
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROVING THE LIMITED SCALABILITY OF
CENTRALIZED DISTRIBUTED OPTIMIZATION VIA A
NEW LOWER BOUND CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider centralized distributed optimization in the classical federated learn-
ing setup, where n workers jointly find an ε–stationary point of an L–smooth,
d–dimensional nonconvex function f , having access only to unbiased stochastic
gradients with variance σ2. Each worker requires at most h seconds to compute a
stochastic gradient, and the communication times from the server to the workers and
from the workers to the server are τs and τw seconds per coordinate, respectively.
One of the main motivations for distributed optimization is to achieve scalability
with respect to n. For instance, it is well known that the distributed version of
SGD has a variance-dependent runtime term hσ2L∆/nε2, which improves with the
number of workers n, where ∆ := f(x0)− f∗, and x0 ∈ Rd is the starting point.
Similarly, using unbiased sparsification compressors, it is possible to reduce both
the variance-dependent runtime term and the communication runtime term from
τwdL∆/ε to τwdL∆/nε +

√
τwdhσ

2
/nε · L∆/ε, which also benefits from increasing n.

However, once we account for the communication from the server to the workers
τs, we prove that it becomes infeasible to design a method using unbiased random
sparsification compressors that scales both the server-side communication runtime
term τsdL∆/ε and the variance-dependent runtime term hσ2L∆/ε2, better than poly-
logarithmically in n, even in the homogeneous (i.i.d.) case, where all workers
access the same function or distribution. Indeed, when τs ≃ τw, our lower bound is
Ω̃
(
min

{
h
(

σ2

nε + 1
)

L∆
ε + τsd

L∆
ε , hL∆

ε + hσ2L∆
ε2

})
. To establish this result,

we construct a new “worst-case” function and develop a new lower bound frame-
work that reduces the analysis to the concentration of a random sum, for which
we prove a concentration bound. These results reveal fundamental limitations in
scaling distributed optimization, even under the homogeneous (i.i.d.) assumption.

1 INTRODUCTION

Server

Workers

Communication

We focus on the classical federated learning setup, where n workers,
such as CPUs, GPUs, servers, or mobile devices, are connected
to a central server via a communication channel (Konečný et al.,
2016; McMahan et al., 2017). All workers collaboratively solve a
common optimization problem in a distributed fashion by computing
stochastic gradients and sharing this information with the server,
which then propagates it to other workers. Together, they aim to
minimize a smooth nonconvex objective function defined as

min
x∈Rd

f(x), (1)

where f : Rd → R and d is the dimension of f . We assume that d is huge, which is indeed the case
in modern machine learning and large language model training (Brown et al., 2020; Touvron et al.,
2023).

We consider the homogeneous (i.i.d.) setting, where all workers have access to stochastic gradients
of the same underlying function f . As the reader will see, the homogeneous setting assumption

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is a challenge, not a limitation of our work: all results extend, potentially with even stronger
implications, to the more general heterogeneous (non-i.i.d.) case, when each worker i works with
fi ̸= f. We consider the standard assumptions:
Assumption 1.1. f is differentiable & L–smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, ∀x, y ∈ Rd.

Assumption 1.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd. We define ∆ :=
f(x0)− f∗, where x0 is a starting point of methods.

For all i ∈ [n], worker i calculates unbiased stochastic gradients ∇f(x; ξ) with σ2-variance-bounded
variances, where ξ is a random variable with some distribution Dξ.

Assumption 1.3 (Homogeneous setting). For all i ∈ [n], worker i can only calculate ∇f(x; ξ) and
Eξ[∇f(x; ξ)] = ∇f(x) and Eξ[∥∇f(x; ξ)−∇f(x)∥2] ≤ σ2 for all x ∈ Rd, where σ2 ≥ 0.

The goal in the nonconvex world is to find an ε–stationary point, a (random) point x̄ ∈ Rd such that
E[∥∇f(x̄)∥2] ≤ ε (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). We also consider a realistic
computation and communication scenario:
Assumption 1.4. Each of the n workers requires at most h seconds to compute a stochastic gradient,
and communication from the server to any worker (s2w communication) takes at most τs seconds per
coordinate, and communication from any worker to the server (w2s communication) takes at most τw
seconds per coordinate.

For instance, under Assumption 1.4, it takes d× τs and d× τw seconds to send a vector v ∈ Rd from
the server to any worker and from any worker to the server, respectively. We consider settings with
bidirectional communication costs, where communication in both directions requires time. Typically,
especially in the early stages of federated learning algorithm development, most works assume that
communication from the server to the workers is free, i.e., τs = 0, which is arguably not true in
practice: communication over the Internet or 4G/5G networks can be costly in both directions (Huang
et al., 2012; Narayanan et al., 2021).

1.1 RELATED WORK

1. Communication is free. Let us temporarily assume that communication does not take time, i.e.,
τs = 0 and τw = 0. Then, in this scenario, the theoretically fastest strategy is to run the Synchronized
SGD method, i.e., xk+1 = xk − γ

n

∑n
i=1 ∇f(xk; ξki), where γ = Θ(min{1/L, εn/Lσ2}), {ξki }

are i.i.d., and {∇f(xk; ξki)} are computed in parallel by the workers, which send to the server
that aggregates and calculates xk+1. One can show that the time complexity of this method is
O
(
h
(
L∆
ε + σ2L∆

nε2

))
, because it requires O

(
L∆
ε + σ2L∆

nε2

)
iterations (Lan, 2020), and each iteration

takes at most h seconds due to Assumption 1.4. Moreover, this result is optimal and can not be
improved (Arjevani et al., 2022; Tyurin & Richtárik, 2023b).

Observation 1: One obvious but important observation is that the second “statistical term” in the
complexity bound scales with n. The larger the number of workers n, the smaller the overall time
complexity of Synchronized SGD, with a linear improvement in n. This is a theoretical justification
for the importance of distributed optimization and the use of many workers.

2. Worker-to-server communication can not be ignored. For now, consider the setup where
communication from workers to the server takes τw > 0 seconds, while communication from the
server to the workers is free, i.e., τs = 0. In this scenario, the described version of Synchronized
SGD has a suboptimal O

(
h
(
L∆
ε + σ2L∆

nε2

)
+ τwd

(
L∆
ε + σ2L∆

nε2

))
time complexity, because it takes h

seconds to calculate a stochastic gradient and τwd seconds to send the stochastic gradients of size d
to the server, which calculates xk+1. However, if we slightly modify this method and consider Batch
Synchronized SGD:

xk+1 = xk − γ
n

n∑
i=1

1
b

b∑
j=1

∇f(xk; ξkij) (Batch Synchronized SGD)

with b = Θ(σ
2
/εn) and γ = Θ(1/L), then the time complexity becomes

O
(
h
(

L∆
ε + σ2L∆

nε2

)
+ τwd

L∆
ε

)
, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

because the number of iterations reduces to O (L∆/ε) . In other words, each worker, instead of immedi-
ately sending a gradient, locally aggregates a batch of size b to reduce the number of communications.
It turns out that the last complexity can be improved further with the help of unbiased compressors:

Definition 1.5. A mapping C : Rd × Sν → Rd with a distribution Dν is an unbiased compressor if
there exists ω ≥ 0 such that Eν [C(x; ν)] = x and Eν [∥C(x; ν)− x∥2] ≤ ω ∥x∥2 for all x ∈ Rd. We
U(ω) denote the family of such compressors. The community uses the shorthand C(x; ν) ≡ C(x),
which we also follow.

A standard example of an unbiased compressor is RandK ∈ U(d/K − 1), which selects K random
coordinates of the input vector x, scales them by d/K, and sets the remaining coordinates to zero (see
Def. C.1). Numerous other examples of unbiased compressors have been explored in the literature
(Beznosikov et al., 2020; Xu et al., 2021; Horváth et al., 2022; Szlendak et al., 2021). Using the
seminal ideas (Seide et al., 2014), we can construct a modified version of QSGD (Alistarh et al., 2017)
(special case of Shadowheart SGD from (Tyurin et al., 2024)), which we call Batch QSGD:

xk+1 = xk − γ
nbm

n∑
i=1

m∑
k=1

Cik
(

b∑
j=1

∇f(xk; ξkij)

)
, (Batch QSGD)

where worker i sends m compressed vectors {Cik(·)}k∈[m] to the server, which aggregates and
calculates xk+1. With RandK and proper parameters1 (Tyurin et al., 2024), we can improve (2) to

O
(
h
(
1 + σ2

nε

)
L∆
ε + τw

(
d
n + 1

)
L∆
ε +

√
dτwhσ2

nε
L∆
ε

)
. (3)

Observation 2: As in Observation 1, unlike (2), the time complexity (3) scales with the number
of workers n, which once again justifies the use of many workers in the optimization of (1). The
“statistical term” hσ2L∆/nε2 and the “communication term” τwdL∆/nε improve linearly with n, while
the “coupling term”

√
dτwhσ

2
/nεL∆/ε improves with the square root of n, which can reduce the effect

of d and σ2
/ε for reasonably large n.

A high-level explanation for why the dependence on d improves with n is that all workers use i.i.d.
and unbiased compressors {Cik}, which allow them to collaboratively explore more coordinates. This
effect is similar to Synchronized SGD, where the variance Eξ[∥ 1

n

∑n
i=1 ∇f(x; ξki)−∇f(x)∥2] ≤ σ2

n
also improves with n. There are many other compressed methods that also improve with n, including
DIANA (Mishchenko et al., 2019), Accelerated DIANA (Li et al., 2020), MARINA (Gorbunov et al.,
2021), DASHA (Tyurin & Richtárik, 2023a), and FRECON (Zhao et al., 2021).

3. Both communications can not be ignored. Consider a more practical scenario, and our main
point of interest, where the communication time from the server to the workers is τs > 0. In this case,
Batch QSGD requires

O
(
h
(
1 + σ2

nε

)
L∆
ε + τw

(
d
n + 1

)
L∆
ε +

√
dτwhσ2

nε
L∆
ε + τsd

L∆
ε

)
(4)

seconds because the server has to send xk ∈ Rd of size d to the workers in every iteration.

Observation 3: If τs ≃ τw, then (4) asymptotically equals O
(
h
(
L∆/ε + σ2L∆/nε2

)
+ τsdL∆/ε

)
,

reducing to (2), as in the method that does not compress at all! The “communication term” τsdL∆/ε
does not improve with n.

We now arrive at our main research question:

In the first case (1. Communication is free) and the second case (2. Worker-to-
server communication can not be ignored), it is possible to design a method
that scales the complexity with the number of workers n, while improving the
dependencies on d and σ2

/ε.

Can we design a similarly efficient method for the third case (3. Both communica-
tions can not be ignored) using unbiased compressors, where the communication

1b = Θ(t
∗

h
), m = Θ(t∗

τw
), t∗ = Θ

(
max

{
h, τw,

τwd
n

, hσ2

nε
,
√

dτwhσ2

nε

})
, γ = Θ(1

L
), K = 1 in RandK

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

time from the server to the workers cannot be ignored, and where the dependence
on both d and σ2

/ε improves with n, either linearly or with the square root of n?
At least, can this be achieved in the simplest homogeneous setting, where all
workers have access to the same function, a scenario that arguably represents the
simplest form of distributed optimization?

We know for certain that the answer is “No” in the heterogeneous case, due to the result of Grun-
tkowska et al. (2024), who proved that the iteration complexity does not improve with the number of
workers n under Assumptions 1.1 and 1.2. However, the homogeneous setting is “easier,” giving us
hope that the workers can exploit the fact that they all have access to the same distribution.

1.2 CONTRIBUTIONS

♠ Lower bound. Surprisingly, the answer is “No” to our main research question, even in the
homogeneous case. We prove the following theorem.

Theorem 1.6 (Informal Formulation of Theorems 4.2 and F.1). Let Assumptions 1.1, 1.2, 1.3, and
1.4 hold. It is infeasible to find an ε–stationary point faster than

Ω̃

(
min

{
h
(

σ2

nε + 1
)

L∆
ε + τw

(
d
n + 1

)
L∆
ε +

√
dτwhσ2

nε
L∆
ε + τsd

L∆
ε , hL∆

ε + hσ2L∆
ε2

})
(5)

seconds (up to logarithmic factors), using unbiased compressors (Def. 1.5) based on random sparsifi-
cation, for all L,∆, ε, n, σ2, d, τw, τs, h > 0 such that L∆ ≥ Θ̃(ε) and dimension d ≥ Θ̃ (L∆/ε) .

Because of the min, the bound shows that it is possible to improve either the dependence on
d or the dependence on σ2

/ε as the number of workers n increases, but not both simultane-
ously. The lower bound is matched either by Batch QSGD or by the non-distributed SGD method
(without any communication or cooperation). Moreover, if τs ≃ τw, the lower bound becomes
Ω̃
(
min

{
h
(

σ2

nε + 1
)

L∆
ε + τsd

L∆
ε , hL∆

ε + hσ2L∆
ε2

})
, which can be matched by Batch Synchro-

nized SGD with the complexity (2) (without compression) or by the non-distributed SGD method. In
other words, if τs ≃ τw, then using methods with random sparsification compression in the distributed
centralized setting offers no advantage. However, if τs ≲ τw, the compression techniques can help on the
workers side in the regimes when τwd/n+

√
dτwhσ

2
/nε is larger than τsd, due to the former scaling with n.

