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Abstract

Several applications require effective knowledge transfer across tasks in the low-
data regime. For instance in personalization a pretrained system is adapted by
learning on small amounts of labeled data belonging to a specific user (context).
This setting requires high accuracy under low computational complexity, meaning
low memory footprint in terms of parameters storage and adaptation cost. Meta-
learning methods based on Feature-wise Linear Modulation generators (FiLM)
satisfy these constraints as they can adapt a backbone without expensive fine-tuning.
However, there has been limited research on viable alternatives to FiLM generators.
In this paper we focus on this area of research and propose a new adaptive block
called Contextual Squeeze-and-Excitation (CaSE). CaSE is more efficient than
FiLM generators for a variety of reasons: it does not require a separate set encoder,
has fewer learnable parameters, and only uses a scale vector (no shift) to modulate
activations. We empirically show that CaSE is able to outperform FiLM generators
in terms of parameter efficiency (a 75% reduction in the number of adaptation
parameters) and classification accuracy (a 1.5% average improvement on the 26
datasets of the VTAB+MD benchmark).

1 Introduction

In several applications it is crucial to ensure fast and efficient knowledge transfer across tasks. In
personalization for instance, a pretrained system must be adapted by exploiting small amounts of
data belonging to a specific user (context), often relying on scarce computational resources (e.g. on
portable devices). These settings call for few-shot learning methods that can retain high accuracy
under low computational complexity, meaning low memory footprint in terms of parameters storage
and adaptation cost.

Meta-learning methods (Schmidhuber, 1987; Hospedales et al., 2020) are good candidates to satisfy
those constraints since they are significantly less expensive in terms of adaptation cost than fine-
tuning routines (Bronskill et al., 2021). The key element to superior performances, is often the use
of adapters that can modify dynamically a pretrained model conditioned on the context data. The
most common adapters used in few-shot learning are the Feature-wise Linear Modulation layers
(FiLM, Perez et al. 2018). Dynamic adapters based on FiLM, use a convolutional set-encoder to
generate an embedding of the context set that is forwarded to local MLPs to produce scale and shift
vectors that modulate a pretrained neural network backbone. Variations of this adapter have been
used in several methods, such as TADAM (Oreshkin et al., 2018), CNAPs (Requeima et al., 2019),
SimpleCNAPs (Bateni et al., 2020), CAVIA (Zintgraf et al., 2019), and LITE (Bronskill et al., 2021).
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We will use the generic term FiLM generator to refer to these adapters and the term FiLM to refer
to the scale and shift vectors used to modulate the activations. FiLM generators are effective but
they have been taken from granted by the community and there has been no exploration of possible
alternatives. These considerations raise a question: is it possible to build dynamic adapters that are
more effective and efficient than FiLM generators?

Contributions In this work we propose a novel extension of the popular Squeeze-and-Excitation
block of Hu et al. (2018) to the meta-learning setting that we call Contextual Squeeze-and-Excitation
(CaSE). CaSE is better than FiLM generators for a variety of reasons: it does not require a separate
set encoder, has fewer learnable parameters, and only uses a scale vector (no shift) to modulate the
backbone activations. We empirically show that CaSE is able to outperform FiLM generators in terms
of parameter efficiency (a 75% reduction in the number of adaptation parameters) and classification
accuracy (a 1.5% improvement on MetaDataset and VTAB). The code is released with an open-source
license and available on the authors’ repository 1.

2 Contextual Squeeze-and-Excitation (CaSE)

Problem formulation In this paragraph we introduce the few-shot learning notation, as this will be
used to describe the functioning of a CaSE adaptive block. Let us define a collection of meta-training
tasks as D = {τ1, . . . , τD} where τi = (Ci, Ti) represents a generic task composed of a context
set Ci = {(x, y)1, . . . , (x, y)M} and a target set Ti = {(x, y)1, . . . , (x, y)D} of input-output pairs.
Following common practice we use the term shot to identify the number of samples per class (e.g.
5-shot is 5 samples per class) and the term way to identify the number of classes (e.g. 10-way is 10
classes per task). Given an evaluation task τ∗ = {C∗,x∗} the goal is to predict the true label y∗ of
the unlabeled target point x∗ conditioned on the context set C∗. In meta-learning methods training
and evaluation are performed episodically (Vinyals et al., 2016), with training tasks sampled from a
meta-train dataset and evaluation tasks sampled from an unseen meta-test dataset. Parameters are
divided in two groups: ϕ task-common (shared across all tasks), and ψτ task-specific (estimated on
the task at hand). The parameters ϕ and ψτ can be estimated via gradient updates (e.g. MAML, Finn
et al. 2017), learned metrics (e.g. ProtoNets, Snell et al. 2017), or Bayesian methods (Gordon et al.,
2018; Patacchiola et al., 2020; Sendera et al., 2021).

