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ABSTRACT

The rise of large language models (LLMs) has increased concerns over source
tracing and copyright protection for AI-generated content (AIGC), highlighting
the need for advanced detection technologies. Passive detection methods usually
face high false positives, while active watermarking techniques using logits or
sampling manipulation offer more effective protection. Existing LLM watermark-
ing methods, though effective on unaltered content, suffer significant performance
drops when the text is modified and could introduce biases that degrade LLM per-
formance in downstream tasks. These methods fail to achieve an optimal tradeoff
between text quality and robustness, particularly due to the lack of end-to-end
optimization of the encoder and decoder. In this paper, we introduce the first
end-to-end logits perturbation method for watermarking LLM-generated text. By
jointly optimizing the encoder and decoder, our approach achieves a better bal-
ance between quality and robustness. To address non-differentiable operations in
the end-to-end training pipeline, we introduce an online prompting technique that
leverages the on-the-fly LLM as a differentiable surrogate. Our method demon-
strates superior detection robustness, consistently outperforming state-of-the-art
(SOTA) methods by 1.2%, 4.0%, and 5.5% across 3 LLMs, averaged over 6 types
of text distortions. Simultaneously, our approach achieves exceptional text quality,
as evidenced by reduced text perplexity and improved performance in the down-
stream tasks with a margin of 19.2% and 3.03%. Our method can be easily gener-
alized to different LLMs. The code is available in supplementary material.

1 INTRODUCTION

Large Language Models (LLMs) like ChatGPT (Achiam et al., 2023), Llama (Touvron et al., 2023;
Dubey et al., 2024), and OPT (Zhang et al., 2022) have greatly improved the quality of AI-generated
content (AIGC), broadening their applications in fields such as translation (Hendy et al., 2023), con-
tent creation (Ni et al., 2023), etc. However, such a rapid expansion has also raised concerns about
copyright infringement, academic dishonesty, and unethical practices (Augenstein et al., 2024).
These issues highlight the urgent need for reliable methods to distinguish between human-written
text and LLM-generated content, ensuring digital integrity and combating misinformation (Barrett
et al., 2023).

Numerous approaches have been proposed to address LLM ethical concerns by detecting LLM-
generated content. Passive detection methods focus on identifying unique properties of generated
text, often through training binary classifiers (Bakhtin et al., 2019; Jawahar et al., 2020) or statis-
tical techniques like DetectGPT (Mitchell et al., 2023), which compares the log probability value
of a sentence with its perturbed version. However, as LLMs improve and the gap between gen-
erated and human-written text narrows, the effectiveness of these methods declines dramatically.
In contrast, active detection methods, like embedding watermarks in generated text, are proving
to be more robust alternatives. LLM watermarking methods fall into two main categories: logits-
based and sampling-based. Specifically, logits-based methods (Kirchenbauer et al., 2023; Liu et al.,
2024b; Huo et al., 2024) randomly divide the vocabulary into “green” and “red” lists by hashing
preceding tokens as the seed. Then, perturbations are introduced to the logits that favor green list
tokens in the generated text, and the proportion of the “green” tokens is used to distinguish whether
a text is LLM-generated. Sampling-based methods (Kuditipudi et al., 2024; Christ et al., 2024) rely
on random bitstream to guide token sampling, creating detectable correlations in the text. Despite
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advancements, current watermarking schemes experience significant performance degradation with
even slight text modifications. Additionally, existing algorithms introduce logit biases or guide sam-
pling through random bitstream, which would result in semantic differences between watermarked
and non-watermarked content, negatively impacting LLM performance on downstream tasks, and
limiting the practicality of these watermarking techniques. Among logits-based methods, there is
a growing trend to replace the hashing schemes with trainable networks for generating logit per-
turbations (Liu et al., 2024b; Huo et al., 2024), and to substitute statistical decoding with trainable
decoders (Liu et al., 2024a), leveraging the flexibility of neural network training to improve per-
formance. However, these existing approaches still fail to achieve an optimal trade-off between
text quality and robustness, primarily due to the separate training of the encoder and decoder rather
than a joint, end-to-end optimization. With this observation, we introduce the first logits-based end-
to-end model, where lightweight encoder and decoder networks are jointly optimized to enhance
both detecting robustness and text quality. Note that building such an end-to-end system is highly
non-trivial because many involved modules, such as the complex text modification and the seman-
tic loss computation, are inherently non-differentiable. To resolve these challenges brought by the
non-differentiability, we introduce a novel online prompting technique that utilizes the on-the-fly
LLM as a differentiable surrogate. This approach enables the model to effectively handle the above-
mentioned non-differentiable operations. Our framework is LLM-agnostic, allowing any LLM to be
used during training, and once trained, the model can be applied to other LLMs without retraining.

Our key contributions are as follows:

• For the first time, we present a logits-based end-to-end model for LLM watermarking, im-
proving detection robustness and text quality through encoder-decoder joint optimization.

• We introduce an online prompting technique that transforms non-differentiable operations,
such as semantic loss calculation and advanced online text modification, into differentiable
operations by dynamically prompting the on-the-fly LLM. This technique enables seamless
end-to-end training without external models.

• Extensive experiments show that our method surpasses SOTA methods by 1.2%, 4.0%, and
5.5% across 3 LLMs and 6 distortion types. It also achieves superior text quality, reducing
perplexity and improving downstream task performance by 19.2% and 3.03%. Notably,
our method can be generalized across LLMs without additional training.

The paper is organized as follows: Sec. 2 reviews related works on LLM watermarking. Sec. 3
details our proposed method. Sec. 4 presents experimental results demonstrating the superior per-
formance of our method. Finally, Sec. 5 concludes the paper.

