proceedings of the 36th Inter-
national Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA,
2022. Curran Associates Inc. ISBN 9781713871088.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Ming Ding. BFS-prover: Scalable best-first tree search for LLM-based automatic theorem prov-
ing. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 32588–32599, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1565. URL
https://aclanthology.org/2025.acl-long.1565/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: theorem proving with retrieval-augmented
language models. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn
Song. Formal mathematical reasoning: A new frontier in ai, 2024. URL https://arxiv.
org/abs/2412.16075.

Huaiyuan Ying, Zijian Wu, Yihan Geng, JIayu Wang, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems. In The Thirty-
eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?id=Vcw3vzjHDb.

Jiyao Zhang, Chengli Zhong, Hui Xu, Qige Li, and Yi Zhou. Kelps: A framework for verified multi-
language autoformalization via semantic-syntactic alignment, 2025. URL https://arxiv.
org/abs/2507.08665.

Lan Zhang, Xin Quan, and Andre Freitas. Consistent autoformalization for constructing math-
ematical libraries. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
4020–4033, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.233. URL https://aclanthology.org/2024.
emnlp-main.233/.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=9ZPegFuFTFv.

14

https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2505.23486
https://arxiv.org/abs/2505.23486
https://aclanthology.org/2025.acl-long.1565/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2412.16075
https://arxiv.org/abs/2412.16075
https://openreview.net/forum?id=Vcw3vzjHDb
https://arxiv.org/abs/2507.08665
https://arxiv.org/abs/2507.08665
https://aclanthology.org/2024.emnlp-main.233/
https://aclanthology.org/2024.emnlp-main.233/
https://openreview.net/forum?id=9ZPegFuFTFv

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
Don’t trust: Verify–grounding llm quantitative reasoning with autoformalization. arXiv preprint
arXiv:2403.18120, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDIX A DETAILED DISCUSSION ABOUT FORMALIZATION TEMPLATE

A.1 TEMPLATE DETAILS

As the main text said, a mathematical problem can be formally represented by declaring a mathemat-
ical system consisting of several objects and a collection of constraints, the objective of a mathemat-
ical problem is to examine a certain property (maybe a solve type problem or a proof type problem,
but both are examining a certian property.) of this system. In our work, the formalization template
consists six sequential steps(For solve type problems):

1. Environment Declaration: A fixed, predefined setup is used to import basic Mathlib dependen-
cies, open namespaces, and define notations. This prevents LLM hallucinations and ensures a stable,
sufficient base environment. It is noteworthy that, due to the presence of hallucination, the LLM may
occasionally invoke non-existent Mathlib declarations or misuse existing ones during the generation
of Lean 4 code. This can result in code that is semantically coherent yet fails compilation—where
“semantically coherent” refers to the scenario in which, assuming all Mathlib declarations refer-
enced by the model conform to the semantics intended by the LLM, the overall logic of the Lean
4 code remains correct. Moreover, even when provided with compilation error feedback, the issue
often remains challenging to resolve. To mitigate this problem, two potential solutions are consid-
ered: first, the use of Retrieval-Augmented Generation (RAG) to enhance the LLM’s awareness of
Mathlib declarations; second, reducing reliance on Mathlib by minimizing the use of its declarations
wherever possible. In the dataset we processed—which involves high-school-level mathematics and
requires relatively few advanced Mathlib features—we adopted the latter strategy. While this may
constrain the generalizability of our method to more advanced mathematical domains, it is important
to note that RAG remains compatible with our approach. By integrating more sophisticated RAG
techniques, our method can be extended to tackle higher-level mathematical problems.

Figure A-6: The environment defined in the template. All Lean 4 code resides within this environ-
ment, so in what follows, we will simply omit it.

2. Auxiliary Types Declaration: The LLM declares custom types (e.g., structures, inductive types)
to model complex concepts, leveraging Lean 4’s dependent type system without unnecessary re-
strictions. Because Lean 4’s strong expressiveness stems from its rich dependent type system, in
this step, we allow the LLM to declare any type in any manner, ensuring that the template does not
impose unnecessary restrictions on Lean 4’s type system.

3. Mathematical System Declaration: A structure is declared to abstractly model the problem, con-
taining all involved mathematical objects (e.g., functions, equations, geometric shapes, groups) and
their types. This step is crucial for abstract modeling of the problem (especially for applied problem
types). This step requires the LLM to declare a structure that represents the mathematical system of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the current problem. By “mathematical system of the problem” we mean a structure that includes
the naming and type declarations of all mathematical objects involved in the problem. These math-
ematical objects may include equations, functions, sequences, matrices, geometric objects, or more
abstract mathematical subjects such as groups and topologies.

4. Auxiliary Functions/Predicates Declaration: Helper functions or predicates are defined to simplify
the expression of subsequent logical constraints.

5. Constraints Declaration: The LLM declares predicates that define the logical constraints and
relationships between the objects in the mathematical system. This step is crucial for expressing
logical constraints. It requires the LLM to establish constraints on the properties or relationships
among various objects in the mathematical system (through the declaration of predicates).

6. Problem Statement Declaration: The overall problem statement is formalized as a propositional
function over a free variable ‘solution’. The truth value of this propositional function indicates
whether solution constitutes a valid solution to the original problem, thereby establishing a formal
correspondence between the Lean 4 representation and the problem’s semantics. Since Lean 4 does
not have the concept of “solving” we need to transform the original problem of a solving nature into
a proposition. Unlike previous approaches that declared a theorem and replaced the proof process
with ‘sorry’, we reformulate the original problem description of the solving type into a proposi-
tional function. This function requires an input ‘s‘, a free variable representing the “solution” The
semantics of this propositional function are as follows: for any instance of the aforementioned math-
ematical system, the conjunction of the constraints implies a propositional expression concerning the
free variable ‘s’.

A.2 DETAILS ABOUT THE PARSER AND THE RECTIFICATION STRATEGY FOR TEMPLATE
COMPLIANCE

The parser we have implemented will parse Lean 4 code according to the template. In the auxil-
iary type declaration section, no additional requirements will be imposed, ensuring the Lean 4 type
system remains fully intact. The system declaration section requires that the Lean 4 code must de-
fine a structure named MySystem using the structure keyword. The auxiliary function
declaration section mandates that functions must be defined with the def keyword, and parame-
ters are strictly prohibited from being of the MySystem type (to emphasize the auxiliary nature
of these functions). The constraint declaration section requires definitions with the def keyword,
and parameters must strictly be of the MySystem type (highlighting constraints on the system).
The problem statement section requires definitions with the def keyword and must be an impli-
cation expression under universal quantification like ‘∀ sys : MySystem,...’, where the
antecedent consists of all constraint conditions, and the consequent is a predicate term related to the
free variable solution (or proof goal for proof-type problems).

