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Abstract
DenseNets introduce concatenation-type skip connections

that achieve state-of-the-art accuracy in several computer
vision tasks. In this paper, we reveal that the topology of
the concatenation-type skip connections is closely related
to the gradient propagation which, in turn, enables a pre-
dictable behavior of DNNs’ test performance. To this end,
we introduce a new metric called NN-Mass to quantify how
effectively information flows through DNNs. Moreover, we
empirically show that NN-Mass also works for other types
of skip connections, e.g., for ResNets, Wide-ResNets (WRNs),
and MobileNets, which contain addition-type skip connec-
tions (i.e., residuals or inverted residuals). As such, for
both DenseNet-like CNNs and ResNets/WRNs/MobileNets,
our theoretically grounded NN-Mass can identify models
with similar accuracy, despite having significantly different
size/compute requirements. Detailed experiments on both
synthetic and real datasets (e.g., MNIST, CIFAR-10, CIFAR-
100, ImageNet) provide extensive evidence for our insights.
Finally, the closed-form equation of our NN-Mass enables
us to design significantly compressed DenseNets (for CIFAR-
10) and MobileNets (for ImageNet) directly at initialization
without time-consuming training and/or searching.1

1. Introduction
DenseNets [7] and their variants have been widely

adopted by the deep learning community to achieve ex-

cellent performance in many computer vision tasks such

as image classification, object detection, image segmenta-

tion, super resolution, among many others [39, 8, 38]. One

of the main contributions of DenseNets is the introduction

of concatenation-type skip connections where the output

channels from all previous layers are concatenated at the

input of the current convolutional layer. The concatenation-

type skip connections2 have been particularly valuable to

*Equal Contribution
1Code at https://github.com/SLDGroup/NN_Mass.
2Also referred to as DenseNet-type skip connections.

the deep learning literature. For instance, in addition to

significant accuracy and efficiency gains in computer vi-

sion applications, many state-of-the-art Neural Architecture

Search (NAS) techniques have exploited the concatenation-

type skip connections into their search space to obtain high-

performance models [24, 16, 26, 17, 40]. However, to the

best of our knowledge, the properties of concatenation-type

skip connections such as their gradient propagation and the

resulting effect on model performance has not been explored.

Recently, an important method called Dynamical Isom-

etry emerged in order to quantify gradient flow through

DNNs [29, 31, 23, 13]. When DNNs achieve “dynamical

isometry”, the signal flows through such networks without

significant amplification or attenuation. This, in turn, helps

the learning process and, hence, quantifies the gradient prop-

erties of DNNs. The role of Dynamical Isometry in trainabil-

ity has been demonstrated for networks such as ResNets [5]

which have addition-type skip connections.

Due to concatenation of channels, DenseNet-type skip

connections enforce strong structural/topological constraints

on the gradient propagation (i.e., the gradients can only fol-

low specific paths during training). In general, the topology

(or structure) of graphs/networks directly influences the pro-

cess taking place over them [21]. For instance, how closely

the users of a social network are connected to each other

completely determines how fast the information propagates

through the network [14, 9]. Consequently, the structural

constraints imposed by concatenation of channels must also

affect the learning dynamics of DNNs. Motivated by this

observation, we study the relationship between topology, gra-

dient flow, and model performance of such deep networks.

Note that, to study these topological properties, we do not

use the original DenseNets which contain all-to-all connec-

tions [7], but rather a generalized version where we can vary

the density of skip connections (more details in Section 3).

To this end, we first define our setup of DNNs with

concatenation-type skip connections. Then, we propose a

new metric called NN-Mass to quantify the topological prop-

erties of DNNs considered within this setup. Next, we show



the relationship between NN-Mass (a topological property)

and Layerwise Dynamical Isometry (LDI) [13], a property

that indicates the faithful gradient propagation through the

network [29]. Specifically, we show that irrespective of

number of parameters/FLOPS/layers, models with similar

NN-Mass and width should have similar LDI, and thus a

similar gradient flow that results in comparable accuracy.

To support these theoretical insights, we conduct exten-

sive experiments to show that models with the same width

and NN-Mass indeed achieve a similar accuracy irrespective

of their depth, number of parameters (#Params), and FLOPS.

Moreover, we empirically show that NN-Mass also works

for other types of skip connections, e.g., for ResNets, Wide-

ResNets (WRNs), and MobileNets which contain addition-

type skip connections (ATSC), i.e., residuals or inverted

residuals. Finally, we show how the closed-form expression

for NN-Mass can be used to directly design compressed

DNNs, that is, without any time-consuming training and

(manual or automatic) searching for compressed models.

