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“a [V] man, brown short hair, detailed strand hair, 
gray polo shirt, photorealistic, 8K, HDR”

“a [V] woman, blonde long hair, detailed strand 
hair, white shirt, photorealistic, 8K, HDR”

“a [V] man, brown curly hair, detailed strand hair, 
gray t shirt, photorealistic, 8K, HDR”

Reference Reference Reference

Figure 1: Conditioned on text and a reference image (in middle), our PSHead, can automatically
generate a high-fidelity facial avatar. Each avatar is rendered from eight distinct viewpoints.

ABSTRACT

In this work, we investigate the problem of creating high-fidelity photorealistic
3D avatars from only a single face image. This task is inherently challenging due
to the limited 3D cues and ambiguities present in a single viewpoint, further com-
plicated by the intricate details of the human face (e.g., wrinkles, facial hair). To
address these challenges, we introduce PSHead, a coarse-to-fine framework that
optimizes 3D Gaussian Splatting for a single image, guided by a mixture of object
and face prior to generate high-quality 3D avatars while preserving faithfulness to
the original image. At the coarse stage, we leverage diffusion models trained on
general objects to predict coarse representation by applying score distillation sam-
pling losses at novel views. This marks the first attempt to integrate text-to-image,
image-to-image, and text-to-video diffusion priors, ensuring consistency across
multiple views and robustness to variations in face size. In the fine stage, we uti-
lize pretrained face generation models to denoise the rendered noisy images, and
use them as supervision to refine the 3D representation. Our method outperforms
existing approaches on in-the-wild images, proving its robustness and ability to
capture intricate details without the need for extensive 3D supervision.

1 INTRODUCTION

Creating photorealistic 3D avatars is a key challenge in computer graphics, with applications in
movies, games, virtual or augmented reality, and the metaverse. There is growing interest in creating
digital avatars from a single image, as it is easily obtainable. While humans can intuitively infer 3D
shapes and textures from a quick glance, thanks to their vast knowledge of the natural world, tackling
this task algorithmically is far more difficult. The main challenge lies in the limited 3D cues and
inherent ambiguities present in a single viewpoint, compounded by the rich and intricate details of
the human face (e.g., wrinkle, facial hair), making the task even more difficult.

Some attempts have been made to generate 3D heads from a single reference image, but their perfor-
mance and flexibility are severely constrained by the training datasets. They typically utilize small
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scale 3D head datasets (Zheng et al., 2024; Chen et al., 2024a) or large-scale 2D images (Chan et al.,
2022a; An et al., 2023). However, challenges in capturing and processing data often result in reduced
quality and diversity (in terms of identity, race, age et al.) in the training datasets, which in turn neg-
atively impacts the accuracy of generated reconstructions, particularly when the reference image is
captured in the wild. Additionally, the normalization preprocessing steps (e.g., align-cropping) in
(Chan et al., 2022a; An et al., 2023) prohibit them from handling inputs of varying scales, such as
head only, head and neck, or head and shoulders images.

Recently, significant progress has been made in text and image-to-3D object generation, largely
driven by diffusion models pretrained on large-scale datasets that encode object priors (Saharia
et al., 2022; Rombach et al., 2022). The typical approach involves optimizing a 3D representation
by aligning its 2D renderings from random angles with diffusion prior (Poole et al., 2023). While
these methods have been successfully applied to text-to-3D avatar generation (Cao et al., 2024; Han
et al., 2024; Liu et al., 2024), adapting them for image-to-3D avatar generation is non-trivial and
requires additional efforts. The primary difficulty lies in achieving fidelity: the generated 3D mod-
els must closely match the identity of the reference image, while also being realistic at the same
time, rather than relying on the more general guidance of a rough text prompt. However, most
existing text-to-image (T2I) (Ruiz et al., 2023), image-to-image (I2I) (Liu et al., 2023), and text-
to-video (T2V) (Wang et al., 2023b) diffusion models are not specifically trained on face images,
limiting their ability to capture fine facial details or maintain identity-preserving characteristics.
Face-specific diffusion models often have limitations: they either lack scale (He et al., 2024), rely
on synthesized data (Wang et al., 2023a), or focus solely on frontal or profile views with facial land-
mark constraints (CrucibleAI, 2023), and are therefore not directly applicable to image-to-3D avatar
task. Despite these limitations, Text-to-3D avatar generation under T2I guidance has demonstrated
a strong ability to handle a wide range of inputs, from close-up shots of the face (Han et al., 2024;
Liu et al., 2024) to full-body characters (Cao et al., 2024). This suggests that diffusion models pos-
sess valuable 3D knowledge about the human structure. Motivated by this, we argue that carefully
leveraging existing diffusion models holds strong potential to solve the image-to-3D avatar task.