Standard Squeeze-Excite (SE) We briefly introduce standard SE (Hu et al., 2018), as we are going
to build on top of this work. SE is an adaptive layer used in the supervised learning setting to perform
instance based channel-wise feature adaptation, which is trained following a supervised protocol
together with the parameters of the neural network backbone. Given a convolutional neural network,
consider a subset of L layers and associate to each one of them a Multi-Layer Perceptron (MLP), here
represented as a function gϕ(·). The number of hidden units in the MLP is defined by the number
of inputs divided by a reduction factor. Given a mini-batch of B input images, each convolution
produces an output of size B×C×H×W where C is the number of channels, H the height, and W
the width of the resulting tensor. For simplicity we split this tensor into sub-tensors that are grouped
into a set {H1, . . . ,HB} with Hi ∈ RC×H×W . To avoid clutter, we suppress the layer indexing
when possible. SE perform a spatial pooling that produces a tensor of shape B ×C × 1× 1; this can
be interpreted as a set of vectors {h1, . . . ,hB} with hi ∈ RC . For each layer l, the set is passed to
the associated MLP that will generate an individual scale vector γi ∈ RC , where

γ
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An elementwise product is then performed between the scale vector and the original tensor

Ĥ
(l)
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(l)
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B = H

(l)
B ∗ γ(l)

B , (2)

with the aim of modulating the activation along the channel dimension. This operation can be
interpreted as a soft attention mechanism, with the MLP conditionally deciding which channel must
be attended to. A graphical representation of SE is provided in Figure 1 (left).

Contextual Squeeze-Excite (CaSE) Standard SE is an instance-based mechanism that is suited for
i.i.d. data in the supervised setting. In a meta-learning setting we can exploit the distinction in tasks
to define a new version of SE for task-based channel-wise feature adaptation. For a task τ = (C, T ),

1https://github.com/mpatacchiola/contextual-squeeze-and-excitation
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Figure 1: Comparison between the standard Squeeze-Excite (left) and the proposed Contextual
Squeeze-Excite (right). Red frames highlight the two key differences between SE and CaSE: context
pooling and scale transfer from context to target. B = mini-batch size, C = channels, H = height,
W = width, N = context-set size, M = target-set size, ∗ elementwise multiplication.

consider the N images from the context set C, and the tensors produced by each convolution in
the layers of interest {H1, . . . ,HN} with Hi ∈ RC×H×W . As in standard SE, we first apply a
spatial pooling to each tensor Hi which produces N vectors {h1, . . . ,hN} of shape hi ∈ RC .
Then a context pooling is performed; this corresponds to an empirical mean over {h1, . . . ,hN} (see
Appendix A for more details about context pooling). The pooled representation is passed to the
associated MLP to produce a single scale-vector for that layer

γ(l) = g
(l)
ϕ

(
h̄(l)

)
with h̄(l) =

1

N

(
h
(l)
1 + · · ·+ h

(l)
N

)
, (3)

which is then multiplied elementwise by the original tensors

Ĥ
(l)
1 = H

(l)
1 ∗ γ(l) · · · Ĥ(l)

N = H
(l)
N ∗ γ(l). (4)

The scale vector is estimated in adaptive mode and transferred to the target points T in inference
mode (no forward pass on the MLPs), as shown in the rightmost part of Figure 1. In synthesis, the
three major differences between SE and CaSE are: (i) CaSE uses a contextual pooling with the aim
of generating an adaptive vector per-task instead of per-instance as in SE; (ii) CaSE distinguishes
between an adaptive mode and an inference mode that transfers the scale from context to target,
while SE does not make such a distinction; and (iii) CaSE parameters are estimated via episodic
meta-training while SE parameters via standard supervised-training. In Section 3 we show that those
differences are fundamental to achieve superior performance in the few-shot setting. A representation
of a CaSE block is reported in Figure 1 (right), additional technical details are provided in Appendix A.

