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ABSTRACT

Recent advances in federated learning (FL) enable collaborative training of ma-
chine learning (ML) models from large-scale and widely dispersed clients while
protecting their privacy. However, when different clients’ datasets are hetero-
geneous, traditional FL mechanisms produce a global model that does not ade-
quately represent the poorer clients with limited data resources, resulting in lower
accuracy and higher bias on their local data. According to the Matthew effect,
which describes how the advantaged gain more advantage and the disadvantaged
lose more over time, deploying such a global model in client applications may
worsen the resource disparity among the clients and harm the principles of social
welfare and fairness. To mitigate the Matthew effect, we propose Egalitarian
Fairness Federated Learning (EFFL), where egalitarian fairness refers to the
global model learned from FL has: ❶ equal accuracy among clients; ❷ equal deci-
sion bias among clients. Besides achieving egalitarian fairness among the clients,
EFFL also aims for performance optimality, minimizing the empirical risk loss
and the bias for each client; both are essential for any ML model training, whether
centralized or decentralized. We formulate EFFL as a multi-constrained multi-
objectives optimization (MCMOO) problem, with the decision bias and egalitar-
ian fairness as constraints and the minimization of the empirical risk losses on all
clients as multiple objectives to be optimized. We propose a gradient-based three-
stage algorithm to obtain the Pareto optimal solutions within the constraint space.
Extensive experiments demonstrate that EFFL outperforms other state-of-the-art
FL algorithms in achieving a high-performance global model with enhanced egal-
itarian fairness among all clients.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has emerged as a significant learning paradigm in
which clients utilize their local data to train a global model collaboratively without sharing data.
FL has attracted wide attention from various fields, especially in domains where data privacy and
security are critical, such as healthcare, finance, and social networks. However, when the data distri-
bution among clients is heterogeneous, the global model may perform inconsistently across different
clients. This raises a client-level fairness issue: how to define and achieve a fair model performance
for each client. From the perspective of commercial or profit-driven clients, contribution fairness
(Tay et al., 2022; Liu et al., 2022) is attractive, which requires that the model performance on each
client is proportional to their data resource contribution to the FL model.

In the real-world, clients may have unequal data resources due to historical or unavoidable factors.
They deserve fair treatment based on social welfare and equality principles. However, contribution
fairness worsens the resource plight of poorer clients. For instance, when hospitals with non-i.i.d.
datasets collaborate to train a disease diagnosis model, the hospitals with lower data resources will
receive a model that does not fit well with their data distribution, as high-resource hospitals more
dominate the model optimization. Therefore, the local model performance in a low-resource hospital
may exhibit uncertain accuracy and decision fairness. Such a low-trustworthy model may affect
the subsequent diagnosis of low-resource clients, leading to persistent resource inequality and the
deterioration of social welfare. This phenomenon is referred to as the Matthew effect (Merton,
1968), a social psychological phenomenon that describes how the rich get richer and the poor get
poorer in terms of resources such as education, economy, and data information, etc.
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Figure 1: (a) Training goals in EFFL; (b) Optimization paths to achieve a Pareto solution h ∈ H∗
for EFFL.

To mitigate the Matthew effect, we define egalitarian fairness in FL settings, which requires that
the global model exhibits equal performance across clients. We consider two aspects of equal per-
formance: ❶ Accuracy: accuracy reflects how well the global model fits the local data of clients;
thus equal accuracy performance can enhance the poor-clients decision quality; ❷ Decision bias:
decision bias reflects how fair of the global model decision on different protected groups such as
gender, race, or religion within the client, thus equal decision bias performance can enhance the
poor-clients reputation and decision credibility.

Attaining egalitarian fairness in FL settings presents significant challenges. ❶ First, egalitar-
ian fairness requires equal performance across all clients, which creates a trade-off with the general
objective of obtaining highest performance during model training. This trade-off is especially evi-
dent when dealing with heterogeneous clients, where the global model exhibits varied performance.
For example, an advantaged client must sacrifice local performance for egalitarian fairness, because
exceptional high local performance may result from the model’s poor performance on other clients,
which is undesirable from the standpoints of social welfare and ethics. Our goal is to strike a balance
in this trade-off so that all clients achieve high and equitable performance; ❷ The second challenge
is that heterogeneous local datasets can lead to conflicting gradient descent directions, posing the
trade-off that improving the performance for one client could potentially degrade the performance
of others; ❸ Furthermore, as we consider egalitarian fairness in both accuracy and decision bias, it
is noted that there is a potential trade-off between accuracy and decision bias (Wang et al., 2021).

Several works have focused on client-level fair model training in FL. Mohri et al. (2019) pro-
posed a min-max-based approach that prioritized the model training optimization towards the worst-
performing client. However, they focused on improving the performance of the worst-performing
client and may harm others, thus failed to achieve performance equality, especially when there were
more than two clients. Cui et al. (2021) simultaneously minimized the empirical risk loss across all
clients. Li et al. (2021) allowed clients to fine-tune the global model on local data. These methods
enhance the model’s representation of all clients but cannot guarantee to narrow the gap between
the better-performing and the worse-performing clients. To achieve equal model performance, im-
proving the model fitting towards the data distribution of the poorer clients is necessary. Li et al.
(2019) proposed q-FFL, which enhances the weights of the poorer clients in the aggregation process
to achieve equal accuracy across the clients. However, the method is heuristic and depends on a
hyperparameter q , which is difficult to be tuned to achieve the optimal result.

Our main contributions include: ❶ We propose an FL framework, called Egalitarian Fair Fed-
erated Learning (EFFL), that aims to achieve an egalitarian fair global model that provides both
high performance and egalitarian fairness for clients; ❷ We formally define the learning goals in
EFFL and form it as a multi-constrained multi-objectives optimization (MCMOO) problem. As
shown in Fig. 1 (a), the objectives are to minimize the local empirical risk losses {l1, ..., lN} on N
clients (goal 1). The local decision biases {f1, ..., fN} on N clients are constrained to be below an
acceptable bias budget (goal 2). These two goals jointly ensure higher model performance across
clients. We impose constraints on the deviations of local empirical risk loss and local decision bias
from their mean values (goal 3 and goal 4) to achieve egalitarian fairness with equal performance
among clients; ❸ To address the challenges mentioned above, we propose a three-stage gradient-
based algorithm that achieves Pareto optimal solutions in the decision space defined by the decision
bias and egalitarian fairness constraints, where the global model performance on each local client is
maximized and cannot be further improved without harming others; ❹ We perform comprehensive
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experiments on both synthetic and real-world datasets and show that our proposed EFFL frame-
work can achieve a global model that outperforms state-of-the-art (SOTA) baselines in terms of both
performance and egalitarian fairness across clients.