If the generated Lean 4 code does not conform to the template, a rectification mechanism is activated.
This mechanism provides error feedback from the parser and prompts the LLM to revise the Lean
4 code by appending the error information to the context. Whenever new Lean 4 code is generated,
it undergoes parsing and rectification—regardless of the current stage, whether it is formalization,
semantic rectification, or syntactic rectification. Some parser error information are as follows:

• Error occurred, constraints must be declared by using def.
• Error: in the step of declare mathematical system you can only declare one struc-

ture named MySystem.
• Error: in the step of declare the problem statement you can only declare one

predicate named problem statement.
• Error, the antecedents in the problem statement’s implication must contain all the con-

straints declared in the constraint declaration section.
• . . .

A.3 EXPLANATION FOR NONCOMPUTABLE SECTION

Within the domain of high school mathematics, natural language mathematical descriptions (i.e.,
classical mathematics) are typically grounded in first-order predicate logic—a framework that differs

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

significantly from the dependent type theory underpinning Lean 4. A key practical distinction lies
in the treatment of function domains: classical mathematical definitions often implicitly specify the
domain through contextual cues and the expression of the function itself, whereas Lean 4’s type
system requires explicit and precise domain declarations.

This difference considerably complicates the formalization of classical mathematical texts. Since
the domain is frequently left implicit in the original discourse, translating such content into Lean 4
requires inferring the domain—a process that can be non-trivial for more complex functions and is
sometimes the explicit goal of certain mathematical exercises. However, this act of deduction may
introduce semantic discrepancies if not carefully aligned with the original intent.

In the present work (as opposed to prior approaches), we employ a strategy commonly adopted in the
formalization of classical mathematics: placing relevant declarations within a noncomputable sec-
tion. This allows us to avoid prematurely imposing constructive or computational constraints—such
as enforcing specific function domains—unless they are directly stated in the original text. The
approach maintains mathematical rigor, as domain constraints remain logically inherent in the defi-
nitions and can be formally derived and verified during the formalization process.

It is important to emphasize that this method does not circumvent the core challenges of formaliza-
tion; rather, by utilizing feedback from Lean 4’s type system (provided to the LLM during interac-
tion), we can iteratively and efficiently render these implicit elements explicit while respecting the
original mathematical meaning.

A.4 PROOF FOR THEOREM 3.1

Here, we complete the proof of Theorem 3.1 by providing a method to convert any complete Lean 4
proposition into a LoC-Decomp template and demonstrating that the result generated by this method
is equivalent to the original Lean 4 proposition.

Without loss of generality, the assumption here is that the proposition to be converted is defined by
theorem and named as theorem to convert, along with a series of dependency declarations
existing in the context. And the template we selected here is the proof type template. The conver-
sion process involves placing all the aforementioned dependency declarations into the auxiliary type
section. In the mathematical system declaration section, the MySystem structure contains only one
object: proof goal. We then need to transform the theorem to convert into a proposition
and name it as theorem converted prop, which can be done manually or simply call #check
theorem to convert to get the corresponding type that is exactly the proposition of the theo-
rem. The constraint declaration section includes only one constraint, proof goal constraint,
which states that sys.proof goal = theorem converted prop. In the problem state-
ment declaration section, the implication premise contains solely proof goal constraint,
and the implication conclusion is sys.proof goal.

Once such a conversion is performed, the resulting output will conform to our template and can
be accepted by the designated parser. Then we have to prove that the problem statement is
logically equivalent to the theorem converted prop, and we prove this by Lean 4 itself. For
the sake of universality, we adopted a generic sorry placeholder to express a proposition. Since our
proof operates at the meta level, this proposition can be replaced with any proposition, and our proof
can pass the verification of the Lean 4 compiler. See code 1 for detailed information.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Code 1: Convert a theorem to it’s Loc-Decomp counterpart and prove the equivalence
-->>declare_auxiliary_types
--All the dependent declarations should be declared here.

-->>declare_mathematical_system
structure MySystem where

proof_goal : Prop

-->>declare_auxiliary_functions_or_predicates
def theorem_converted_prop : Prop := sorry
--The sorry place holder can be replaced by any proposition.

-->>declare_constraints
def proof_goal_constraint (sys:MySystem) : Prop :=

sys.proof_goal = theorem_converted_prop

-->>declare_the_problem_statement
def problem_statement : Prop :=

∀ sys : MySystem,
proof_goal_constraint sys →
sys.proof_goal

theorem equivalence : problem_statement ↔ theorem_converted_prop := by
constructor
·

intro h
unfold problem_statement at h
let sys : MySystem := ⟨ theorem_converted_prop⟩
have constraint : proof_goal_constraint sys := by

unfold proof_goal_constraint
rfl

have h_sys_proof_goal : sys.proof_goal := h sys constraint
exact h_sys_proof_goal

·
intro h sys h_constraint
rw [h_constraint]
exact h

Although this conversion is not elegant, it theoretically ensures that our template does not impair
Lean 4’s expressive power in any way.

A.5 MINOR MODIFICATION FOR PROOF TYPE PROBLEMS

When handling proof-type problems, the sol object is replaced by a proof goal of type
Prop, which corresponds to the proof objective in the original problem. Similarly, the solution-
constraint is replaced by proof goal constraint, which defines the proof goal con-

cretely. The free variable solution is removed from the problem statement, as proof-type
problems do not require any free variables. In this context, the consequence in the problem statement
corresponds to sys.proof goal for all problems. With these minor adjustments, the template
becomes suitable for proof type problems, and our parser remains effective in detecting any vio-
lations of the template. The framework only requires a preliminary check of the problem type to
determine which template to use. See figure 6 for an example.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure A-7: Converting the example formalization into proof type

Figure A-8: Template suitable for Isabella and Coq example

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.6 DISCUSSION ON FEW-SHOT EXAMPLES

In this work, we adopt a few-shot in-context learning approach with a set of manually curated ex-
amples. Our collection comprises 38 Lean 4 codes that conform to the formalization template and
cover a variety of problem domains—including functions, probability, combinatorics, and geometry.
These examples are drawn from the MATH-12500 dataset (Hendrycks et al., 2021), with only blank
overlapping with the MATH-500 dataset. For each problem, we first determine its domain and then
retrieve approximately 8 to 16 relevant examples from that domain to use as few-shot demonstra-
tions. In our baseline methods, the same set of few-shot examples is used, with the only modification
being that the Lean 4 code is transformed to a theorem with sorry.

A.7 EXAMPLES FOR ISABELLA AND COQ

Our proposed framework is not only compatible with Lean 4, but can also be adapted to other
theorem provers such as Isabelle and Coq—given the provision of a suitable parser and minor prompt
modifications. This flexibility stems from the template-based design of our framework, which can
be applied to any proof assistant that supports a type system, the definition of structures (such as
‘record’ in Coq), as well as predicates and functions.

For Coq, which—like Lean 4—supports dependent type theory, the adaptation process is relatively
straightforward. In the case of Isabelle, which uses a simple type system, certain expressive features
may be limited; however, these remain sufficient for handling high-school-level mathematical prob-
lems. We illustrate the adaptation of our template to both Isabelle and Coq using a simple example:
the same piecewise function problem discussed in the main text.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

APPENDIX B ASCC WORKFLOW DETAILS

The procedure consists of the following steps:

First, we supply the LLM with segmented segments of the Lean 4 code along with their corre-
sponding natural language translations. The model is then prompted to identify any discrepancies
between auxiliary functions or constraints and the original problem, under the assumption that all
other components are correct.