Overall, we make the following key contributions:

(i) We reveal how topological constraints imposed by

DenseNet-type skip connections influence gradient propaga-

tion and resulting accuracy; (ii) For this setup, we propose

a new topological metric called NN-Mass that is theoreti-

cally linked to Layerwise Dynamical Isometry and quantifies

how efficiently information propagates in neural networks;

(iii) Our experiments encompass multilayer perceptron as

well as CNNs with DenseNet-type skip connections on sev-

eral datasets (MNIST, CIFAR-10, CIFAR-100, Imagenet).

Our results demonstrate that NN-Mass is an excellent indi-

cator of accuracy and support our theory. We further em-

pirically show that NN-Mass also works for ATSC-based

networks (ResNets, WRNs, and MobileNets); (iv) Finally,

NN-Mass allows us to directly design models with up to 3×
compression rate (for DenseNets on CIFAR-10), and up to

34%-40% compression rate (for MobileNet-v2 on ImageNet)

in #Params/FLOPS while losing minimal accuracy.

The rest of the paper is organized as follows: Section 2

discusses the related work and some preliminaries. Then,

Section 3 describes our proposed metric and its theoretical

analysis. Section 4 presents detailed experimental results.

Finally, Section 5 summarizes our work and contributions.

2. Background and Related Work
Several prior works aim to study the impact of initializa-

tion on model convergence and gradients [11, 4, 29, 25, 31,

23]. To this end, Dynamical Isometry has emerged as an im-

portant metric for quantifying gradient properties. Moreover,

recent model compression literature attempts to connect

pruning at initialization to gradient properties [13]. How-

ever, none of these studies address the impact of the topology
of concatenation-type skip connections on gradient propa-

gation. Instead, since our objective is to specifically study

the topological properties, we rely on graph theory/network

concepts. Hence, our work is orthogonal to prior art that

explores the impact of initialization on gradients as those

works do not discuss the impact of topology on gradients.

Recently, random graph concepts have been used in deep

learning. For instance, [35, 34] utilize standard random

graphs such as Barabasi-Albert (BA) [3] or Watts-Strogatz

(WS) [32] models for NAS. However, like other NAS re-

search, [35, 34] do not connect the topology with the gradi-

ent flow. In contrast, by considering the concatenation-type

skip connections, we aim to quantify the link between topol-

ogy, gradients, and accuracy. Further, while we do build new

models as a proof-of-concept of our theoretically grounded

metric, we do not conduct any NAS. Conducting full NAS

guided by theoretical metrics is left as a future work.

Preliminaries. We use the following established concepts:

Definition 1 (Average Degree [21]). Average degree (k̂) of
a network represents the average number of connections
across all nodes, k̂ = #edges/#nodes.

Average degree and degree distribution (i.e., distribution

of nodes’ degrees) are important topological characteristics

which directly affect how information flows through a net-

work. How fast a signal can propagate through a network

heavily depends on the network topology.

Definition 2 (Layerwise Dynamical Isometry (LDI) [13]).
A deep network satisfies LDI if the singular values of Jaco-
bians at initialization are close to 1 for all layers. Specifi-
cally, for a multilayer feed-forward network, let si (Wi) be
the output (weights) of layer i such that si = φ(hi),hi =
Wisi−1+bi; then, the Jacobian matrix at layer i is defined
as: Ji,i−1 = ∂si

∂si−1
= DiWi. Here, Ji,i−1 ∈ R

wi,wi−1 ,

wi is the number of neurons in layer i. Djk
i = φ′(hi)δjk.

φ′ denotes the derivative of non-linearity φ and δjk is Kro-
necker delta. Then, if the singular values σj for all Ji,i−1

are close to 1, then the network satisfies the LDI.

LDI discourages the signal propagating through the DNN

from getting attenuated or amplified too much; this ensures

faithful propagation of gradients [29].

3. Topological Properties of DNNs
We first describe our setup of DNNs with DenseNet-type

skip connections and propose the new topological metrics.

We then demonstrate the theoretical relationship between the

topology and gradient propagation.

3.1. Modeling DenseNet-type Skip Connections

We start with a generic MLP setup with dc layers con-

taining wc neurons each and assume DenseNet-type skip

connections superimposed on top of a typical MLP struc-

ture (see Fig. 1(a)). Henceforth, unless stated otherwise,
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Figure 1: (a) Setup: DNN (depth dc, width wc) has layer-by-layer connections due to MLP (gray links) with random

concatenation-type skip connections (purple/red links). (b) Simulation of Gaussian matrices sized (wc +m/2, wc), where

wc = 16: Mean singular values increase as NN-Mass (m) increases and is bounded as shown in Proposition 2 (Appendix D).

(c) Convolutional layers form a similar topological structure as MLP: All input channels contribute to all output channels.