♣ New “worst-case” function. To prove the lower bound, as we explain in Section 2.3, we needed a
new “worst-case” function construction (see Section 3). We designed a new function FT,K,a in (9),
which extends the ideas by Carmon et al. (2020). Proving its properties in Lemmas 3.1 and 3.2, as
well as designing the function itself, can be an important contribution on its own.

♦ Proof technique. Using the new function, we develop a new proof technique and explain how the
problem of establishing the lower bound reduces to a statistical problem (see Section 4), where we
need to prove a concentration bound for a special sum (13), which represents the minimal possible
random time required to find an ε–stationary point. Combining this result with the proven properties,
we obtain our main result (11).

♥ Improved analysis when τw > 0. To obtain the complete lower bound, we extended and improved
the result by Tyurin et al. (2024), which was limited for our scenario and required additional
modifications to finally obtain (5) (see Sections F and 5 for details).

2 PRELIMINARIES

For better comprehension of our new idea, we now present arguably one of the most important
worst-case functions by Carmon et al. (2020), which is widely used to prove lower bounds in
nonconvex optimization. It has been used by Arjevani et al. (2022; 2020a) to derive lower bounds
in the stochastic setting, by Lu & De Sa (2021) in the decentralized setting, by Tyurin & Richtárik
(2023b; 2024); Tyurin et al. (2024) in the asynchronous setting, by Huang et al. (2022) to show the
lower iteration bound for unidirectional compressed methods, and by Li et al. (2021) in problems
with a nonconvex-strongly-concave structure.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

For any T ∈ N, Carmon et al. (2020) define FT : RT → R such that 2

FT (x) :=
T∑

i=1

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (6)

where x0 ≡ 1, xi is the ith coordinate of x ∈ RT ,

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt. (7)

Notice that this function has a “chain–like” structure. If a method starts from x0 = 0 and computes
the gradient of FT , then the gradient will have a non-zero value only in the first coordinate (use
that Ψ(0) = Ψ′(0) = 0). Thus, by computing a single gradient, any “reasonable” method can
“discover” at most one coordinate. At the same time, if the method wants to find an ε–stationary
point, it should eventually discover the T th coordinate. These two facts imply that every “reason-
able” method should compute the gradient of FT at least T times. In the construction, Carmon
et al. (2020) take T = Θ

(
L∆
ε

)
. This construction is a “more technical” version of the celebrated

quadratic optimization construction from (Nesterov, 2018), which has similar properties. Let us define
prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1), then the following lemma is a formalization of the
described properties.

Lemma 2.1 (Carmon et al. (2020)). The function FT satisfies:

1. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

2. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1.

Actually, in most proofs, the structure of (6) is not needed, and it is sufficient to work with Lemmas 2.1
and Lemma 2.2 from below, where the latter allows us to show that a scaled version of FT satisfies
Assumptions 1.1 and 1.2.

Lemma 2.2 (Carmon et al. (2020)). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 := 12.

2. The function FT is ℓ1–smooth, where ℓ1 := 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ := 23.

Hence, one of the main results by Carmon et al. (2020) was to show that it is infeasible to find an
ε–stationary point without calculating O

(
L∆
ε

)
gradients of a function satisfying Assumptions 1.1

and 1.2. In turn, the classical gradient descent (GD) method matches this lower bound.

2.1 FAMILY OF DISTRIBUTED METHODS

In our lower bound, we focus on the family of methods described by Protocol 1. This protocol takes an
algorithm as input and runs the standard functions of the workers and the server: the workers compute
stochastic gradients locally, send compressed information, the server aggregates them asynchronously
and in parallel, and sends compressed information back based on the local information. For now, we
ignore the communication times from the workers to the server in Protocol 1.

For all i ∈ [n], the algorithm can choose any point, based on the local information Ii, at which
worker i will start computing a stochastic gradient. It can also choose any point ski , based on the
server’s local information I, along with the corresponding compressor Ck

i , which will be sent to
worker i. This protocol captures the behavior of virtually any asynchronous optimization process
with workers connected to a server. We work with zero-respecting algorithms, as defined below.

Definition 2.3. We say that an algorithm A that follows Protocol 1 is zero-respecting if it does not
explore or assign non-zero values to any coordinate unless at least one of the available local vectors
contains a non-zero value in that coordinate. The family of such algorithms we denote as Azr.

2similarly FT (x) := −Ψ(1)Φ(x1) +
∑T

i=2 [Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] because Ψ(−1) = 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Protocol 1
1: Input: Algorithm A ∈ Azr
2: Init I = ∅ (all available information) on the server
3: Init Ii = ∅ (all available information) on worker i for all i ∈ [n]
4: Run the following three loops in parallel. The first two on the workers. The third on the server.
5: for i = 1, . . . , n (in parallel on the workers) do
6: for k = 0, 1, . . . do
7: Algorithm A calculates a new point x based on local information Ii: (takes 0 seconds)

any vector x ∈ Rd such that supp(x) ∈ ∪y∈Iisupp(y) (supp(v) := { i ∈ [d] : vi ̸= 0 })
8: Calculate one stochastic gradient 3∇f(x; ξ), ξ ∼ Dξ (ξ are i.i.d.) (takes h seconds)
9: Add ∇f(x; ξ) to Ii (takes 0 seconds)

10: end for
11: end for
12: for i = 1, . . . , n (in parallel on the workers) do
13: for k = 0, 1, . . . do
14: Algorithm A calculates new points {s̄ki } based on local information Ii: (takes 0 seconds) any

vector s̄ki ∈ Rd such that supp(s̄ki) ∈ ∪y∈Iisupp(y)
15: Send C̄k

i (s̄
k
i) to the server

(takes τw × P̄ k
i seconds, where P̄ k

i is the number of coordinates retained by C̄k
i (s̄

k
i))

16: Add to C̄k
i (s̄

k
i) to I

17: end for
18: end for
19: for i = 1, . . . , n (in parallel on the server) do
20: for k = 0, 1, . . . do
21: Algorithm A calculates a new point ski based on local information I : (takes 0 seconds)

any vector ski ∈ Rd such that supp(ski) ∈ ∪y∈Isupp(y)
22: Algorithm A compresses the point: Ck

i (s
k
i) ∀i ∈ [n] (takes 0 seconds)

23: Send Ck
i (s

k
i) to the worker i

(takes τs × P k
i seconds, where P k

i is the number of coordinates retained by Ck
i (s

k
i))

24: Add to Ck
i (s

k
i) to Ii (takes 0 seconds)

25: end for
26: end for

(a vector may be added to I or Ii at the same time as the algorithm calculates a new point; in this
case, the protocol adds the vector first (with no delay since the operation takes 0 seconds))

This is the standard assumption (Carmon et al., 2020) that generalizes the family of methods working
with the span of vectors (Nesterov, 2018) and holds for the majority of methods, including GD, Adam
(Kingma & Ba, 2015), DORE (Liu et al., 2020), EF21-P (Gruntkowska et al., 2023), MARINA-P, and
M3 (Gruntkowska et al., 2024).

2.2 PREVIOUS LOWER BOUND IN THE HETEROGENEOUS SETTING

Let us return back to our main question. In order to show that it is impossible to scale with n in the
heterogeneous setting, Gruntkowska et al. (2024) have proposed to use scaled versions of

Gj(x) := n×
T∑

1≤i≤T and (i−1) mod n=j−1

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)]

for all j ∈ [n], worker i has access only a scaled version of Gi for all i ∈ [n]. The idea is that the
first block from (6) belongs to the first worker, the second block to the second worker, . . . , and the
(n+ 1)th block to the first worker again, and so on. Notice that FT (x) =

1
n

∑n
i=1 Gi(x).

Notice one important property of this construction: only one worker at a time can discover the next
coordinate. In other words, if the server sends a new iterate to all workers, only one worker, after
computing the gradient, can make progress to the next coordinate.

3i) Multiple queries with the same random variable do not change the lower bound; see Remark E.1 in Section E; ii)
In the heterogeneous setup (Section 2.2), worker i computes ∇fi(x; ξ), where fi is its local function.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The next step in (Gruntkowska et al., 2024), in the proof of the lower bound theorem, was to
analyze Protocol 1. They consider4 RandK with K = 1. Then, since the compressor sends only one
coordinate with probability p = 1/d, the probability that the server sends the last non-zero coordinate
to the worker responsible for the current block of (6) that can progress to the new coordinate is
also p. Thus, the number of consecutive coordinates that the server has to send to the workers is
at least

∑T
j=1 ηj , where ηj is a geometric-like random variable with P (ηj = m|ηj−1, . . . , η1) ≤

p(1 − p)m−1 for all m ≥ 1. Using classical tools from statistical analysis, one can show that∑T
j=1 ηj ≳ T/p ≃ dL∆/ε with high probability. Thus, under Assumption 1.4, the communication

time complexity cannot be better than Ω (τsdL∆/ε) , which does not improve with n.

2.3 FAILURE OF THE PREVIOUS CONSTRUCTION IN THE HOMOGENEOUS SETTING

However, in the homogeneous setting, if we want to reuse the idea, arguably the only option we have
is to assign (scaled) FT to all workers to ensure that they all have the same function. But in this case,
the arguments from Section 2.2 no longer apply, because all workers can simultaneously progress to
the next coordinate, since they have access to all blocks of (6).

Indeed, if the server sends i.i.d. RandK compressors with K = 1, then the number of consecutive
coordinates that the server has to send before the workers receive the last non-zero coordinate is∑T

j=1 min
i∈[n]

ηji, where P (ηji = m|{ηkj}k<i) ≤ p(1 − p)m−1 for all m, j ≥ 1, i ∈ [n]. The min
i∈[n]

operation appears because it is sufficient to wait for the first “luckiest” worker. Analyzing this sum,
we can only show that

τs

T∑
j=1

min
i∈[n]

ηji ≳ τs
d
n

L∆
ε , (8)

with high probability, which scales with n due to min .

There are two options: either Ω(τsdL∆/nε) is tight and it is possible to find a method that matches it,
or we need to find another way to improve the lower bound. To prove the latter, we arguably need a
different fundamental construction from (6), which we propose in the next section.

3 A NEW “WORST-CASE” FUNCTION

In this section, we give a less technical description of our lower bound construction and the main
theorem from Section D. Instead of (6), we propose to use another “worst-case” function. For any
T,K ∈ N, and e ≥ a > 1, we define the function FT,K,a : RT → R such that

FT,K,a(x) = −
T∑

i=1

Ψa(xi−K) . . .Ψa(xi−2)Ψa(xi−1)Φ(xi) +
T∑

i=1

Γ(xi), (9)

Ψa(x) =

{
0, x ≤ 1/2,

exp
(
log a ·

(
1− 1

(2x−1)2

))
, x > 1/2,

Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt, (10)

Γ(x) =

{−xe1/x+1, x < 0,

0, x ≥ 0,

and x0 = · · · = x−K+1 ≡ 1. The main modification is that instead of the block −Ψ(xi−1)Φ(xi),
we use −Ψa(xi−K) . . .Ψa(xi−2)Ψa(xi−1)Φ(xi) (ignore a for now). In the previous approach, it
was sufficient for a worker to have xi−1 ̸= 0 to discover the next ith coordinate. However, in our
new construction, the worker needs xi−1 ̸= 0, xi−2 ̸= 0, . . . , xi−K+1 ̸= 0 for that. With this
modification, it is not sufficient for the “luckiest” worker to get the non-zero i− 1th coordinate to
discover the next coordinate: to progress to the ith coordinate, the worker should also have non-zero
i− 2th, . . . , i−K + 1th coordinates.

4In general, they presented a more general setting where the server can zero out coordinates with any
probability, capturing not only RandK with K = 1 and p = 1/d, but also RandK with K > 1 and other
compressors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

e

Ψe

Ψ1.15

Ψ1.04

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

√
54/e

Ψ′e
Ψ′1.15

Ψ′1.04

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
0

1

2

Γ

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2

0

2

−e

Γ′

Figure 1: The functions Ψa(x) and Γ(x), along with their derivatives Ψ′
a(x) and Γ′(x). The plots of

Φ(x) and Φ′(x) are shown in (Carmon et al., 2020).

Next, we remove the positive blocks Ψ(xi−1)Φ(xi), which we believe was introduced to prevent
the methods from ascending, exploring negative values of xi, and finding a nearby stationary point
“above.” Instead, we introduce Γ(xi), which serves the same purpose: if a method starts exploring
negative values, this term prevents it from reaching a stationary point there. Let us define

progK(x) := max{i ≥ 0 |xi ̸= 0, xi−1 ̸= 0, . . . , xi−K+1 ̸= 0}.
Instead of Lemma 2.1, we prove the following lemma:
Lemma 3.1 (Lemmas D.4 and D.5). The function FT,K,a satisfies:

1. For all x ∈ RT , supp(∇FT,K,a(x)) ∈ {1, . . . , progK(x) + 1} ∪ supp(x),
where supp(v) := { i ∈ [d] : vi ̸= 0 }.

2. For all x ∈ RT , if progK(x) < T, then ∥∇FT,K,a(x)∥ > 1.

The function FT,K,a remains smooth. However, by multiplying with additional Ψ terms, we alter its
geometry and make it more chaotic: the difference FT,K,a(0)− infx∈RT FT,K,a(x), the smoothness
constant, and the maximum ℓ∞–norm may increase. To mitigate this, we introduce the parameter a
in (10) that allows us to control these properties. Notice that if a = e, then Ψa(x) = Ψ(x) for all
x ∈ RT , where Ψ is defined in (7). Instead of Lemma 2.2, we prove
Lemma 3.2 (Lemmas D.6, D.7, and D.8). The function FT,K,a satisfies:

1. FT,K,a(0)− infx∈RT FT,K,a(x) ≤ ∆0(K, a) · T, where ∆0(K, a) :=
√
2πe · aK .

2. The function FT,K,a is ℓ1(K, a)–smooth, where ℓ1(K, a) := 12
√
2πe5/2 · K2aK

log a .