2 RELATED WORK

Most of the existing fairness research (Roh et al., 2021; Shen et al., 2022; Choi et al., 2021; Sankar
et al., 2021) assumes that the training process can access the whole training dataset in a centralized
manner. However, this assumption does not hold in real-world scenarios where data privacy and
communication constraints prevent clients from sharing their data with a central server. In FL, sev-
eral work (Ezzeldin et al., 2023; Papadaki et al., 2022; Chu et al., 2021; Du et al., 2021; Cui et al.,
2021; Hu et al., 2022) aims to reduce model outcome bias towards different protected groups such
as gender, race, or age. Recently, there has been a growing interest in achieving fairness towards
clients in FL. Client-level fairness is equivalent to the existing group-level fairness when a client
exclusively contains one, and only one, protected group. However, this is a rare case. Therefore,
it is necessary to design client-level fair FL to cover more general scenarios. Mohri et al. (2019)
propose AFL, a min-max optimization scheme that focuses on the worst-performing client. Li et al.
(2021) propose Ditto to achieve training fairness by allowing clients to fine-tune the received global
model using local data. Cui et al. (2021) propose FCFL to jointly consider accuracy consistency and
decision bias across different local clients (data sources) by minimizing the model loss of the worst-
performing client. These works enhance a fair representation of different clients during training
but cannot guarantee equal performance. To achieve equal accuracy across clients, Li et al. (2019)
propose q-FFL, a heuristic method that adjusts the weights of the aggregate process to enhance the
influence of poorer individuals. Pan et al. (2023) propose FedMDFG that adds cosine similarity
between the loss vectors among clients and the unit vector as a fairness objective in the local loss
functions. Previous work overlooks the trade-offs in achieving equality from a social welfare per-
spective and local optimality from an individual beneficial perspective. Moreover, as there is an
inherent trade-off between accuracy and decision bias for each client (Wang et al., 2021), we also
need to consider the deterioration of the decision bias caused by accuracy distribution adjustment.
It is necessary to ensure that the decision bias of each individual is within an acceptable budget to
provide a trustworthy global model. For the same social welfare purpose as accuracy equality, main-
taining decision bias equality among individuals is helpful to improve the reputation and decision
credibility of poor clients. We argue that optimizing the accuracy objective alone is insufficient for
an FL system that adheres to social ethics and legal regulations. Therefore, we introduce a novel FL
framework, EFFL, to produce a global model with high and equitable performance across clients.

3 PRELIMINARIES

In this section, we provide the notions and formally define the problem of Egalitarian Fairness
Federated Learning (EFFL), which extends the fairness criteria in FL and covers novel application
scenarios.

3.1 FEDERATED LEARNING

We focus on horizontal FL(Yang et al., 2019), which involves N clients, each associated with a
specific dataset Dk = {Xk, Ak, Yk}, where k ∈ {1, ..., N}, Xk denotes the general attributes of the
data without protected information, Ak denote a protected attribute, such as gender, race, or religion,
and Yk denoted truth label. The FL procedure involves multiple rounds of communication between
the server and the clients. In each round, the server sends the global model hθ with parameter θ to
the clients, who then train their local models on their local private datasets {D1, ...,DN}, resulting in
local models {hθ1 , ..., hθN }. The server then aggregates the local parameters and updates the global
model for the next communication round (McMahan et al., 2017). The original FL (McMahan et al.,
2017) aims to minimize the average empirical risk loss over all the clients’ datasets, and the optimal
hypothesis parameter θ∗ satisfies:
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θ∗ = arg min
θ∈Θ

N∑
k=1

(
|Dk|∑N
k=1 |Dk|

lk

(
Ŷk, Yk

))
, (1)

where Ŷk = hθ (Xk, Ak) is the output of the hypothesis hθ when input (Xk, Ak) and lk(·) is the
loss function for k-th client.

3.2 MODEL PERFORMANCE METRICS

As mentioned in Sec. 1, we study egalitarian fairness in terms of two aspects of model performance:
accuracy and decision bias. The local accuracy of the global model on the k-th client is naturally con-
trolled by the training loss lk, which measures the difference between the model’s decision and the
truth label on the local data of the k-th client. In the context of classification, we use the BCELoss
on the k-th client, lk(h) = − 1

|Y |
∑|Y |

i=1

(
Y i
k log

(
Ŷ i
k

)
+
(
1− Y i

k

)
log
(
1− Ŷ i

k

))
. Decision bias

refers to the disparities in model decisions made across different groups formed by protected at-
tributes, such as gender, race, and region. We use two decision bias metrics, namely Accuracy Par-
ity Standard Deviation (APSD) and True positive rate Parity Standard Deviation (TPSD)(Poulain
et al., 2023). Taking a binary classification problem as example, the decision bias measured by

APSD or TPSD for the k-th client is defined as APSD: fk (h) =

√∑M
i=1(Pr(Ŷk=1|Ak=i)−µ)

2

M

and TPSD: fk (h) =

√∑M
i=1(Pr(Ŷk=1|Ak=i,Yk=1)−µ)

2

M , where µ is the average True Positive Rate
(TPR), or accuracy under all groups divided by the values of the protected attribute, and M is the
number of possible values for the sensitive attribute Ak. A hypothesis hθ satisfies ϵb-decision bias
on k-th client if fk(h) ≤ ϵb, where ϵb is the predefined budget for the decision bias. The proposed
egalitarian fair FL can also be applied to non-binary target variables, by replacing the BCELoss with
a multi-class cross-entropy loss function, i.e., loss = −

∑C−1
i=0 yi log (pi), and replacing the deci-

sion bias metric with a maximum-version, APSD: fk (h) = maxy∈[|Y |]

√∑M
i=1(Pr(Ŷk=y|Ak=i)−µ)

2

M

and TPSD: fk (h) = maxy∈[|Y |]

√∑M
i=1(Pr(Ŷk=y|Ak=i,Yk=y)−µ)

2

M , respectively.

3.3 EGALITARIAN FAIRNESS

Egalitarian fairness in FL refers to the model providing equal performance across clients, roughly
speaking, ensuring clients have levels of performance that are all roughly comparable. Therefore,
we evaluate egalitarian fairness in FL based on the degree of equality in performance. In existing
work, Pan et al. (2023) measured the performance equality by the cosine similarity between the
model losses on all clients [l1, ..., lN ] and the unit vector p = 1. This metric fails to distinguish
each client’s performance and to impose precise constraints on them, especially when the demand
for performance equality is dynamic. For instance, clients may allow the violation of performance
equality to be within an acceptable threshold. To avoid this, we measure the model performance
equality across clients by the absolute deviation of each client’s performance from the mean perfor-
mance of all clients. A hypothesis h satisfies ϵvl-egalitarian fairness on accuracy performance and
ϵvb-egalitarian fairness on decision bias performance if:∣∣lk(h)− l̄(h)

∣∣ ≤ ϵvl,
∣∣fk(h)− f̄(h)

∣∣ ≤ ϵvb, k ∈ {1, ..., N} . (2)

where l̄(h) = 1
N

∑N
k=1 lk(h) and f̄(h) = 1

N

∑N
k=1 fk(h) are the average empirical risk loss and

average decision bias, respectively, and ϵvl and ϵvb are the predefined budgets for the egalitarian
fairness on accuracy and decision bias, respectively.