2 RELATED WORKS ON LLM WATERMARKING

Recent works on LLM watermarking can be classified into two main categories: logits-based and
sampling-based methods. Logits-based methods, as presented in KGW (Kirchenbauer et al., 2023),
split the vocabulary into “green” and “red” lists by hashing preceding tokens and biasing green list
logits to favor their selection, using the proportion of green tokens to detect watermarks. Building on
KGW, several methods aim to improve the robustness, quality, or unforgeability of the watermarked
text. KGW-R (Kirchenbauer et al., 2024) explores different hashing schemes, while Unigram (Zhao
et al., 2024) uses a fixed red-green separation to enhance editing resistance. SWEET (Lee et al.,
2023) selectively modifies logits at high-entropy tokens to improve quality in low-entropy scenarios
such as the code generation. UPV (Liu et al., 2024a) employs an encoder network to split lists and
a detector network for classification, enabling public detection. SIR (Liu et al., 2024b) trains an
encoder to apply context-aware biases for better robustness, and TSW (Huo et al., 2024) uses two
networks to adaptively adjust watermark strength and list-splitting ratio for a better balance between
detectability and text quality. Sampling-based methods, such as EXP (Kuditipudi et al., 2024), use
a pseudo-random bitstream to guide token selection through the exponential sampling rule. This
process produces watermarked text that aligns with the bit sequence and makes detection accurate.
EXP-Edit (Christ et al., 2024) builds on the EXP method by introducing edit distance to measure
sequence alignment, enhancing robustness against tampering. Nevertheless, as will be shown in the
experiments, current LLM watermarking methods suffer from significant drops in detection perfor-
mance when the text is modified and can introduce biases that impair LLM performance in common
use cases, such as the translation and the code generation.
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3 METHOD

In this section, we detail our LLM watermarking solution, which improves the balance between
robustness and text quality, compared to existing methods. We begin by outlining LLM and logits-
based watermarking basics, followed by the structure and objectives of our model and the online
prompting technique. Finally, we introduce a plug-and-play converter for cross-LLM inference.

First, let us give a brief overview of the LLM workflow and the logits-based method. Given a
prompt Xprompt = [x1, . . . ,xk], an LLM M generates tokens in an autoregressive manner. At
each time step t, M produces a probability distribution for the next token pM (xt|x1, . . . ,xt−1)
over vocabulary V = {t1, . . . , t|V|}, then the token xt is sampled from pM (xt) . In this process,
logits l(t) = [l

(t)
1 , . . . , l

(t)
|V|] ∈ R|V| refer to the unnormalized output by M before converting into

probability

pM (xt = tk|x1, . . . ,xt−1) =
exp(l

(t)
k )∑|V|

i=1 exp(l
(t)
i )

. (1)

Once the stop criteria are satisfied, the user receives a generated response Xnwm. To embed a water-
mark into the generated text, logits-based methods introduce a watermark logits l(t)W at each gener-
ation step with a strength δ, resulting in the perturbed logits: l̂(t) = l(t) + δ · l(t)W . By adjusting the
logits to favor tokens in the green list, which is determined by hashing preceding tokens, the method
increases the probabilities of sampling green-list tokens. Consequently, the watermarked text Xwm
contains a higher proportion of these favored tokens, creating a detectable statistical cue that is not
present in human-written content.

We are now ready to present the details of our end-to-end watermark method.

Figure 1: Overview of our end-to-end model, consisting of (a) watermarking via logits perturbation
with encoder E; (b) simulating user edits using the online text editor N ; and (c) detecting water-
marked content through decoder D. The entire model is trained end-to-end to optimize both the
quality and detection accuracy of the watermarked content. In the inference phase, (d) a converter is
deployed for cross-LLM adaption. GSS is the abbreviation of the Gumbel-Softmax sampling.

3.1 MODEL OVERVIEW

The architecture of our proposed method is depicted in Fig. 1. At each time step t, the encoder E
takes the context C(t) = [xt−1−w, . . . ,xt−1] from a local window W and the current logits l(t)

from the on-the-fly LLM M to generates the watermark logits l(t)W = E(C(t), l(t)). The next token
is then generated with the perturbed logits l̂(t) = l(t) + δ · l(t)W based on Gumbel-Softmax sampling
to enable differentiable sampling for end-to-end training. Once the stop criteria are reached, the
entire watermarked sequence Xwm is generated, and the online text editor N augments the text to
simulate user edits, resulting in X̂wm = N(Xwm), which is then passed to the decoder D to detect
the presence of the watermark m̂ = D(X̂wm) ∈ {0, 1}, where “0” indicates no watermark and “1”
indicates the presence of the watermark. The same prompt Xprompt is fed into the standard LLM
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pipeline with M to generate the non-watermarked sample Xnwm for D. The networks are jointly
trained, with E updated via backpropagation from D. After the model is trained, a converter C is
appended before both E and D for cross-LLM inference.

3.2 WATERMARK EMBEDDING

We illustrate the watermark embedding process of our method, as shown in Fig. 1 (a) colored with
light blue. Similar to KGW, our approach embeds a watermark on the generated text by biasing the
original logits. Instead of using context token hashing to determine the bias, we employ a lightweight
network E to implicitly learn watermark logits by minimizing the detection loss Ldec for D and the
semantic loss Lsem between Xwm and Xnwm. However, constructing such an end-to-end pipeline
poses challenges due to the non-differentiable modules involved, including the token sampling pro-
cess, the online editing of Xwm, and the computation of Lsem. To address this, we implement several
alternatives, including using Gumbel-Softmax sampling to replace the non-differentiable sampling.
Additionally, we propose an online prompting technique to perform online editing of Xwm, as well
as extract semantic embeddings to compute Lsem by dynamically prompting the on-the-fly LLM.