Second, the complete Lean 4 code and its full natural language description are provided, and the
LLM is instructed to detect any potential inconsistencies between the two.

Third, all identified discrepancies are compiled and presented to the LLM, along with the original
problem and the Lean 4 code. The model is then asked to assess whether each discrepancy is critical
or acceptable based on predefined criteria.

Fourth, the LLM is required to evaluate the overall consistency level by considering all critical
discrepancies that have been identified.

Finally, if the code is deemed not fully consistent, each individual discrepancy is isolated and reeval-
uated by the LLM to confirm its validity. For each confirmed discrepancy, the model must provide
specific recommendations to amend the Lean 4 code. The formalization is considered inconsistent
if any discrepancy is judged to be genuine.

B.1 ASCC JUDGE CRITERIA

Criterion 1: Object Omission
Not all mathematical objects in problem original are reflected in the Lean 4 code or
their types mismatch. As long as the objects are correctly reflected, some redundancy
in the Lean 4 code are acceptable.

Criterion 2: Semantic Alteration
The definitions, properties, or relationships of any mathematical object from problem
original are not exactly preserved in the Lean 4 code. Some redundancy is permitted
as long as the core semantics are constrained correctly.

Criterion 3: Constraint Incompleteness
The constraints expressed in problem formal fail to comprehensively represent all ex-
plicit and implicit constraints present in problem original.

Criterion 4: Over Simplification
The Lean 4 code conducts concrete computation or derivation that simplifies the orig-
inal problem, leading to a semantic inconsistency.

B.2 ASCC CONSISTENCY LEVEL DEFINITIONS

Consistency levels 1: Fully consistent
Fully consistent by the final criterion.

Consistency levels 2: Consistent without loss of generality
Consistent without loss of generality: The Lean 4 code formalizes the prob-
lem by analyzing representative cases. In each of these cases, the final crite-
rion are fully satisfied, and the general case follows through straightforward
deduction.Or the formalization rely on equivalent conversions, such as trans-
forming canonical equations into general form. In such cases, the formula-
tion can be regarded as consistent without loss of generality.

Consistency levels 3: Inconsistent
Any criterion breaked can lead to this, as long as it is not Consistent without
loss of generality.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

APPENDIX C DIVIDE AND MERGE DETAILS IN BACK TRANSLATION

Divide: We adopted a hierarchical approach to decompose the Lean 4 code into multiple
self-contained segments. The system segment includes all auxiliary types and the MySystem
structure; the auxiliary function segments comprise each auxiliary function along with its de-
pendencies and the system segment; the constraint segments encapsulate each constraint together
with its related auxiliary functions and the system segment. The problem statement itself is not pro-
cessed separately, as the semantic meaning of the problem statement can be fully constructed from
the segments described above. The divide strategy simplifies the complex back translation task into
several simpler subtasks. Ensures that each segment can be accurately translated in isolation with-
out relying on outer contextual information from other parts of the code, thereby reducing ambiguity
and errors during the LLM processing phase.

Merge: After translating all segments, the natural language description of the Lean 4 code could, in
principle, be obtained by simply concatenating them and adding a statement of their logical relation-
ships. However, such a direct approach would result in a tediously long output, which could distract
the LLM during the subsequent semantic check step. Instead, we perform a conjunctive combination
of the constraints in natural language. This is achieved by sequentially merging pairs of constraints
and instructing the LLM to restate them cohesively, leveraging the fact that their logical relationship
in the original problem statement is simply a conjunction. The final translation of the Lean 4 code
consists of three core components: a system description, a auxiliary functions description, and a
constraints description, which are integrated with a description of their logical relationships.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

APPENDIX D HUMAN EVALUATION CRITERIA FOR SEMANTIC CONSISTENCY

The detailed criteria for manual inspection are as follows:

1, Whether the formalized problem discusses the same mathematical objects as the original problem
(redundant auxiliary objects are allowed, and individual objects may be expressed as sets);

2, Whether the logical constraints of the original problem are correctly expressed (under the current
constraints, all object properties and relationships are consistent with the original problem); if certain
constraint expressions are not generally correct but are correct in the current context, they are still
considered valid;

3, Whether the truth value of the formalized problem statement corresponds exactly to that of the
original problem—that is, for a given set of concrete objects (including a solution in the case of a
solve-type problem), the formal statement holds true if and only if the original problem is true;

4, We impose no additional requirements on the form of the solution (e.g., some problems require
solution in degrees, but solution in radians are also considered correct as long as they are practically
equivalent). This is because Lean 4 has limited support for symbolic computation, making it difficult
to satisfy certain formal requirements (e.g., requiring expressions to be in simplest form).

5, Consistent without loss of generality: The Lean 4 code formalizes the problem by analyzing rep-
resentative cases. In each such case, the final criterion is fully satisfied, and the general case follows
through straightforward deduction. Alternatively, the formalization may rely on equivalent conver-
sions—such as transforming canonical equations into general form—or the expression may hold
only in the current specific context, even if not generally valid. In these situations, the formulation
can be regarded as consistent without loss of generality.

Problem：

The graph of

has ver�cal asymptotes
and , and horizontal
asymptote . Find

.

The Lean4 code only
expresses the horizontal
asymptote in the posi�ve
infinity direc�on and
overlooks the horizontal
asymptote at nega�ve infinity.
However, in this problem, the
horizontal asymptotes at
nega�ve infinity and posi�ve
infinity are the same, so we
consider this to be a
consistent representa�on
without loss of generality.

Figure D-9: Case study for consistency without loss of generality.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

APPENDIX E MATH-ASCC-EVAL-150 DATASET EXPLANATION IN DETAIL

We construct the MATH-ASCC-EVAL-150 dataset through the following steps:

1. Using the method proposed in Section3.1 with DeepSeek-V3, we perform a pass@1
NL2Lean4 formalization procedure. The generated Lean 4 code is then evaluated by
ASCC-1, and each instance is categorized based on (level, ASCC-1 result) pairs.

2. From the above outcomes, we randomly sample the following from each category:
• 10 instances of (level 1, ASCC-1 pass)
• 10 instances of (level 1, ASCC-1 not pass)
• 10 instances of (level 2, ASCC-1 pass)
• 10 instances of (level 2, ASCC-1 not pass)
• 10 instances of (level 3, ASCC-1 pass)
• 10 instances of (level 3, ASCC-1 not pass)
• 20 instances of (level 4, ASCC-1 pass)
• 20 instances of (level 4, ASCC-1 not pass)
• 25 instances of (level 5, ASCC-1 pass)
• 25 instances of (level 5, ASCC-1 not pass)

3. We conduct a human evaluation based on predefined criteria to determine the ground-truth
consistency between each problem and its corresponding Lean 4 code.