In this work, we propose a head-specific generative method PSHead that lifts a single frontal face
image to an accurate and faithful 3D gaussian splatting (3D-GS) reconstruction (Kerbl et al., 2023),
with a particular focus on preserving the subject’s identity and recovering details in the reference
image (e.g., face, hair, neck, and shoulders). We adopt a coarse-to-fine strategy. At the coarse stage,
we incorporate Score Distillation Sampling (SDS) (Poole et al., 2023) guidance from multiple types
of diffusion models to leverage their unique strengths. These models include a subject-specific T2I
model finetuned via DreamBooth (Ruiz et al., 2023), capturing person-specific characteristics such
as hair style; an I2I model (Liu et al., 2023) to generate novel views with camera rotations cover-
ing a full 360◦ space and the reference image, providing plausible multiview SDS guidance; and a
T2V model (Wang et al., 2023b) to generate novel views as consecutive frames in video, enhanc-
ing multiview consistency via a temporal cross-attention mechanism. The combined SDS loss from
object diffusion models allows us to learn a 3D-GS with coarse geometry and a noisy appearance,
lacking high-quality details, especially in the face and hair. To address this, we incorporate a re-
finement stage, where additional 2D facial priors from models trained on face datasets are used to
refine the representation and enhance facial detail. Specifically, we prioritize enhancement by using
landmark-guided ControlNet (CrucibleAI, 2023) to denoise the entire face image, with particular
focus on refining face geometry and applying a face super-resolution model (Zhou et al., 2022) to
increase resolution in facial regions. Additionally, we use the personalized T2I model to effectively
denoise rest views, ensuring consistency across different angles.

To summarize, we make the following contributions: (1) We propose PSHead, a method that learns
a 360◦ photographic 3D-GS representation for a reference image with varying face sizes; (2) We
leverage a mixture of diffusion priors to generate a coarse representation of the input face, providing
insights into how each prior contributes to the process; (3) We refine the coarse representation in an
innovative way by introducing 2D face priors to enhance more detailed representation.

2 RELATED WORK

Text to 3D. A common approach to optimizing a 3D representation for text description is to opti-
mize its 2D rendered images with guidance from diffusion-based text-guided 2D image generation
models (Saharia et al., 2022; Rombach et al., 2022). DreamFusion (Poole et al., 2023) pioneers in
proposing a SDS strategy to self-optimize neural radiance fields (NeRF) (Mildenhall et al., 2020)
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with Imagen (Saharia et al., 2022). To apply it to 3D avatar generation, geometry parametric pri-
ors are employed to guide the learning of avatar shapes. DreamAvatar (Cao et al., 2024) learns a
SMPL-based (Bogo et al., 2016) NeRF (Mildenhall et al., 2020) to incorporate human shape prior,
while Headsculpt Han et al. (2024) leverages FLAME (Li et al., 2017) via landmark-guided Con-
trolNet (CrucibleAI, 2023) to capture facial shape prior. HeadArtist (Liu et al., 2024) addresses
challenges like over-saturation and smoothing from SDS by introducing self-score distillation. Our
method is inspired by these approaches and also utilizes landmark-guided ControlNet that encodes
facial shape priors. However, rather than relying on a fixed shape template, which cannot account
for individual facial differences, we estimate 3D landmarks dynamically during training. Using their
projection to image space to provide shape input for landmark-guided ControlNet.

Image to 3D. Image to 3D task involves reconstructing a 3D model from a single image, which
is particularly challenging due to its ill-posed nature. One straightforward solution, following the
text-to-3D pipeline (Richardson et al., 2023; Chen et al., 2023; 2024c), is to add reference image
reconstruction at a specific viewpoint, using SDS (Poole et al., 2023) from diffusion models (Saharia
et al., 2022; Rombach et al., 2022) to guide the rendered images from random views.

Method T2I I2I T2V Pers.
RealFusion (Melas-Kyriazi et al., 2023) ✓ ✗ ✗ ✓

Make-it-3D (Tang et al., 2023) ✓ ✗ ✗ ✗
Magic123 (Qian et al., 2024) ✓ ✓ ✗ ✓

DreamGaussian (Tang et al., 2024) ✓ ✓ ✗ ✗
Ours ✓ ✓ ✓ ✓

Table 1: Summary of four design properties contributing to the
image-to-3D task. Pers. denotes personalization.