We now formulate the data flow of the watermark embedding process. At each time step t, the
encoder E receives the context C(t) and the current logits l(t) to generate the watermark logits l(t)W

across the vocabulary V . The encoder considers all possible token sequences S(t) = [S
(t)
1 , . . . ,S

(t)
|V|],

where each sequence is formed by S
(t)
i = [C(t), ti]. Nevertheless, due to the large size of V ,

processing all sequences is computationally expensive. For efficiency, we focus on the top-k logits
tokens ti1 , . . . , tik , and form the top-k sequences S(t)

top-k = [S
(t)
i1
, . . . ,S

(t)
ik
], in which {i1, i2, . . . , ik}

is the index of the top-k logits tokens. A multilayer perceptron (MLP) fmlp maps the input sequence
S
(t)
topk to the watermark logits of the top-k tokens:

l
(t)
top-k = tanh(τt · fmlp(S

(t)
top-k)), (2)

where tanh bounds the output within [−1, 1] and the parameter τt adjusts the sharpness of tanh.
As visualized by l

(t)
W in Fig. 1 (a), with logits of token close to -1 belonging to the “red” list and 1

indicating the “green” list. Except for the top-k tokens, the watermark logits of the remaining tokens
(can be considered in the “grey” list) are padded with 0 to form l

(t)
W .

By adding up watermark logits on the original logits with strength δ, we obtain the perturbed logits
l̂(t). Then, the Gumbel-Softmax sampling (Jang et al., 2017) is used to allow the sampling step dif-
ferentiable, mimicking the standard LLM sampling and enabling end-to-end training. Specifically,
Gumbel noise gi = − log(− log(Ui)), where Ui ∼ Uniform(0, 1), is added to each logit, yielding
l̃
(t)
i = l̂

(t)
i + gi. The logits l̃(t) are then passed through the softmax function:

pM (xt) =
exp((̂l(t) + g)/τg)∑V
i=1 exp((l̂

(t)
i + gi)/τg)

, (3)

where g is a vector of Gumbel noise with the same shape as l̂(t) and τg controls the sharpness of the
softmax. The next token embedding is computed as xt = pT

ME, where E is the token embedding
matrix of V . The watermark signal is embedded at each generation step until the stop criteria are
met and the watermarked sample Xwm is obtained.

3.3 ONLINE TEXT EDITING

As shown in Fig. 1 (b), the online text editor N (in light purple) is positioned between the encoder
and decoder during training to simulate user edits of watermarked content, enhancing detection ro-
bustness. We utilize the online prompting technique in Fig. 2 (a) to augment watermarked text by
dynamically prompting the online LLM M . This approach effectively handles non-differentiable on-
line text modifications, such as rewriting. Specifically, after generates watermarked text Xwm, which
is fed into N to produce X̂wm. The editing prompt: Rewrite the following paragraph: [text] .
Now start to rewrite the above paragraph: instructs M to generate an augmented version of the
watermarked content, where [text] is a placeholder for Xwm. Thus, N(Xwm) is equivalent to
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Figure 2: Online prompting technique for (a) computing semantic loss and (b) on-the-fly text editing.
The prompts are first converted into the embedding domain and then concatenated with the generated
text Xwm and Xnwm.

M([Xepb,Xwm,Xepe]) in which Xepb and Xepe denote the beginning and the end of the editing
prompt. In contrast to existing online text editing methods, such as random token dropping/adding
(Zhang et al., 2024), our approach shows significantly improved robustness to unseen distortions due
to the capabilities of the on-the-fly M to perform more complex modification on the text. While ex-
ternal paraphrasing models like Dipper (Krishna et al., 2023) are available, differences in tokenizers
between the LLM and these models render the operation non-differentiable.

3.4 WATERMARK DETECTION

As shown in Fig. 1 (c), a lightweight network D (in green) is used to classify whether a given text
is watermarked or not, allowing end-to-end training for more robust detection compared to purely
statistical methods. X̂wm (altered or unaltered) and Xnwm are fed into D, which predicts whether
the text contains a watermark m̂ = D(X). For efficiency, D is built with LSTM layers and an MLP
classification head.

3.5 TRAINING OBJECTIVES

The entire end-to-end system is supervised with two objectives: detection loss Ldec and semantic
loss Lsem. The detection loss Ldec, which is computed using cross-entropy between the prediction
and the ground-truth label to detect the watermark signal accurately. Additionally, to preserve the
capabilities of the original LLM, Lsem ensures that Xwm retains the same semantics as Xnwm. Se-
mantic loss can be typically computed by the distance between embeddings which are extracted
from an external semantic model fsem, such that enwm = fsem(Xnwm) and ewm = fsem(Xwm), and
the loss can be computed by

Lsem(enwm, ewm) = 1− ⟨enwm, ewm⟩
∥enwm∥2∥ewm∥2

. (4)

Still, extracting the embeddings enwm and ewm is non-differentiable. Unless the online LLM M and
the semantic model fsem share the same tokenizer, the embedding mapping between the two is not
bijective, complicating the transformation from M to the fsem domain. To address the issue, we
avoid external models for computing semantics and instead prompt the on-the-fly LLM to approx-
imate fsem. Fortunately, recent studies have shown that LLMs can generate semantic embeddings
with quality comparable to dedicated semantic models using prompt engineering, without the need
for fine-tuning (Jiang et al., 2023). We leverage this LLM ability to compute Lsem directly, enabling
end-to-end training and resolving non-differentiability issues. As illustrated in Fig. 2 (b), Xwm and
Xnwm are generated in parallel at the generation phase, and a prompt with an in-context learning
example: This sentence: “A jockey riding a horse.” means in one word: “Equestrian”. This sen-
tence: “[text]” means in one word: “ guides the on-the-fly LLM to extract semantic embeddings.
[text] is the placeholder for Xnwm or Xwm, and the embeddings enwm = M([Xspb,Xnwm,Xspe])
and ewm = M([Xspb,Xwm,Xspe]) are extracted, where Xspb and Xspe are the beginning and the end
of the above prompt. Finally, Lsem is computed by the cosine distance between the two embeddings
as formulated in Eq. (4).
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3.6 CROSS-LLM INFERENCE

Figure 3: Converter for cross-LLM Inference.