3. For all x ∈ RT , ∥∇FT,K,a(x)∥∞ ≤ γ∞(K, a), where γ∞(K, a) := 6
√
2πe3/2 · KaK

√
log a

.

Taking K = 1 and a = e, up to constant factors, Lemmas 3.1 and 3.2 reduce to Lemmas 2.1 and 2.2.
The larger the value of K, the larger the bounds in Lemma 3.2, and this growth can be exponential if
a = e. However, with a proper choice of 1 < a ≪ e, we can mitigate the increase caused by K.

4 LOWER BOUND WITH SERVER-TO-WORKER (S2W) COMMUNICATION

We now present informal and formal versions of our main result:
Theorem 4.1 (Informal Formulation of Theorem 4.2). Let Assumptions 1.1, 1.2, 1.3, and 1.4 hold. It
is infeasible to find an ε–stationary point faster than

Ω̃
(
min

{
τsd

L∆
ε , hL∆

ε + hσ2L∆
ε2

})
(11)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

seconds (up to logarithmic factors), using unbiased compressors (Def. 1.5) based on random sparsifi-
cation, for all L,∆, ε, n, σ2, d, τs, h > 0 such that L∆ ≥ Θ̃(ε) and dimension d ≥ Θ̃(L∆/ε).

Theorem 4.2. Let L,∆, ε, n, σ2, d, τs, τw, h > 0 be any numbers such that c̄1ε log
4(n+1) < L∆ and

dimension d ≥ c̄3
L∆

log3(n+1)ε
. Consider Protocol 1. For all i ∈ [n] and k ≥ 0, compressor Ck

i selects

and transmits P k
i uniformly random coordinates without replacement, scaled by any constants5, where

P k
i ∈ {0, . . . , d} may vary across each compressor 6. Then, for any algorithm A ∈ Azr (Def. 2.3),

there exists a function f : Rd → R such that f is L-smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥
for all x, y ∈ Rd, and f(0)− infx∈Rd f(x) ≤ ∆, exists a stochastic gradient oracles that satisfies

Assumption 1.3, and E
[
infy∈St

∥∇f(y)∥2
]
> ε for all

t ≤ c̄2 ×
(

1
log3(n+1)

· L∆
ε

)
min

{
1

log(n+1) · τsd,max
{
h, 1

log3(n+1)
· hσ2

ε

}}
, (12)

where St is the set of all possible points that can be constructed by A up to time t based on I and
{Ii}. The quantities c̄1, c̄2, and c̄3 are universal constants.

The formulation of Theorem 4.2 is standard in the literature. However, following Tyurin & Richtárik
(2023b), we present the lower bound in terms of time complexities rather than iteration complexities.
Then, following Huang et al. (2022); He et al. (2023); Tyurin et al. (2024), we consider a subfamily of
unbiased compressors based from Definition 1.5 on random sparsification to prove the lower bound;
this is standard practice for taking the “worst-case” compressors from the family (similarly to taking
the “worst-case” functions (Carmon et al., 2020; Nesterov, 2018)). Moreover, due to the uncertainty
principle (Safaryan et al., 2022), all unbiased compressors exhibit variance and communication cost
comparable to those of the RandK sparsifier in the worst case (up to constant factors).

The main observation in Theorems 4.1 and 4.2 is that it is not possible to scale both d and σ2
/ε by more

than log4(n+ 1) and log6(n+ 1), respectively. Asymptotically, this scaling is significantly worse
than the linear n and square-root

√
n scalings discussed in Section 1.1. For instance, if n = 10,000

and d is increased by a factor of 10, we have to increase n by a factor of 103 (two factors more) to
ensure that τsd/log4(n+1) does not change.

In Section A, we present the intuition and the proof sketch of the result.

5 LOWER BOUND WITH BOTH W2S AND S2W COMMUNICATION

In the previous section, we provide the lower bound without taking into account the commu-
nication cost τw. Combining Theorem 4.2 with our new Theorem F.1, which extends the re-
sult by Tyurin et al. (2024) for our setup, we can obtain the complete lower bound (5) from
Theorem 1.6 with τw > 0 and τs > 0. Notice that if τs ≃ τw, then the lower bound is
Ω̃
(
min

{
h
(

σ2

nε + 1
)

L∆
ε + τsd

L∆
ε , hL∆

ε + hσ2L∆
ε2

})
. Up to logarithmic factors, under Assump-

tions 1.1, 1.2, 1.3, and 1.4, it is infeasible to improve both d and σ2
/ε as n increases.

5.1 ALGORITHMS ALMOST MATCHING THE LOWER BOUND

Due to the min, there are two regimes in which the lower bound (5) operates. If the second term
is smaller in (5), then the lower bound is Ω̃

(
hL∆
ε + hσ2L∆

ε2

)
, which is matched by the vanilla

SGD method run locally (without any communication or cooperation). Otherwise, if the first term
is smaller, then the lower bound is matched by Batch QSGD, which has the matching complexity
(4) (up to logarithmic factors). Moreover, in the latter case, if τs ≃ τw, the lower bound becomes
Ω̃
(
min

{
h
(

σ2

nε + 1
)

L∆
ε + τsd

L∆
ε

})
, which can be matched by Batch Synchronized SGD with the

complexity (2); thus, if τs ≃ τw, then unbiased sparsified compression is not needed at all, as it cannot
help due to the lower bound.

5To potentially preserve unbiasedness. For instance, RandK scales by d/K.
6For instance, the compressors can be RandK (see Def. C.1) with any K ∈ [d], PermK (Szlendak et al.,

2021), Identity compressor when P k
i = d.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION

We prove nearly tight lower bounds for centralized distributed optimization under the computation
and communication Assumption 1.4. We show that even in the homogeneous scenario, it is not
possible to scale both d and σ2

/ε by more than poly-logarithmic factors in n. Notice that the family of
unbiased compressors contains the family of biased compressors (Beznosikov et al., 2020). Therefore,
our lower bounds also apply to methods that use biased compressors, in the sense that there exists a
“worst-case” compressor for which these methods cannot achieve a convergence rate faster than the lower
bound in Theorem 1.6.

The lower bounds are tight only up to logarithmic factors. Thus, a possible challenging direction is
to improve the powers of the logarithms, or even eliminate the logarithms entirely. The latter (if at
all possible) may be very challenging and would likely require entirely different constructions and
techniques. Another limitation is that the lower bounds are constructed using random sparsifiers.
Due to the uncertainty principle (Safaryan et al., 2022), we conjecture that the bounds also hold
for the entire family of unbiased compressors, but proving this would require more sophisticated
constructions.

In practice, however, biased and unbiased compressors, including TopK and RankK (Alistarh et al.,
2018; Vogels et al., 2019), exhibit significantly better compression properties than those predicted by
worst-case analysis (Beznosikov et al., 2020). When used on the server side in combination with EF
or EF21-P (Gruntkowska et al., 2023; Tyurin et al., 2024), they may help mitigate the pessimistic term
τsdL∆/ε. Moreover, our pessimistic lower bound may potentially be broken under additional assumptions
such as convexity or second-order smoothness.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems (NIPS), pp. 1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. Advances in Neural Information
Processing Systems, 31, 2018.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridharan.
Second-order information in non-convex stochastic optimization: Power and limitations. In
Conference on Learning Theory, pp. 242–299. PMLR, 2020a.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. In Algorithmic Learning Theory, pp. 111–132. PMLR, 2020b.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, pp. 1–50,
2022.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
for distributed learning. arXiv preprint arXiv:2002.12410, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
arXiv preprint arXiv:1905.10018, 2019.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex op-
timization via stochastic path integrated differential estimator. In NeurIPS Information Processing
Systems, 2018.

Margalit R. Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging (Local
SGD) and continuous perspective. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera
(eds.), Proceedings of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151 of Proceedings of Machine Learning Research, pp. 9050–9090. PMLR, 28–30 Mar
2022. URL https://proceedings.mlr.press/v151/glasgow22a.html.

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
convex distributed learning with compression. In 38th International Conference on Machine
Learning, 2021.

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. EF21-P and friends: Improved theoret-
ical communication complexity for distributed optimization with bidirectional compression. In
International Conference on Machine Learning, pp. 11761–11807. PMLR, 2023.

Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. Improving the worst-case bidirectional
communication complexity for nonconvex distributed optimization under function similarity. In
Advances in Neural Information Processing Systems, 2024.

Yutong He, Xinmeng Huang, and Kun Yuan. Unbiased compression saves communication in
distributed optimization: When and how much? Advances in Neural Information Processing
Systems, 36:47991–48020, 2023.

Samuel Horváth, Chen-Yu Ho, Ľudovı́t Horváth, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022.

Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver Spatscheck.
A close examination of performance and power characteristics of 4g lte networks. In Proceedings
of the 10th international conference on Mobile systems, applications, and services, pp. 225–238,
2012.

Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal algo-
rithms in distributed learning with communication compression. Advances in Neural Information
Processing Systems, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

Haochuan Li, Yi Tian, Jingzhao Zhang, and Ali Jadbabaie. Complexity lower bounds for nonconvex-
strongly-concave min-max optimization. Advances in Neural Information Processing Systems, 34:
1792–1804, 2021.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
descent in distributed and federated optimization. In International Conference on Machine
Learning, 2020.

Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm for
efficient distributed learning. In International Conference on Artificial Intelligence and Statistics,
pp. 133–143. PMLR, 2020.

11

https://proceedings.mlr.press/v151/glasgow22a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In International
Conference on Machine Learning, pp. 7111–7123. PMLR, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan
Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao, et al. A variegated look at 5g in
the wild: performance, power, and qoe implications. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, pp. 610–625, 2021.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Kumar Kshitij Patel, Lingxiao Wang, Blake Woodworth, Brian Bullins, and Nati Srebro. Towards
optimal communication complexity in distributed non-convex optimization. In Proceedings
of the 36th International Conference on Neural Information Processing Systems, 2022. ISBN
9781713871088.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication compres-
sion in distributed and federated learning and the search for an optimal compressor. Information
and Inference: A Journal of the IMA, 11(2):557–580, 2022.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
distributed nonconvex optimization. In International Conference on Learning Representations,
2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with communi-
cation compression, optimal oracle complexity, and no client synchronization. 11th International
Conference on Learning Representations (ICLR), 2023a.

Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems,
2023b.

Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
asynchronous optimization. Advances in Neural Information Processing Systems, 37, 2024.

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed
asynchronous SGD with optimal time complexity under arbitrary computation and communication
heterogeneity. Advances in Neural Information Processing Systems, 37, 2024.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
compression for distributed optimization. In Neural Information Processing Systems, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan Mcmahan,
Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In International
Conference on Machine Learning, pp. 10334–10343. PMLR, 2020.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
Advances in neural information processing systems, 29, 2016.

Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
oracle models, lower bounds, and gaps for parallel stochastic optimization. Advances in Neural
Information Processing Systems, 31, 2018.

Blake E Woodworth, Brian Bullins, Ohad Shamir, and Nathan Srebro. The min-max complexity of
distributed stochastic convex optimization with intermittent communication. In Conference on
Learning Theory, pp. 4386–4437. PMLR, 2021.

Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication framework
for distributed machine learning. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pp. 561–572. IEEE, 2021.

Haoyu Zhao, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. Faster rates for compressed
federated learning with client-variance reduction. arXiv preprint arXiv:2112.13097, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Related work . 2

1.2 Contributions . 4

2 Preliminaries 4

2.1 Family of distributed methods . 5

2.2 Previous Lower Bound in the Heterogeneous Setting 6

2.3 Failure of the previous construction in the homogeneous setting 7

3 A New “Worst-Case” Function 7

4 Lower Bound with Server-to-Worker (S2W) Communication 8

5 Lower Bound with Both W2S and S2W Communication 9

5.1 Algorithms almost matching the lower bound . 9

6 Conclusion 10

A Proof Sketch 15

B Additional Related Work 16

C Auxiliary Facts and Notations 16

C.1 Notations . 16

D Lower Bound 16

D.1 New Construction . 16

D.2 Auxiliary Lemmas . 17

D.3 Proof of lemmas . 18

E Proof of Theorem 4.2 21

E.1 Main Concentration Lemma . 27

F Main Theorem with Worker-to-Server Communication 31

F.1 Main Concentration Lemma . 34

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PROOF SKETCH

We illustrate the main idea behind the proof and how the new “worst-case” function helps to almost
eliminate the scaling with n. Consider the first K coordinates of FT,K,a (which is scaled in the proof
to satisfy Assumptions 1.1 and 1.2). Recall that, due to Lemma 3.1, the only way to discover the
K + 1th coordinate in any worker is to ensure that all of the first K coordinates are non-zero.