RealFusion (Melas-Kyriazi
et al., 2023) starts with model
personalization by creating a
textual inversion embedding
for the input image, then
optimizes InstantNGP (Müller
et al., 2022) progressively
from low-to-high resolutions.
Make-it-3D (Tang et al., 2023)
learns to create finely detailed textured point clouds from a coarse NeRF, guided by T2I diffusion.
Magic123 (Qian et al., 2024) optimizes a high-resolution mesh and texture from NeRF outputs,
leveraging both T2I and I2I diffusion models for guidance. DreamGaussian (Tang et al., 2024)
focuses initially on optimizing a 3D-GS with I2I guidance then refines a textured mesh by denoising.
While these methods have shown promising outcomes for general objects, their performance in
creating avatars from front-view facial images is hindered by the absence of face priors. Moreover,
T2V diffusion, essential for maintaining multi-view consistency as demonstrated in (Kwak et al.,
2024), has yet to be employed or analyzed in this context. We identify four potential factors that
contribute to the success of the image-to-3D task, which are summarized in Table 1. Our method
stands out from previous works by thoroughly analyzing how each of these components contributes
to learning an accurate 3D representation from a single face image.

Single Face to 3D. The task of converting a single face to a 3D model can be divided into two
categories based on the usage of different face generation models. The first approach, 3D-GAN
inversion, involves initially training a 3D-GAN on a large-scale 2D face dataset and then learning
the latent code for a specific face image. EG3D (Chan et al., 2022b) exemplifies this method, with
subsequent studies enhancing inversion performance through the integration of symmetry priors
(Yin et al., 2023), refinements (Bhattarai et al., 2024), and other techniques (Trevithick et al., 2023).
The second approach focuses on generating a 3D avatar starting from a text prompt, where a face
image is generated using T2I diffusion models, and a 3D model is learned with supervision from
the generated image and guidance from the diffusion model. This method tends to prioritize textual
descriptions over the input image, producing a 3D model that aligns more closely with the text
description (Wu et al., 2024). However, these methods often rely heavily on the preprocessing steps
used during the training of the 3D-GAN, making it difficult to generalize to arbitrary facial inputs.

3 METHOD

Here, we introduce PSHead, a coarse-to-fine pipeline designed for high-fidelity 360◦ avatar gen-
eration from a single frontal face. We begin by presenting the preliminary knowledge in Sec. 3.1,
followed by a detailed description of our proposed method PSHead in Sec. 3.2.

3.1 PRELIMINARIES

3D Gaussian Splatting (3D-GS) (Kerbl et al., 2023) represents a 3D scene using a set of Gaussian
primitives, rendering images through volume splatting. Each Gaussian primitive is represented by
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Figure 2: Overview of proposed PSHead method. Starting with a frontal view image as a reference,
in the coarse stage, we first use DreamBooth to learn a personalization T2I diffusion. Then, using a
combination of personalization T2I, I2I, and T2V diffusions, we apply a mixture of SDS on rendered
novel view images to generate a coarse 3D-GS. In the fine stage, we enhance the 3D-GS by refining
the image quality, supervised by the personalized T2I diffusion, landmark-guided ControlNet, and a
pretrained face super-resolution model CodeFormer.

its position (mean) µ ∈ R3, rotation R ∈ R4, scale S ∈ R3, view-dependent color as Spherical
Harmonics coefficients c ∈ R3 , and opacity value α ∈ R. Given a viewpoint v, the Gaussians can
be rendered to the multi-channel image I through tile-based differentiable rasterization:

I = R(µ,R, S, α, c; v). (1)

We use 3D-GS to represent the facial appearance and geometry because of its outstanding perfor-
mance, flexibility, and real-time rendering efficiency, especially its ability to capture intricate details,
such as hair strands, wrinkles and eyeglasses in human face (Chen et al., 2024b).

Score Distillation Sampling (SDS) introduced in DreamFusion (Poole et al., 2023), utilizes a pre-
trained diffusion model (Saharia et al., 2022) to validate multiple views of a given object. In our
approach, we denote the optimizable parameters in 3D-GS as θ = {µ,R, S, α, c}, its rendered image
at random view as I and a pretrained diffusion model as ϕ. We use SDS loss to optimize 3D-GS by
performing gradient descent with respect to θ by:

∇θLSDS = Eϵ,t[wt(ϵϕ(It)− ϵ)
∂(I)

∂(θ)
], (2)

where ϵ is the Gaussian noise, It = αtI + σtϵ is the noised image, αt, σt, and wt are noise sampler
terms. Intuitively, Eq 2 measures the difference between the Gaussian noise ϵ added to the rendered
image I and the predicted noise ϵϕ. By minimizing this difference, the rendered samples become
more similar to the plausible samples generated by the pretrained diffusion model.