After training E∗
M0

and D∗
M0

on a specific LLM M0 using the end-to-end pipeline, we consider the
generalizability of our method to other LLMs. Due to unique tokenizers and embedding dimen-
sions, E∗

M0
and D∗

M0
cannot be directly applied to another LLM M1. To address this, we introduce

a converter C that transforms embeddings from M1 to M0, as located in Fig. 1 (d) and detailed in
Fig. 3. This process involves converting M1 embeddings to the text domain and then back to M0

embedding space. The converter is positioned before E∗
M0

and D∗
M0

, enabling cross-LLM water-
mark embedding and detection as E∗

M0
(CM1→M0

(S)) and D∗
M0

(CM1→M0
(X)), respectively. Our

encoder accepts a fixed number of context tokens, requiring careful token management due to the
variability in token segmentation across different tokenizers. To ensure that the transformed context
tokens exceed the original length, we dilate the context window W by a factor of 2 and then truncate
the latest context to maintain the appropriate length W .

Figure 4: Visualize the tokenization of OPT (Zhang et al., 2022), Llama2 (Touvron et al., 2023),
NLLB Costa-jussà et al. (2022), and BERT Kenton & Toutanova (2019) tokenizers. Each single
token is indicated with a color block alternatively.

To analyze the applicability of converter C for cross-LLM inference, we visualize the tokenization
of 4 tokenizers in Fig. 4, and observe that the tokenizers often decompose sentences similarly. The
converter C processes candidate sequences S(t) (for the encoder) and sentence X (for the decoder),
which S(t) include the context C(t) and the next token candidate ti. Analysis of the transformation
reveals that X and C(t), containing numbers of tokens, can tolerate token variations. The trans-
formed ti can result in three outcomes: 1) merging with the preceding tokens (e.g., “der” merges
with “deco” to form “decoder”); 2) splitting into sub-tokens (e.g., “jointly” becomes “joint” and
“ly”); and 3) remaining unchanged. While the third outcome is ideal, cases 1 and 2 may negatively
impact performance of the watermark model.

Table 1: Normalized Levenstein similarity between tokenized sentences across 4 tokenizers.

Tokenizer OPT Llama2 NLLB BERT
OPT 1.000 0.711 0.723 0.838
Llama2 - 1.000 0.730 0.681
NLLB - - 1.000 0.721

To estimate the occurrence probability of cases 1 and 2, we quantify the alignment using normalized
Levenshtein similarity between token lists for the same sentences across tokenizers, as shown in
Table 1. The average token alignment probability is 73.4%. We find that given a large enough
number of candidates k, the converter can be effectively utilized for cross-LLM inference 1, as
demonstrated in our experiments.

1Given k = 20, we calculate that the probability of more than half of the candidate tokens being misaligned
is 0.7% using the binomial distribution.
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4 EXPERIMENTS

In this section, we present our experimental results, starting with the setup. We then compare wa-
termark detection accuracy and text quality with SOTA methods, evaluate the undetectability and
efficiency, and follow with ablation studies.

4.1 EXPERIMENT SETTINGS

4.1.1 IMPLEMENTATION DETAILS

To train our end-to-end model, we chose OPT-1.3B as the online LLM for efficiency. We use sam-
ples from the WikiText-103 dataset (Merity et al., 2017) as prompts during training. The context
window is set to be W = 10, with the watermark strength δ = 1.25 and k = 20 for the top-k
watermark logits empirically. We employ MGDA (Huo et al., 2024; Désidéri, 2012) to balance de-
tection and semantic losses and use the Adam optimizer with a learning rate of 1e-4 over 35k training
steps. All experiments are conducted on the NVIDIA RTX A6000 48G GPUs. The evaluation is
performed based on the MARKLLM (Pan et al., 2024), an open-source tool for benchmarking LLM
watermark methods. For further implementation details, please refer to our code which is available
in supplementary material.

4.1.2 METRICS

We benchmark LLM watermarking methods across five key aspects, following the tradition of Pan
et al. (2024); Zhang et al. (2024): 1) detection effectiveness of the human-written and pristine wa-
termarked text, measured by the F1 scores at optimal thresholds; 2) detection robustness, evaluated
by subjecting the watermarked text to 6 types of text modifications; 3) text quality, assessed using
metrics including text perplexity and log diversity, as well as performance on downstream tasks
including translation and code generation; 4) undetectability, by visualize token distribution and
training BERT classifiers to distinguish between watermarked and non-watermarked samples; and
5) efficiency of the watermarking model, by measuring both the time and GPU memory overhead
for text generation and watermark detection.

4.1.3 COMPETITORS

We compare our method with the SOTA logits-based methods: KGW(Kirchenbauer et al., 2023),
Unigram(Zhao et al., 2024), SWEET(Lee et al., 2023), UPV(Liu et al., 2024a), SIR(Liu et al.,
2024b) and TSW(Huo et al., 2024), and sampling-based methods EXP(Kuditipudi et al., 2024).