3.4 EGALITARIAN FAIRNESS FEDERATED LEARNING

To achieve a global model that provides both high and equal performance across clients, we propose
a novel framework called Egalitarian Fair Federated Learning (EFFL), in which the training goals
can be formulated as a multi-constrained multi-objectives optimization (MCMOO) problem.
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Definition 1 (Egalitarian Fairness Federated Learning) We formalize the Egalitarian Fair Feder-
ated Learning (EFFL) problem as follows:

min
h∈H∗

{l1 (h) , ..., lN (h)} ,

s.t. {fk (h)}Nk=1 ≤ ϵb,
{∣∣lk (h)− l̄(h)

∣∣}N
k=1

≤ ϵvl,
{∣∣fk (h)− f̄(h)

∣∣}N
k=1

≤ ϵvb,
(3)

where h is a hypothesis from a hypothesis set H∗.

The MCMOO problem seeks to minimize the empirical risk losses for all clients while ensuring each
client has a ϵb-decision bias. It also satisfies ϵvl-egalitarian fairness for accuracy and ϵvb-egalitarian
fairness for decision bias. Finding the optimal solution to the MCMOO problem is nontrivial, as the
objectives may conflict. Therefore, we aim to identify the Pareto-optimal hypothesis h, which is not
dominated by any other h′ ∈ H. The definitions of Pareto optimal and Pareto front are as follows:

Definition 2 (Pareto Optimal and Pareto Front (Lin et al., 2019)) In a multi-objective optimization
problem with loss function l(h) = {l1(h), ..., lN (h)}, we say that for h1, h2 ∈ H, h1 is dominated
by h2 if ∀i ∈ [N ] , li(h2) ≤ li(h1) and ∃i ∈ [N ] , li(h2) < li(h1). A solution h is Pareto optimal
if it is not dominated by any other h′ ∈ H. The collection of Pareto optimal solutions is called the
Pareto set. The image of the Pareto set in the loss function space is called the Pareto front.

4 THREE-STAGE OPTIMIZATION APPROACH FOR EFFL

4.1 OPTIMIZATION PATH TO OBTAIN PARETO OPTIMAL

Fig. 1 (b) illustrates the feasible decision space of EFFL, which is bounded by the intersection of
two hypothesis sets: HB containing all hypothesis satisfy the ϵb-decision bias constraint, and HE

containing all hypothesis satisfy the ϵvl-egalitarian fairness on accuracy and ϵvb-egalitarian fairness
on decision bias. We aim to search the Pareto set H∗ for the objectives in Eq. 3 within the feasible
decision space. The properties of the hypothesis sets are as follows: (1) The HB contains hypotheses
satisfying ϵb-decision bias in each client,

{fk (h)}Nk=1 ≤ ϵb,∀h ∈ HB . (4)

(2) The HE contains hypotheses that satisfy ϵvl-egalitarian fairness on accuracy and ϵvb-egalitarian
fairness on decision bias across all clients,{∣∣lk (h)− l̄ (h)

∣∣}N
k=1

≤ ϵvl,
{∣∣fk (h)− f̄ (h)

∣∣}N
k=1

≤ ϵvb,∀h ∈ HE . (5)

(3) The H∗ ⊂ HB ∩HE is the Pareto set of EFFL in Eq. 3, i.e.,

h′ ̸≺ h,∀h ∈ H∗,∀h′ ∈ HB ∩HE . (6)

Note that HB∩HE ̸= ∅ is not empty, at least it includes h ∈ HE that satisfies f̄(h) ≤ ϵb−ϵvb. Since
h ∈ HE , we have

{∣∣fk (h)− f̄ (h)
∣∣}N

k=1
≤ ϵvb, which implies that h also satisfies {fk (h)}Nk=1 ≤

ϵb and belongs to HB . Finding the Pareto set for EFFL is nontrivial as the feasible decision space is
highly restricted. Moreover, when the number of objectives N is large, optimizing one objective may
adversely affect other objectives. We construct an approximate Pareto front by linear scalarization
technique. Average weights are applied to each objective and combine N -objectives into a single
surrogate objective. The surrogate objective forms the convex part of the Pareto front, as shown in
Fig. 1 (b), which is denoted as HL̄. The hypothesis in the HL̄ satisfies:

l̄ (h) ≤ l̄ (h′) ,∀h ∈ HL̄, h
′ /∈ HL̄. (7)

Compared to H∗, HL̄ is easier to obtain and can serve as an intermediate set, from which we propose
a three-stage optimization algorithm with an optimal path: h0 → HB∩HL̄ → HB∩HE∩HL̄ → H∗
(purple arrows in Fig. 1 (b)), and decompose the EFFL problem into three problems as follows:

Stage 1: Constrained Minimization Problem. We define a constrained minimization problem on
the hypothesis set H to obtain a hypothesis h′ ∈ HB ∩HL̄,

min
h∈H

l̄ (h) , s.t. {fk (h)}Nk=1 ≤ ϵb. (8)
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By solving Eq. 8, we obtain h′ that 1) satisfies ϵb-decision bias for each client and 2) minimizes the
average empirical risk loss among all clients.

Stage 2: Multi-Constrained Optimization Problem. We formulate a multi-constrained optimiza-
tion problem to obtain a hypothesis h′′ ∈ HB ∩HE ∩HL̄,

min
h∈H

l̄ (h) , s.t.
{∣∣lk (h)− l̄ (h)

∣∣}N
k=1

≤ ϵvl,
{∣∣fk (h)− f̄ (h)

∣∣}N
k=1

≤ ϵvb, {fk (h)}Nk=1 ≤ ϵb. (9)

By solving Eq. 9, we obtain h′′ that, compared to h′, exhibits the following properties: 1) it provides
ϵvl-egalitarian fairness on accuracy; and 2) it provides ϵvb-egalitarian fairness on decision bias.

Stage 3: Multi-Constrained Pareto Optimization Problem. Focusing solely on minimizing
weighted sum l̄(h) during optimization may harm individual clients. To address this issue, we for-
mulate a multi-constrained Pareto optimization problem to further optimize h′′ to h∗ ∈ H∗, where
the empirical risk loss of each client is further reduced until Pareto optimality is achieved. At this
point, the loss of each client cannot be further minimized without adversely affecting the loss of
other clients,

min
h∈H

{l1 (h) , ..., lN (h)} , s.t. {fk (h)}Nk=1 ≤ ϵb,
{∣∣lk (h)− l̄ (h)

∣∣}N
k=1

≤ ϵvl,{∣∣fk (h)− f̄ (h)
∣∣}N

k=1
≤ ϵvb, l̄ (h) ≤ l̄ (h′′) .