4. After human evaluation, the final dataset consists of 97 positive cases and 53 negative
cases.

In MATH-ASCC-Eval-150, the negative cases contain subtle semantic inconsistency, which are hard
to detect. Some cases are as follows:

Case studies for nuanced semantic inconsistencies in MATH-ASCC-Eval-150:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Problem：
The area of

is 6 square centimeters.
. .What is the

number of square centimeters in the
area of ?

In the following problem, the
Lean4 code on the right fails to
capture the fact that points B, C,
and D are collinear and points A,
C, and F are collinear. This
information is implicit in the
original problem, resulting in
incomplete constraints in the Lean4
and inconsistency with the original
problem. ASCC-3-MV successfully
captured this seman�c
discrepancy.

Figure E-10: Case study 1 to illustrate the nuanced inconsistencies in MATH-ASCC-Eval-150

Problem：
If , what
is the value of

?

The constraint in the red box
does not require that all x
sa�sfying the condi�on are in
the possible_x set, but only
mandates that elements in
possible_x must sa�sfy the
condi�on. This is inconsistent
with the seman�cs of the
original problem. ASCC-3-MV
successfully captured this
seman�c discrepancy.

Figure E-11: Case study 2 to illustrate the nuanced inconsistencies in MATH-ASCC-Eval-150

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

APPENDIX F CASE STUDIES FOR ITERATIVE RECTIFICATION ON MATH-50

As illustrated in Figure F-13, the top half of the diagram demonstrates the output of our method
during the iterative rectification process. The left portion shows the generated result prior to rec-
tification, which is inconsistent with the original problem. This inconsistency arises because the
triangle constraint does not prohibit the points from being collinear. As illustrated in the right por-
tion of the figure, the ASCC successfully detected and corrected this discrepancy (among others)
in subsequent iterations, whereas the baseline method made the same error without detecting it.The
LLM response generated by DeepSeek-V3 is as F-12

Figure F-12: LLM response during ASCC check

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Problem：
Let and denote the centroid and orthocenter of triangle ,

respec�vely. Let be the midpoint of Express in
terms of the side lengths a, b, c and circumradius R of triangle .

Rectified to

Baseline method

Our method

Figure F-13: Case study 3 to illustrate the rectification process compared to baseline

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

APPENDIX G ADDITIONAL EXPERIMENTAL RESULTS

To further eliminate potential biases from the dataset and the base model used for data generation,
we performed manual annotation on 50 samples randomly selected from the outputs of KIMI-K2 on
the miniF2F dataset. The sample set comprises 25 cases labeled as correct by ASCC-3-MV and 25
cases labeled as incorrect.

The annotation results show that among the samples deemed correct by ASCC, all passed human
verification. In contrast, among those marked as incorrect by ASCC, 9 were judged as correct by hu-
man annotators. This finding aligns with the conclusions drawn from ASCC-Eval-150: the ASCC
method exhibits a low false positive rate and a relatively high but acceptable false negative rate.
These results, presented in Table 7, indicate that ASCC serves as a stringent evaluation criterion,
which is advantageous for our objective of identifying errors for feedback and correction. More-
over, they further affirm that the accuracy metric derived from ASCC-3-MV provides a reliable and
credible assessment.

Table 7: Evaluation of ASCC-3-MV on results generated by KIMI-K2
Items ASCC-positive ASCC-negative

Human-positive 25 9
Human-negative 0 16

We also conducted a comparative experiment using Bidirectional Equivalence(BEq) as the eval-
uation metric. The evaluation was limited to the LoC-Decomp method with KIMI-K2 as the
base model, along with the best-performing baseline in the LLM-as-a-judge setup, Goedel-
Autoformalizer-V2-32B. The results are summarized below in Table 8.

Table 8: Evaluation using BEq on mini-F2F
Items LoC-Decomp Goedel-Autoformalizer-V2-32B
mini-F2F 62.82 54.91

The BEq-based evaluation reveals notable differences in absolute pass rates compared to the LLM-
as-a-judge approach, which is expected given the probabilistic nature of LLM judgments and the
current limitations of automated theorem proving. Nevertheless, in terms of relative performance,
the BEq results align with those from LLM-as-a-judge: our method continues to show a clear ad-
vantage over fine-tuned specialized models.

Detailed experimental setup: To perform BEq evaluation, it is necessary to formulate a bidirectional
implication theorem and supply its proof, as illustrated below:

Code 2: Convert a theorem to it’s Loc-Decomp counterpart and prove the equivalence
theorem bidirectional_equivalence :

generated_proposition ↔ miniF2F_original_proposition := by

Here, miniF2F original proposition denotes the original proposition from the miniF2F
dataset, while generated proposition refers to the model-generated proposition. Since both
the miniF2F dataset and the Lean4 code produced by Goedel-autoformalizer-V2 are structured as
theorem statements awaiting proof, we first transformed them into predicate forms using the def
keyword. This conversion was carried out using the DeepSeek-V3.1 model.

After constructing the bidirectional equivalence theorem, we employed DeepSeek-V3.1
as an automated theorem prover. The prover was allowed up to 10 iterative corrections in case of
compilation errors. Only proofs that passed the compiler without errors were considered valid.

We also report the self-check pass rates—where “self-check” refers to a single ASCC evaluation
performed by the current model itself during the iterative process, as opposed to DeepSeek-V3
model usd in ASCC-3 metric—through one, two, and three rounds of iterative refinement on the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

MATH-500 and miniF2F datasets. The results show that the self-check pass rate increases with
more iterations for both DeepSeek-V3 and KIMI-K2. In contrast, Qwen3-235B exhibits a significant
deviation from our standard ASCC-3-MV metric. We argue this is because smaller-scale models
struggle to make judgments on semantic consistency that align with human standards. See Figure
G-14 for details.

0 1 2 3
Rectification round(Deepseek-V3)

35

45

55

65

75

85

95
Se

lf
C

he
ck

 P
as

s r
at

e

0 1 2 3
Rectification round(KIMI-K2)

35

45

55

65

75

85

95

Se
lf

C
he

ck
 P

as
s r

at
e

0 1 2 3
Rectification round(Qwen-235B)

35

45

55

65

75

85

95

Se
lf

C
he

ck
 P

as
s r

at
e

MATH-500
miniF2F

Figure G-14: Self-check pass rate during iteration

APPENDIX H DETAILS ABOUT OUR BASELINES

For both the Formal-Baseline and Formal-Iterative-Baseline, we adopted exactly the same example
set and few-shot mechanism as our approach, except that for the baseline method, the formal Lean
4 code is transformed into a theorem with sorry like previous works(Azerbayev et al., 2023a; Li
et al., 2024a; Wu et al., 2022). For the Formal-Iterative-Baseline, the iteration settings are exactly
the same with our method, except it adopted a basic semantic checker. The SFT-Baseline used the
same configuration as the Formal-Baseline, with the exception that the base model was replaced by
DeepSeek-Prover-V2.

APPENDIX I PROMPTS

I.1 PROMPT DIFFERENCES ACROSS MODELS

We observed that the Qwen3-235B model tends to generate overly lengthy responses (resembling
a thinking mode despite being used as an instruct model). To address this, we introduced instruc-
tions such as Your analysis must be concise but accurate. and Note: Avoid tediously long analysis.
to guide the model toward producing more concise outputs. The inclusion of these instructions
successfully reduced verbosity in the model’s responses.