4.2 WATERMARK EFFECTIVENESS AND ROBUSTNESS

The benchmarking results of effectiveness and robustness are presented in Fig. 5, which compares 8
methods across 6 types of text modifications with 3 LLMs2. We used the first 30 tokens of samples
from the C4 dataset (Raffel et al., 2020) as prompts, generating 200 tokens as watermarked samples,
with the original human-written text serving as non-watermarked samples. As shown in the ’No
Edit’ column of Fig. 5, where the watermarked text remains unaltered, our method achieves com-
petitive results with F1 scores of 1.000, 0.998, and 0.909 across the LLMs. To assess robustness,
we evaluated the methods against 6 types of text modifications, including word deletion, synonym
substitution, context-aware synonym substitution, and Dipper paraphrasing from Pan et al. (2024),
along with emoji and copy-paste attacks from Liu et al. (2024b). Our model achieves the highest av-
erage F1 scores against the logits-based methods, with consistent performance gains of 1.2%, 4.0%,
and 5.5% for the 3 LLMs, compared with the second-best method, Unigram. Notably, despite our
model being trained on OPT-1.3B and the online text editor only including the paraphrasing prompt,
it demonstrates superior generalizability to other LLMs and shows strong robustness against a wide

2We strictly follow the method settings, which can impact the balance between quality and accuracy, es-
pecially for logits-based approaches that are sensitive to the watermark strength δ. Comparing the output
distribution entropy for three LLMs, we find that at a fixed temperature, T = 1, the entropy of Llama2-7B-
Chat is about half that of the other two LLMs, resulting in degraded detection performance of the logits-based
methods. For a fair comparison, we focus on our method against logits-based approaches, while also reporting
the sample-based method, EXP, for reference.
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Figure 5: Detection accuracy (F1 score) on OPT-1.3B, Llama2-7B, and Llama2-7B-Chat for both
pristine and edited watermarked samples.

range of unseen distortions. Although Unigram also achieves competitive detection accuracy and
robustness, as will be clear soon, it introduces significant bias in the watermarked text, which sub-
stantially shifts the token distribution.

4.3 TEXT QUALITY

Figure 6: Quality assessment of watermarked sentences with (a) text perplexity, (b) log diversity, as
well as (c) machine translation and code generation. HM and NWM are abbreviations of human-
written and non-watermarked sentences.

To assess the impact of the watermark on text quality, we compute text perplexity (using Llama2-
13B as the oracle model) and log diversity for text generated by Llama2-7B. We also evaluate the
influence of the watermark on downstream tasks, including machine translation with the WMT16
German-English dataset (Bojar et al., 2016) using NLLB-200-distilled-600M (Costa-jussà et al.,
2022), and code generation with the HumanEval (Chen et al., 2021) dataset using Starcoder (Li
et al., 2023). EXP and UPV are excluded from corresponding tasks due to incompatibility. Fig. 6
(a) and (b) show that UPV achieves the lowest average perplexity of 7.531, closely followed by
our method, which slightly increases the value by 2.6%, making it the second-best. Both methods
apply perturbations to the top-k logits, promoting the sampling of high-logit tokens and resulting in
low perplexity, though this also leads to reduced log diversity. Importantly, low log diversity does
not adversely affect LLM performance on downstream tasks. Fig. 6 (c) highlights that our method
achieves the highest BLEU score of 31.062 in translation, surpassing the second-best method, TSW
by 9.5%. For code generation, we attain a pass@1 score of 34.0, with the method dedicated to
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code generation, SWEET, slightly higher at 36.0, which demonstrates the effectiveness of our ap-
proach in low-entropy scenarios. Compared to Unigram, which demonstrates competitive detection
robustness, our method outperforms it by 19.2% and 3.03% on the two tasks, respectively.

4.4 UNDETECTABILITY

Figure 7: Token distribution between non-watermarked/watermarked sentences across three meth-
ods: (a) KGW, (b) Unigram, and (c) Ours.

We conduct two experiments to evaluate the undetectability of the methods. Firstly, we visualize the
distribution of the most frequent tokens to reveal the token bias in the watermarked sentences. Then,
we trained a classifier to distinguish between watermarked and non-watermarked sentences.

Token Distribution. In Fig. 7, we present the top 50 most frequent tokens from the original Llama2-
7B generated texts, together with the watermarked texts across three methods. Fig. 7 (a) shows that
KGW has the most similar token distribution to the original text; however, as discussed in previous
sections, the detection accuracy and robustness are relatively low. The Unigram method, depicted in
Fig. 7 (b), achieves competitive detection performance through global red-green list splitting but at
the cost of significant token bias that makes it detectable. Our approach, shown in Fig. 7 (c), strikes
the best balance by achieving high detection accuracy while minimally impacting the performance
of LLMs, introducing moderate bias in the distribution. We hypothesize that this balance is due
to our method concentrating the bias on low-frequency tokens while preserving the distribution of
high-frequency tokens, as observed in the token distribution.

Table 2: Accuracy of classifying watermarked and non-watermarked sentences.

Method BERT-base BERT-large Method BERT-base BERT-large
ACC F1 ACC F1 ACC F1 ACC F1

KGW 0.460 0.471 0.460 0.631 SIR 0.740 0.755 0.720 0.774
Unigram 0.860 0.877 0.660 0.721 TSW 0.600 0.565 0.400 0.571
SWEET 0.440 0.588 0.520 0.684 EXP 0.700 0.689 0.580 0.000
UPV 0.540 0.676 0.480 0.000 Ours 0.680 0.570 0.560 0.267

Training Deep Classifier. Moreover, we train two classifiers, BERT-base, and BERT-large (Kenton
& Toutanova, 2019), on 400 non-watermarked/watermarked samples 3. We used another 200 sam-
ples for testing. The detection accuracy and F1 score of the two classifiers among the watermark
methods are shown in Table 2. We can observe that the two classifiers are confused in distin-
guishing the watermarked samples generated by our method, with only 0.570 and 0.267 F1 scores
respectively. Unigram, which introduces remarkable bias on the token distribution, is found to have
relatively higher F1 scores, 0.877 and 0.721 across the two classifiers.

4.5 WATERMARK EFFICIENCY

In Table 3, we assess the computational time overhead and GPU memory usage of our method. For
OPT-1.3B, the lightweight encoder design results in only an 8.3% increase in generation time for

3The prompt between non-watermarked and watermarked texts are different (Zhang et al., 2024). Since the
attacker can only get the watermarked text from the protected LLM API and gather other unwatermarked text
from other places.
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Table 3: Time and memory consumption for generation and detection with 200 tokens of our method.