3.2 PSHEAD

Our goal is to generate a high-fidelity 3D head model parameterised θ, that preserves the iden-
tity and appearance of the person in a frontal reference image Iref . To achieve this, we leverage
prior knowledge embedded in models pretrained on both general objects and faces to optimize θ
from coarse to fine. In the coarse stage, we use a mixture of SDS losses provided by personalized
T2I, generic I2I, and T2V diffusion models to optimize a coarse 3D-GS. The reference view re-
construction is also involved to supervise training. In the fine stage, we utilize personalized T2I,
a shape-guided face controlnet module, and a pretrained face super-resolution model to denoise
and improve novel views, and subsequently apply reconstruction loss using the enhanced images to
refine 3D representation. Figure 2 provides a visual diagram of PSHead, illustrating these processes.
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3.2.1 DIFFUSION WITH MIXTURE OF SDS

To learn a 3D representation for a given face image, we split the training views into two groups and
apply losses on images rendered from different viewpoints to optimize 3D-GS θ. The first group
consists of the reference view of the input image: I

′

ref , which is supervised by a reference image
Iref , using a combination of L1 and L2 loss to measure the pixel-wise difference:

Lref = ||I
′

ref ⊙M − Iref ||22 + ||I
′

ref ⊙M − Iref ||12, (3)

where ⊙M is a Hadamard product. We apply a foreground mask M to isolate the object of interest,
which helps simplify and improve the geometry reconstruction process (Yariv et al., 2020).

The second group includes novel views of the object, where we uniformly sample 25 views around
the azimuth angle from 0◦ to 360◦. These novel views are optimized under the guidance of prior
models to improve the overall training process and reconstruction quality.

Specifically, we investigate three types of diffusion priors: T2I (Ruiz et al., 2023), I2I Liu et al.
(2023), and T2V Wang et al. (2023b). T2I focuses on how text descriptions influence individual
novel view generation, I2I examines how a reference image propagates to the generation of another
view, and T2V explores multi-view generation in a sequential manner. To fully harness the poten-
tial of these diffusion models, we have made several improvements and modifications, effectively
conditioning them to enhance the 3D-GS process.

Personalized Text-to-Image (T2I) SDS. Text-to-3D avatar generation, which creates a 3D head
avatar using descriptive text through SDS loss, has shown promising performance (Han et al., 2024;
Chen et al., 2023; Liu et al., 2024). However, when applied directly to the task of image-to-3D
generation, it often results in a mismatch between the generated 3D avatar and the identity of the
reference image. This is due to the inherent ambiguity of text – a picture is worth a thousand words.
To facilitate the understanding of visual characteristics of a given image, we propose combining
descriptive text with a personalized T2I diffusion model.

Specifically, we utilize BLIP (Li et al., 2022) to describe a face from three key aspects: gender,
clothing, and hair style. Additionally, we deploy DreamBooth (Ruiz et al., 2023), to personalize
T2I model to encode reference image through few-shot tuning, which helps to reduce the excessive
imagination typically seen in 2D diffusion models. To generate the necessary inputs for fintuning, we
follow (Huang et al., 2024) to augment the single input image with five different backgrounds, and
create a gallery of “man” and “woman” images for regularization. After optimization, the subject-
specific appearance is encoded within a unique identifier token “[V]”. For instance, the description
for the reference face in Figure 2 is “photo of a [V] man, light blonde hair, detailed strand hair, black
v-neck shirt, photorealistic, 8K, HDR.” To update 3D-GS, we specify Eq 2 with T2I SDS:

∇θLSDSt2i
= Eϵ,t[wt(ϵϕ(It; y)− ϵ)

∂(I)

∂(θ)
]. (4)

Here, y represents the prompt for the reference image. However, the loss in Eq 4 optimizes each
generated image separately, without explicitly enrolling the reference image, resulting in two poten-
tial issues: inconsistencies in geometry and visual appearance across different views, and generated
images that may not accurately reflect the reference image. To address these problems, additional
regularization is needed to ensure coherence and fidelity across all generated views.

Image-to-Image (I2I) SDS. We use Zero123 (Liu et al., 2023) to correlate novel views with the
reference image, Zero123 is a finetuned version of image diffusion model designed for view-
conditioned image generation. After being trained on synthetic 3D datasets, it has acquired rich
3D priors about the visual world. The model uses a reference image and external camera parameters
as inputs, allowing it to generate novel views of the same subject while maintaining consistency
with the reference image. Here, given a reference image Iref at vref and a relative camera pose
transformation ∆v, we compute the SDS loss using Zero123 to update 3D-GS as follows:

∇θLSDSi2i = Eϵ,t[wt(ϵϕ(It; Iref ,∆v)− ϵ)
∂(I)

∂(θ)
], (5)

where I is a rendered image at v = vref + ∆v and It is its noised version. In our experiment, we
assume the reference image corresponds to a front view.