(10)

4.2 THREE-STAGE OPTIMIZATION FOR OBTAINING H∗

To obtain the convergent solution of the sub-problems defined in Eq. 8∼Eq. 10, we propose a
gradient-based algorithm for obtaining h∗ ∈ H∗, which is suitable for the implementation under
FL. Given a hypothesis hθt parameterized by θt. At iteration t+1, the update rule of gradient-based
methods is θt+1 = θt+ ηd, where d is a gradient descent direction and η is the step size. In the case
of an optimization problem with N objectives, i.e., min {l1(hθ), ..., lN (hθ)}, a gradient d is efficient
to make the optimization proceed towards minimization if

{
d∗T∇θli (hθ)

}N
i=1

≤ 0. As the gradient
direction d resides within the convex hull of the gradients of all objectives and constraints, denoted
as G = [∇θl1(hθ), ...,∇θlN (hθ)] (Désidéri, 2012), we can obtain a gradient descent direction d∗

by performing a linear transformation on G using an N -dimensional vector α∗,

d∗ = α∗TG, where α∗ = arg min
α

∥∥∥∑N
i=1 αi∇θli (hθ)

∥∥∥ ,
s.t.

∑N
i=1 αi = 1, αi ≥ 0,∀i ∈ [N ] .

(11)

Solution for Stage 1. We first transform Eq. 8 into an equivalent single-constraint optimization
problem by imposing constraint only on the max-value as follows,

min
h∈H

l̄ (h) , s.t. max {fk (h)}Nk=1 ≤ ϵb. (12)

Denoting the max {fk (h)}Nk=1 as fmax(h), the descent gradient of Eq. 12 lies in the convex hull
of G′ =

[
∇θ l̄(h),∇θfmax(h)

]
. We employ an alternating optimization strategy: if the ϵb-decision

bias is satisfied within the worst-case client, only l̄(h) is further optimized,

d∗ = arg min
d∈G′

dT∇θ l̄(h), if fmax(h) ≤ ϵb. (13)

Otherwise, we optimize towards a descent direction d, which minimizes fmax(h) while ensuring
that l̄(h) does not increase, as follows:

d∗ = arg min
d∈G′

dT∇θfmax(h), s.t. dT∇θ l̄(h) ≤ 0, if fmax(h) > ϵb. (14)

The gradient direction in Eq. 13 and Eq. 14 is optimized towards to reduce the loss while satisfying
the ϵb−decision bias constraint better, leading to a hypothesis h′ that balances the trade-off between
loss and decision bias.

Solution for Stage 2. To reduce the computational complexity of handling O(N)-constraints in
Eq. 9, we optimize the egalitarian fairness for the worst-case client. Moreover, to better achieve
ϵvl−egalitarian fairness on accuracy and ϵvb−egalitarian fairness on decision bias, we modify Eq.
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9 by treating egalitarian fairness as objectives and applying a constraint l̄ (h) ≤ l̄ (h′) to avoid the
degradation of model performance. We optimize egalitarian fairness of accuracy and decision bias
alternately, i.e., if

{∣∣lk (h)− l̄ (h)
∣∣}N

k=1
≤ ϵvl,

min
h∈H

max
{∣∣fk (h)− f̄(h)

∣∣− ϵvb
}N
k=1

, s.t. max {fk(h)}Nk=1 ≤ ϵb, l̄ (h) ≤ l̄ (h′) , (15)

else,
min
h∈H

max
{∣∣lk (h)− l̄(h)

∣∣− ϵvl
}N
k=1

,

s.t. max
{∣∣fk (h)− f̄(h)

∣∣}N
k=1

≤ ϵvb,max {fk(h)}Nk=1 ≤ ϵb, l̄ (h) ≤ l̄ (h′) .
(16)

Denoting the max
{∣∣lk (h)− l̄(h)

∣∣− ϵvl
}N
k=1

and max
{∣∣fk (h)− f̄(h)

∣∣− ϵvb
}N
k=1

as l̂max(h) and
f̂max(h), respectively, the gradient descent direction of Eq. 15 lies in the convex hull of G′′ =[
∇θf̂max,∇θfmax,∇θ l̄

]
. We obtain the optimal d∗ as follows:

d∗ = arg min
d∈G′′

dT∇θf̂max(h), s.t. dT∇θ l̄(h) ≤ 0, dT∇θfmax(h) ≤ 0 if fmax(h) > ϵb. (17)

The gradient descent direction of Eq. 16 lies in the convex hull of G′′ =[
∇θ l̂max,∇θf̂max,∇θfmax,∇θ l̄

]
. We obtain the optimal d∗ as follows:

d∗ = arg min
d∈G′′

dT∇θ l̂max(h), s.t. dT∇θ l̄(h) ≤ 0,

dT∇θf̂max(h) ≤ 0 if f̂max(h) > ϵvb, dT∇θfmax(h) ≤ 0 if fmax(h) > ϵb.
(18)

The constraints are dynamically imposed, depending on whether the current hypotheses h satisfies
ϵb-decision bias and ϵvb-egalitarian fairness on the decision bias. The optimal gradient direction
in Eq. 17 and Eq. 18 is optimized towards improving the equality of performance among clients
without causing the degradation of model performance, leading to a hypothesis h′′ that balances the
trade-off between egalitarian fairness and maximizing model performance.

Solution for Stage 3. To reduce the computational complexity of minimizing N objectives and
handling O(N)-constraints in Eq. 10, we optimize the empirical risk loss for the worst-case client
and impose constraints lk (h) ≤ lk (h

′′) to prevent the degradation of performance for other clients.

min
h∈H

max {l1 (h) , ..., lN (h)} , s.t. lk(h) ≤ lk(h
′′),∀k ∈ [N ], l̄(h) ≤ l̄(h′′),

max {fk (h)}Nk=1 ≤ ϵb,max
{∣∣lk (h)− l̄(h)

∣∣}N
k=1

≤ ϵvl,max
{∣∣fk (h)− f̄(h)

∣∣}N
k=1

≤ ϵvb.
(19)

Denoting the max {lk (h)}Nk=1 as lmax(h), the gradient descent direction lies in the convex hull
of G∗ = [∇θlmax(h),∇θl1(h), ...,∇θlN (h),∇θ l̄(h),∇θfmax(h),∇θ l̂max(h),∇θf̂max(h)]. We
obtain the optimal d∗ as follows,

d∗ = arg min
d∈G∗

dT∇θlmax(h),

s.t. dT∇θ l̄(h) ≤ 0, dT∇θfmax(h) ≤ 0 if fmax(h) > ϵb,

dT∇θ l̂max(h) ≤ 0 if l̂max(h) > ϵvl, d
T∇θf̂max(h) ≤ 0 if f̂max(h) > ϵvb,

dT∇θli(h) ≤ 0,∀i ∈ [N ] and i ̸= argmax {lk(h)}Nk=1 .

(20)

The constraints are dynamically imposed, depending on whether the current hypotheses h satisfies
ϵb-decision bias, ϵvl-egalitarian fairness on the accuracy and ϵvb-egalitarian fairness on the decision
bias. The optimal gradient direction in Eq. 20 is optimized to minimize the empirical risk loss on
the worst client without deteriorating the performance of other clients, resulting in a Pareto optimal
hypothesis h∗. The algorithm implementation in FL is described in the Appx. A.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. ❶ synthetic dataset with 2 clients, ❷ Adult (Kohavi & Becker, 1996): real-world dataset
with 2 clients , ❸ eICU (Johnson et al., 2018): real-world dataset with 11 clients.
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Table 1: The test performance on three datasets.