We further evaluated the effect of these instructions on DeepSeek-V3 and KIMI-K2. The results
indicated that DeepSeek-V3 generated more concise content when the instructions were applied,
which led to a performance drop on the ASCC evaluation using the MATH-150 dataset. In contrast,
KIMI-K2 was largely unaffected by the instructions, demonstrating greater robustness to minor
prompt variations.

We argue that this discrepancy is reasonable, as differences in training strategies and data can lead
to varied output styles across models. Although some minor differences on prompt is acceptable in
practice, these findings highlight a limitation of our approach: it is susceptibility to specific prompt
designs.

I.2 THE PROMPT USED FOR FORMALIZATION

Please use Lean 4 code to convert the textual description of the
problem into a formal representation.

Instruction
The following is a middle school mathematics problem. Please use Lean 4

code to convert the textual description of the problem into a formal
representation.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Any mathematical problem can be viewed as the study of the properties of
a specific mathematical system. A mathematical system consists of
several mathematical objects, along with a set of constraints that
limit the properties or relationships of these objects, thereby
defining the mathematical system under investigation. The
requirement of the mathematical problem is to study a particular
property of this mathematical system. Therefore, a mathematical
problem can be formally expressed by declaring a mathematical system
composed of several mathematical objects and a series of
constraints, and for any concrete instance of the system, the
conjunction of all these constraints imply a statement about the
solution.

Attentions
Note: You do not need to solve the problem, your task is solely to

translate the problem’s description into formal Lean 4 code.
Note: For the naming of any symbols, if the stem explicitly provides a

name, it should be consistent with the stem; otherwise, provide a
reasonable name.

Note: The sole purpose of naming is to improve code readability. Names
cannot be relied upon to convey semantic meaning or mathematical
structure all such information must be expressed through the code’s
logic.

Note: Please pay attention to distinguishing the syntax differences
between Lean 3 and Lean 4.

Problem
The problem to be processed is as follows:
{original_problem}

Response Template
Here, you should formalize the above problem in Lean4, strictly

following the provided Lean4 template as shown below.
‘‘‘Lean4
import Mathlib

-->>declare_enviroment
open Real InnerProductGeometry Matrix Topology Filter ENNReal Polynomial

Classical Complex

notation "Rˆ"n => EuclideanSpace R (Fin n)
notation "M [" m "," n "]" => Matrix (Fin m) (Fin n) R
notation "⟨⟨" x ", " y "⟩⟩" => @inner R _ _ x y

variable {V : Type} [NormedAddCommGroup V] [InnerProductSpace R V]

/-
The foundational environment has been established, and you can not

modify it. For the sake of automated control, declaring additional
notations or opening more namespaces is not allowed.

-/

noncomputable section
-->>declare_auxiliary_types
/-
Some mathematical objects have complex types and need to be declared

using the ‘structure‘ or ‘inductive‘ keywords. At this stage, you
can declare the types of certain complex mathematical objects for
ease of later use.

-/

-->>declare_mathematical_system
/-

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

In Lean 4, declaring a mathematical system involves defining a structure
(must be named as ‘MySystem‘ for automatic code check) composed of
mathematical objects that may represent either structural spaces
(possible value domains) or concrete instances (specific values).
The mathematical system consists of several mathematical objects,
along with a set of constraints that limit their properties or
relationships. Follow the below principles when constructing this
system:

1. Complete System Declaration Principle:
- For readability, the mathematical system structure must contain all

objects mentioned or implied in the problem statement, which
enables immediate visual mapping between problem text and formal
structure, and help the readers to understand.

2. Type Specification Principle:
- Declare only the types of mathematical objects at this stage.
- Detailed definitions and property relationships will be established

later through constraint predicates.

3. Solution Object Principle:
- There must exists a special mathematical object that named with the

prefix ‘sol_‘,denotes the target property/solution the problem
seeks

- Analyze the problem to determine:
* What constitutes a valid solution
* Whether it represents a concrete value or solution space
* The appropriate type representation (set/type for spaces, direct

type for unique solutions)

4. Clarify Point-Space Principle
- A mathematical object should be formalized as a concrete instance

(e.g., a : Nat) if and only if it is uniquely determined within
the problem’s constraints. Otherwise, it must be represented as a
set or type (e.g., Set Nat) to preserve its possible value space.

5. Exhaustion Principle of Predicate Satisfaction
- If it is desired for set A to contain all elements that satisfy

predicate P, it must be ensured that every element in set A
satisfies predicate P, and that there does not exist an element e
such that e satisfies predicate P but e does not belong to set A.

-/

-->>declare_auxiliary_functions_or_predicates
/-
The definitions, properties, or relationships of declared objects need

to be specified later by declaring predicate constraints. However,
some predicates may be overly complex, so you can define auxiliary
functions or predicates at this stage to simplify the subsequent
predicate constraints. Predicates defined here cannot serve as
antecedents in problem_statement implications. They require
encapsulation as constraint predicates in the next step before usage.

For the purpose of automated control, parameters of type MySystem cannot
be used in this step.

-/

-->>declare_constraints
/-
In this step, you need to express the definitions, properties, or

relationships of mathematical objects in the system by declaring
predicates. The names of these predicates must end with
‘_constraint‘ for better readability.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

All constraints from the original problem must be reflected in this
step, and all constraint predicates declared here must appear in the
problem statement as antecedents in implication expressions.

While maintaining strict logical rigor, prioritize code readability and
semantic clarity by avoiding the conflation of multiple constraints
within a single restrictive predicate. For the sake of code
readability and semantic clarity, a reasonable amount of code
redundancy is acceptable. Avoid sacrificing readability in pursuit
of excessive brevity.

Additionally, the constraint describing the property of the ‘sol_‘
object should be named ‘solution_constraint‘, which is used to
constrain the ‘sol_‘ object so that it satisfies the requirements of
the original problem and becomes the solution to it.

-/

-->>declare_the_problem_statement
/-
In this step, you need to declare a special predicate called

‘problem_statement‘, which takes the ‘solution‘ variable as a free
input variable. This predicate applies all constraint predicates to
the mathematical system, thereby completing the declarative
expression of the original problem. The format of the
‘problem_statement‘ predicate is strictly defined: for any
mathematical system, the following implication holds, where the
antecedent is the logical AND of all constraint predicates, and the
consequence is ‘solution = sol_object‘.

The semantics of ‘problem_statement‘ are as follows: the proposition is
true if and only if the value of ‘solution‘ is the solution to the
original problem.

-/

end
‘‘‘

Examples

I.3 THE PROMPT USED FOR BACK TRANSLATION (PER CONSTRIANTS)

Requirement : Translate Lean4 to natural language
I am attempting to formalize a certain mathematical problem. To achieve

this formalization, I model the mathematical problem as a
mathematical system consisting of several mathematical objects and a
series of constraints on the system. The following Lean4 code
represents one of the complete formalized constraints for the
mathematical problem. Additionally, MySystem describes the
mathematical system, while the rest of the code serves as auxiliary.
Please analyze the semantics of this constraint and express it in
natural language.Pay attention the use of quantifiers and the domain
of variables.