Text-to-Video (T2V) SDS. To improve the consistency of multi-view images in a single batch,
we employ a T2V diffusion model. Vivid123 (Kwak et al., 2024) introduced the idea of treating
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novel-view synthesis as a sequential frame generation problem, innovatively combining novel-view
diffusion models like Zero123 with video diffusion models. This approach effectively addresses
issues such as pose inconsistencies and abrupt changes between synthesized views.

Building on this idea, we propose to leverage the temporal consistency inherent in the T2V model to
ensure spatial 3D consistency across different camera viewpoints. To minimize unintended creative
deviations from the text description, we employ the T2V model with a null prompt. The SDS
gradient for the T2V model is expressed as follows:

∇θLSDSt2v
= Eϵ,t[wt(ϵϕ(I

t
1:T ; Iref )− ϵ)

∂(I1:T )

∂(θ)
], (6)

where It1:T represents noised version of images rendered from a sequence of camera views. Super-
vision from the reference view affects all views, as they are processed as a single input to T2V. This
ensures more coherent and stable 3D reconstructions across different angles.

3.2.2 SELF-ENHANCEMENT VIA IMAGE REFINEMENT

We observe that using diffusion SDS losses for generating faces often leads to over-saturation, ar-
tifacts (see Figure 4(S3)). This occurs for two key reasons: (1) SDS loss tends to optimize for an
average across different noise levels, leading to over-saturated color blocks, and (2) models like T2I,
I2I, and T2V are trained on general object datasets, not face-specific ones, which limits their ability
to capture facial details. Inspired by the denoising nature of diffusion models, a line of works (Zhou
& Tulsiani, 2023; Tang et al., 2024; Zhu et al., 2024) have explored image-space reconstruction to
address these challenges. Following this, we propose a self-enhancement module that first renders
a blurry image from any given camera view I, and then reconstruct it from a clean version Isr,
predicted by a denoise model. We utilize both pixel-level and perceptual losses for reconstruction:

Lrefine = ||I− Isr||22 + ||vgg(I)− vgg(Isr)||22. (7)

Personalized T2I Refinement. We first re-use the personalized T2I model in Sec. 3.2.1for refine-
ment. We add random noise on rendered image and apply a coarse multi-step denoising process ft2i
using a personalized T2I model to obtaining a refined image:

Isrt2i = ft2i(I + ϵ; y). (8)

Landmark ControlNet Refinement. We also incorporate a landmark-guided ControlNet (Cru-
cibleAI, 2023) trained on a comprehensive 2D facial dataset to refine the entire image. In this case,
we first utilize Mediapipe (Lugaresi et al., 2019) to detect 478 landmarks pref in the reference image.
We also obtain a depth map Dref from depth rendering of the coarse reconstruction on the reference
image, and use it to obtain the depth of the landmarks and reproject them into near-frontal views
from different camera angles. We then add random noise on rendered image and apply a coarse
multi-step denoising process flmk using landmark-guided ControlNet to obtaining a refined image:

pvi = Kπvi
π−1
vref

Dref (pref )K
−1pref ,

Isrlmk = flmk(I + ϵ; pvi),
(9)

where K is camera intrinsic parameters and π refers to the extrinsic camera parameters.

This process generates shared 3D facial landmarks for each face during a training iteration, allowing
a shape-guided diffusion model to produce Isr. This approach has been effective in prior works like
HeadArtist (Liu et al., 2024) and HeadSculpt (Han et al., 2024) for preserving geometry consistency,
and our method adds flexibility by eliminating the need for a pre-calculated head template.

Face Super-Resolution Refinement. We further use a face super-resolution model, CodeFormer
(Zhou et al., 2022), to enhance the face facial details. By detecting the face region with Reti-
naFace Deng et al. (2020), we can apply CodeFormer fcf to predict a clean face image:

Isrcf = fcf (crop(I)). (10)

By utilizing kornia 1, the entire align-cropping process (crop) becomes differentiable. Our method
combines all these together and applies them at the middle point of our training. The personalized
T2I is applied on the back side view to denoise hair where the face detection fails while landmark-
guided ControlNet and CodeFormer are applied to other views to enhance facial regions.

1https://github.com/kornia/kornia
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Figure 3: Qualitative evaluation of image-to-3D methods. Our approach outperforms previous meth-
ods in reconstructing the reference image and synthesizing novel views.

3.2.3 OPTIMIZATION

In addition, we also seek identity preserving loss between rendered images and the reference image
to maintain identification. This is achieved by:

Lid = 1− cos(I, Iref ), (11)

where cos measures Arcface (Deng et al., 2019) feature cosine similarity between rendered image
and reference image. We alternately optimize θ using gradients derived from different sources:
image reconstruction loss (Eq 3), T2I SDS (Eq 4), I2I SDS (Eq 5) and T2V SDS (Eq 6). At the
midpoint of the process, we begin refining the rendered images, using these refined images to further
supervise the optimization (Eq 7 while main identity (Eq 11)improving consistency and quality.