DenseNet-type skip connections will be simply referred to as

skip connections. Specifically, all neurons at layer i receive

skip connections from a maximum of tc neurons from previ-

ous layers. That is, we randomly select min{wc(i− 1), tc}
neurons from layers 0, 1, . . . , (i− 2), and concatenate them

at layer i− 1 (see Fig. 1(a))3; the concatenated neurons then

pass through a fully-connected layer to generate the output

of layer i (si). As a result, the weight matrix Wi (which

is used to generate si) gets additional weights to account

for the incoming skip connections. Similar to recent NAS

research [15], we select links randomly because random ar-

chitectures are often as competitive as the carefully designed

models. Moreover, the random skip connections on top of

fixed short-range links make our architectures a small-world

network (Fig. 7, Appendix A) [32] which allows us to use

graph/network concepts to study their topology.

An important advantage of the above setup is that we

can control the density of skip connections (using tc) to

study the topological properties over many DNNs. If the

skip connections encompass all-to-all connections, this will

result in the original DenseNet architecture. Like standard

CNNs (Resnets/DenseNets), we can generalize the setup

to contain multiple (Nc) cells of width wc, depth dc; skip

connections exist only within a cell and not across cells.

3.2. Proposed Metrics

Our key objective is to quantify what topological char-

acteristics of DNNs with DenseNet-type skip connections

affect their accuracy and gradient flow. We then exploit such

3Here, wc(i − 1) is the total number of candidate neurons from lay-

ers 0, 1, . . . , (i − 2) that can supply skip connections; if the maximum
number of neurons tc that can supply skip connections to the current layer

exceeds total number of possible candidates, then all neurons from layers

0, 1, . . . , (i − 2) are selected. Neurons are concatenated similar to how

channels are concatenated in DenseNets [7].

properties to directly design efficient CNNs by looking at

such properties. To this end, we propose two new metrics

called Cell-Density and NN-Mass, as defined below.

Definition 3 (Cell-Density). Density of a cell quantifies
how densely its neurons are connected via skip connections.
Formally, for a cell c, cell-density ρc is given by:

ρc =
Actual #skip connections within cell c

Total possible #skip connections within cell c

=
2
∑dc−1

i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(1)

For complete derivation, please refer to Appendix B. In-

formally, density is basically mass/volume. Let volume be

the total number of neurons in a cell (wc × dc). Then, we

define the NN-Mass (m) as follows:

Definition 4 (Mass of DNNs). NN-Mass is defined as the
sum (over all cells) of product of Cell-Density (ρc) and num-
ber of neurons per cell.

m =

Nc∑
c=1

wcdcρc =

Nc∑
c=1

2dc
∑dc−1

i=2 min{wc(i− 1), tc}
(dc − 1)(dc − 2)

(2)

As explained in the next section, NN-Mass quantifies

how effectively information can flow through a given DNN

topology. For a given width (wc), models with similar NN-

Mass, but different depths (dc) and #Params, should exhibit

a similar gradient flow and, thus, achieve a similar accu-

racy. Note that, NN-Mass is a function of network width,

depth, and skip connections (i.e., the topology of the net-

work). For a fixed number of cells, an architecture can be

completely specified by {depth, width, maximum skip con-
nection candidates} per cell = {dc, wc, tc}. Hence, to create



different architectures with DenseNet-type skip connections,

we vary {dc, wc, tc} to create architectures with random

#Params/FLOPS/layers, and NN-Mass. We then train these

architectures and characterize their accuracy, topology, and

gradient propagation to understand the relationships among

them. But first, we provide our theoretical analysis.

3.3. Relationships among topology, NN-Mass and
gradient propagation

Without loss of generality, we assume that the DNN (same

setup as above) has only one cell of width wc and depth dc.

Proposition 1 (NN-Mass and average degree). The aver-
age degree of a DenseNet-type deep network with NN-Mass
m is given by k̂ = wc +m/2.
The proof of the above result is given in Appendix C.

Intuition. Proposition 1 states that the average degree of a

deep network is wc +m/2, which, given the NN-Mass m,

is independent of depth dc. The average degree indicates

how well-connected the network is. Hence, it controls how

effectively the information can flow through a given topol-

ogy. Therefore, for a given width and NN-Mass, the average

amount of information that can flow through various archi-

tectures (with different #Params/layers) should be similar

(due to the same average degree). Thus, we hypothesize that

these topological characteristics might constrain the amount

of information being learned by DNNs. Next, we show the

impact of topology on gradient propagation.