Reduction to a statistical problem. There are only two options by which a worker may discover a
new non-zero coordinate: through local stochastic computations or through communication from the
server. In the first option, a worker computes a stochastic gradient, which takes h seconds. However,
due to the construction of stochastic gradients (Arjevani et al., 2022), even if the computation is
completed, the worker will not make progress or discover a new non-zero coordinate, as it will be
zeroed out with probability pσ = Θ

(
ε·γ2

∞(K,a)/σ2
)
. In the second option, due to the condition of

Theorem 4.2, a worker receives a stream of uniformly sampled coordinates ν1, ν2, . . . (workers get
different streams), and the worker can discover a new non-zero coordinate only if random variable
νi ∈ [K], which satisfies P (νi ∈ [K]|ν1, . . . , νi−1) ≤ K/T−i+1 ≤ pK := 2K/T for all i ≤ T/2.

Next, we define two sets of random variables: (i) let η1,i,k denote the number of stochastic gradient
computations until the first moment when a coordinate is not zeroed out in the stochastic gradient
oracle (see (26)), after the moment when the (k − 1)th coordinate is no longer zeroed out in worker
i; (ii) let µ1,i,k be the number of received coordinates until the moment when the last received
coordinate belongs to [K], after the (k − 1)th time this has happened. In other words, η1,i,1 is the
number of stochastic gradient computations until the moment when the algorithm receives a “lucky”
stochastic gradient where the last coordinate is not zeroed out. The random variable η1,i,2 is the
number of computations until it happens for the second time, and so on. Similarly, µ1,i,1 is the
position of the first coordinate from the stream sent by the server to worker i that belongs to [K]. The
random variable µ1,i,2 refers to the second time this occurs, and so on. By definition, the sequences
{η1,i,k} and {µ1,i,k} follow approximately geometric-like distributions with parameters pσ and pK ,
respectively.

To discover all of the first K coordinates, either the first or the second process must uncover at
least K/2 coordinates. If worker i has discovered fewer than K/2 coordinates through stochastic
gradient computations, and fewer than K/2 coordinates through receiving them from the server,
then it will not be able to cover all K coordinates. Thus, the algorithm should wait at least

mini∈[n]

{
min

{
h
∑K

2

k=1 η1,i,k, τs
∑K

2

k=1 µ1,i,k

}}
seconds until the moment when it can potentially

discover the K + 1th coordinate, where the outer minimum mini∈[n] appears because it is sufficient
for the algorithm to wait for the first “luckiest” worker. Repeating the same arguments B := ⌊T/K⌋
times, the algorithms requires at least

tB :=
B∑

b=1

min
i∈[n]

{
min

{
h

K/2∑
k=1

ηb,i,k, τs

K/2∑
k=1

µb,i,k

}}
(13)

seconds to discover the T th coordinate and potentially find an ε–stationary point, where the sequences
{ηb,i,k} and {µb,i,k} follow approximately geometric-like distributions with pσ and pK , respectively.

Analysis of the concentration. Hence, we have reduced the lower bound to the analysis of the
sum tB . Recall (8), where the lower bound improves with n due to mini∈[n] . In (13), we also
get mini∈[n] . However, and this is the main reason for the new construction, there are two sums∑K/2

k=1, which allows us to mitigate the influence of the mini∈[n] . In particular, we can show that
tB ≳ BK

n1/K min {h/pσ, τs/pK} with high probability. Notice that the first fraction improves with n
1
K

instead of n due to the sums; thus, the larger K, the smaller the influence of n.

Putting it all together. However, we cannot take K too large due to Lemma 3.2. Substituting the
choice of T, pσ, and pK (defined in the proof of Theorem 4.2 to ensure that Assumptions 1.1, 1.2,
and 1.3 are satisfied and the scaled version of FT,K,a has the squared norm larger than ε while the
T th is not discovered), we can show that

tB ≳ L∆
n1/K ·∆0(K,a)·ℓ1(K,a)·ε min

{
max

{
h, hσ2

ε·γ2
∞(K,a)

}
, τsd

K

}
,

with high probability, where ∆0(K, a), ℓ1(K, a), and γ∞(K, a) are defined in Lemma 3.2. The final
step is to choose K = Θ(log n) and a = 1 + 1/K to obtain the result of Theorem 4.2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B Additional Related Work

While we focus on lower bounds in the context of stochastic optimization and compressed vectors in
nonconvex settings, there is much related work in other domains and setups. The seminal works on
lower bounds were done by Nemirovskij & Yudin (1983); Nesterov (2018), where Nesterov (2018) showed
that the accelerated gradient descent (Nesterov, 1983) is optimal in the convex setting using a quadratic
“worst-case” function. In the nonconvex setting, Carmon et al. (2020) provided an alternative function,
described in the main part of the paper. For convex problems, Woodworth et al. (2018) introduced the
graph oracle, a generalization of the classical gradient oracle (Nemirovskij & Yudin, 1983; Nesterov, 2018),
and established lower bounds for a broad class of parallel optimization methods. Arjevani et al. (2020b)
further analyzed the delayed gradient descent method, which corresponds to Asynchronous SGD with
constant iteration delays. Tyurin & Richtárik (2023b; 2024); Tyurin et al. (2024) proved lower bounds for
methods in asynchronous settings. Fang et al. (2018); Patel et al. (2022) studied a different setting from
Assumption 1.3, where they assumed the mean-squared smoothness property to enable the analysis of
methods with variance reduction techniques (Fang et al., 2018; Cutkosky & Orabona, 2019). Woodworth
& Srebro (2016) considered the finite-sum setting in the convex setting. Woodworth et al. (2020; 2021)
proved that the min-max optimal algorithm for optimizing smooth convex objectives in the intermittent
communication setting is the best of accelerated local and minibatch SGD, which leads to a similar
conclusion to ours; however, their results are related to, but not directly comparable with ours, since we
analyze the limited scalability of improving both stochastic noise and communication complexity through
compressors. Glasgow et al. (2022) provided sharp lower bounds for local SGD approaches in terms of
iteration complexity. Huang et al. (2022); He et al. (2023); Gruntkowska et al. (2024) provided lower bounds
for compression techniques, but in the heterogeneous setting.

C AUXILIARY FACTS AND NOTATIONS

Definition C.1 (RandK). Assume that S is a random subset of [d] such that |S| = K for some
K ∈ [d]. A stochastic mapping C : Rd × Sν → Rd is called RandK if

C(x;S) = d

K

∑

j∈S

xjej ,

where {ei}di=1 denotes the standard unit basis. The set S can be produced with a uniform sampling
of [d] without replacement.

C.1 NOTATIONS

N := {1, 2, . . . }; ∥x∥ is the output of the standard Euclidean norm for all x ∈ Rd; ⟨x, y⟩ =∑d
i=1 xiyi is the standard dot product; ∥A∥ is the standard spectral/operator norm for all A ∈

Rd×d; g = O(f) : exist C > 0 such that g(z) ≤ C × f(z) for all z ∈ Z; g = Ω(f) : exist
C > 0 such that g(z) ≥ C × f(z) for all z ∈ Z; g = Θ(f) : g = O(f) and g = Ω(f);

g = Õ(f), g = Ω̃(f), g = Θ̃(f) : the same as g = O(f), g = Ω(f), g = Θ(f), respectively, but
up to logarithmic factors; g ≃ h : g and h are equal up to universal positive constants; g ≳ h : g
greater or equal to h up to universal positive constants; C is an unbiased compressor (Definition 1.5);
supp(v) = { i ∈ [d] : vi ̸= 0 }; h : maximum time (in seconds) for any worker to compute one stochastic
gradient; τs : communication time per coordinate from the server to any worker; τw : communication time
per coordinate from any worker to the server;

D LOWER BOUND

D.1 NEW CONSTRUCTION

For any T,K ∈ N, and e ≥ a > 1 we define the function FT,K,a : RT → R such that

FT,K,a(x) = −
T∑

i=1

Ψa(xi−K) . . .Ψa(xi−2)Ψa(xi−1)Φ(xi) +

T∑

i=1

Γ(xi), (14)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where xi is the ith coordinate of a vector x ∈ RT and

Ψa(x) =

{
0, x ≤ 1/2,

exp
(
log a ·

(
1− 1

(2x−1)2

))
, x > 1/2,

Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt,

and

Γ(x) =

{−xe1/x+1, x < 0,

0, x ≥ 0.

We assume that x0 = · · · = x−K+1 ≡ 1. Importantly, throughout the lower bound analysis, we
assume that e ≥ a > 1, even if this assumption is not explicitly stated in all theorems.

We additionally define

progK(x) := max{i ≥ 0 |xi ̸= 0, xi−1 ̸= 0, . . . , xi−K+1 ̸= 0}
(x0 = · · · = x−K+1 ≡ 1),

which extends prog(x) ≡ prog1(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

D.2 AUXILIARY LEMMAS

In this section, we list useful properties of the functions Φ, Γ, Ψa, and FT,K,a. We prove them in
Section D.3.

Lemma D.1 (Carmon et al. (2020)). Function Φ is twice differentiable and satisfies

0 ≤ Φ(x) ≤
√
2πe, 0 ≤ Φ′(x) ≤ √

e, and |Φ′′(x)| ≤ 27

for all x ∈ R. Moreover, Φ′(x) > 1 for all −1 < x < 1.

Lemma D.2. Function Γ is twice differentiable and satisfies

0 ≤ Γ(x), −e < Γ′(x) ≤ 0, and 0 ≤ Γ′′(x) ≤ 27e−2

for all x ∈ R. Moreover, Γ′(x) ≤ −2 for all x ≤ −1.

Lemma D.3. Function Ψa is twice differentiable and satisfies

0 ≤ Ψa(x) < a, 0 ≤ Ψ′
a(x) ≤

2e√
log a

, and |Ψ′′
a(x)| ≤

56e

log a

for all x ∈ R and 1 < a ≤ e. Moreover, Ψa(x) ≥ 1 for all x ≥ 1 and 1 < a ≤ e.

Lemma D.4. For all x ∈ RT , supp(∇FT,K,a(x)) ∈ {1, . . . , progK(x) + 1} ∪ supp(x), where
supp(v) := { i ∈ [d] : vi ̸= 0 }.

Lemma D.5. For all x ∈ RT , if progK(x) < T, then ∥∇FT,K,a(x)∥ > 1.

Lemma D.6. Function FT,K,a satisfies

FT,K,a(0)− inf
x∈RT

FT,K,a(x) ≤ ∆0(K, a) · T,

where ∆0(K, a) :=
√
2πe · aK .

Lemma D.7. For all x ∈ RT , ∥∇FT,K,a(x)∥∞ ≤ γ∞(K, a), where γ∞(K, a) := 6
√
2πe3/2 ·

KaK
√
log a

.

Lemma D.8. The function FT,K,a is ℓ1(K, a)–smooth, i.e.,
∥∥∇2FT,K,a(x)

∥∥ ≤ ℓ1(K, a) for all
x ∈ RT , where ℓ1(K, a) := 12

√
2πe5/2 · K2aK

log a .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D.3 PROOF OF LEMMAS

Lemma D.2. Function Γ is twice differentiable and satisfies

0 ≤ Γ(x), −e < Γ′(x) ≤ 0, and 0 ≤ Γ′′(x) ≤ 27e−2

for all x ∈ R. Moreover, Γ′(x) ≤ −2 for all x ≤ −1.

Proof. The first fact is due to lim
∆→0

Γ(∆)
∆ = 0, Γ′(0) = 0, and lim

∆→0

Γ′(∆)
∆ = 0. Γ is clearly non-

negative. Next, for all x ≤ 0,

Γ′(x) = −e1/x+1 +
e1/x+1

x

and

Γ′′(x) = −e1/x+1

x3
.

Thus, Γ′ is strongly increasing for all x ≤ 0, and lim
x→−∞

Γ′(x) = −e < Γ′(x) ≤ 0. Next, Γ′′(x) ≥ 0

for all x ≤ 0, and max
x≤0

Γ′′(x) = 27e−2 for all x ≤ 0.

Lemma D.3. Function Ψa is twice differentiable and satisfies

0 ≤ Ψa(x) < a, 0 ≤ Ψ′
a(x) ≤

2e√
log a

, and |Ψ′′
a(x)| ≤

56e

log a

for all x ∈ R and 1 < a ≤ e. Moreover, Ψa(x) ≥ 1 for all x ≥ 1 and 1 < a ≤ e.

Proof. The differentiability at x = 1
2 follows from lim

∆→0

Ψa(
1
2+∆)

∆ = 0 for all a > 1. For all x ≤ 1
2 ,

Ψ′
a(x) = 0. For all x > 1

2 , we get

0 ≤ Ψ′
a(x) =

4 log a

(2x− 1)3
exp

(
log a

(
1− 1

(2x− 1)2

))

=
4a√
log a

× log3/2 a

(2x− 1)3
exp

(
− log a

(2x− 1)2

)
.