4 EXPERIMENT

4.1 SETTING

Dataset. To assess our method, we establish a benchmark which includes images from PointA-
vatar (Zheng et al., 2023), CelebA (Liu et al., 2015) and our captured data. An effective 3D model
should reconstruct reference view at reference view point while maintaining consistent semantics
with the reference across different viewing angles.

Metrics. We evaluate these two aspects using the following metrics (Tang et al., 2023; Qian et al.,
2024): PSNR and LPIPS (Zhang et al., 2018) to measure the reconstruction quality from the ref-
erence image. Contextual Distance (CD) (Mechrez et al., 2018), CLIP Similarity (CLIP) (Radford
et al., 2021) and ID Similarity (ID) (Deng et al., 2019) assess the similarity between novel-view ren-
dering images and the reference image. To consider the multi-head issues in generation, we apply a
20% penalty to the novel-view measurement when the face is visible at the backside view.
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Method Ref view Novel views
PSNR↑ LPIPS↓ CD↓ CLIP↑ ID↑

Magic123 (Qian et al., 2024) 27.45 0.028 2.20 0.57 0.65
DreamGaussian (Tang et al., 2024) 23.37 0.079 2.07 0.58 0.60

Era3D (Li et al., 2024) 14.43 0.186 2.08 0.60 0.58
PanoHead (An et al., 2023) 26.17 0.039 2.63 0.65 0.65

Ours 28.50 0.024 1.91 0.67 0.70

Table 2: Quantitative comparisons with state-of-the-art methods on single view reconstruction and
novel view synthesis. The results are averaged across novel-views.

Implementations. During the training process, we assume the input image is captured from a frontal
view, with the initial polar angle set at 90◦ and the azimuth angle at 0◦. For training new views, we
uniformly sample 25 views across a full azimuth range of 360◦ while keeping the camera’s polar
angle fixed at 0◦. The distance from the camera to the object’s center remains constant throughout
the training process. Our code is implemented in PyTorch built upon threestudio 2. Our 3D-GS
are initialized with random points. We train for a total of 2000 iterations per input. The resolution
is progressively increased from 128 to 256 and then to 512 at the 200-th and 300-th iterations,
respectively. After 1000-th iterations, we apply image refinement. The entire optimization process
takes approximately 1.5 hour on a single NVIDIA A100 (80GB) GPU. For setting hyperparameters,
the guidance scales are set to 25 for T2I, 3 for I2I, and 100 for T2V. The loss function weights are
set as follows: T2I ∈ {0.1, 0.5}, I2I ∈ {0.1, 0.5}, T2V ∈ {0.01, 0.1}, and 10 for Lrefine. Other
configurations all follow DreamGaussian (Tang et al., 2024).

Competitors. We compare PSHead with four state-of-the-art methods: Magic123 (Qian et al.,
2024), DreamGaussian (Tang et al., 2024), Era3D (Li et al., 2024) and Panohead (An et al., 2023).
We use their official code implementations and follow their preprocessing steps.

4.2 RESULTS

Qualitative Comparisons. Figure 3 shows qualitative comparison on novel view synthesis be-
tween PSHead and its competitors. Magic123 struggles to accurately reconstruct the reference head
and experiences “Janus” issues, where the avatar displays multiple inconsistent faces. Even with
Zero123, it remains unclear about the correct camera view. DreamGaussian produces very blurry
images and fails to generate convincing novel views with large poses, showing that I2I alone can
estimate rough face geometry but lacks details. Era3D improves diffusion guidance but still gener-
ates artifacts in unseen regions and distorts the head shape, while capturing more details compared
to DreamGaussian, the artifacts also become more pronounced. Panohead, trained on large-scale
2D face images, can generate novel views but encounters artifacts in the background, ears, and
eyeglasses. In comparison, our method achieves remarkably faithful appearance under novel views.

Quantitative Comparisons. As shown in Table 2, our approach significantly outperforms the com-
petitors in both reference-view and novel-view evaluations. Our method ranks Top-1 across all
metrics when compared to state-of-the-art methods, with PSNR and LPIPS demonstrating notable
improvements, underscoring superior reconstruction quality. The enhanced CLIP-Similarity indi-
cates strong 3D coherence with the reference view. Also, our method excels in the ID-similarity,
showcasing its ability to accurately capture facial features and maintain high identity consistency
across different novel viewpoints. An interesting finding is that although Magic123 exhibits signif-
icant multi-head issues and distorted faces in its rendered images, as shown in Figure 3, distorting
the reference appearance into other views makes it achieve high ID score.