3 Experiments

In this sub-section we report empirical results related to CaSE blocks in three directions: 1) we com-
pared standard SE (Hu et al., 2018) and CaSE on MDv2 (Triantafillou et al., 2019) and VTAB (Zhai
et al., 2019), confirming that a) adaptation helps over not adapting, b) contextual adaptation (CaSE)
outperforms instance based adaptation (SE); 2) we compare CaSE against a SOTA FiLM generator
(Bronskill et al., 2021), showing that CaSE is significantly more efficient using 75% fewer parameters
while boosting the classification accuracy on average by +1.5% on VTAB and MD2; and 3) we
provide an insight on the effectiveness of CaSE blocks with a series of qualitative analysis.

Comparing SE vs. CaSE We compare standard SE and the proposed CaSE on VTAB and MD-
v2. For a fair comparison we keep constant all factors of variation (backbone, training schedule,
hyperparameters, etc.) and use the same reduction of 32 (0.8M adaptive parameters). In order to
compare the results with the other experiments in this section, we use a Mahalanobis-distance head
as in Bronskill et al. (2021). We summarize the results in Figure 2 (left) and add a tabular breakdown
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Figure 2: Left: CaSE vs Squeeze-and-Excitation (SE) (both methods use EfficientNetB0, 84 ×
84 inputs, Mahalanobis-distance head). CaSE outperforms SE in all conditions. Center: CaSE
vs. FiLM generators (Bronskill et al., 2021) and a baseline with no body adaptation (all methods use
EfficientNetB0, 84× 84 inputs, Mahalanobis-distance head). CaSE outperforms FiLM generators
in all conditions. Right: boxplot of CaSE activations at different depth of an EfficientNetB0 for
800 tasks sampled from the MDv2 test set. The modulation of CaSE is minimal at early stages for
general-purpose filters and increases at deeper stages.

in Appendix B. CaSE outperforms SE in all conditions, confirming that a contextual adaptation
mechanism is fundamental to transfer knowledge effectively across tasks.

Comparing adaptation mechanisms We perform a comparison on VTAB+MD of CaSE against
FiLM generators (Bronskill et al., 2021), and a baseline that uses a pretrained model but no adaptation
of the body. Methods are compared in identical conditions, using a Mahalanobis-distance head, an
EfficientNetB0 backbone, and same training schedule on 84 × 84 images. We show a summary
of the results in Figure 2 (center) and provide a tabular breakdown in the appendix. CaSE is able
to outperform FiLM generators in all conditions. In Appendix B we report the results for CaSE
with reduction 64 (0.4M parameters) showing that it is able to outperform FiLM generators (1.7M
parameters) using a fraction of the parameters. The comparison with the baseline with no adaptation,
shows that in all but one condition (VTAB specialized) adaptation is beneficial. This is likely due to
the strong domain shift introduced by some of the specialized datasets.

Role of CaSE blocks To examine the role of CaSE blocks we analyze the aggregated activations at
different stages of the body for 800 tasks sampled from the MDv2 test set using an EfficientNetB0.
In Figure 2 (right) we report the aggregated distribution as boxplots, and in Appendix D we provide a
per-dataset breakdown. Overall the median is close to 1.0 (identity) which is the expected behavior
as on average we aim at exploiting the underlying pretrained model. The variance is small at early
stages, indicating that CaSE has learned to take advantage of general-purpose filters that are useful
across all tasks. In deeper layers the variance increases, showing a task-specific modulation effect. In
Appendix D we also include a plot with per-channel activations for all datasets at different depths,
showing that the modulation is similar across datasets at early stages and it diverges later on.

4 Conclusions

We have introduced a new adaptive block called CaSE, which is based on the popular Squeeze-and-
Excitation (SE) block proposed by Hu et al. (2018). CaSE is effective at modulating a pretrained
model in the few-shot setting, outperforming other adaptation mechanisms such as FiLM generators
in terms of classification accuracy on the 26 datasets of VTAB+MD. Additionally we have showed
that CaSE uses fewer learnable parameters and is easier to implement as it does not need a separate set
encoder module as in FiLM generators. Limitations: while the experimental results are promising,
further investigation is needed to validate the effectiveness of CaSE in other settings (e.g. larger
images) and in conjunction with other methods (e.g. ProtoNets, MatchingNets, etc).
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A CaSE: additional details

A.1 CaSE implementation

Standardization Empirically we have observed that standardizing the pooled representations before
passing them to the MLP improves the training stability in CaSE (but not in SE). Standardization is
performed by taking the pooled representation at layer l as showed in Equation (3), that is h̄(l) ∈ RC ,
subtracting the mean and dividing by the standard deviation.