Proposition 2 (NN-Mass and LDI). Consider the case of
deep linear networks with concatenation-type skip connec-
tions, where each layer is initialized using independently and
identically distributed values with initialization variance q.
For this setup, suppose we are given a small network fS
(depth dS) and a large network fL (depth dL, dL >> dS),
both with same initialization scheme, NN-Mass m, and width
wc. Then, the mean singular value of the initial layerwise
Jacobian (E[σ]) for both networks is bounded as follows:√

q(wc +m/2)−√
qwc ≤ E[σ] ≤

√
q(wc +m/2)+

√
qwc

That is, the LDI for both models does not depend on the
depth if the initialization variance (q) for each layer is
depth-independent (which is the case for many initialization
schemes). Hence, for such networks, models with similar
width and NN-Mass result in similar gradient properties,
even if their depths and #Params are different.

Proof: A formal proof of the above result and the bounds

under the deep linear network [29, 12, 1, 10] assumption is

given in Appendix D. The discussion below is more informal

and explains how the above result works for both linear and

non-linear DNNs with DenseNet-type skip connections.

To prove this result, it suffices to show that the initial

Jacobians Ji,i−1 have similar properties for both models

(and thus their singular values are similar). For our setup,

the output of layer i, si = φ(Wixi−1+bi), where xi−1 =
si−1∪y0:i−2 concatenates output of layer i−1 (si−1) with

the neurons y0:i−2 supplying the skip connections (random

min{wc(i− 1), tc} neurons selected uniformly from layers

0 to i− 2). Hence, Ji,i−1 = ∂si/∂xi−1 = DiWi. Com-

pared to a typical MLP (see Definition 2), the sizes of Di

and Wi increase to account for incoming skip connections.

For two models fS and fL, the layerwise Jacobian

(Ji,i−1) can have two kinds of properties: (i) The distri-

bution of values inside Jacobian matrix for fS and fL can be

different, and/or (ii) The sizes of layerwise Jacobian matrices

for fS and fL can be different. Hence, our objective is to

show that when the width (wc) and NN-Mass (m) are similar,

irrespective of the depth of the model (and thus irrespective

of #Params/FLOPS), both the distribution and the size of

initial layerwise Jacobians are similar.

Let us start by considering a linear network: in this case,

Ji,i−1 = Wi. Since the LDI looks at the properties of

layerwise Jacobians at initialization, and because all models

are initialized the same way (e.g., Gaussians with variance

scaling4), the values inside Ji,i−1 for both fS and fL have

same distribution (i.e., point (i) above is satisfied). We next

show that even the sizes of layerwise Jacobians for both

models are similar if the width and NN-Mass are similar.

How is topology related to the layerwise Jacobians? Since

the average degree is same for both models (see Proposi-

tion 1), on average, the number of incoming skip connec-

tions at a typical layer is wc ×m/2. In other words, since

the degree distribution for the random skip connections is

Poisson [2] with average degree k̄R|G ≈ m/2 (see Eq. 8, Ap-

pendix C), an average m/2 neurons supply skip connections

to each layer5. Therefore, the Jacobians will theoretically

have the same dimensions (wc+m/2, wc) irrespective of the

depth of the neural network (i.e., point (ii) is also satisfied).

So far, the discussion has considered only a linear net-

work. For a non-linear network, the Jacobian is given as

Ji,i−1 = DiWi. As explained in [13], Di depends on

pre-activations hi = Wixi−1 + bi. As established in sev-

eral deep network mean field theory studies [25, 31], the

distribution of pre-activations at layer i (hi) is a Gaussian

N (0, qi) due to the central limit theorem. Similar to [13, 23],

if the input h0 is chosen to satisfy a fixed point qi = q∗,

the distribution of Di becomes independent of the depth

(N (0, q∗)). Therefore, the distribution of both Di and Wi

is similar for different models irrespective of the depth, even

for non-linear networks. Moreover, the sizes of the matrices

will be similar due to similar average degree in fS and fL.

Hence, the size and distribution of values in the Jacobian

matrix are similar for both the large and the small model

4Variance scaling methods also take into account the number of in-

put/output units. Hence, if the width is the same between models of different

depths, the distribution at initialization is still similar.
5Poisson process assumes a constant rate of arrival of skip connections.
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Figure 2: NN-Mass for bottleneck ResNets/MobileNets.

Dotted purple lines are possible ATSC (not actually present).

Solid purple ATSC are present in MobileNets/ResNets.

(provided the width and NN-Mass are similar); that is, the

distribution and mean singular values will also be similar.

Thus, LDI is equivalent between different depth DNNs if

their width and NN-Mass are similar. As a result, such

models have similar gradient flow properties.