Any mathematical problem can be viewed as the study of the properties of
a certain mathematical system. A mathematical system consists of
several mathematical objects, along with a series of constraints
that limit the properties or relationships of these mathematical
objects, thereby defining the mathematical system under study. The
requirement of a mathematical problem is to investigate a certain
property of this mathematical system. Therefore, a mathematical
problem can be formally expressed as declaring a mathematical system
composed of several mathematical objects and a series of constraints.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Note: There is some distinctions between certain Lean4 data structures,
for example, between List and Set, where a List may contain
duplicate elements, while a Set enforces uniqueness, reflect the
feature of the data structure used.

Note: Your task is solely describe the semantic meaning of the
constraint’s Lean4 code, do not make any calculations or
derivations. Focus exclusively on providing a precise mathematical
characterization of the system formalized in this code. Do not make
any assumptions about the real-world problem it might represent.

Note: You must carefully translate the logical structure of Lean4 code,
especially when it involves universal quantifiers or existential
quantifiers.

Note: The naming of objects is merely an identifier and should not be
used as a reference for semantic meaning.

Note: Describing Lean4 code in natural language may introduce ambiguity,
so try your best to avoid ambiguity.

Note: If any auxiliary functions are used in the Lean4 code of a
constraint, describe their semantic meaning integrated naturally
with the constraint, rather than referring to them by name.

Note: In your analysis and summary, you must reflect the below two
principles(Clarify Point-Space Principle and Exhaustion Principle of
Predicate Satisfaction).

Formalization Principle
Clarify Point-Space Principle

- A mathematical object should be formalized as a concrete instance
(e.g., a : Nat) if and only if it is uniquely determined within
the problem’s constraints. Otherwise, it must be represented as a
set or type (e.g., Set Nat) to preserve its possible value space.

Exhaustion Principle of Predicate Satisfaction
- If it is desired for set A to contain all elements that satisfy

predicate P, it must be ensured that every element in set A
satisfies predicate P, and that there does not exist an element e
such that e satisfies predicate P but e does not belong to set A.

@magic_method_or_not

Your response should strictly follow the template below.
Analysis of ‘<constraint name>‘
<Your analysis of the constraint,must reflect the above two principles>

Concise Summary of ‘<constraint name>‘
‘‘‘markdown
<Here is a clear and natural language summary of the constraint’s

meaning that incorporates the semantics of any auxiliary functions.
Emphasize adherence to the above principles, especially in cases
where they may have been overlooked.>

‘‘‘

Lean4 code you need to translate
‘‘‘Lean4
<Lean4_code>
‘‘‘

I.4 THE PROMPT USED FOR CONSISTENCY LEVEL DETERMINATION

Requirement: The Lean4 code is a formalization of
problem_original(intendedly transformed into a verification task by
introducing ‘{sol_obj}‘,since there is no concept such as ‘solve‘ in

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Lean4), but it may have some issues in the formalization procedure.
I have observed some semantic discrepancies between the Lean4 code
and the problem_original but I can not be sure wether these
discrepencies is severe enough to break the semantic consistency.
Please analyse every discrepancy listed and determine the
consistency level of the Lean4 code, by the final criterion and
definitions of consistency level. Your analyse must be concise but
accurate.

**Consistency Criteria **
The Lean 4 code is deemed **consistent** with the original problem if

and only if it **does not violate** any of the following
Violation Criteria .

** Violation Criteria **
*(If any of these are true, the code is **inconsistent**.)*
Violation Criterion 1: Object Omission
Not all mathematical objects in ‘problem_original‘ are reflected in the

Lean4 code or their types mismatch(except for ‘{sol_obj}‘, the type
of ‘{sol_obj}‘ can be different but must be equivalent). As long as
the objects are correctly reflected, some redundancy in the Lean4
code are acceptable.

Violation Criterion 2: Semantic Alteration
The definitions, properties, or relationships of any mathematical object

from ‘problem_original‘ are not exactly preserved in the Lean4 code.
*(Note: Some redundancy is permitted as long as the core semantics
are constrained correctly.)*

Violation Criterion 3: Constraint Incompleteness
The constraints expressed in problem_formal fail to comprehensively

represent all explicit and implicit constraints present in
problem_original. (Note: Full completeness is essential, both
explicitly stated and implicitly inferred constraints must be
accurately formalized.)

Violation Criterion 4: Over-Simplification
The Lean4 code conducts concrete computation or derivation that

simplifies the original problem, leading to a semantic inconsistency.

Exceptions Criteria
Exception Criterion 1: Formatting Flexibility
There is no need to strictly adhere to the original problem’s formatting

requirements for the solution, as Lean4 does not support extensive
formatting options (such as requiring decimal numbers, etc.).

**Final Criterion **
Your determination should focus on the discrepancies listed, other

aspects are irrelevant.
The Lean 4 code is **consistent** with the original problem **if and

only if**: All the discrepancies listed are acceptable under the
above criteria.

As long as the core properties and relationships of the essential
objects are preserved, some redundancy or unnecessary complexity in
the Lean4 code is acceptable.

Formalization Principle for reference:
Clarify Point-Space Principle

- A mathematical object should be formalized as a concrete instance
(e.g., a : Nat) if and only if it can be uniquely determined
within the problem’s constraints. Otherwise, it must be
represented as a set or type (e.g., Set Nat) to preserve its
possible value space.

Exhaustion Principle of Predicate Satisfaction

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

- If it is desired for set A to contain all elements that satisfy
predicate P, it must be ensured that every element in set A
satisfies predicate P, and that there does not exist an element e
such that e satisfies predicate P but e does not belong to set A.

Mandatory Lean4 Template:
‘‘‘Lean4
-->>declare_enviroment
<Some enviroment>
-->>declare_auxiliary_types
<some auxiliary types>
-->>declare_mathematical_system
-->>declare_mathematical_system
structure MySystem where

<objects>
-->>declare_auxiliary_functions_or_predicates
<some auxiliary definitions, without any parameter be of type MySystem>
-->>declare_constraints
def <name>_constraint (sys:MySystem) : Prop :=

<expr_body>
def <name>_constraint (sys:MySystem) : Prop :=

<expr_body>
def solution_constraint (sys:MySystem) : Prop :=

<expr_body>
-->>declare_the_problem_statement
def problem_statement (solution : <type>) : Prop :=

∀ sys:MySystem,
<name>_constraint sys ∧
<name>_constraint sys ∧
solution_constraint sys →
<expression of solution and sol_object>

end
‘‘‘

problem_original:
@original_problem

Lean4 Code To Judge:
‘‘‘Lean4
@Lean4_code
‘‘‘

Potential Sementic Discrepancies:
@potential_sementic_discrepancies

Consistency level:
There are three levels of consistency you can choose.
level_1: Fully consistent by the final criterion.
level_2: Consistent without loss of generality: The Lean4 code

formalizes the problem by analyzing representative cases. In each of
these cases, the final criterion are fully satisfied, and the
general case follows through straightforward deduction.Or the
formalization rely on equivalent conversions, such as transforming
canonical equations into general form. In such cases, the
formulation can be regarded as consistent without loss of generality.

level_3: Inconsistent, any criterion breaked can lead to this.