Taking t = log1/2 a
(2x−1) > 0 and using t3e−t2 ≤ 1

2 , we get

Ψ′
a(x) ≤

4a√
log a

× 1

2
≤ 2e√

log a

since a ≤ e.

Clearly, Ψa(x) ≥ 0 for all x ∈ R, and Ψa is non-decreasing. Moreover it is strongly monotonic for
all x > 1

2 . Thus Ψa(x) < lim
x→∞

Ψa(x) = a for all x ∈ R.

The twice differentiability at x = 1
2 follows from lim

∆→0

Ψ′
a(

1
2+∆)

∆ = 0 for all a > 1. For all x ≤ 1
2 ,

Ψ′′
a(x) = 0. For all x > 1

2 , taking the second derivative and using simple algebra, we get

|Ψ′′
a(x)| =

∣∣∣∣−
8 log a× (3(2x− 1)2 − 2 log a)

(2x− 1)6
exp

(
log a

(
1− 1

(2x− 1)2

))∣∣∣∣

=

∣∣∣∣
8a log a× (3(2x− 1)2 − 2 log a)

(2x− 1)6
exp

(
− log a

(2x− 1)2

)∣∣∣∣

≤
∣∣∣∣
24a log a

(2x− 1)4
exp

(
− log a

(2x− 1)2

)∣∣∣∣+
∣∣∣∣
16a log2 a

(2x− 1)6
exp

(
− log a

(2x− 1)2

)∣∣∣∣

=
24a

log a
× log2 a

(2x− 1)4
exp

(
− log a

(2x− 1)2

)
+

16a

log a
× log3 a

(2x− 1)6
exp

(
− log a

(2x− 1)2

)
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Taking t = log a
(2x−1)2 > 0 and using t2e−t ≤ 1 and t3e−t ≤ 2,

|Ψ′′
a(x)| ≤

24a

log a
× 1 +

16a

log a
× 2 ≤ 56e

log a

since a ≤ e.

Lemma D.4. For all x ∈ RT , supp(∇FT,K,a(x)) ∈ {1, . . . , progK(x) + 1} ∪ supp(x), where
supp(v) := { i ∈ [d] : vi ̸= 0 }.

Proof. Let j = progK(x) and p = prog1(x), then

FT,K,a(x) = −
j+1∑

i=1

Ψa(xi−K) . . .Ψa(xi−2)Ψa(xi−1)Φ(xi)

−
T∑

i=j+2

Ψa(xi−K) . . .Ψa(xi−2)Ψa(xi−1)Φ(xi)

+

p∑

i=1

Γ(xi) +

T∑

i=p+1

Γ(xi).

Since j = progK(x), for all i ≥ j + 2, at least one of the values xi−K , . . . , xi−2, xi−1 is zero.
Noting that Ψa(0) = Ψ′

a(0) = 0, the gradient of the second sum is zero. The first sum depends only
on the first j + 1 coordinates; thus, the gradient of the first sum is non-zero in at most the (j + 1)th

coordinate.

Since p = prog1(x), the gradient of the last sum is zero because Γ′(0) = 0. Moreover, if xi = 0, then
Γ′(xi) = 0; thus, ∇ (

∑p
i=1 Γ(xi)) ∈ supp(x).

Lemma D.5. For all x ∈ RT , if progK(x) < T, then ∥∇FT,K,a(x)∥ > 1.

Proof. For all j ∈ [T], the partial derivative of FT,K,a with respect to xj is

∂FT,K,a

∂xj
(x) =

[
−Ψa(xj−K) . . .Ψa(xj−1)Φ

′(xj)

−Ψa(xj−K+1) . . .Ψa(xj−1)Ψ
′
a(xj)Φ(xj+1)

− . . .

−Ψ′
a(xj)Ψa(xj+1) . . .Ψa(xmin{j+K,T}−1)Φ(xmin{j+K,T})

]
+ Γ′(xj).

(15)

We now take the smallest j ∈ [T] for which xj < 1 and xj−1 ≥ 1, . . . , xj−K ≥ 1.

If such j does not exists, then x1 ≥ 1 due to x0 = · · · = x−K+1 ≡ 1. Then x2 ≥ 1, and so
on. Meaning that xj ≥ 1 for all j ∈ [T], which contradicts the assumption of the theorem that
progK(x) < T.

Fixing such j, consider (15). There are two cases.
Case 1: xj > −1. Note that Ψ,Φ,Ψ′,Φ′ ≥ 0 are non-negative and Γ′ ≤ 0 is non-positive. Thus

∂FT,K,a

∂xj
(x) ≤ −Ψa(xj−K) . . .Ψa(xj−2)Ψa(xj−1)Φ

′(xj).

Since xj−1 ≥ 1, . . . , xj−K ≥ 1 and 1 > xj > −1 (see Lemmas D.1 and D.3), we get

∂FT,K,a

∂xj
(x) < −1.

Case 2: xj ≤ −1. Note that Ψ,Φ,Ψ′,Φ′ ≥ 0 are non-negative. Thus

∂FT,K,a

∂xj
(x) ≤ Γ′(xj).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since xj ≤ −1 (see Lemma D.2), we get

∂FT,K,a

∂xj
(x) < −1.

Finally, we can conclude that

∥∇FT,K,a(x)∥ ≥
∣∣∣∣
∂FT,K,a

∂xj
(x)

∣∣∣∣ > 1.

Lemma D.6. Function FT,K,a satisfies

FT,K,a(0)− inf
x∈RT

FT,K,a(x) ≤ ∆0(K, a) · T,

where ∆0(K, a) :=
√
2πe · aK .

Proof. Since Γ(0) = 0 and Ψa,Φ ≥ 0, we get FT,K,a(0) ≤ 0. Next, due to Γ(x) ≥ 0, 0 ≤ Φ(x) ≤√
2πe and 0 ≤ Ψa(x) ≤ a for all x ∈ Rd,

FT,K,a(x) ≥ −
T∑

i=1

Ψa(xi−K) . . .Ψa(xi−2)Ψa(xi−1)Φ(xi) ≥ −T
√
2πe · aK

for all x ∈ RT .

Lemma D.7. For all x ∈ RT , ∥∇FT,K,a(x)∥∞ ≤ γ∞(K, a), where γ∞(K, a) := 6
√
2πe3/2 ·

KaK
√
log a

.

Proof. Using (15),
∣∣∣∣
∂FT,K,a

∂xj
(x)

∣∣∣∣ ≤
∣∣∣Ψa(xj−K) . . .Ψa(xj−1)Φ

′(xj)

+ Ψa(xj−K+1) . . .Ψa(xj−1)Ψ
′
a(xj)Φ(xj+1)

+ . . .

+Ψ′
a(xj)Ψa(xj+1) . . .Ψa(xmin{j+K,T}−1)Φ(xmin{j+K,T})

∣∣∣+ |Γ′(xj)| .
(16)

Thus, ∣∣∣∣
∂FT,K,a

∂xj
(x)

∣∣∣∣ ≤ aK
√
e+KaK−1

√
2πe

2e√
log a

+ e ≤ 6
√
2πe3/2

KaK√
log a

(17)

due to Lemmas D.1, D.2, and D.3.

Lemma D.8. The function FT,K,a is ℓ1(K, a)–smooth, i.e.,
∥∥∇2FT,K,a(x)

∥∥ ≤ ℓ1(K, a) for all
x ∈ RT , where ℓ1(K, a) := 12

√
2πe5/2 · K2aK

log a .

Proof. Taking the second partial derivative in (15),

∂2FT,K,a

∂x2
j

(x) =
[
−Ψa(xj−K) . . .Ψa(xj−1)Φ

′′(xj)

−Ψa(xj−K+1) . . .Ψa(xj−1)Ψ
′′
a(xj)Φ(xj+1)

− . . .

−Ψ′′
a(xj)Ψa(xj+1) . . .Ψa(xmin{j+K,T}−1)Φ(xmin{j+K,T})

]
+ Γ′′(xj).

(18)

Due to Lemmas D.1, D.2, and D.3,
∣∣∣∣∣
∂2FT,K,a

∂x2
j

(x)

∣∣∣∣∣ ≤
[
27aK +K × 56

√
2πe3/2aK−1

log a

]
+ 27e−2 ≤ 168

√
2πe3/2 · KaK

log a
(19)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Clearly, for all min{j +K,T} < i ≤ T,

∂2FT,K,a

∂xj∂xi
(x) = 0 (20)

due to the construction of FT,K,a. Next, for all j < i ≤ min{j +K,T},
∂2FT,K,a

∂xj∂xi
(x) =

[
−Ψa(xi−K) . . .Ψa(xj−1)Ψ

′
a(xj)Ψa(xj+1) . . .Ψa(xi−1)Φ

′(xi)

−Ψa(xi−K+1) . . .Ψa(xj−1)Ψ
′
a(xj)Ψa(xj+1) . . .Ψa(xi−1)Ψ

′
a(xi)Φ(xi+1)

− . . .

−Ψ′
a(xj)Ψa(xj+1) . . .Ψa(xi−1)Ψ

′
a(xi)Ψa(xi+1) . . .Ψa(xmin{j+K,T}−1)Φ(xmin{j+K,T})

]
,

and
∣∣∣∣
∂2FT,K,a

∂xj∂xi
(x)

∣∣∣∣ ≤
2e3/2aK−1

√
log a

+ (K − 1)× 4
√
2πe5/2aK−2

log a
≤ 4

√
2πe5/2 · KaK

log a
(21)

for all i ̸= j ∈ [T] due to Lemmas D.1 and D.3 and e ≥ a > 1

Notice that ∇2FT,K,a is (2K+1)–diagonal Hessian. Repeating a textbook analysis for completeness
and denoting temporary H := ∇2FT,K,a, we will show that

∥∥∇2FT,K,a(x)
∥∥ ≤ (2K + 1) max

i,j∈[T]

∣∣∣∣
∂2FT,K,a

∂xj∂xi
(x)

∣∣∣∣ . (22)

for all x ∈ RT . Indeed, for all x ∈ RT such that ∥x∥ ≤ 1,

∣∣x⊤Hx
∣∣ =

∣∣∣∣∣∣

T∑

i=1

xi

T∑

j=1

xjHij

∣∣∣∣∣∣
=

∣∣∣∣∣∣

T∑

i=1

xi

min{i+K,T}∑

j=max{i−K,1}

xjHij

∣∣∣∣∣∣
≤ max

i,j∈[T]
|Hij |




T∑

i=1

|xi|
min{i+K,T}∑

j=max{i−K,1}

|xj |


 ,

where the second equality due to H is (2K + 1)–diagonal. Using the Cauchy–Schwarz inequality,

∣∣x⊤Hx
∣∣ ≤ max

i,j∈[T]
|Hij |

√√√√√
T∑

i=1

x2
i

T∑

i=1




min{i+K,T}∑

j=max{i−K,1}

|xj |




2

≤ max
i,j∈[T]

|Hij |

√√√√√
T∑

i=1




min{i+K,T}∑

j=max{i−K,1}

|xj |




2

since ∥x∥ ≤ 1. Next, using Jensen’s inequality and ∥x∥ ≤ 1,

∣∣x⊤Hx
∣∣ ≤ max

i,j∈[T]
|Hij |

√√√√√(2K + 1)

T∑

i=1

min{i+K,T}∑

j=max{i−K,1}

x2
j ≤ max

i,j∈[T]
|Hij |

√√√√(2K + 1)2
T∑

i=1

x2
i

≤ (2K + 1) max
i,j∈[T]

|Hij | .

We have proved (22). It is left to combine (22), (21), and (19).

E PROOF OF THEOREM 4.2

Theorem 4.2. Let L,∆, ε, n, σ2, d, τs, τw, h > 0 be any numbers such that c̄1ε log
4(n+1) < L∆ and

dimension d ≥ c̄3
L∆

log3(n+1)ε
. Consider Protocol 1. For all i ∈ [n] and k ≥ 0, compressor Ck

i selects

and transmits P k
i uniformly random coordinates without replacement, scaled by any constants7, where

P k
i ∈ {0, . . . , d} may vary across each compressor 8. Then, for any algorithm A ∈ Azr (Def. 2.3),

7To potentially preserve unbiasedness. For instance, RandK scales by d/K.
8For instance, the compressors can be RandK (see Def. C.1) with any K ∈ [d], PermK (Szlendak et al.,

2021), Identity compressor when P k
i = d.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

there exists a function f : Rd → R such that f is L-smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥
for all x, y ∈ Rd, and f(0)− infx∈Rd f(x) ≤ ∆, exists a stochastic gradient oracles that satisfies

Assumption 1.3, and E
[
infy∈St ∥∇f(y)∥2

]
> ε for all

t ≤ c̄2 ×
(

1
log3(n+1)

· L∆
ε

)
min

{
1

log(n+1) · τsd,max
{
h, 1

log3(n+1)
· hσ2

ε

}}
, (12)

where St is the set of all possible points that can be constructed by A up to time t based on I and
{Ii}. The quantities c̄1, c̄2, and c̄3 are universal constants.

Proof. (Step 1: Construction). Using the construction from Section D.1, we define a scaled version
of it. Let us take any λ > 0, d, T ∈ N, d ≥ T, and take the function f : Rd → R such that

f(x) :=
Lλ2

ℓ1(K, a)
FT,K,a

(x[T]

λ

)
,

where ℓ1(K, a) is defined in Lemma D.8 and x[T] ∈ RT is the vector with the first T coordinates of
x ∈ Rd. Notice that the last d− T coordinates are artificial.