To verify the bounds provided in Proposition 2, we nu-

merically simulate the mean singular values of layerwise

Jacobians for deep linear networks using standard Gaussian

(q = 1) matrices of sizes (wc +m/2, wc). Specifically, we

vary m for a given width wc and see the impact of this size

variation on mean singular values. Fig. 1(b) shows that as

NN-Mass varies, the mean singular values increase and lie

within the bounds of Proposition 2. Note that, our results

should not be interpreted as bigger models yield larger mean

singular values. We show in the next section that the re-

lationship between the #Params and mean singular values

is significantly worse than that for NN-Mass. Hence, it is

the topological properties that enable LDI in different deep

networks and not the #Params.

Remark 1 (NN-Mass formulation is same for DenseNet-
type CNNs). Fig. 1(c) shows a typical convolutional layer.

Since all channel-wise convolutions are added together, each

output channel is some function of all input channels. This

makes the topology of CNNs similar to that of our MLP

setup. The key difference is that the nodes in the network

(see Fig. 1(a)) are now channels and not individual neurons.

Of note, for our CNN setup, we use three cells (similar

to DenseNets). More details on CNN setup (including a

concrete example for NN-Mass calculations) are given in

Appendices E and F.

Remark 2 (NN-Mass generalizes to ResNets and
MobileNets). Note that, ResNets/MobileNet-v2 have

Addition-Type Skip Connections (ATSC). Then, follow-

ing Definitions 3 and 4, cell-density (ρc) and NN-Mass for

ResNets/MobileNets are defined as:

ρc =
Actual #ATSC

Total possible #ATSC
, m =

∑
Nc

ic × ρc (3)

where, ic is the total input channels within one cell. For

instance, for the bottleneck cells shown in Fig. 2, ic =
W1+2W2, where W1 and W2 are number of input channels

at various layers within the bottleneck cell. Due to one-to-

one, channel-wise additions, the actual #ATSC = W1 since a

maximum of W1 channels can be added (this cannot exceed

the #input channels at the source layer; see solid purple

line in Fig. 2). In bottleneck cells, ATSC can be present at

two other locations (see dotted purple lines in Fig. 2), each

can supply W1 and W2 links, respectively. Hence, ρc and

NN-Mass can be computed as shown in Fig. 2 (right) using

Eq. (3). Equations shown in Fig. 2 work for both ResNet and

MobileNet bottleneck cells, and a similar process follows

for the ResNet-Basicblock cell.

We next provide extensive empirical evidence for our

theoretical insights on topology, gradient propagation, LDI,

and model accuracy (Proposition 2).

4. Experimental Setup and Results

4.1. Experimental Setup

For experiments on MLPs and CNNs, we generate ran-

dom architectures (within our setup of DenseNet-type skip

connections) with different NN-Mass and number of pa-

rameters by varying {dc, wc, tc}. For random MLPs with

different {dc, tc} and wc = 8 (#cells = 1), we conduct the

following experiments on the MNIST dataset: (i) We explore

the impact of varying #Params and NN-Mass on the test ac-

curacy; (ii) We demonstrate how LDI depends on NN-Mass

and #Params; (iii) We further show that models with similar

NN-Mass (and width) result in similar training convergence,

despite having different depths and #Params.

After the extensive empirical evidence for our theoretical

insights (i.e., the connection between gradient propagation

and topology), we next move on to CNN architectures. We

conduct the following experiments: (i) For three-cell CNNs

with random concatenation-type skip connections (i.e., the

DenseNet setup), we show that NN-Mass can identify CNNs

that achieve similar test accuracy, despite having highly dif-

ferent #Params/FLOPS/layers; (ii) We show that NN-Mass

is a significantly more effective indicator of model perfor-

mance than parameter counts; (iii) For DenseNet setup, we

perform the above experiments for CIFAR-10, CIFAR-100,

and ImageNet datasets; (iv) We further demonstrate that

NN-Mass works for standard ResNets, Wide-ResNets, and

MobileNets on ImageNet.

Finally, we exploit NN-Mass to directly design effi-

cient DenseNet-type CNNs (for CIFAR-10) and efficient

MobileNet-like networks (for ImageNet) which achieve ac-

curacy comparable to significantly larger models. Overall,

we train hundreds of different MLP and CNN architectures

with each MLP (CNN) repeated five (three) times with differ-

ent random seeds, to obtain our results. More setup details

(e.g., architecture details, learning rates, etc.) are given in

Appendix G (see Tables 3, 4, and 5).
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Figure 3: MNIST results: (a) Models with different #Params achieve similar test accuracy. (b) Test accuracy curves of models

with different depths/#Params concentrate when plotted against NN-Mass (test accuracy std. dev. ∼ 0.05−0.34%). (c,d) Mean

singular values of Ji,i−1 are much better correlated with NN-Mass (R2 = 0.79) than with #Params (R2 = 0.31).

a b c

Figure 4: Models X and Y have the same NN-Mass and achieve very similar training convergence, even though they have

highly different #Params and depth. Model Z has significantly fewer layers than Y but the same #Params, yet achieves a faster

training convergence than Y (Z has higher NN-Mass than Y). The above conclusions hold true for models (D, E, and F) and (F,

G and H). Note that, training convergence curves are nearly coinciding for models with same NN-Mass.