Dataset Method
Model Performance

Local Acc. Local Bias

Avg. Std.(ϵvl) Avg.(ϵb) Std.(ϵvb)

Synthetic
ϵb = 0.1
ϵvl = 0.01
ϵvb = 0.04

FedAvg .7735 .0283(×) .2480(×) .0819(×)
q-FFL .7735 .0283(×) .2480(×) .0819(×)
Ditto .7229 .0132(×) .2703(×) .0566(×)

FedMDFG .7717 .0068(
√
) .2473(×) .0662(×)

FedAvg+FairBatch .6360 .0643(×) .1040(≈) .0798(×)
FedAvg+FairReg .6227 .0394(×) .0952(

√
) .0463(×)

FCFL .6330 .0177(×) .0812(
√
) .0435(≈)

EFFL .6327 .0087(
√
) .0801(

√
) .0359(

√
)

Adult
ϵb = 0.01
ϵvl = 0.03
ϵvb = 0.005

FedAvg .7767 .0592(×) .0328(×) .0093 (×)
q-FFL .7662 .0400(×) .0472(×) .0046(

√
)

Ditto .7210 .0039(
√
) .0169(×) .0111(×)

FedMDFG .7629 .0397(×) .0436(×) .0068(≈)
FedAvg+FairBatch .7756 .0556(×) .0136(×) .0128(×)
FedAvg+FairReg .7663 .0686(×) .0089(

√
) .0066(≈)

FCFL .7638 .0487(×) .0143(×) .0159(×)
EFFL .7685 .0281(

√
) .0036(

√
) .0009(

√
)

eICU
ϵb = 0.02
ϵvl = 0.02
ϵvb = 0.02

FedAvg .6560 .0427(×) .0371(×) .0409(×)
q-FFL .6565 .0425(×) .0371(×) .0405(×)
Ditto .6311 .0216(≈) .0472(×) .0447(×)

FedMDFG .6479 .0227(×) .0311(×) .0266(×)
FedAvg+FairBatch .6441 .0413(×) .0304(×) .0298(×)
FedAvg+FairReg .6455 .0408(×) .0322(×) .0266(×)

FCFL .6550 .0272(×) .0344(×) .0246(×)
EFFL .6530 .0195(

√
) .0209(≈) .0201(≈)

xxx : Best performance compared to all algorithms.
(×) : Violation of constraint exceeds 10%.
(≈) : Close to constraint, with violation of constraint not exceeding 10%.
(
√
) : Satisfy constraint.

Baselines. ❶ FedAvg (McMahan et al., 2017), ❷ FedAvg + FairBatch (Roh et al., 2021), ❸ Fe-
dAvG+FairReg, ❹ Ditto (Li et al., 2021), ❺ q-FFL (Li et al., 2019), ❻ FCFL (Cui et al., 2021), ❼
FedMDFG (Pan et al., 2023).

Hyperparameters. We divide the communication rounds into three stages, each with 750, 750,
and 500 rounds, respectively, to ensure that the global model is fully updated and converges in each
stage. In the constraint budgets setting, we set the decision bias budget ϵb, the egalitarian fairness
budget on accuracy ϵvl, and the egalitarian fairness budget on decision bias ϵvb to half of the related-
performance achieved by the original FedAvg. For example, as shown in Tab. 1, on the synthetic
dataset experiments, the decision bias Avg. of FedAvg is 0.2480, so we set ϵb = 0.1. The accuracy
Std. of FedAvg is 0.0283, so we set ϵvl = 0.01. The decision bias Std. of FedAvg is 0.0819, so we
set ϵvb = 0.04. We use the same parameter-setting strategy for other datasets. Since the constraints
may conflict with each other, this setting allows us to better evaluate the superior performance of
our proposed EFFL method and avoid making a constraint too tight, which may result in a solution
that is only optimal on this constraint.

Evaluation Metrics. To evaluate the effectiveness and equality of the global model’s performance
across all clients, we introduce three evaluation metrics under the accuracy and decision bias per-
formance, respectively: ❶ Avg.: the average performance of the global model across all clients; ❷
Std.: the variation of the performance of the global model across clients. We utilize the TPSD as
metric for decision bias.

More details about the settings are in the Appx. B.

5.2 ACCURACY, DECISION BIAS AND EGALITARIAN FAIRNESS

We compare the global model performance of our proposed EFFL with other SOTA baselines on
three datasets. In the EFFL problem setting, we introduce three types of constraints ϵb−decision
bias, ϵvl−egalitarian fairness on accuracy and ϵvb−egalitarian fairness on decision bias. As shown
in Tab. 1, our method achieves the best satisfaction of the three constraints, with strict satisfac-
tion under Synthetic and Adult datasets, and approximate satisfaction under the eICU dataset. The
SOTA baselines are not able to guarantee all three constraints simultaneously. In terms of accu-
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(b) Adult(a) Synthetic (c) eICU

Figure 2: Testing results during 2000 communication rounds.

(b) Adult(a) Synthetic (c) eICU

Figure 3: The distribution of model performance across different clients.

racy, the methods that do not consider decision bias (FedAvg, q-FFL, Ditto, and FedMDFG) have
higher accuracy. However, as there is a trade-off between accuracy and decision bias, we com-
pare our method with the baselines that also aim to reduce decision bias (FedAvg+FairBatch, Fe-
dAvg+FairReg, FCFL). Our method achieves the best constraint satisfaction with only 0.3% de-
crease in accuracy on the synthetic dataset, 0.7% decrease in accuracy on the adult dataset, and
0.2% decrease in accuracy on the eICU dataset.

Fig. 2 illustrates the convergent efficiency of EFFL within 2000 communication rounds on three
datasets. The experiments are repeated 20 times. We observe that the accuracy of the global model
converges as the communication rounds increase, while the decision bias and the egalitarian fairness
of accuracy and decision bias remain within the predefined budgets (indicated by the colored dashed
lines in Fig. 2). We provide the theoretical proof of convergence in Appx. C.

Fig. 3 illustrates the distribution of model performance across various clients. We conduct exper-
iments on three datasets. For a clearer visualization, we prioritize the display of baselines con-
sidering decision bias (FedAvg+Fairbatch, FedAvg+FairReg, FCFL) on the eICU dataset, which
encompasses 11 clients. The results demonstrate that our proposed EFFL model ensures a more
equitable performance distribution among clients, thereby indicating enhanced egalitarian fairness.

In EFFL, training objectives and constraints are imposed on each client individually in order to con-
sider local performance and egalitarian fairness. This ensures that our method maintains scalability
even when dealing with a larger number of clients. Additional experiments on APSD bias metric,
scalability, robustness, hyperparameter settings, and ablation studies are provided in Appx.
D.