First, we have to show that f is L-smooth and f(0)− infx∈Rd f(x) ≤ ∆, Using Lemma D.8,

∥∇f(x)−∇f(y)∥ =
Lλ

ℓ1(K, a)

∥∥∥∇FT,K,a

(x[T]

λ

)
−∇FT,K,a

(y[T]

λ

)∥∥∥ ≤ Lλ
∥∥∥
x[T]

λ
− y[T]

λ

∥∥∥

= L
∥∥x[T] − y[T]

∥∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd.

Let us take

T =

⌊
∆ · ℓ1(K, a)

Lλ2 ·∆0(K, a)

⌋
.

Due to Lemma D.6,

f(0)− inf
x∈Rd

f(x) =
Lλ2

ℓ1(K, a)
(FT,K,a (0)− inf

x∈RT
FT,K,a(x)) ≤

Lλ2∆0(K, a)T

ℓ1(K, a)
≤ ∆,

where ∆0(K, a) is defined in Lemma D.6. We also choose

λ =

√
2εℓ1(K, a)

L
(23)

to ensure that

∥∇f(x)∥2 =
L2λ2

ℓ21(K, a)

∥∥∥∇FT,K,a

(x[T]

λ

)∥∥∥
2

= 2ε
∥∥∥∇FT,K,a

(x[T]

λ

)∥∥∥
2

> 2ε · 1
[
progK(x[T]) < T

]
,

(24)

where the last inequality due to Lemma D.5. Note that

T =

⌊
L∆

2∆0(K, a) · ℓ1(K, a) · ε

⌋
. (25)

(Step 2: Stochastic Oracle).
We take the stochastic oracle construction form (Arjevani et al., 2022). For all j ∈ [d],

[∇f(x; ξ)]j := ∇jf(x)

(
1 + 1

[
j > progK(x)

](ξ

pσ
− 1

))
∀x ∈ Rd, (26)

and Dξ = Bernouilli(pσ) for all j ∈ [n], where pσ ∈ (0, 1]. We denote [x]j as the jth index of a
vector x ∈ Rd. It is left to show this mapping is unbiased and σ2-variance-bounded. Indeed,

E [[∇f(x, ξ)]i] = ∇if(x)

(
1 + 1

[
i > progK(x)

](E [ξ]

pσ
− 1

))
= ∇if(x)

for all i ∈ [d], and

E
[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ max

j∈[d]
|∇jf(x)|2 E

[(
ξ

pσ
− 1

)2
]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

because the difference is non-zero only in one coordinate. Thus

E
[
∥∇f(x, ξ)−∇f(x)∥2

]
≤ ∥∇f(x)∥2∞ (1− pσ)

pσ
=

L2λ2
∥∥FT,K,a

(x[T]

λ

)∥∥2
∞ (1− pσ)

ℓ21(K, a)pσ

≤ L2λ2γ2
∞(K, a)(1− pσ)

ℓ21(K, a)pσ
,

where we use Lemma D.7 in the last inequality. Taking

pσ = min

{
L2λ2γ2

∞(K, a)

σ2ℓ21(K, a)
, 1

}
(23)
= min

{
2εγ2

∞(K, a)

σ2
, 1

}
, (27)

we ensure that E
[
∥∇f(x, ξ)−∇f(x)∥2

]
≤ σ2.

(Step 3: Reduction to the Analysis of Concentration). At the beginning, due to Definition 2.3,
s0i = 0 for all i ∈ [n]. Thus, if k = 0, all workers can receive zero vectors from the server. Thus, at
the beginning, all workers can only calculate stochastic gradients at the point zero.

Let t1,i denote the earliest time at which all of the first K coordinates become non-zero in the local
information available to worker i. In other words, t1,i is the first time when worker i has discovered
all of the first K coordinates. Consequently, prior to time

t1 := min
i∈[n]

t1,i (28)

neither the server nor any worker is able to discover (filled with non-zero values) the (K + 1)th and
subsequent coordinates due to Lemma D.4.

There are two options by which a worker may discover a new non-zero coordinate: through
local stochastic computations or through communication from the server.

Option 1: In the first option, a worker computes a stochastic gradient, which takes h sec-
onds. However, due to the construction of stochastic gradients, even if the computation is completed,
the worker will not make progress or discover a new non-zero coordinate, as it will be zeroed out
with probability pσ. Due to Lemma D.4, each worker can discover at most one coordinate at position
progK(x) + 1 before time t1 in the first K coordinates, where x is a query point.

Remark E.1. For this reason, making multiple queries with the same random variable instead of a single
query does not help the algorithm progress: if the coordinates are zeroed out, then they are zeroed out in
all vectors.

Let η1,i,1 be the number of stochastic gradients computations9 until the first moment when a co-
ordinate is not zeroed out in (26) in worker i. Assume that ξ1, ξ2, . . . is a stream of i.i.d. random
Bernoulli variables from (26) in worker i (all workers have different streams), then

P (η1,i,1 ≤ t) ≤
⌊t⌋∑

k=1

P (ξk = 1, ξk−1 = 0, . . . , ξ1 = 0) =

⌊t⌋∑

k=1

pσ(1− pσ)
j−1 ≤ tpσ.

for all t ≥ 0. Similarly, let η1,i,k denote the number of stochastic gradient computations until the first
moment when a coordinate is not zeroed out in (26), after the moment when the (k−1)th coordinate is
no longer zeroed out in worker i. In other words, worker i should calculate η1,i,1 stochastic gradients
to discover the first coordinate, calculate η1,i,2 stochastic gradients to discover the second coordinate,
and so on. Since the draws of ξ in (26) are i.i.d., we can conclude that

P (η1,i,k ≤ t|η1,i,k−1, . . . , η1,i,1) ≤ tpσ

for all k ≥ 1 and t ≥ 0.

Option 2: In the second option, worker i receives P ∈ {0, . . . , d} random coordinates
with the set of indices {ν1,1, . . . , ν1,P } without replacement, where it takes τs seconds to receive one

9It is possible that P (η1,i,1 = ∞) > 0 if, for instance, the algorithm decides to stop calculating stochastic
gradients. And even P (η1,i,1 = ∞) = 1 if it does not calculate at all.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

coordinate. Then, the worker receives P̄ ∈ {0, . . . , d} random coordinates with the set of indices
{ν2,1, . . . , ν2,P̄ } without replacement, and so on (all workers get different sets; we drop the indices
of the workers in the notations).

Consequently, the worker receives a stream of coordinate indices (ν1, ν2, . . .) where we concatenated
the sets of indices, preserving the exact order in which the server sampled them. Note that all workers
have different streams, and we now focus on one worker.

Notice that

P (ν1 ∈ [K]) =
K

d

since ν1 is uniformly random coordinate from the set [d]. Next,

P (ν2 ∈ [K]|ν1) ≤
K

d− 1
,

because either ν1 ∈ [K], in which case the probability is K−1
d−1 , or ν1 ̸∈ [K], in which case the

probability is K
d−1 . Using the same reasoning,

P (νi ∈ [K]|ν1, . . . , νi−1) ≤
K

d− i+ 1
.

for all i ≤ d.

Hence, the worker receives a stream of coordinates ν1, ν2, . . . such that P (νi ∈ [K]|ν1, . . . , νi−1) ≤
K

d−i+1 for all i ≤ d. Let µ1,i,1 be the number of received coordinates until the moment when the
last received coordinate belongs to [K] in worker i. Similarly, let µ1,i,k be the number of received
coordinates until the moment when the last received coordinate belongs to [K], after the (k − 1)th

time this has happened in worker i. In other words, worker i should receive µ1,i,1 coordinates to
obtain a coordinate that belongs to [K]. To get the next coordinate that belongs to [K], the worker
should receive µ1,i,2 coordinates, and so on. Then,

P (µ1,i,1 = j) = P (νj ∈ [K], νj−1 ̸∈ [K], . . . , ν1 ̸∈ [K])

= P (νj ∈ [K]|νj−1 ̸∈ [K], . . . , ν1 ̸∈ [K])P (νj−1 ̸∈ [K], . . . , ν1 ̸∈ [K]) ≤ K

d− j + 1

for all 1 ≤ j ≤ d, and

P (µ1,i,1 ≤ t) =

⌊t⌋∑

j=1

P (µ1,i,1 = j) ≤ Kt

d− t+ 1
. (29)

for all 0 ≤ t ≤ d. Similarly,

P (µ1,i,k = j|µ1,i,k−1, . . . , µ1,i,1)

= P (νu+j ∈ [K], νu+j−1 ̸∈ [K], . . . , νu+1 ̸∈ [K]|νu ∈ [K], . . . , ν1 ̸∈ [K])

≤ K

max{d− u, 0} − j + 1
,

where u =
∑k−1

j=1 µ1,i,j , for all j ≤ max{d− u, 0}. Thus,

P (µ1,i,k ≤ t|µ1,i,k−1, . . . , µ1,i,1) ≤
Kt

max{d−∑k−1
j=1 µ1,i,j , 0} − t+ 1

,

for all 0 ≤ t ≤ max{d−∑k−1
j=1 µ1,i,j , 0}.

Recall that the workers can discover new non-zero coordinates only through the stochastic processes
discussed above. To discover all of the first K coordinates, either the first or the second process
must uncover at least K

2 coordinates10. If worker i has discovered fewer than K
2 coordinates through

10At the end of the proof, we take K mod 2 = 0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

stochastic gradient computations and fewer than K
2 coordinates through receiving coordinates from

the server, then it will not be able to cover all K coordinates. Hence,

t1 ≥ min
i∈[n]



min



h

K
2∑

k=1

η1,i,k, τs

K
2∑

k=1

µ1,i,k







 , (30)

where t1 is defined in (28). This is because h
∑K

2

k=1 η1,i,k is the time required to obtain K
2 “lucky”

stochastic gradients, those for which the coordinates are not zeroed out, and τs
∑K

2

k=1 µ1,i,k is the
time required to receive K

2 “lucky” coordinates that belong to [K].
Remark E.2. The previous derivations hold for all τw > 0. If we start taking the communication time τw
into account, then the bound on t1 in (30) may only increase. For all τw > 0, worker i still has to discover
new non-zero coordinates either through stochastic gradient computations or by receiving coordinates from
the server and it will take at least

min
i∈[n]



min



h

K
2∑

k=1

η1,i,k, τs

K
2∑

k=1

µ1,i,k









seconds to discover all of the first K coordinates.

Once the workers have discovered the first K coordinates, the discovery process repeats for the set
{K + 1, . . . , 2K}, which similarly requires at least

min
i∈[n]



min



h

K
2∑

k=1

η2,i,k, τs

K
2∑

k=1

µ2,i,k









seconds, where {ηb,i,k} and {µb,i,k} are random variables such that

P (ηb,i,k ≤ t|ηb,i,k−1, . . . , ηb,i,1,Gb−1) ≤ tpσ (31)

for all b ≥ 1, k ≥ 1, i ∈ [n], t ≥ 0, and

P (µb,i,k ≤ t|µb,i,k−1, . . . , µb,i,1,Gb−1) ≤
Kt

max{d−∑k−1
j=1 µb,i,j , 0} − t+ 1

(32)

for all b ≥ 1, k ≥ 1, i ∈ [n], and t ≤ max{d −∑k−1
j=1 µb,i,j , 0}, where Gb−1 is the sigma-algebra

generated by {ηb′,i,k}i∈[n],k∈[K2],b′<b and {µb′,i,k}i∈[n],k∈[K2],b′<b and u =
∑k−1

j=1 µb,i,j .

More formally, η2,i,k can be defined as the number of stochastic gradient computations until the first
moment when a coordinate is not zeroed out in (26), after the moment when the (k − 1)th coordinate
is no longer zeroed out, when progK of the input points to the stochastic gradients is ≥ K, and µ2,i,k

be the number of received coordinates until the moment when the last received coordinate belongs to
{K + 1, . . . , 2K}, after the (k − 1)th time this has happened, when prog1 of the input points to the
compressor is ≥ K + 1, and so on.

We define

pK :=
2K

d
. (33)

Finally, to discover the T th coordinates it takes at least

B∑

b=1

min
i∈[n]



min



h

K
2∑

k=1

ηb,i,k, τs

K
2∑

k=1

µb,i,k









seconds, where B =
⌊
T
K

⌋
. It it left to use the following lemma.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Lemma E.3. Let {ηb,i,j}i,j,b≥0 and {µb,i,j}i,j,b≥0 be random variables such that

P (ηb,i,k ≤ t|ηb,i,k−1, . . . , ηb,i,1,Gb−1) ≤ tpσ (34)

for all b ≥ 1, k ≥ 1, i ∈ [n], t ≥ 0, and

P (µb,i,k ≤ t|µb,i,k−1, . . . , µb,i,1,Gb−1) ≤
Kt

max{d−∑k−1
j=1 µb,i,j , 0} − t+ 1

, (35)

for all b ≥ 1, k ≥ 1, i ∈ [n], 0 ≤ t ≤ max{d−∑k−1
j=1 µb,i,j , 0}, and 1 ≤ K ≤ d, where Gb−1 is the

sigma-algebra generated by {ηb′,i,k}i∈[n],k∈[K2],b′<b and {µb′,i,k}i∈[n],k∈[K2],b′<b. Then

P




B∑

b=1

min
i∈[n]



min



h

K
2∑

k=1

ηb,i,k, τs

K
2∑

k=1

µb,i,k







 ≤ t̄


 ≤ δ

with

t̄ :=
BK + log δ

e4(2n)2/K(4 + 2
K log(2n))

min

{
h

pσ
,
τs

pK

}
, (36)

where

pK :=
2K

d
.