4.2. MLP Results (MNIST/Synthetic Data):
Topology vs. Gradient Propagation

Test Accuracy. Fig. 3(a) shows test accuracy vs. #Params

of DNNs with different depths on the MNIST dataset. As

evident, even though many models have different #Params,

they achieve a similar test accuracy. On the other hand, when

the same set of models are plotted against NN-Mass, their

test accuracy curves cluster together tightly, as shown in

Fig. 3(b). To further quantify the above observation, we

generate a linear fit between test accuracy vs. log(#Params)

and log(NN-Mass) (see brown markers in Fig. 3(a,b)). For

NN-Mass, we achieve a significantly higher goodness-of-fit

R2 = 0.85 than that for #Params (R2 = 0.19). This demon-

strates that NN-Mass can identify DNNs that achieve similar

accuracy, even if they have a highly different number of

parameters/FLOPS6/layers. We next investigate the gradient

propagation properties to explain the test accuracy results.

Layerwise Dynamical Isometry (LDI). We calculate the

mean singular values of initial layerwise Jacobians, and

plot them against #Params (see Fig. 3(c)) and NN-Mass

(see Fig. 3(d)). Clearly, NN-Mass (R2 = 0.79) is far bet-

ter correlated with the mean singular values than #Params

(R2 = 0.31). More importantly, just as Proposition 2 pre-

dicts, these results show that models with similar NN-Mass

and width have equivalent LDI properties, irrespective of the

total depth (and, thus #Params) of the network. For example,

6For our DenseNet-based setup, more parameters lead to more FLOPS.

Results for FLOPS are given for CNNs in Appendix H.9.

even though the 32-layer models have more parameters, they

have similar mean singular values as the 16-layer DNNs.

This clearly suggests that the gradient propagation properties

are heavily influenced by the topological characteristics like

NN-Mass, and not just by DNN depth and #Params.

Training Convergence. The above results suggest the fol-

lowing hypotheses: (i) If the gradient flow between DNNs

(with similar NN-Mass and width) is similar, their training

convergence should be similar, even if they have highly dif-

ferent #Params and depths; (ii) If two models have same

#Params (and width), but different depths and NN-Mass,

then the DNN with higher NN-Mass should have faster train-

ing convergence (since its mean singular value will be higher

– see the trend in Fig. 3(d)).

To demonstrate that both hypotheses above hold true, we

pick three groups of three models each – (X, Y, and Z),

(D, E, and F), and (F, G, and H) from Fig. 3(a,b) and plot

their training accuracy vs. #epochs in Fig. 4. In Fig. 4(a),

Models X and Y have similar NN-Mass but Y has more

#Params and depth than X. Model Z has far fewer layers

and nearly the same #Params as X, but has higher NN-Mass.

Fig. 4(a) shows the training convergence results for X, Y, and

Z. As evident, the training convergence of model X (8.3K

Params, 24-layers) nearly coincides with that of model Y

(9.0K Params, 32-layers). Moreover, even though model

Z (8.3K Params, 16-layers) is shallower than the 32-layer

model Y (and has far fewer #Params), training convergence

of Z is significantly faster than that of Y (due to higher



NN-Mass and, therefore, better LDI). These results clearly

show the evidence supporting Proposition 2, and emphasize

the concrete links among topology, gradient propagation

and model performance for DNNs with DenseNet-type skip

connections. Similar observations are found for models (D,

E, and F) and (F, G, and H) as shown in Fig. 4(b,c).

4.3. CNN Results on CIFAR-10/100 and ImageNet

Having established a concrete relationship between gra-

dient propagation and topological properties, we now

show that NN-Mass can identify efficient CNNs that

achieve similar accuracy as models with significantly higher

#Params/FLOPS/layers. Unless specified, our CNN models

belong to the DenseNet setup. We will explicitly indicate

when the results are for ResNets/WRNs/MobileNets.

Model Performance for CIFAR-10 dataset. Fig. 5(a)

shows the test accuracy of various CNNs vs. total #Params.