LLM Setting Generation Detection
Time (s) Memory (GB) Time (s) Memory (GB)

OPT-1.3B w/o WM 2.557 5.900 0.003 0.008
OPT-1.3B w/ WM 2.769 5.900 0.003 0.008
Llama2-7B w/o WM 5.204 15.793 0.005 0.008
Llama2-7B w/ WM 8.362 15.793 0.005 0.008

watermarked text, with no change in maximum GPU memory usage since the encoder is invoked
after each token generation. For Llama2-7B, our method increases the generation time by 60.6%,
mainly due to the embedding transformation from Llama to OPT, as the tokenizer cannot be accel-
erated by the GPU and is called at each step. In terms of watermark detection, our decoder operates
efficiently, requiring only negligible time and memory consumption.

4.6 ABLATION STUDY

Table 4: Detection performance and quality assessment in different settings of our method.

Setting Accuracy Quality

No Attack Paraphrase
(Dipper) Copy-Paste Perplexity ↓ Translation

BLEU ↑
w/o Lsem 0.995 0.960 0.982 9.561 30.155
w/o N 0.992 0.867 0.952 7.820 31.063
δ = 1 0.990 0.912 0.949 7.628 31.279
δ = 1.5 1.000 0.970 0.978 8.087 30.676
δ = 1.75 1.000 0.977 0.982 8.684 30.279
δ = 2 1.000 0.980 0.983 9.320 30.001
Ours (δ = 1.25) 0.998 0.941 0.975 7.730 31.062

We conduct the ablation studies to evaluate the impact of various settings of our method, including
the semantic loss Lsem, the online text editor N , and the watermark strength δ. The results of
this analysis are summarized in Table 4, which presents detection performance alongside quality
metrics. The first row of the table reveals that removing the semantic loss supervision Lsem leads to
a significant increase of 23.7% in the perplexity. This suggests that the inclusion of online prompting
Lsem plays a crucial role in maintaining the quality of the generated text. Additionally, the second
row highlights the importance of the online text editor N . Without this module, the performance
of the decoder diminishes, resulting in a 7.9% and 2.4% decline in F1 scores for the paraphrasing
and copy-paste attack. We also investigate the effect of varying watermark strength δ. It indicates
a significant trade-off between detection robustness and text quality. When δ is set too small (e.g.,
δ = 1), we observe a reduction in detection performance, evidenced by an average F1 score decline
of 2.2%. On the other hand, when δ is excessively large (e.g., δ = 2), the quality of the text
deteriorates, as indicated by an increase in perplexity by 20.6%. This balance is critical, as our
method aims to optimize both detection efficacy and the quality of the generated text.

5 CONCLUSION

We introduce the first logits-based end-to-end model, where encoder and decoder networks are
jointly optimized to improve detection robustness and text quality. Constructing such a system
is challenging due to the non-differentiability of key modules, such as the online text editor and
semantic loss computation. To overcome these obstacles, we propose a novel online prompting
technique that leverages the on-the-fly LLM as a differentiable surrogate, effectively handling these
non-differentiable operations. Our method can be easily generalized to different LLMs.
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A ROBUSTNESS QUALITY TRADE-OFF

Figure 8: The trade-off between F1 score after text modifications and Llama2-13B perplexity. (a)
paraphrasing; (b) copy-paste attack.

We evaluate our model on Llama2-7B to demonstrate its superior balance between robustness and
quality compared to SOTA methods. Since our model is trained on OPT-1.3B, this serves as a cross-
LLM evaluation. The watermarked text is subjected to two common modifications: paraphrasing
and copy-paste attacks. Robustness and quality are analyzed at various watermark strengths4 δ, as
shown in Fig. 8.

The watermark strength δ for each method is set as follows:

• KGW and Unigram: δ = 1, 2(default), 5
• SIR: δ = 0.5, 1(default), 2
• Our model: δ = 0.75, 1.25(default), 1.5

Our model consistently achieves a superior trade-off between robustness and quality compared to
other methods. The perplexity (PPL) of non-watermarked text is approximately 6, represented by the
black horizontal line as a reference. At the PPL level below 8, our model demonstrates significantly
higher robustness under both paraphrasing and copy-paste attacks, outperforming the second-best
model by margins of 18.16% and 20.42%, respectively. In contrast, existing methods, KGW, Uni-
gram, and SIR achieve increased robustness at the expense of quality, resulting in PPL that is 2× to
3× higher than those of non-watermarked text, leading to significant degradation in text quality.

Table 5: Comprehensive performance of SOTA LLM watermarking methods. NA, SC, PP, and CP
are abbreviations of no attack, context-aware synonym substitution, paraphrasing, and copy-paste
attack. PPL, LD, MT, and CG are abbreviations of perplexity, log diversity, machine translation, and
code generation tasks. The best result is in bold, and the second-placed is underlined.

Method Accuracy/Robustness Quality
NA↑ SC↑ PP↑ CP↑ PPL↓ LD↑ MT↑ CG↑

KGW(δ = 2) 1.000 0.980 0.878 0.824 8.615 8.077 26.200 22.0
Unigram(δ = 2) 0.997 0.985 0.885 0.864 8.948 8.836 26.061 33.0
SIR(δ = 1) 0.982 0.945 0.879 0.810 8.566 8.269 27.557 30.0
Ours(δ = 1.25, k = 20) 0.997 0.985 0.916 0.978 7.730 7.594 31.062 34.0
Ours(δ = 1.25, k = 40) 0.995 0.980 0.931 0.983 8.346 8.103 31.114 34.0

To comprehensively benchmark our model’s performance against SOTA competitors, we present
additional metrics in Table 5. For better visualization, Fig. 9 displays a radar graph with all metrics
normalized using z-scores. Overall, our model (represented in red and purple) demonstrates superior
performance, covering a larger area on the chart compared to competitors. Notably, with δ = 1.25