(Step 4: Endgame). Thus, with probability at least 1− δ, any zero-respecting algorithm requires at
least t̄ seconds to discover the T th coordinate. Since progK(x) ≤ prog1(x) for all x ∈ RT , and due
to (24),

inf
y∈St

∥∇f(y)∥2 > 2ε inf
y∈St

1
[
prog1(y[T]) < T

]
,

where St is the set of all possible candidate points to be an ε–stationary point up to time t, which can
be computed by A. Taking δ = 1

2 ,

E
[
inf
y∈St

∥∇f(y)∥2
]
> 2εE

[
inf
y∈St

1
[
prog1(y[T]) < T

]]
≥ ε,

for t = 1
2 t̄ because prog1(y[T]) < T for all y ∈ St with probability at least 1

2 .

It is left to choose K and a, and substitute all quantities to t̄. Using B =
⌊
T
K

⌋
,

t̄ =

⌊
T
K

⌋
K − log 8

e4(2n)2/K(4 + 2
K log(2n))

min

{
h

pσ
,
τs

pK

}

≥ T −K − log 8

e4(2n)2/K(4 + 2
K log(2n))

min

{
h

pσ
,
τs

pK

}
.

Due to (25), (27), and (33),

t̄ ≥

⌊
L∆

2∆0(K,a)·ℓ1(K,a)·ε

⌋
−K − log 8

e4(2n)2/K(4 + 2
K log(2n))

min

{
max

{
h,

hσ2

2εγ2
∞(K, a)

}
,
τsd

2K

}
.

Using the definitions of ∆0(K, a), γ∞(K, a), and ℓ1(K, a),

t̄ ≥
(
e4(2n)2/K

(
4 +

2

K
log(2n)

))−1(⌊
L∆ log a

48πe3K2a2Kε

⌋
−K − log 8

)
min

{
max

{
h,

hσ2 log a

144πe3K2a2Kε

}
,
τsd

2K

}
.

We can take any a from the interval (1, e]. We choose a = 1 + 1
K , then log a = log

(
1 + 1

K

)
≥ 1

2K

for all K ≥ 1, a2K ≤ e2 for all K ≥ 1, and

t̄ ≥
(
e4(2n)2/K

(
4 +

2

K
log(2n)

))−1(⌊
L∆

96πe5K3ε

⌋
−K − log 8

)
min

{
max

{
h,

hσ2

288πe5K3ε

}
,
τsd

2K

}
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Taking K = 2 ⌈2 log(2n)⌉ , (2n)2/K ≤ e, K ≤ 16 log(n+ 1) and

t̄ ≥ 1

5e5

(⌊
L∆

96 · 84πe5 log3(n+ 1)ε

⌋
− 32 log(n+ 1)

)
min

{
max

{
h,

hσ2

288 · 84πe5 log3(n+ 1)ε

}
,

τsd

32 log(n+ 1)

}

≥ 1

5e5

(
L∆

96 · 84πe5 log3(n+ 1)ε
− 36 log(n+ 1)

)
min

{
max

{
h,

hσ2

288 · 84πe5 log3(n+ 1)ε

}
,

τsd

32 log(n+ 1)

}
.

We assume L∆
ε ≥ c̄1 log

4(n+ 1) for a universal constant c̄1. Taking c̄1 large enough, one can see
that

t̄ ≥ 1

5e5

(
L∆

2 · 96 · 84πe5 log3(n+ 1)ε

)
min

{
max

{
h,

hσ2

288 · 84πe5 log3(n+ 1)ε

}
,

τsd

32 log(n+ 1)

}
.

For a small enough universal c̄2, we get the inequality

t̄ ≥ c̄2 ×
(

L∆

log3(n+ 1)ε

)
min

{
max

{
h,

hσ2

log3(n+ 1)ε

}
,

τsd

log(n+ 1)

}
,

which finishes the proof. Notice that we can take

d ≥ T =

⌊
L∆ log a

48πe3K2a2Kε

⌋
= Θ

(
L∆

log3(n+ 1)ε

)
.

E.1 MAIN CONCENTRATION LEMMA

Lemma E.3. Let {ηb,i,j}i,j,b≥0 and {µb,i,j}i,j,b≥0 be random variables such that

P (ηb,i,k ≤ t|ηb,i,k−1, . . . , ηb,i,1,Gb−1) ≤ tpσ (34)

for all b ≥ 1, k ≥ 1, i ∈ [n], t ≥ 0, and

P (µb,i,k ≤ t|µb,i,k−1, . . . , µb,i,1,Gb−1) ≤
Kt

max{d−∑k−1
j=1 µb,i,j , 0} − t+ 1

, (35)

for all b ≥ 1, k ≥ 1, i ∈ [n], 0 ≤ t ≤ max{d−∑k−1
j=1 µb,i,j , 0}, and 1 ≤ K ≤ d, where Gb−1 is the

sigma-algebra generated by {ηb′,i,k}i∈[n],k∈[K2],b′<b and {µb′,i,k}i∈[n],k∈[K2],b′<b. Then

P




B∑

b=1

min
i∈[n]



min



h

K
2∑

k=1

ηb,i,k, τs

K
2∑

k=1

µb,i,k







 ≤ t̄


 ≤ δ

with

t̄ :=
BK + log δ

e4(2n)2/K(4 + 2
K log(2n))

min

{
h

pσ
,
τs

pK

}
, (36)

where

pK :=
2K

d
.

Proof. Let us temporarily define βb,i := min
{
h
∑K

2

k=1 ηb,i,k, τs
∑K

2

k=1 µb,i,k

}
. Using Chernoff’s

method, we get

P

(
B∑

b=1

min
i∈[n]

βb,i ≤ t̄

)
= P

(
exp

(
−

B∑

b=1

λmin
i∈[n]

βb,i

)
≥ exp (−λt̄)

)

≤ exp (λt̄)E

[
exp

(
−

B∑

b=1

λmin
i∈[n]

βb,i

)]

= exp (λt̄)E

[
E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]
exp

(
−

B−1∑

b=1

λmin
i∈[n]

βb,i

)]
(37)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

for all λ > 0 since β1,i, . . . , βB−1,i are GB−1–measurable. Consider the inner expectation separately:

E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]
= E

[
max
i∈[n]

exp (−λβB,i)

∣∣∣∣GB−1

]
≤

n∑

i=1

E [exp (−λβB,i)| GB−1] ,

where we bound max by
∑

. Using the temporal definitions of {βB,i},

E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]

≤
n∑

i=1

E


exp


−λmin



h

K
2∑

k=1

ηB,i,k, τs

K
2∑

k=1

µB,i,k







∣∣∣∣∣∣
GB−1




=

n∑

i=1

E


max



exp


−λh

K
2∑

k=1

ηB,i,k


 , exp


−λτs

K
2∑

k=1

µB,i,k







∣∣∣∣∣∣
GB−1




≤
n∑

i=1

E


exp


−λh

K
2∑

k=1

ηB,i,k



∣∣∣∣∣∣
GB−1




︸ ︷︷ ︸
I1:=

+

n∑

i=1

E


exp


−λτs

K
2∑

k=1

µB,i,k



∣∣∣∣∣∣
GB−1




︸ ︷︷ ︸
I

K
2

2 :=

.

(38)

Using the tower property,

I1 =

n∑

i=1

E


E

[
exp

(
−λhηB,i,K2

)∣∣∣ ηB,i,K2 −1, . . . , ηB,i,1,GB−1

]

︸ ︷︷ ︸
J1:=

exp


−λh

K
2 −1∑

k=1

ηB,i,k




∣∣∣∣∣∣∣∣
GB−1


 .

(39)

Next,

J1 := E
[
exp

(
−λhηB,i,K2

)∣∣∣ ηB,i,K2 −1, . . . , ηB,i,1,GB−1

]

≤ exp (−λt)P
(
hηB,i,K2

> t
∣∣∣ηB,i,K2 −1, . . . , ηB,i,1,GB−1

)

+ P
(
hηB,i,K2

≤ t
∣∣∣ηB,i,K2 −1, . . . , ηB,i,1,GB−1

)

= exp (−λt) + (1− exp (−λht))P
(
hηB,i,K2

≤ t
∣∣∣ηB,i,K2 −1, . . . , ηB,i,1,GB−1

)

≤ exp (−λt) + P
(
hηB,i,K2

≤ t
∣∣∣ηB,i,K2 −1, . . . , ηB,i,1,GB−1

)

= exp (−λt) + P
(
ηB,i,K2

≤ t

h

∣∣∣∣ηB,i,K2 −1, . . . , ηB,i,1,GB−1

)

for all t ≥ 0. Due to (34),

J1 ≤ exp (−λt) +
tpσ
h

.

Substituting to (39),

I1 ≤
n∑

i=1

(
exp (−λt) +

tpσ
h

)
E


exp


−λh

K
2 −1∑

k=1

ηB,i,k



∣∣∣∣∣∣
GB−1


 .

Using the same arguments K
2 − 1 times, we obtain

I1 ≤ n

(
exp (−λt) +

tpσ
h

)K
2

(40)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

for all t ≥ 0. The analysis of IK/2
2 a little bit more evolved. For all 1 ≤ j ≤ K

2 ,

Ij2 :=

n∑

i=1

E

[
exp

(
−λτs

j∑

k=1

µB,i,k

)∣∣∣∣∣GB−1

]

=

n∑

i=1

E



E [exp (−λτsµB,i,j)|µB,i,j−1, . . . , µB,i,1,GB−1] exp

(
−λτs

j−1∑

k=1

µB,i,k

)

︸ ︷︷ ︸
K2:=

∣∣∣∣∣∣∣∣∣∣

GB−1




and I02 = n. Let us define u =
∑j−1

k=1 µB,i,k. If u ≥ d
2 , then

K2 = E [exp (−λτsµB,i,j)|µB,i,j−1, . . . , µB,i,1,GB−1] exp (−λτsu) ≤ exp

(
−λτsd

2

)

Otherwise, if u < d
2 , then, for all t ≥ 0,

E [exp (−λτsµB,i,j)|µB,i,j−1, . . . , µB,i,1,GB−1]

≤ exp (−λt) + P
(
µB,i,j ≤

t

τs

∣∣∣∣µB,i,j−1, . . . , µB,i,1,GB−1

)

≤ exp (−λt) +
K t

τs

d− u− t
τs
+ 1

≤ exp (−λt) +
2Kt

τsd− 2t

due to (35) and u < d
2 . Combining both cases,

K2 ≤ max

{(
exp (−λt) +

2Kt

τsd− 2t

)
exp

(
−λτs

j−1∑

k=1

µB,i,k

)
, exp

(
−λτsd

2

)}

for all t < τsd
2 and u ≥ 0, and

Ij2 ≤
(
exp (−λt) +

2Kt

τsd− 2t

) n∑

i=1

E

[
exp

(
−λτs

j−1∑

k=1

µB,i,k

)∣∣∣∣∣GB−1

]
+ n exp

(
−λτsd

2

)

=

(
exp (−λt) +

2Kt

τsd− 2t

)
Ij−1
2 + n exp

(
−λτsd

2

)
, (41)

where we use the inequality max{a, b} ≤ a+ b for all a, b ≥ 0. Substituting (40) to (38),

E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]
≤ n

(
exp (−λt) +

tpσ
h

)K
2

+ I
K
2
2 ,

where t, λ ≥ 0 are free parameters. Taking t =
4+ 2

K log(2n)

λ ,

E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]
≤ n

(
e−4

(2n)2/K
+

(4 + 2
K log(2n))pσ

λh

)K
2

+ I
K
2
2 .

Choosing λ = e4(2n)2/K(4 + 2
K log(2n))max

{
pσ

h , pK

τs

}
,

E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]
≤ n

(
2e−4

(2n)2/K

)K
2

+ I
K
2
2 =

1

2

(
2e−4

)K
2 + I

K
2
2 .

With this choice of λ and t in (41), we get

Ij2 ≤
(

3e−4

(2n)2/K

)
Ij−1
2 + n exp

(
−e4(2n)2/K(4K + 2 log(2n))

)

≤
(

3e−4

(2n)2/K

)
Ij−1
2 + e−4e4K ≤ n

(
3e−4

(2n)2/K

)j

+ 2e−4e4K

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

for all j ≥ 1 because t ≤ τsd
2e4(2n)2/KK

, λ =
4+ 2

K log(2n)

t ≥ 2e4(2n)2/K(4 + 2
K log(2n)) K

τsd
. In the

third inequality, we unrolled the recursion with I02 = n and use
∑∞

j=0

(
3e−4

(2n)2/K

)j
≤ 2.