As evident, models with highly different #Params (e.g., see

models A-E in box W), achieve a similar test accuracy. Note

that, there is a large gap in the model size: CNNs in box

W range from 5M parameters (model A) to 9M parameters

Figure 5: CIFAR-10 Width Multiplier wm = 2: (a) Models

with very different #Params (box W) achieve similar test

accuracies. (b) Models with similar accuracy often have

similar NN-Mass: Models in W cluster into Z. Results are

reported as the mean of three runs (std. dev. ∼ 0.1%).

(models D,E). Again, as shown in Fig. 5(b), when plotted

against NN-Mass, the test accuracy curves of CNNs with

different depths cluster together (e.g., models A-E in box

W cluster into A’-E’ within bucket Z). Hence, NN-Mass

identifies CNNs with similar accuracy, despite having highly

different #Params/layers. The same holds true for models

within X and Y boxes. More results with different width mul-

tipliers are given in Appendix H.3. For higher width values,

the models tend to cluster even more tightly for NN-Mass.

NN-Mass vs. Parameter Count. As shown in Fig. 16 in

Appendix H.5, for wm = 2, #Params yield an R2 = 0.76
which is lower than that for NN-Mass (R2 = 0.84, see

Fig. 16(a, b)). However, for higher widths (wm = 3), the

parameter count completely fails to predict accuracy (R2 =
0.14 in Fig. 16(c)). For the same width, NN-Mass achieves

a significantly higher R2 = 0.90 (see Fig. 16(d)).

Results for CIFAR-100 Dataset. We now corroborate our

main findings on CIFAR-100 dataset which is significantly

more complex than CIFAR-10. To this end, we train the

models in Fig. 5 on CIFAR-100. Fig. 17 (see Appendix H.6)

once again shows that several models with highly different

number of parameters achieve similar accuracy. Moreover,

Fig. 17(b) demonstrates that these models get clustered when

plotted against NN-Mass. Further, a high R2 = 0.84 is

achieved for a linear fit on the accuracy vs. log(NN-Mass)

plot (see Appendix H.6 and Fig. 17).

DenseNet-type CNNs for ImageNet and other results.
We provide the ImageNet results in Appendix H.7. More

results for the depthwise convolutions (DSConv) with

concatenation-type skip links for CIFAR-10 are given in

Appendix H.8. Again, NN-Mass identifies CNNs with simi-

lar accuracy while having significantly different #Params.

Results for #FLOPS. The results for #FLOPS follow

a very similar pattern as #Params (see Fig. 19 in Ap-

pendix H.9). In summary, we show that NN-Mass can iden-

tify models that yield similar test accuracy, despite having

very different #Params/FLOPS/layers.

NN-Mass on Standard DenseNets and VGG. So far, we

have used a generalized version of DenseNets which allows

us to vary the density of skip connections. For standard

DenseNets [7], cell-density (Eq. 1) = 1 (all-to-all connec-

tions); thus, NN-Mass for DenseNet =
∑

all cells[(#channels

per layer for this cell) × (#layers per cell)]. For VGG-like

models, there are no shortcuts, so NN-Mass = 0. Our the-

ory works for NN-Mass = 0: Fig. 3(b) shows two clusters

for [low-depth (16,20) NN-Mass 0] models and [high-depth

(24,28,32) NN-Mass 0] models. This is not surprising: with-

out shortcuts, the gradient diminishes as depth increases (e.g.,

see Resnets [5]). Same holds for our NN-Mass=0 CNNs on

ImageNet and CIFAR-10.

NN-Mass works for ResNets and MobileNets. For

ResNets and MobileNets, we calculate the NN-Mass val-

ues using Remark 2. Wide-ResNet (WRN) paper7 provides

#Params and test accuracy for standard ResNets and WRNs

for ImageNet (Fig. 6(a)). Fig. 6(b) shows Top1 accuracy

vs. NN-Mass. Clearly, NN-Mass outperforms #Params for

predicting accuracy (R2=0.87 vs. R2=0.64). Note that,

RN-50, WRN-34-1.5, and WRN18-3 (26M-101M #Params)

achieve similar accuracy (purple box in Fig. 6(a)), and cluster

together on NN-Mass plot (purple circle in Fig. 6(b)).

Fig. 6(c,d) shows the Top1 accuracy of MobileNet-v2

(mbn2) vs. #Params (Fig. 6(c)) and NN-Mass (Fig. 6(d)) on

ImageNet. The blue line shows the standard MobileNet-v2

models (Nc=17; {0.75, 1.4} are width-multipliers). The red

7We directly use the accuracy/#Params from Tables 7,8 in the Wide-

ResNet paper [37] (no training is performed).
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Figure 6: ImageNet results: (a,b) Top1 accuracy vs. (a) #Params (R2=0.64); (b) NN-Mass (R2=0.87) for standard ResNet

and Wide-ResNets. (c,d) Top1 accuracy vs. (c) #Params (R2=0.74); (d) NN-Mass (R2=0.96) for MobileNet-v2 and some

newly sampled CNNs (Better networks are highlighted with red letters.).