4The strength of each model is set to its original value, with variations including one lower and one higher
strength.
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Figure 9: Radar chart comparing our models’ performance against SOTA competitors across key
accuracy and quality metrics.

and k = 20, our model achieves significantly better results across multiple dimensions: a 5.33%
improvement in robustness, a 9.76% reduction in PPL, and a 7.88% increase in downstream
task performance. By holding δ constant and varying the top-k values to 40, our model effectively
improves log diversity (LD). This adjustment increases perplexity as a trade-off while having only
a minor impact on other metrics. This flexibility allows users to fine-tune the trade-offs between
text quality and diversity to match their specific requirements. It is observed that all the methods
cannot achieve both low PPL and high LD simultaneously due to the fundamental trade-offs. Low
PPL requires concentrating probability on a few high-likelihood tokens while high LD demands
spreading probability across a wider range of tokens to encourage variety. This broader distribution
increases unpredictability, which can raise PPL.

B FALSE POSITIVE THRESHOLDING

Figure 10: ROC curves for watermark detection under (a) paraphrasing and (b) copy-paste attack.

Unlike statistical decoding, which relies on the p-value, our model utilizes a deep classifier that
produces a scalar confidence score for watermark detection. Similarly, both p-value-based and our
method use a fixed threshold to detect the presence of a watermark, which also allows our decoder
to be adjusted to control false positive rates. Figure 10 presents the ROC curves for watermark
detection under various text modifications, illustrating our model’s ability to effectively manage
false positive rates through the threshold.

C WATERMARK SAMPLE VISUALIZATION

Figure 11 presents three pairs of non-watermarked and watermarked samples generated from the
same prompt of our method. The tokens are colored based on the output values retrieved from
the watermark encoder. The watermarked samples maintain high quality while featuring a greater
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Figure 11: Visualizing three pairs of sentences comparing outputs from the original LLM (NWM)
and the watermarked text (WM) of our method using the same prompt. Prompts are highlighted in
gold, tokens are colored by the output values of the watermark encoder, and tokens outside the top-k
logits are shown in grey.

proportion of green-list tokens compared to red-list tokens. This is achieved by increasing the prob-
abilities of green-list tokens during the generation process.

D TOKEN DISTRIBUTION BIAS

Figure 12: Token distribution and KD divergence (lower the better) between non-
watermark/watermark sentences of our method in different settings as well as the SOTA competitors.

We further examine the effect of watermark strength δ on token distribution, as depicted in Fig. 12.
With the default setting of δ = 1.25, our model introduces less token bias compared to Unigram
and SIR, while achieving superior robustness, as shown in Table 5. However, although our method
outperforms KGW in robustness, it introduces a greater token bias. We argue that this highlights an
inherent trade-off between robustness and token bias. Reducing δ to 0.75 reduces the KL divergence
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by 50% compared to the default setting, but comes at the expense of reduced robustness. Figure 8
presents the corresponding F1 scores with the setting δ = 0.75, illustrating this trade-off.

E WATERMARK DETECTABILITY WITH PAIRED SAMPLES

Table 6: Detection accuracy of paired non-watermark/watermark sentences with BERT-base against
the size of the training set.

Method Training Size
100 200 500 1500 3000

KGW(δ = 2) 0.572 0.621 0.641 0.722 0.823
Unigram(δ = 2) 0.627 0.771 0.929 0.947 0.960
SIR(δ = 1) 0.603 0.590 0.806 0.900 0.942
Ours(δ = 1.25, k = 20) 0.599 0.617 0.778 0.888 0.893

We further train a BERT-base classifier using paired non-watermarked and watermarked samples
generated from identical prompts with the same LLM. We argue that such paired samples are un-
likely to be accessible to adversaries, as they can only request watermarked text from the LLM API
and search for unwatermarked text online. However, if paired outputs are obtained using identical
prompts from different LLMs, a detector could exploit the domain gap between the two LLMs to
achieve high accuracy with trivial solutions. For reference, we conducted an experiment using such
paired non-watermarked and watermarked samples generated by the same LLM. The training set
sizes ranged from 100 to 3,000 samples, with equal numbers of watermarked and non-watermarked
samples. The test set consisted of 1,000 watermarked and non-watermarked samples, and the detec-
tion accuracy is shown in Table 6. Overall, paired samples significantly increase the detectability
of watermarked text compared to unpaired samples (as reported in Table 2), with detection accu-
racy improving as the training size grows. Among the methods tested, KGW showed slightly better
undetectability compared to others, followed by our method. In contrast, watermarked samples
from Unigram and SIR are nearly fully classified, with detection accuracies of 96.0% and 94.2%,
respectively.

F MODEL TRAINING DETAILS

Table 7: Hyperparameters of the end-to-end model training.

Item Value
Learning rate 1-e4
Batch size 16
Training step 35000
Encoder context size w 10
On-the-fly LLM OPT-1.3B
Top-k candidate 20
Prompt tokens 30
Gumbel-softmax temperature τg 0.1
Probability of activating N 0.5
Sharpness of tanh, τt 1000
Maximum generated tokens 100
Watermark strength δ 1
Weight of Ldec 10
Weight of Lsem 1

We trained our end-to-end model on a single NVIDIA RTX A6000 48GB GPU for 35k steps, com-
pleting the training in approximately 5 days with a GPU memory usage of 21.96GB. The hyperpa-
rameters used during training are detailed in Table 7. If GPU memory is limited, the batch size and

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

maximum generated tokens can be reduced, or a smaller LLM, such as OPT-125M, can be used.
While the training phase takes longer compared to existing training-based models like SIR, UPV,
and TSW, this is due to the inclusion of the entire LLM (with frozen parameters) in the training pro-
cess. Despite the longer training time, we developed an efficient converter for cross-LLM inference,
ensuring that the computational cost during inference remains low.