6 CONCLUSION

In this paper, we have investigated the egalitarian fairness issues in federated learning (FL), which
have significant impacts on the sustainability of the FL system due to the Matthew Effect. We
have analyzed the possible trade-offs for achieving egalitarian fairness and have formally defined
Egalitarian Fairness Federated Learning (EFFL) as a multi-constrained multi-objectives opti-
mization problem. Furthermore, we have designed an effective optimization path that decomposed
the original problem into three sub-problems and proposed a three-stage algorithm to achieve Pareto
optimal solutions under trade-offs. In the end, we have conducted a thorough empirical evaluation
to demonstrate that our proposed method outperforms other state-of-the-art baselines in achieving a
high-performance global model with enhanced egalitarian fairness among all clients.
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A ALGORITHM IMPLEMENT IN FEDERATED LEARNING

We give the implementation details of our proposed EFFL in Alg. 1:

B EXPERIMENTAL IMPLEMENTATION DETAILS

B.1 DATASETS DETAILS

We adopt the following datasets, including:

(1) Synthetic dataset: we generate a synthetic dataset with a protected attribute: A ∼ Ber(0.5),
two general attributes: X1 ∼ N (0, 1), X2 ∼ N (1(a > 0), 2). The label is setting by
Y ∼ Ber(ul

1(x1 + x2 ≤ 0) + uh
1(x1 + x2 > 0)), where

{
ul, uh

}
= {0.3, 0.6} if A = 0,

otherwise,
{
ul, uh

}
= {0.1, 0.9}. We split the dataset into two clients based on whether x1 ≤ −0.5

to make the clients heterogeneous in distribution and size;

(2) Adult dataset: Adult is a binary classification dataset with more than 40000 adult records for
predicting whether the annual income is greater than 50K (Kohavi & Becker, 1996). We split the
dataset into two clients based on whether the individual’s education level is a Ph.D and select race
as a protected attribute;

(3)EICU dataset: the eICU dataset includes data records about clinical information and hospital
details of patients who are admitted to ICUs. The dataset has been processed following the steps
outlined in (Johnson et al., 2018). We filter out the hospitals with data points less than 1500, leaving
11 hospitals in our experiments. Naturally, we treat each hospital as a client.
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Algorithm 1 EFFL Implementation.
1: Input: Communication rounds for three stages: T 1, T 2 and T 3; the decision bias budget ϵb and the egalitarian fairness budgets: ϵvl and

ϵvb.
2: Total communication rounds: T ← T 1 + T 2 + T 3;
3: for t ∈ [0, T ] do
4: The k-th client receives global model ht from the server, where k ∈ {1, ..., N};
5: The k-th client evaluates its local performance by the loss function lk(h

t) and the decision bias function fk(h
t), where k ∈

{1, ..., N};
6: The k-th client computes the gradients of local loss and local decision bias,∇θlk(h

t) and∇θfk(h
t), where k ∈ {1, ..., N};

7: Clients send performance evaluations and gradients to the server;
8: Server calculates:

∇θ l̄(h)←
1

N

∑N
k=1∇θlk(h); (21)

9: if t ∈
[
0, T 1

]
then

10: The server determines the optimal gradient descent direction d∗ by solving:
d∗ = arg min

d∈G′
dT∇θ l̄(h), if fmax(h) ≤ ϵb,

d∗ = arg min
d∈G′

dT∇θfmax(h), s.t. dT∇θ l̄(h) ≤ 0, else.
(22)

11: end if
12: if t ∈

[
T 1, T 1 + T 2

]
then

13: The server determines the optimal gradient descent direction d∗ by solving:
d∗ = arg min

d∈G′′
dT∇θ f̂max(h),

s.t. dT∇θ l̄(h) ≤ 0, dT∇θfmax(h) ≤ 0 if fmax(h) > ϵb.
if

{∣∣lk (h)− l̄ (h)
∣∣}N

k=1
≤ ϵvl,

d∗ = arg min
d∈G′′

dT∇θ l̂max(h), s.t. dT∇θ l̄(h) ≤ 0,

dT∇θ f̂max(h) ≤ 0 if f̂max(h) > ϵvb, dT∇θfmax(h) ≤ 0 if fmax(h) > ϵb.
, else.

(23)

14: end if
15: if t ∈

[
T 1 + T 2, T 1 + T 2 + T 3

]
then

16: The server determines the optimal gradient descent direction d∗ by solving;

d∗ = arg min
d∈G∗

dT∇θlmax(h), s.t. dT∇θ l̄(h) ≤ 0, dT∇θfmax(h) ≤ 0 if fmax(h) > ϵb,

dT∇θ l̂max(h) ≤ 0 if l̂max(h) > ϵvl, d
T∇θ f̂max(h) ≤ 0 if f̂max(h) > ϵvb,

dT∇θli(h) ≤ 0, ∀i ∈ [N ] and i ̸= argmax {lk(h)}Nk=1 .

(24)

17: end if
18: Update the parameter of model ht+1: θt+1 ← θt + ηd∗;
19: end for
20: return: Pareto optimal hypothesis in feasible decision space: hT .

B.2 BASELINES DETAILS

We adopt the following baselines, including:

(1) FedAvg (McMahan et al., 2017): the original FL algorithm for distributed training of private
data. It does not consider fairness for different demographic groups and different clients;

(2) FedAvg + FairBatch (Roh et al., 2021): each client adopts the state-of-the-art FairBatch in-
processing debiasing strategy on its local training data and then aggregation uses FedAvg;

(3) FedAvG+FairReg: a local processing method by optimizing the linear scalarized objective with
the fairness regularizations of all clients;

(4) Ditto (Li et al., 2021): an FL framework to achieve training fairness by allowing clients to run
finetuning the received global model on the local data;

(5) q-FFL (Li et al., 2019): an FL framework to achieve fair loss among clients by weighing different
local clients differently by taking the q-th power of the local empirical loss;

(6) FCFL (Cui et al., 2021): an FL framework to achieve algorithmic fairness across different local
clients and consistency by minimizing the model loss of the worst-performed client;

(7) FedMDFG (Pan et al., 2023): a multiple gradient descent algorithm (MGDA)-based method by
adding cosine similarity between the loss vectors among clients and the unit vector as a fairness
objective.
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B.3 NORMALIZATION

We suggest normalizing the gradients before computing the optimal gradient descent direction d∗

when there is a large disparity among the gradients, as in the eICU-related experiments where the
number of clients is large. We experiment with three different methods of gradient normalization
and find that the L2-based method performs the best in practice. The gradient g = ∇θl(hθ) can be
normalized by the following three methods:

L2 − based : g = g/

√∑|g|
i=1 g

2
i . (25)

Loss− based : g = g/l(hθ). (26)

L2 + Loss− based : g = g/

(√∑|g|
i=1 g

2
i × l(hθ)

)
. (27)

C ADDITIONAL ANALYSIS

C.1 TIME COMPLEXITY ANALYSIS

Ignoring the communication time between clients and server, in a scenario with N clients, the time
consumption involved in solving EFFL given by Alg. 1 mainly comes from: (1) the gradient com-
putation on local clients, which is O(|Dk| d) for k-th client, where |Dk| is the size of the dataset
Dk owned by the k-th client and d is the data feature dimension; (2) the d∗ solving: for a lin-
ear programming problem, min

x∈Rn
ATx, s.t. Cx = b, x ≥ 0 with n variables and Ω(n) constraints,

it can be solved in polynomial time of Õ∗ (nω) (Alman & Williams, 2021), where ω is the ex-
ponent of matrix multiplication. The current best known upper bound is ω < 2.3728596 (Co-
hen et al., 2021), which implies a time complexity not exceeding Õ∗

(
n2.38

)
. Therefore, in our

proposed three-stage gradient descent direction d∗ solving, the time consumption does not exceed
Õ∗
(
22.38

)
+ Õ∗

(
42.38

)
+ Õ∗

(
(N + 4)2.38

)
. Based on the above analysis, the time consumption

in Stage 1 and Stage 2 is mainly affected by the gradient computation on local clients and with only
a constant computation time spent on d∗. In Stage 3, compared to Stage 1 and Stage 2, the compu-
tation time spent on d∗ increases, depending on the number of clients, but overall, it is still bounded
by polynomial time complexity.