Table 1: Exploiting NN-Mass for Model Compression on

CIFAR-10 Dataset. All results are reported as mean ± stan-

dard deviation of three runs. DARTS results are from [17].

Model #Params/#FLOPS #layers NN-Mass Test Accuracy

DARTSI (NAS) 3.3M/- - - 97%

DARTSII (NAS) 3.3M/- - - 97.24%

Manual model 11.89M/3.63G 64 1126 97.02%

Manual model 8.15M/2.54G 64 622 96.99%

NN-Mass based 5.02M/1.59G 40 755 97.00%

NN-Mass based 4.69M/1.51G 37 813 96.93%

NN-Mass based 3.82M/1.2G 31 856 96.82%

I – DARTS First Order, II – DARTS Second Order

line shows new CNNs sampled by changing width multipli-

ers and total depth (Nc=22). Again, NN-Mass significantly

outperforms #Params (R2=0.96 vs. R2=0.74). Hence, NN-

Mass works for standard ResNets/WRNs/MobileNet-v2.

Directly designing compressed CNNs with NN-Mass.
We first design regular DenseNet-type CNNs (no DSConv)

with skip connections for CIFAR-10 dataset and show how

such models can be compressed directly using NN-Mass

equation (2) without searching for an efficient network. De-

tailed procedure is provided in Appendix H.10. To summa-

rize: (i) We generate candidate CNNs by varying {dc,wc,tc}

(for DenseNets) or {Nc, width-multiplier} (for MobileNets).

Note, we do not train these CNNs. (ii) Next, find the com-

pressed CNN with highest NN-Mass (using Definition 4)

given the #Params/MACs constraints. (iii) Train this model

to verify its accuracy. This is our compressed model.

As shown in Table 1, our models reach a test accuracy of

96.82%-97.00% on CIFAR-10, while reducing the number

of parameters and FLOPS by up to 3× over large CNNs (e.g.,

3.82M vs. 11.89M parameters). As a reference, DARTS [17],

a competitive NAS baseline, achieves a comparable (97%)

accuracy with slightly lower 3.3M parameters. Note that,

our objective is not to beat DARTS or any other baseline,

but rather to provide theoretical insights into the behavior of

DNNs with DenseNet-type skip connections. The DARTS

datapoint is chosen just to show that our efficient, high-

accuracy, theoretically grounded CNNs (that do not use spe-

cialized search spaces like NAS) are capable of reaching

state-of-the-art accuracy and, hence, are practically useful.

Finally, we demonstrate that NN-Mass can be used to

compress even the most compact CNNs like MobileNets on

ImageNet. Specifically, our model A (see Fig. 6(c,d)) is a

Table 2: Compressed MobileNets via NN-Mass on ImageNet

Network NN-Mass Top1 #Params MACs

MobileNetV2 (1.4) 1807 73.3 6.1M 601M

NN-Mass based A (Fig. 6) 1654 72.9 3.7M 393M
MobileNetV2 (0.75) 975.0 67.9 2.6M 220M

NN-Mass based B (Fig. 6) 1030 68.56 2.3M 200M

significantly compressed version of mbn2-1.4 and can be

directly identified using its NN-Mass (mbn2-1.4 and model

A are very far in Fig. 6(c) but are clustered in Fig. 6(d)).

These results are summarized in Table 2. As evident, our

NN-Mass-based models allow up to 34% fewer MACs and

40% fewer #Params than MobileNet-V2-1.4.

5. Conclusion
We have proposed a new topological metric called NN-

Mass which quantifies how effectively information flows

through DNNs. We have also established concrete theoreti-

cal relationships among NN-Mass, topological structure of

DenseNet-type networks, and layerwise dynamical isome-

try that ensures faithful propagation of gradients through

DNNs. Our training convergence MLP experiments have

demonstrated that models with similar NN-Mass and width

but different depths and number of parameters have simi-

lar training convergence and gradient flow properties like

LDI. Our extensive experiments spanning DenseNets to Mo-

bileNets show that NN-Mass identifies models with similar

accuracy, despite having a highly different number of pa-

rameters/FLOPS/layers. Finally, to show the practical ap-

plications of our work, we have exploited the closed-form

equation of our NN-Mass metric to directly design signif-

icantly compressed DenseNet-type CNNs (for CIFAR-10)

and MobileNet-like CNNs (for ImageNet).

Since topology is deeply intertwined with the gradient

propagation, such topological metrics deserve major atten-

tion for future research. Another important venue for further

work lies in the intersection of initialization and topology.
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