G ATTACK CONFIGURATION

To evaluate robustness, we compare 8 methods across 6 types of attacks in Fig. 5. The setting of
all 6 attacks strictly follow the open-source studies, MARKLLM5 and SIR6. For transparency, we
provide a detailed description, parameter setting, and prompt setting for each text modification.

Table 8: Details of the attacks in the robustness evaluation.

Attack Description Parameters
Delete Randomly drop words from the

watermarked text.
Drop ratio: 0.3

Substitute Random synonym substitution
from WordNet (Miller, 1995).

Replace ratio: 0.5

Substitute (In-context) Using BERT-large (Devlin, 2018)
to select synonyms that fit the
context.

Replace ratio: 0.5

Paraphrase Paraphrasing the text while
maintaining the original meaning
with deep paraphrase model
Dipper(Krishna et al., 2023).

Lex diversity: 60
Order diversity: 0

Copy-paste Concatenating the watermarked
text after the human-written text
creates a mix with only parts of
the watermarked text.

Watermarked text fraction: 25%

Emoji The prompt is prefixed with the
additional prompt: inserting an
asterisk * between each generated
token, and remove the asterisks
from the generated watermarked
text. This process disrupts the
original preceding tokens of the
watermarked text, making it more
challenging for detection.

-

H COMPARISON WITH POST-GENERATION WATERMARKING METHODS

Post-generation watermarking methods, such as AWT (Abdelnabi & Fritz, 2021) and REMARK-
LLM (Zhang et al., 2024), embed watermarks after the text has been fully generated. These ap-
proaches rely on a language model to rephrase the generated text, embedding a watermark signal
while preserving the semantic meaning of the original sentences. However, post-generation meth-
ods have notable limitations. They do not fully leverage the capabilities of the original LLM and
are more susceptible to OOD issues. For instance, models trained on datasets like HC3, a natu-
ral language question-answering corpus, often struggle with OOD inputs, such as code, leading to
reduced performance on tasks like code generation (e.g., lower code passing scores). In contrast,
logits-based methods, including ours, embed watermarks during the generation process by sampling
tokens directly from a perturbed distribution. This approach minimally constrains the LLM, allow-

5https://github.com/THU-BPM/MarkLLM
6https://github.com/THU-BPM/Robust Watermark
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ing it to retain its natural understanding of language while maintaining broad compatibility across
diverse tasks.

I WATERMARK DETECTION PERFORMANCE WITH BEAM SEARCH

We evaluated the effectiveness and robustness of watermarking methods across two LLM decoding
strategies, including multinomial sampling and beam search (5 beams). The detection performance
(F1 score) is summarized in Table 9. Our method achieves the highest average F1 score across both
decoding strategies, with slightly better performance in the beam search case. This improvement is
attributed to beam search’s preference for higher probability tokens, which implicitly selects more
green-list tokens in the generated text.

Table 9: Detection performance with multinomial sampling and beam-search on LLama2-7B. NA,
SC, PP, and CP are abbreviations of no attack, context-aware synonym substitution, paraphrasing,
and copy-paste attack. The best result is in bold, and the second-placed is underlined.

Method Multinomial sampling Beam search (num beams = 5)
NA SC PP CP NA SC PP CP

KGW(δ = 2) 1.000 0.980 0.878 0.824 1.000 0.998 0.940 0.975
Unigram(δ = 2) 0.997 0.985 0.885 0.864 1.000 1.000 0.954 0.939
SIR(δ = 1) 0.982 0.945 0.879 0.810 0.992 0.977 0.912 0.790
Ours(δ = 1.25, k = 20) 0.997 0.985 0.916 0.978 0.997 0.995 0.962 0.995

J STATISTICALLY SIGNIFICANT IMPROVEMENTS

To validate the statistical significance of our model’s improvements, we conducted robustness and
quality experiments using a paired t-test. Specifically, we performed five trials to evaluate robust-
ness against paraphrasing (PP) and copy-paste (CP) attacks, as well as the perplexity (PPL) of wa-
termarked text. All trials were conducted using the same set of prompts, with multinomial sampling
(same seed across methods in the same trial for consistency), resulting in diverse outcomes across
the five trials. The watermark strength parameters (δ) for KGW, Unigram, and our method were set
to 2, 2, and 1.25, respectively, while the k-value for our method was set to 20. The results, shown in
Table 10, indicate that our model achieves statistically significant improvements in both robustness
and quality compared to the competitors. This is supported by p-values consistently below the 0.05
threshold.

Table 10: Paired t-test results comparing our model with competitors. Mean Diff. represents the
difference between our model and each competitor’s mean performance. All p-values below 0.05
indicate statistically significant improvements.

Method PP-Trials Mean ± Std Mean Diff. p-value
KGW 0.818 0.798 0.844 0.828 0.835 0.824 ± 0.018 0.018 2.12× 10−4

Unigram 0.910 0.899 0.892 0.906 0.882 0.898 ± 0.011 0.011 3.80× 10−2

Ours 0.918 0.908 0.909 0.906 0.917 0.912 ± 0.005 - -
Method CP-Trials Mean ± Std Mean Diff. p-value
KGW 0.843 0.832 0.845 0.847 0.839 0.841 ± 0.006 0.006 5.51× 10−6

Unigram 0.864 0.900 0.859 0.861 0.866 0.870 ± 0.017 0.017 3.23× 10−4

Ours 0.968 0.960 0.964 0.967 0.942 0.960 ± 0.011 - -
Method PPL-Trials Mean ± Std Mean Diff. p-value
KGW 8.656 8.678 8.800 8.730 8.409 8.655 ± 0.148 -1.014 1.07× 10−4

Unigram 8.871 8.832 8.918 9.155 9.092 8.973 ± 0.142 -1.333 3.82× 10−6

Ours 7.626 7.620 7.544 7.773 7.642 7.641 ± 0.083 - -
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