Note: Your reasons and recommendations should avoid including any
specific calculations or derivations, as this may lead to
inconsistency.

Note: Avoid tediously long analysis.
Your response should be like:
Analyse of all the listed discrepancies:

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

<Analyse the discrepancies by examining the Lean4 code and original
problem to determine wether it is severe engough to impair the
semantic consistency. Make sure every discrepancy listed is analysed
in detail.>

Analyse Of each consistency level:
<According to the definitions of consistency level and your above

analyse about the discrepancies listed, determine which consistency
level is appropriate.Your determination should focus on the
discrepancies listed, other aspects are irrelevant.>

Consistency Level Determination
‘‘‘json
{
"consistency_level" : "<level_1 or level_2 or level_3>",
"discrepancies" : ["<According to your previous analysis, list all the

semantic discrepancies here. If consistency_level is ‘level_1‘,
leave this filed blank.Please provide some detailed descriptions of
the discrepancies, ensuring it is concrete rather than high-level.
Exclude discrepancies related to unnecessary abstractions,
complexity, or redundancy, as that is not really matter.>"],

"recommendations" : ["<Some specific recommendations to rectify the
Lean4 code instead of high-level recommendations such as rectify
which declaration into what. Your recomentation must align with the
Formalization Basement and Mandatory Lean4 Template. The
recommendations must directly correspond to the discrepancies. If
consistency_level is ‘level_1‘, leave this filed blank.>"]

}
‘‘‘

I.5 THE PROMPT USED FOR RECTIFICATION

Requirement: There appears to be a discrepancy between your Lean4
formalization and the original problem, due to the following
reasons, and some recommendations to rectify the Lean4 code are
provided. Please rectify the Lean4 code accordingly. Print the
rectified Lean4 code directly according to the error information. Do
not make further thinking.

Note: All suggestions are indicative, not mandatory. Rectify the Lean4
code based on your understanding.

Note: Your rectification must meet all the formalization principles
mentioned above.

Note: Your formalization must adopt this treatment: the solution to the
original problem is taken as a free variable in the proposition
problem_statement, such that **problem_statement** holds true if
and only if the **solution** is indeed a valid solution to the
original problem.

The determination of consistency follows the criteria below.
**Consistency Criteria **
The Lean 4 code is deemed **consistent** with the original problem if

and only if it **does not violate** any of the following
Violation Criteria .

** Violation Criteria **
*(If any of these are true, the code is **inconsistent**.)*
Violation Criterion 1: Object Omission
Not all mathematical objects in ‘problem_original‘ are reflected in the

Lean4 code or their types mismatch(except for ‘{sol_obj}‘, the type
of ‘{sol_obj}‘ can be different but must be equivalent). As long as
the objects are correctly reflected, some redundancy in the Lean4
code are acceptable.

Violation Criterion 2: Semantic Alteration

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

The definitions, properties, or relationships of any mathematical object
from ‘problem_original‘ are not exactly preserved in the Lean4 code.
*(Note: Some redundancy is permitted as long as the core semantics
are constrained correctly.)*

Violation Criterion 3: Constraint Incompleteness
The constraints expressed in problem_formal fail to comprehensively

represent all explicit and implicit constraints present in
problem_original. (Note: Full completeness is essential both
explicitly stated and implicitly inferred constraints must be
accurately formalized.)

Violation Criterion 4: Over-Simplification
The Lean4 code conducts concrete computation or derivation that

simplifies the original problem, leading to a semantic inconsistency.

Exceptions Criteria
Exception Criterion 1: Formatting Flexibility
There is no need to strictly adhere to the original problem’s formatting

requirements for the solution, as Lean4 does not support extensive
formatting options (such as requiring decimal numbers, etc.).

**Final Criterion **
Your determination should focus on the discrepancies listed, other

aspects are irrelevant.
The Lean 4 code is **consistent** with the original problem **if and

only if**: All the discrepancies listed are acceptable under the
above criteria.

As long as the core properties and relationships of the essential
objects are preserved, some redundancy or unnecessary complexity in
the Lean4 code is acceptable.

Reflect the Clarify Point-Space Principle and the Exhaustion Principle
of Predicate Satisfaction in your analysis. For some cases,
violation of these principles may lead to severe semantic
inconsistencies.

Clarify Point-Space Principle
- A mathematical object should be formalized as a concrete instance

(e.g., a : Nat) if and only if can be uniquely determined within
the problem’s constraints. Otherwise, it must be represented as a
set or type (e.g., Set Nat) to preserve its possible value space.

Exhaustion Principle of Predicate Satisfaction
- If it is desired for set A to contain all elements that satisfy

predicate P, it must be ensured that every element in set A
satisfies predicate P, and that there does not exist an element e
such that e satisfies predicate P but e does not belong to set A.

Final criterion:
The Lean 4 code is consistent with the original problem if and only if,

for any concrete instance of MySystem satisfying the constraints,
the three basic criteria are satisfied. As long as the properties or
relationships of those essential objects are not compromised, some
redundancy or unnecessary complexity in the Lean4 code is acceptable
as long as the above three criteria are fully satisfied.

Reasons:
@reasons

Recomendations:
@recommendations

@previous_recommendations

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Your response should strictly follow the following template:

‘‘‘Lean4
import Mathlib

-->>declare_enviroment
open Real InnerProductGeometry Matrix Topology Filter ENNReal Polynomial

Classical Complex

notation "Rˆ"n => EuclideanSpace R (Fin n)
notation "M [" m "," n "]" => Matrix (Fin m) (Fin n) R
notation "⟨⟨" x ", " y "⟩⟩" => @inner R _ _ x y

variable {V : Type} [NormedAddCommGroup V] [InnerProductSpace R V]

/-
The foundational environment has been established, and you can not

modify it. For the sake of automated control, declaring additional
notations or opening more namespaces is not allowed.

The purpose of this formalization project is for educational purposes,
so we strive to minimize reliance on implementations from the
Mathlib library. Apart from ‘import Mathlib‘, no additional imports
should be included.

-/

noncomputable section
-->>declare_auxiliary_types
<some auxiliary types>
-->>declare_mathematical_system
structure MySystem where

<objects>
-->>declare_auxiliary_functions_or_predicates
<some auxiliary definitions, without any parameter be of type MySystem>
-->>declare_constraints
def <name>_constraint (sys:MySystem) : Prop :=

<expr_body>
def <name>_constraint (sys:MySystem) : Prop :=

<expr_body>
def solution_constraint (sys:MySystem) : Prop :=

<expr_body>
-->>declare_the_problem_statement
def problem_statement (solution : <type>) : Prop :=

∀ sys:MySystem,
<name>_constraint sys ∧
<name>_constraint sys ∧
solution_constraint sys →
<expression of solution and sol_object>

end
‘‘‘

I.6 THE PROMPT USED FOR SC-BASELINE

You will receive a natural language math problem statement, along with
its formal statement

in LEAN 4 and, in some cases, a description of mathematical terms.
Please evaluate whether

the formal LEAN statement appropriately translates the natural language
statement based on

the following criteria. They are considered different if any of the
criteria are not satisfied.