4.3 ABLATION STUDIES

We conduct ablation studies to analyze the different components of proposed method PSHead with
quantitative comparison in Table 3 and qualitative comparison in Figure 4.

The effect of personalized T2I SDS. To evaluate its impact, we run experiments without using
DreamBooth to personalize the T2I model. As shown in Figure 4, this component is essential for
accurately capturing facial characteristics from the reference image. Without it, the vanilla model

2https://github.com/threestudio-project/threestudio
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S1 w. SD S2 S3 S4 (1) OursS1 w. DB

Figure 4: Ablation study. Detailed specification are shown in Table 3. The reference image is in Fig-
ure 2. When using the personalized T2I model trained with DreamBooth, the hairstyle and identity
more closely matches the reference image (S1 w.DB vs S1 w.SD). With the addition of I2I guidance
(S2), the novel views align more closely with the reference image. The use of T2V reduces noise
(S3), and further noise reduction is achieved through image refinement with the personalized T2I
model (S4(1)). Our full method, which incorporates face-specific models for additional refinement,
produces more natural and high-fidelity novel views.

Variants LSDSt2i LSDSi2i LSDSt2v

Lrefine Lid
Ref View All Views

SD DB DB CN CF PSNR↑ LPIPS↓ CD↓ CLIP↑ ID↑
S1 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 13.74 0.323 2.74 0.54 0.18

✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ 19.68 0.121 2.01 0.74 0.56
S2 ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ 20.71 0.101 1.69 0.78 0.59
S3 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 21.37 0.094 1.47 0.85 0.63

S4
✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 26.23 0.028 1.37 0.89 0.68
✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ 28.98 0.025 1.35 0.89 0.69
✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 29.43 0.022 1.31 0.91 0.68

Ours ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 30.98 0.021 1.31 0.91 0.76

Table 3: Ablation studies on different components. The results are averaged across novel-views.
DB, CN and CF denote DreamBooth, landmark-guided ControlNet and CodeFormer, respectively.

is heavily influenced by the text description, especially when reconstructing hair. For instance, the
model without DreamBooth (S1 w. SD) tends to generate long blonde hair, whereas the version with
DreamBooth (S1 w. DB) is able to replicate the hairstyle from the reference image.

The effect of I2I SDS. By adding the I2I SDS loss (S2), we observe a substantial improvement over
S1 w. DB at large view points. S1 w. DB generates distorted faces at large angles because it relies on
rough, sparse view descriptions like front, back, and side to represent view angles. In comparison,
I2I SDS loss built upon Zero123 more effectively propagates the reference view to novel angles
through conditioning on a more precise camera pose transformation.

The effect of T2V SDS. Our findings slightly differ from Vivid123 (Kwak et al., 2024). While
Vivid123 reports that T2V reduces abrupt view changes in novel view synthesis, we did not observe
such changes without it when optimizing 3D-GS for face using SDS loss. However, we found
that in some cases, T2I and I2I face multi-head issues, while T2V successfully rotates the object,
producing better results (See Figure 9 in Sec. 7). Besides, incorporating T2V led to smoother images
in quantitative results, so we add it to increase model’s generality when handling diverse inputs.

The effect of Self-Enhancement. S4(1) integrates image enhancement through personalized T2I,
leading to a noticeable reduction in artifacts compared to models without this enhancement. Notably,
these results already outperform image-to-3D diffusion-based competitors discussed in Sec. 4.2, un-
derscoring the effectiveness of our modifications. This highlights the success of our approach in
refining and optimizing existing techniques, further advancing the state of the art in this domain.
However, artifacts in the face regions remain. To address this, we retain the hair region for refine-
ment with personalized T2I, while progressively adding further refinements using landmark-guided
ControlNet and CodeFormer. Our results show that each component independently contributes to
improving the generation quality, with the combined use of all elements producing the most effec-
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Figure 5: Comparison between without and with landmark-guided ControlNet.
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(a) Backside view of different hair styles. (b) Gaze directions at front view and side view.

Figure 6: Comparison between Panohead and ours on different hair styles at back side view, and
gaze direction in synthesized novel views. Reference images are in Figure 3.

tive outcomes. We compare with and without landmark-guided ControlNet in Figure 5, showing
smoother skin and reduced noise around the eye region after introducing landmark-guided Control-
Net.

Reference Novel views Reference Novel views

Figure 7: Failure cases on reconstructing accessories like earrings and transparent eyeglasses.