C.2 CONVERGENCE ANALYSIS

The proposed three-stage algorithm is convergent. We first give the following proposition:
Proposition 1. For N optimization objectives {l1(θt), ..., lN (θt)} and the following model param-
eter updating rule under a gradient direction d: θt+1 = θt + ηd; if dT∇θli ≤ 0, there exists η0
such that for ∀η ∈ [0, η0], the objectives {l1(θt), ..., lN (θt)} will not increase (decrease or remain
unchanged), that is, the iterations toward convergent.

Proof. The above proposition can be proved by performing a first-order Taylor expansion at θt, i.e.,
li(θ

t+1) = li(θ
t) +∇θli(θ

t)(θt + ηd − θt) + R1(θ
t + ηd), where R1 is the first order remainder

term, which is a higher-order infinitesimal of η, denoted by o(η) (according to the Taylor formula,
if the function li is second-order differentiable at θt, then the first-order remainder term can be
expressed as: R1(θ) =

∇2
θl(θ

t)
2! (θ − θt)

2 → R1(θ
t + ηd) =

∇2
θl(θ

t)
2! η2d2 = o(η)). Therefore,

we have li(θ
t+1) − li(θ

t) = ηdT∇θli(θ
t) + o(η), since o(η) approaches 0 faster than η, when

dT∇θli(θ
t) ≤ 0, there exists η0 > 0 such that for ∀η ∈ [0, η0], li(θt+1)− li(θ

t) ≤ 0.

Based on the above proposition, the parameter update at each stage in the proposed three-stage
optimization algorithm is towards a gradient descent direction d∗ that satisfies dT∇θgk(h) ≤ 0,
where gk is the different optimization objective at different stages, as detailed in Alg. 1. Therefore,
the proposed algorithm is convergent.
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Table 2: The test performance on three datasets.

Dataset Method
Model Performance

Local Acc. Local Bias

Avg. Std.(ϵvl) Avg.(ϵb) Std.(ϵvb)

Synthetic
ϵb = 0.08
ϵvl = 0.01
ϵvb = 0.04

FedAvg .7735 .0283(×) .1663(×) .0791(×)
q-FFL .7735 .0283(×) .1663(×) .0791(×)
Ditto .7229 .0132(×) .1977(×) .0615(×)

FedMDFG .7717 .0068(
√
) .1667(×) .0718(×)

FedAvg+FairBatch .6695 .0397(×) .0999(×) .0401(
√
)

FedAvg+FairReg .6191 .0250(×) .0976(×) .0720(×)
FCFL .6302 .0165(×) .0687(

√
) 0453(×)

EFFL .6269 .0029(
√
) .0621(

√
) .0430(≈)

Adult
ϵb = 0.02
ϵvl = 0.03
ϵvb = 0.01

FedAvg .7767 .0592(×) .0494(×) .0257(×)
q-FFL .7662 .0400(×) .0386(×) .0089(

√
)

Ditto .7158 .0123(
√
) .0450 (×) .0481 (×)

FedMDFG .7656 .0397(×) .0436(×) .0068(
√
)

FedAvg+FairBatch .7726 .0556 (×) .0218(≈) .0076 (
√
)

FedAvg+FairReg .7446 .0484(×) .0109(
√
) .0186(×)

FCFL .7583 .0487(×) .0109(
√
) .0195(×)

EFFL .7549 .0284(
√
) .0101(

√
) .0067(

√
)

eICU
ϵb = 0.02
ϵvl = 0.02
ϵvb = 0.02

FedAvg .6460 .0427(×) .0386(×) .0310(×)
q-FFL .6465 .0425(×) .0384(×) .0307(×)
Ditto .6305 .0216(≈) .0399(×) .0405(×)

FedMDFG .6497 .0217(≈) .0395(×) .0301(×)
FedAvg+FairBatch .6441 .0213(≈) .0301(×) .0227(×)
FedAvg+FairReg .5346 .0765(×) .0335(×) .0267(×)

FCFL .6551 .0362(×) .0331(×) .0200(
√
)

EFFL .6531 .0192(
√
) .0207(≈) .0182(

√
)

xxx : Best performance compared to all algorithms.
(×) : Violation of constraint exceeds 10%.
(≈) : Close to constraint, with violation of constraint not exceeding 10%.
(
√
) : Satisfy constraint.

C.3 STABILITY ANALYSIS

Given gradients from the clients have an error G̃(θt) = G(θt) + et, then ∥α̃− α∥2 ≤
O(maxt ∥et∥2). Following that, the error of the model parameter θt+1 is bounded by:∥∥∥θ̃t+1 − θt+1

∥∥∥
2
= η

∥∥α̃TG+ α̃T et − αTG
∥∥
2

≤ η ∥G∥2 O
(
max

t

∥∥et∥∥
2

)
+ ηO

(
max

t

∥∥et∥∥
2

)∥∥et∥∥
2
+ ∥a∥2

∥∥et∥∥
2

(28)

Given that η, ∥G∥2, and ∥a∥2 are bounded,
∥∥∥θ̃t+1 − θt+1

∥∥∥
2
≤ O (maxt ∥et∥2) is also bounded in

our algorithm, the model’s sensitivity to input errors satisfies O(maxt ∥et∥2)-stability.

D ADDITIONAL EXPERIMENTS

D.1 SUPPLEMENTARY BIAS METRICS

In this experiment, we adopt APSD as a decision bias metric and compare the global model per-
formance of our proposed EFFL with other SOTA baselines on three datasets. As shown in Tab.
2, our method achieves the best satisfaction of the three constraints, while current SOTA baselines
cannot guarantee all three constraints simultaneously. As there is a trade-off between accuracy and
decision bias, we evaluate the accuracy performance by comparing with the baselines that satisfy
the ϵb−decision bias constraint. Our proposed EFFL achieves the best constraint satisfaction with
only 0.3% decrease in accuracy under synthetic and adult datasets and 0.2% decrease in accuracy
under the eICU dataset.

D.2 SCALABILITY

We conduct experiments under the ACSPublicCoverage dataset, which is used to predict whether
an individual is covered by public health insurance (Ding et al., 2021) in the United States. The
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Table 3: The test performance under ACSPublicCoverage dataset with 51 clients.

Method Local Acc. Local Bias

Avg. Std. Avg. Std.