Activation function for the output layer Standard SE blocks usually rely on a sigmoid function
in the last layer of the MLPs. This works well when the adaptive block is trained in parallel with
the underlying neural network. However, in our case we use a pretrained model and learning can be
speeded up considerably by enforcing the identity function as output of the MLPs. We achieve this
by multiplying the output of the sigmoid by a constant scalar c = 2 which extends the range to [0, 2],
and then set to zero the weights and bias of the layer. This has the effect of enforcing the identity
function at the beginning of the training. We have also used a linear activation function instead of a
sigmoid, with good results. When using a linear output the identity can be enforced by setting the
weights of the last layer to zero, and the bias to one.

CaSE location For the choice of CaSE location in the feature extractor, we followed the same
principles used in Bronskill et al. (2021) for FiLM generators. In EfficientNetB0 we place CaSE at
the beginning of each hyperblock and the last layer (excluding the first layer). Differently from FiLM
(placed after the BatchNorm) we place CaSE after the non-linearity (as done in standard SE) and
before the Squeeze-and-Excitation block (included by default in EfficientNet):

Conv2d→BatchNorm2d→SiLU→CaSE→SqueezeExcitation→Conv2d→BatchNorm2d

This results in a total of 18 CaSE blocks for EfficientNetB0. Increasing the number of blocks did not
provide a significant benefit. In ResNet18 we place two CaSE blocks per each basic block as:

Conv2d→BatchNorm2d→ReLU→CaSE→Conv2d→BatchNorm2d→ReLU→CaSE

Similarly we place two CaSE blocks inside a bottleneck block in ResNet50. See the code for more
details.

Based on the qualitative analysis reported in Appendix D we hypothesize that adaptive blocks are not
needed in the initial layers of the network, since at those stages their activity is minimal. Identifying
which layer needs adapters and which layer does not, can reduce even more the parameter count of
adaptive blocks. Additional work is needed to fully understand this factor.

CaSE reduction The number of parameters allocated to the CaSE blocks is regulated by a divider r
that is used to compute the number of hidden units in the MLPs. Given the input size C (corresponding
to the number of channels in that layer) the number of hidden units is given by C/r. We also use a
clipping factor rmin that prevents the number of units to fall under a given threshold. This prevents
the allocation of a low number of units for layers with a small number of channels.

A.2 Context pooling

In this section we provide additional details about the context pooling operation performed in a CaSE
adaptive block (described in Section 2).

Similarities with other methods Context pooling is a way to summarize a task with a permutation-
invariant aggregation of the embeddings. A similar mechanism has been exploited in various
meta-learning methods. For instance, in ProtoNets (Snell et al., 2017) a prototype for a single class is
computed by taking the average over all the context embeddings associated to the inputs for that class.
The embeddings are generated in the last layer of the feature extractor. In Simple-CNAPs (Bateni
et al., 2020) a prototype is estimated as in ProtoNets but it is used to define a Gaussian distribution
instead of a mean vector. Neural latent variable models, such as those derived from the Neural
Processes family (Garnelo et al., 2018) also rely on similar permutation-invariant aggregations to
define distributions over functions.

Global vs. local context-pooling Comparing CaSE with the FiLM generators of Bronskill et al.
(2021) it is possible to distinguish between two types of context pooling: global and local. The FiLM
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generators of Bronskill et al. (2021) rely on a global pooling strategy, meaning that the aggregation is
performed once-for-all by using a dedicated convolutional set encoder. More specifically, the encoder
takes as input all the context images and produces embeddings for each one of them, followed by an
average-pooling of those embeddings. The aggregated embedding is then passed to MLPs in each
layer that generates a scale and shift parameter. Crucially, each MLP receives the same embedding.

CaSE exploits a local context-pooling at the layer level. The convolutional set encoder is discarded,
and the feature maps produces by the backbone itself at each stage are used as context embeddings.
Therefore, the MLPs responsible for generating the scale parameters receive a unique embedding. As
showed in the experimental section, local pooling improves performances and uses less parameters,
as no convolutional encoder is needed.