5 MORE ANALYSIS
We conduct more comparison with Panohead, a strong competitor in Sec. 4.2. (1) Face size.
Panohead being trained on aligned and cropped faces, struggles to handle shoulders and requires
identical preprocessing during testing. In contrast, our method, built on diffusion models pretrained
on a large-scale object dataset, effectively handles variations in the upper body (see Figure 1). A
detailed comparison can be found in Figure 10 in Sec.7. (2) Back side view. Benefiting from train-
ing a discriminator on large-scale 2D hair images, Panohead generates higher-quality hair compared
to our method in terms of individual hair strands. However, our method adapts better to a variety
of hairstyles, whereas Panohead struggles with unseen hairstyles and tends to produce artifacts, es-
pecially on the backside (see Figure 6[a]). (3) Gaze direction. Since Panohead is trained on 2D
face images primarily captured in controlled settings with the subject facing the camera, it often
generates images where the gaze is directed straight ahead. In contrast, our method generates more
natural gaze variations that adjust to different viewing angles during rendering (see Figure 6[b]).

6 CONCLUSION AND DISCUSSION

We propose PSHead that utilizes diffusion priors via SDS to generate coarse representation for a
single reference image, which is then refined using facial priors to enhance the rendered images.
Benefits from general diffusion, PSHead is robust across varying face sizes. As the first effort
to integrate T2I, I2I, and T2V diffusion models into a single framework, we analyze the function
of each model, hoping to inspire future work to adopt similar designs. While PSHead improves
performance and expands the scope of 3D avatar generation, it has certain limitations. Due to the
lack of a hair super resolution module, usage of T2I model results in the hair details appearing
less defined and lacking individual strands. Additionally, accessories like earrings and transparent
eyeglasses are difficult to synthesize (see Figure 7).
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7 APPENDIX

A MORE EXPERIMENT DETAILS

Hyperparameters. Due to the diversity of input images, finding consistent hyperparameters is
challenging. Some empirical tips are: use T2I 0.5, I2I 0.1, and T2V 0.01 for default. If the generated
views show over-saturation in hair, reduce T2I from 0.5 to 0.1. If the multi-head issue arises, increase
I2I to 0.5, and if it persists, raise T2I to 0.1.

Metrics. 1) PSNR measures the reconstruction quality from the reference image at the pixel level; 2)
LPIPS assesses reconstruction quality from the perceptual generation quality at the reference image.
3) Contextual Distance (CD) assess the similarity of textures between novel-view rendering images
and the reference image; 4) CLIP Similarity (CLIP) assess the similarity of semantics between the
novel-view rendering images and and the reference image; 5) ID Similarity (ID) computes the aver-
age cosine similarity score using ArcFace across viewpoints (−45◦ to 45◦) relative to the reference
image. If facial landmarks are undetectable in an image from a particular viewpoint, its score is
set to 0. The ArcFace model used here differs from the one in Eq.11, as we use ResNet50 trained
on WebFace600K, whereas the model in Eq.11 is ResNet100 trained on MS1MV2. ArcFace model
used here is different from Eq. 11 (ResNet50@WebFace600K vs ResNet100@MS1MV2).

More ablation studies. Figure 8 shows the comparison between results without and with person-
alized T2I. As discussed in Sec. 3, T2I introduces creativity in generating novel views. This figure
serves as visual evidence of that. Without personalized T2I, the backside view of the generated 3D
representation is not necessarily incorrect, but it lacks a specific hairstyle. In contrast, personalized
T2I uses its imagination to add style while staying faithful to the reference image. For instance,
when the reference image features an updo hairstyle, the model generates a rounded bun at the back
in the 3D view.

W
o T2I

W
 T2I

Figure 8: Comparison between without and with Personalization T2I.

Figure 9 shows the comparison between results without and with I2V. In some cases, I2I alone
fails to predict the backside view of an input image, leaving a hole in the 3D-GS. In such cases,
the backside is rendered using Gaussians from the front, leading to multi-head issues. Adding I2V
alleviates the challenge of predicting the backside view by estimating a temporal transformation of
the input image from front to back, improving the overall consistency and reducing errors in the
backside generation.

Figure 10 shows Panohead results when the shoulder is included in the input. While the align-
cropping process effectively focuses on the head region, it inevitably includes parts of the shoulder
and clothes. This leads to Panohead generating distorted backside views around the neck and shoul-
der, as it is not well-suited for handling these additional regions.

B ETHICS STATEMENT

Our proposed method, PSHead, for generating 3D avatars from a single image holds great potential
to drive metaverse development forward, but it also raises concerns about possible misuse. The
relative ease of obtaining personal and detailed single images, compared to multi-view images,
increases the risk of malicious applications.
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Figure 9: Comparison between without and with I2V.
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Figure 10: Panohead struggles when shoulder is visible.

C CODE AND VISUAL RESULTS.

Code is in the code folder. Video results is in the result folder. More comparison in https://
drive.google.com/drive/folders/1-nCbi1NJoSCv13V7hhKxmacnCajkap54?
usp=sharing
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