FedAvg 0.5778 0.0352 0.0260 0.0242
q-FFL 0.5888 0.0406 0.0236 0.0202
Ditto 0.6578 0.0584 0.0307 ↑ 0.0328

FedMDFG 0.5978 0.0453 0.0215 0.0187
FedAvg+FairBatch 0.5972 0.0454 0.0214 0.0188
FedAvg+FairReg 0.5964 0.0453 0.0202 0.0194

FCFL 0.6085 0.0453 0.0215 0.0187
EFFL 0.6037 0.0284 0.0147 0.0128

Table 4: The test performance under attacks.

Attack Avg. of Local Acc.± Std. of Local Acc./ Avg. of Local Bias± Std. of Local Bias

Enlarge Random Zero

FedAvg .5307±.0414/.0205±.0669 .5129±.0743/.0242±.0291 .6225±.0503/.0245±.0411

q-FFL .6278±.0261/.0242±.0250 .5824±.0461/.0225±.0371 .6492±.0386/.0216±.0379

Ditto .6162±.0283/.0203±.0247 .5130±.0771/.0273±.0331 .6236±.0498/.0231±.0399

FedMDFG .6512±.0345/.0217±.0340 .6502±.0332/.0229±.0318 .6466±.0271/.0213±.0211

FedAvg+FairBatch .6079±.0280/.0199±.0200 .5095±.0724/.0297±.0335 .6225±.0503/.0245±.0411

FedAvg+FairReg .5643±.0582/.0272±.0372 .6510±.0299/.0225±.0275 .6511±.0292/.0228±.0283

FCFL .6280±.0296/.0232±.0237 .6535±.0263/.0225±.0233 .6254±.0317/.0215±.0295

EFFL .6536±.0278/.0178±.0185 .6510±.0244/.0203±.0158 .6522±.0259/.0206±.0183

xxx : Best performance compared to all algorithms.

dataset is collected in the year 2022. Naturally, we treat each state as a client, generating 51 clients
in our experiments. The results are shown in Tab. 3. Our method achieves superior performance in
reducing decision bias and ensuring egalitarian fairness among clients. Ditto has the best accuracy
but at the cost of high decision bias and significant performance disparity among clients, which may
exacerbate the Matthew effect and be undesirable from a social welfare perspective.

D.3 ROBUSTNESS

We conduct robustness validation experiments on the eICU dataset and randomly select 4 clients
to be malicious. The malicious clients adopt the following attacks to dominate or disrupt the FL
process: (1) Enlarge: the malicious clients enlarge the local gradients or local model parameters
sent to the server to enhance their influence in the training process. In our experiments, we set the
enlarging factor to 10; (2) Random: the malicious clients send randomly generated local gradients or
model parameters to the server to disrupt the training process; (3) Zero: The malicious clients send
zero local gradients or zero model parameters to the server to disrupt the training process. Tab. 4
shows the testing performance of the SOTA baselines and our EFFL under attacks. The performance
metrics include the mean and standard deviation of accuracy and decision bias of the global model on
all clients. The results demonstrate that our EFFL is robust and the performance of the global model
does not degrade due to the presence of malicious clients, while other baselines suffer from different
degrees of decline in testing performance. The three-stage algorithm to solve EFFL provides equal
gradient descent directions that ensure that even if malicious clients are attempting to dominate the
model training, EFFL can still protect the performance of the honest clients and prevent them from
being discriminated, and ensures that the model’s performance is not compromised under attack.

D.4 CONSTRAINT BUDGETS

In EFFL, we introduce three constraint budgets, ϵb, ϵvl and ϵvb, to control the decision bias perfor-
mance of the global model on the clients, the egalitarian fairness of the accuracy and decision bias
performance distribution among the clients, respectively. To explore the effect of different budgets
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Table 5: Effects of budgets ϵb, ϵvl and ϵvb.
ϵb 0.01 0.02 0.05 0.1

Adult 0.7549 0.7563 0.7634 0.7634Avg. Acc. eICU 0.6277 0.6530 0.6549 0.6590

Adult 0.0107 0.0118 0.0350 0.0354Avg. Bias eICU 0.0136 0.0209 0.0304 0.0416

ϵvl 0.01 0.02 0.05 0.1

Adult 0.0176 0.0226 0.0326 0.0327Std. Acc. eICU 0.0143 0.0195 0.0239 0.0254

ϵvb 0.01 0.02 0.05 0.1

Adult 0.0087 0.0103 0.0152 0.0158Std. Bias eICU 0.0112 0.0201 0.0321 0.0361

Table 6: Ablation study of each stage in EFFL.
Dataset Stage Local Bias Local Acc.

Synthetic

Stage 1 0.6519±0.0169 0.1033±0.0477
Stage 2 0.5740±0.0661 0.0772±0.0740
Stage 3 0.6840±0.0983 0.2483±0.0670

Stage 1+Stage 2+Stage 3 0.6327±0.0087 0.0801±0.0359

Adult

Stage 1 0.7778±0.0530 0.0167±0.0212
Stage 2 0.7611±0.0450 0.0069±0.0094
Stage 3 0.7383±0.0206 0.0109±0.0102

Stage 1+Stage 2+Stage 3 0.7685±0.0281 0.0036±0.0009

eICU

Stage 1 0.6488±0.0223 0.0189±0.0263
Stage 2 0.6503±0.0207 0.0356±0.023
Stage 3 0.6446±0.0226 0.0309±0.0209

Stage 1+Stage 2+Stage 3 0.6530±0.0195 0.0209±0.0201

settings on EFFL, we use the Adult dataset as an example and set the values of ϵb, ϵvl and ϵvb to
[0.01, 0.02, 0.05, 0.1] respectively.

The result in Tab. 5 shows that: (1) ϵb has the ability to control the decision bias of the global model,
and the smaller the ϵb, the lower the decision bias of the global model; (2) ϵvl and ϵvb have the
ability to control the equality of the performance of the global model on the clients, specifically, the
smaller the ϵvl, the smaller the standard deviation of accuracy among the clients; the smaller the ϵvb,
the smaller the standard deviation of decision bias among the clients.

D.5 ABLATION STUDY

The motivation for the three-stage algorithm is that, compared to solving the entire MCMOO prob-
lem in a single stage, the advantages of a multi-stage approach are as follows:❶ The staged solution
facilitates a better balance of trade-offs: as we discussed in Sec.1, the main challenges in our work
come from three types of trade-offs. Each stage is designed to solve the problem under one type of
trade-off; ❷ By dividing the problem into three stages, we only need to focus on satisfying partial
constraints in each stage, which is helpful for more effectively entering a more strictly constrained
decision space in the following stage; ❸ The staged solution provides a higher convergence speed.
In each stage, we only need to solve a subproblem, which can reduce the problem’s complexity and
improve the solution’s speed.

In this experiment, we conducted an ablation study to evaluate the necessity of each stage within
the three-stage algorithm, and the results are presented in Tab. 6. The results confirm that only
the three-stage approach can obtain the desired hypothesis in the decision space defined by fairness
constraints.
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