1. Key Elements: The fundamental mathematical components, including
variables,

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

constants, operations, domain, and codomain are correctly represented in
LEAN code.

2. Mathematical Accuracy: The mathematical relationships and expressions
should be

interpreted consistently during translation.
3. Structural Fidelity: The translation aligns closely with the original

problem, maintaining
its structure and purpose.
4. Comprehensiveness: All conditions, constraints, and objectives stated

in the natural
language statement are mathematically included in the LEAN translation.
When doing evaluation, break down each problem statement into

components, match the
components, and evaluate their equivalence.
Think step-by-step and explain all of your reasonings.

Natural language math problem statement:
{original_problem}

Formal statement in LEAN 4
{Lean4_code}
Your answer should be like:
<some analyase here>

Judgement and recommendation:
‘‘‘json
{{

"consistent_or_not" : "<yes or no>",
"reasons" : "<if inconsistent, leave your reasons here>",
"recommendations" : "<if inconsistent, leave your recommendations

here>"
}}
‘‘‘

I.7 THE PROMPT USED FOR SC-BASELINE-BT

You will receive a natural language math problem statement, along with
its formal statement

in LEAN 4 and, in some cases, a description of mathematical terms.
Please evaluate whether

the formal LEAN statement appropriately translates the natural language
statement based on

the following criteria. They are considered different if any of the
criteria are not satisfied.

1. Key Elements: The fundamental mathematical components, including
variables,

constants, operations, domain, and codomain are correctly represented in
LEAN code.

2. Mathematical Accuracy: The mathematical relationships and expressions
should be

interpreted consistently during translation.
3. Structural Fidelity: The translation aligns closely with the original

problem, maintaining
its structure and purpose.
4. Comprehensiveness: All conditions, constraints, and objectives stated

in the natural
language statement are mathematically included in the LEAN translation.
When doing evaluation, break down each problem statement into

components, match the
components, and evaluate their equivalence. Think step-by-step and

explain all of your
reasonings. Your answer should be in the following format:
Thought: [Your Answer]

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Judgement: [Your Answer, one of Appropriate, Inappropriate]

Natural language math problem statement:
{original_problem}

Formal statement in LEAN 4
{Lean4_code}

Natural language description of LEAN 4:
{back_translation}

I.8 THE PROMPT USED FOR FORMAL-BASELINE

Please translate the following mathematical problem into Lean4 by
completing the template provided. Do not try to solve the problem,
your task is formalization. Do not make any derivation or comutation
as that would be inconsistent with the original problem. Enclose
your Lean4 code in a ‘‘‘Lean4‘‘‘ section.

Problem:
{problem}

Lean4 tamplate to complete:
‘‘‘Lean4
import Mathlib

open Real InnerProductGeometry Matrix Topology Filter ENNReal Polynomial
Classical Complex

notation "Rˆ"n => EuclideanSpace R (Fin n)
notation "M [" m "," n "]" => Matrix (Fin m) (Fin n) R
notation "⟨⟨" x ", " y "⟩⟩" => @inner R _ _ x y

variable {V : Type} [NormedAddCommGroup V] [InnerProductSpace R V]

noncomputable section
theorem <name> <parameters> (solution:<type of solution>) : <conclusion>

:= by sorry

end

Examples:

‘‘‘

I.9 THE PROMPT USED FOR FORMAL-ITERATIVE-BASELINE(SEMANTIC RECTIFICATION)

Your Lean4 code is not consistent with the original problem for the
following reasons, and try to rectify your Lean4 code according to
the reasons and recommendations.

Reasons:
{reasons}

Recommendations:
{recommendations}

Lean4 tamplate to complete:

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

‘‘‘Lean4
import Mathlib

open Real InnerProductGeometry Matrix Topology Filter ENNReal Polynomial
Classical Complex

notation "Rˆ"n => EuclideanSpace R (Fin n)
notation "M [" m "," n "]" => Matrix (Fin m) (Fin n) R
notation "⟨⟨" x ", " y "⟩⟩" => @inner R _ _ x y

noncomputable section
theorem <name> <parameters> (solution:<type of solution>) : <conclusion>

:= by sorry

end
‘‘‘

I.10 THE PROMPT USED FOR FORMAL-ITERATIVE-BASELINE(SYNTACTIC RECTIFICATION)

Requirement: There appears to be some errors in your Lean4 code.
Please rectify the Lean4 code accordingly.

Note: You only need to correct syntax errors, do not change any
declaration’s name, parameters, type, or semantic, otherwise the
Lean4 code will be inconsistent with the original problem.

Note:Try to implement the same logic using simpler syntax by yourself,
rather than relying on Lean4 or Mathlib’s built-in special features,
to reduce the possibility of syntax errors or compilation errors.

Errors:
@err_msg_str

Your response must follow the following template:

‘‘‘Lean4
import Mathlib

open Real InnerProductGeometry Matrix Topology Filter ENNReal Polynomial
Classical Complex

notation "Rˆ"n => EuclideanSpace R (Fin n)
notation "M [" m "," n "]" => Matrix (Fin m) (Fin n) R
notation "⟨⟨" x ", " y "⟩⟩" => @inner R _ _ x y

noncomputable section
theorem <name> <parameters> (solution:<type of solution>) : <conclusion>

:= by sorry

end
‘‘‘

42

	Introduction
	Background and Related Work
	Loc-Decomp Based Iteratively Refinement Framework
	Formal Translation Module
	Back translation module and ASCC Submodule
	Joint Syn-Sem Iterative Rectification module

	Evaluation
	Experiment setup
	Experiment Results

	Limitation
	The Use of Large Language Models
	Reproducibility statement
	Detailed discussion about formalization template
	Template details
	Details about the parser and the rectification strategy for template compliance
	Explanation for noncomputable section
	Proof for theorem 3.1
	Minor modification for proof type problems
	Discussion on few-shot examples
	Examples for Isabella and Coq

	ASCC workflow details
	ASCC judge criteria
	ASCC consistency level definitions

	Divide and merge details in back translation
	Human evaluation criteria for semantic consistency
	MATH-ASCC-Eval-150 dataset explanation in detail
	Case studies for iterative rectification on MATH-50
	Additional experimental results
	Details about our baselines
	Prompts
	Prompt differences across models
	The prompt used for formalization
	The prompt used for back translation (per constriants)
	The prompt used for consistency level determination
	The prompt used for rectification
	The prompt used for SC-Baseline
	The prompt used for SC-Baseline-BT
	The prompt used for Formal-Baseline
	The prompt used for Formal-iterative-Baseline(semantic rectification)
	The prompt used for Formal-iterative-Baseline(syntactic rectification)