B Tabular results

Table 1: Comparing CaSE adaptive blocks (with reduction 64, 32, 16) on VTAB+MD against the
FiLM generators used in Bronskill et al. (2021), standard Squeeze-and-Excitation (SE) (Hu et al.,
2018), and a baseline with no body adaptation. CaSE blocks are more efficient in terms of adaptive
and amortization parameters while providing higher classification accuracy. All models have been
trained and tested on 84× 84 images, using a Mahalanobis distance head. Best results in bold.

Adaptation type None FiLM SE32 CaSE64 CaSE32 CaSE16
Adaptive Params (M) n/a 0.02 0.01 0.01 0.01 0.01
Amortiz. Params (M) n/a 1.7 0.8 0.4 0.8 1.6

MetaDataset (all) 53.4 68.4 67.8 69.8 69.6 70.4
VTAB (all) 43.5 44.7 43.6 46.2 45.3 46.4
VTAB (natural) 45.4 49.5 47.5 52.1 50.2 52.6
VTAB (specialized) 69.4 63.8 63.6 66.3 64.9 65.5
VTAB (structured) 29.1 31.7 30.6 31.8 31.8 32.1
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C Pytorch code for CaSE

Implementation of a CaSE adaptive block in Pytorch. The script is also available as case.py at
https://github.com/mpatacchiola/contextual-squeeze-and-excitation.

import torch
from torch import nn

class CaSE(nn.Module):
def __init__(self , cin , reduction=32 , min_units=32 ,

standardize=True , out_mul=2.0,
device=None , dtype=None):

"""
Initialize a CaSE adaptive block.

Parameters:
cin (int): number of input channels.
reduction (int): divider for computing number of hidden units.
min_units (int): clip hidden units to this value (if lower).
standardize (bool): standardize the input for the MLP.
out_mul (float): multiply the MLP output by this value.
"""
factory_kwargs = {’device ’: device , ’dtype ’: dtype}
super(CaSE , self).__init__ ()
self.cin = cin
self.standardize = standardize
self.out_mul = out_mul
hidden = max(min_units , cin // reduction)
self.gamma_generator = nn.Sequential(

nn.Linear(cin , hidden , bias=True , ** factory_kwargs),
nn.SiLU(),
nn.Linear(hidden , hidden , bias=True , ** factory_kwargs),
nn.SiLU(),
nn.Linear(hidden , cin , bias=True , ** factory_kwargs),
nn.Sigmoid () )

self.reset_parameters ()

def reset_parameters(self):
nn.init.zeros_(self.gamma_generator[4].weight)
nn.init.zeros_(self.gamma_generator[4].bias)
self.gamma = torch.tensor([1.0])

def forward(self , x):
if(self.training): # adaptive mode

self.gamma = torch.mean(x, dim=[2,3]) # spatial pooling
self.gamma = torch.mean(self.gamma , dim=[0]) # context pooling
if(self.standardize):

self.gamma = (self.gamma - torch.mean(self.gamma)) / \
torch.sqrt(torch.var(self.gamma , unbiased=False) + 1e-5)

self.gamma = self.gamma.unsqueeze(0)
self.gamma = self.gamma_generator(self.gamma) * self.out_mul
self.gamma = self.gamma.reshape([1,-1,1,1])
return self.gamma * x

else: # inference mode
self.gamma = self.gamma.to(x.device)
return self.gamma * x

def extra_repr(self):
return ’cin={}’.format(self.cin)
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D Role of CaSE blocks

Figure 3: Boxplots for all the MDv2 test datasets (100 tasks per dataset) reporting the CaSE activation
(vertical axis) at different stages of an EfficientNetB0 (horizontal axis, with early stages on the left).
The box encloses first to third quartile, with the median represented by the orange line. The whiskers
extend from the box by 1.5 the inter-quartile range. Outlier (point past the end of the whiskers) are
represented with black circles.
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Figure 4: CaSE activation values (vertical axis) for all channels (horizontal axis) at different stages
(top plots are early stages) in EfficientNetB0 for the MDv2 test dataset (one task per dataset). Values
are similar and closer to one in the first stages but diverge in the latest. The magnitude tends to
increase with depth.
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