Finally, IK/2
2 ≤ 1

2

(
3e−4

)K
2 + 2e−2e4K ≤ 1

2e
−K and

E
[
exp

(
−λmin

i∈[n]
βB,i

)∣∣∣∣GB−1

]
≤ 1

2

(
2e−4

)K
2 + I

K/2
2 ≤ 1

2
e−K +

1

2
e−K ≤ e−K .

Substituting the last inequality to (37) and repeating the steps B − 1 more times, we get

P

(
B∑

b=1

min
i∈[n]

βb,i ≤ t̄

)
≤ exp (λt̄−BK) .

It is left to take t̄ = BK+log δ
λ .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F MAIN THEOREM WITH WORKER-TO-SERVER COMMUNICATION

In this section, we extend the result of Theorem 4.2 by taking into account the communication time
τw. However, in this section, we ignore the communication times from the server to the workers in the
analysis, which will be sufficient to obtain an almost tight lower bound if combined with Theorem 4.2.

Tyurin et al. (2024) consider a similar setup with τs = 0. However, their protocol does not allow the
workers to modify the iterate computed by the server and operates in the primal space. For instance,
the workers are not allowed to run local steps. Moreover, P̄ k

i are fixed in their version of Protocol 1.
We improve upon this in the following theorem:
Theorem F.1. Let L,∆, ε, σ2, n, d, τw, τs, h > 0 be any numbers such that ε < c1L∆ and d ≥ ∆L

c2ε
.

Consider Protocol 1. For all i ∈ [n] and k ≥ 0, compressor C̄k
i selects and transmits P̄ k

i uniformly
random coordinates without replacement, scaled by any constants, where P̄ k

i ∈ {0, . . . , d} may
vary across each compressor. For any algorithm A ∈ Azr, there exists a function f : Rd → R
such that f is L-smooth, f(0)− infx∈Rd f(x) ≤ ∆, exists a stochastic gradient oracle that satisfies

Assumption 1.3, and E
[
infy∈St ∥∇f(y)∥2

]
> ε for all

t ≤ c3 ×
L∆

ε log(n+ 1)
·min

{
max

{
hσ2

nε
,
τwd

n
,

√
hσ2τwd

nε
, h, τw

}
,max

{
hσ2

ε
, h

}}
,

where St is the set of all possible points that can be constructed by A up to time t based on I and
{Ii}. The quantities c1, c2, and c3 are universal constants.

Proof. The proof closely follows the analysis from (Tyurin et al., 2024; Tyurin & Richtárik, 2024)
and the proof of Theorem 4.2, but with some important modifications. In this proof, it is sufficient to
work with (6) and Lemmas 2.1 and 2.2.

Let us fix λ > 0 and define the function f : Rd → R such that

f(x) :=
Lλ2

ℓ1
FT

(x[T]

λ

)
,

where the function FT is given in (6) and x[T] ∈ RT is the vector with the first T coordinates of
x ∈ Rd. Notice that the last d− T coordinates are artificial.

First, we have to show that f is L-smooth and f(0)− infx∈Rd f(x) ≤ ∆. Using Lemma 2.2,

∥∇f(x)−∇f(y)∥ =
Lλ

ℓ1

∥∥∥∇FT

(x[T]

λ

)
−∇FT

(y[T]

λ

)∥∥∥ ≤ Lλ
∥∥∥
x[T]

λ
− y[T]

λ

∥∥∥

= L
∥∥x[T] − y[T]

∥∥ ≤ L ∥x− y∥ ∀x, y ∈ Rd.

Taking

T =

⌊
∆ℓ1

Lλ2∆0

⌋
,

f(0)− inf
x∈Rd

f(x) =
Lλ2

ℓ1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2∆0T

ℓ1
≤ ∆.

due to Lemma 2.2.

Next, we construct a stochastic gradient mapping. For our lower bound, we define

[∇f(x; ξ)]j := ∇jf(x)

(
1 + 1 [j > prog(x)]

(
ξ

pσ
− 1

))
∀x ∈ Rd, (42)

and let Dξ = Bernoulli(pσ) for all j ∈ [n], where pσ ∈ (0, 1]. We denote [x]j as the jth coordinate
of a vector x ∈ Rd. We choose

pσ := min

{
L2λ2γ2

∞
σ2ℓ21

, 1

}
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Then this mapping is unbiased and σ2-variance-bounded. Indeed,

E [[∇f(x, ξ)]i] = ∇if(x)

(
1 + 1 [i > prog(x)]

(
E [ξ]

pσ
− 1

))
= ∇if(x)

for all i ∈ [d], and

E
[
∥∇f(x; ξ)−∇f(x)∥2

]
≤ max

j∈[d]
|∇jf(x)|2 E

[(
ξ

pσ
− 1

)2
]

because the difference is non-zero only in one coordinate. Thus

E
[
∥∇f(x, ξ)−∇f(x)∥2

]
≤ ∥∇f(x)∥2∞ (1− pσ)

pσ
=

L2λ2
∥∥FT

(x[T]

λ

)∥∥2
∞ (1− pσ)

ℓ21pσ

≤ L2λ2γ2
∞(1− pσ)

ℓ21pσ
≤ σ2,

where we use Lemma 2.2.

Taking

λ =

√
2εℓ1
L

,

we ensure that

∥∇f(x)∥2 =
L2λ2

ℓ21

∥∥∥∇FT

(x[T]

λ

)∥∥∥
2

> 2ε1
[
prog(x[T]) < T

]
(43)

for all x ∈ Rd, where we use Lemma 2.1. Thus

T =

⌊
∆L

2εℓ1∆0

⌋
(44)

and

pσ = min

{
2εγ2

∞
σ2

, 1

}
.

Using the same reasoning as in Tyurin et al. (2024) and our Theorem 4.2, we define two sets of random
variables. Let η1,i be the first computed stochastic gradient when the oracle draws a “successful”
Bernoulli trial in (42) at worker i. Then,

P (η1,i ≤ t) ≤
⌊t⌋∑

i=1

(1− pσ)
i−1pσ ≤ pσ ⌊t⌋

for t ≥ 0, and

P (η1,i ≤ t) ≤ min{pσ ⌊t⌋ , 1}

For all i ∈ [n], the server receives a stream of coordinates from worker i. Let µ1,i be the number of
received coordinates by the server from worker i until the moment when the index of the last received
coordinate is 1. Let us define

pd :=
2

d
.

Similarly to the proof of Theorem 4.2 with K = 1 (see (29)),

P (µ1,i ≤ t|η1,i) =
⌊t⌋∑

j=1

P (µ1,i,1 = j) ≤ ⌊t⌋
d− t+ 1

.

for all t ≤ d. Thus,

P (µ1,i ≤ t|η1,i) ≤
{

⌊t⌋
d−t+1 , t ≤ d

2

1, t > d
2

≤
{⌊t⌋ pd, t ≤ d

2

1, t > d
2

≤ min{2 ⌊t⌋ pd, 1}

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

for all t ≥ 0.

There are two ways in which worker i can discover the first coordinate. Either the worker is “lucky”
and draws a successful Bernoulli random variable locally, or it gets to discover the first coordinate
through the server. Thus, worker i requires at least

y1,i := min

{
hη1,i, min

j∈[n],j ̸=i
{hη1,j + τwµ1,j}

}
= min

j∈[n]
{hη1,j + 1[i ̸= j]τwµ1,j}

seconds because hη1,i is the minimal time to discover the first coordinate locally, and
minj∈[n],j ̸=i {hη1,j + τwµ1,j} is the minimal time to discover the first coordinate from other workers
via the server, which can transmit it to worker i.
Remark F.2. The previous derivations hold for all τs > 0. If we start taking the communication time
τs into account, then y1,i may only increase. For all τs > 0, worker i still requires at least y1,i sec-
onds for the same reason that hη1,i is the minimal time to discover the first coordinate locally, and
minj∈[n],j ̸=i {hη1,j + τwµ1,j} is the minimal time to discover the first coordinate from other workers. If
we start taking into account the communication time from τs, the lower bound

min

{
hη1,i, min

j∈[n],j̸=i
{hη1,j + τwµ1,j}

}

still holds.

Using the same reasoning, worker i requires at least

yk,i := min
j∈[n]

{hηk,j + 1[i ̸= j]τwµk,j + yk−1,j}

seconds to discover the kth coordinate for all k ≥ 2, where

P (ηk,i ≤ t|Gk−1) ≤ min{⌊t⌋ pσ, 1} (45)

for all k ≥ 1, i ∈ [n], and t ≥ 0, and

P (µk,i ≤ t|ηk,i,Gk−1) ≤ min{2 ⌊t⌋ pd, 1} (46)

for all k ≥ 1, i ∈ [n], and t ≥ 0, where Gk−1 is the sigma-algebra generated by {ηk′,i}i∈[n],k′<k and
{µk′,i}i∈[n],k′<k. Thus, the first possible time when the workers and the server can discover the T th

coordinate is

yT := min
i∈[n]

yT,i.

For this random variable, we prove the lemma below (see Section F.1).

Lemma F.3. Let {ηk,i}i,k≥0 and {µk,i}i,k≥0 be random variables such that

P (ηk,i ≤ t|Gk−1) ≤ min{⌊t⌋ pσ, 1} (47)

for all k ≥ 1, i ∈ [n], and t ≥ 0, and

P (µk,i ≤ t|ηk,i,Gk−1) ≤ min{2 ⌊t⌋ pd, 1}, (48)

for all k ≥ 1, i ∈ [n], and t ≥ 0, where Gk−1 is the sigma-algebra generated by {ηk′,i}i∈[n],k′<k

and {µk′,i}i∈[n],k′<k. Then

P (yT ≤ t̄) ≤ δ

with

t̄ :=
T − log n+ log δ

32 log(8n)
·min

{
max

{
h

pσn
,
τw

pdn
,

√
hτw√

pσpdn
, h, τw

}
,
h

pσ

}
, (49)

where

yT := min
i∈[n]

yT,i,

yk,i := min
j∈[n]

{hηk,j + 1[i ̸= j]τwµk,j + yk−1,j}

for all k ≥ 1, i ∈ [n] and y0,i = 0 for all i ∈ [n].

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Thus, with probability at least 1 − δ, any zero-respecting algorithm requires at least t̄ seconds to
discover the last coordinate. Due to (43),

inf
y∈St

∥∇f(y)∥2 > 2ε inf
y∈St

1
[
prog(y[T]) < T

]
,

where St is the set of all possible candidate points to be an ε–stationary point up to time t, which can
be computed by A. Taking δ = 1

2 ,

E
[
inf
y∈St

∥∇f(y)∥2
]
> 2εE

[
inf
y∈St

1
[
prog(y[T]) < T

]]
≥ ε,

for t = 1
2 t̄ because prog(y[T]) < T for all y ∈ St with probability at least 1

2 . It is left to substitute all
quantities:

t =

⌊
∆L

2εℓ1∆0

⌋
− log n+ log 1

2

64 log(8n)
·min

{
max

{
h

n
max

{
σ2

2εγ2
∞
, 1

}
,
τwd

2n
,

√
hdτw√
2n

√
σ2

2εγ2
∞
, h, τw

}
, hmax

{
σ2

2εγ2
∞
, 1

}}
.

Since ℓ1,∆
0, γ∞ are universal constants, assuming ε < c1L∆ for some small universal c1 > 0, we

get

t ≥ c3 ×
L∆

ε log(n+ 1)
·min

{
max

{
hσ2

nε
,
τwd

n
,

√
hσ2τwd

nε
, h, τw

}
,max

{
hσ2

ε
, h

}}

for some small universal c3 > 0. Notice that we can take any dimension d such that

d ≥ T = Θ

(
L∆

ε

)
.

F.1 MAIN CONCENTRATION LEMMA

Lemma F.3. Let {ηk,i}i,k≥0 and {µk,i}i,k≥0 be random variables such that

P (ηk,i ≤ t|Gk−1) ≤ min{⌊t⌋ pσ, 1} (47)

for all k ≥ 1, i ∈ [n], and t ≥ 0, and

P (µk,i ≤ t|ηk,i,Gk−1) ≤ min{2 ⌊t⌋ pd, 1}, (48)

for all k ≥ 1, i ∈ [n], and t ≥ 0, where Gk−1 is the sigma-algebra generated by {ηk′,i}i∈[n],k′<k

and {µk′,i}i∈[n],k′<k. Then

P (yT ≤ t̄) ≤ δ

with

t̄ :=
T − log n+ log δ

32 log(8n)
·min

{
max

{
h

pσn
,
τw

pdn
,

√
hτw√

pσpdn
, h, τw

}
,
h

pσ

}
, (49)

where

yT := min
i∈[n]

yT,i,

yk,i := min
j∈[n]

{hηk,j + 1[i ̸= j]τwµk,j + yk−1,j}

for all k ≥ 1, i ∈ [n] and y0,i = 0 for all i ∈ [n].

Proof. Using the Chernoff method for any s > 0 and k ≥ 1, we get

P (yk ≤ t̄) = P (−syk ≥ −st̄) = P
(
e−syk ≥ e−st̄

)
≤ est̄E

[
e−syk

]

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

= est̄E
[
exp

(
−s min

j∈[n]
yk,j

)]
= est̄E

[
max
j∈[n]

exp (−syk,j)

]
.

Bounding the maximum by the sum,

P (yk ≤ t) ≤ est
n∑

j=1

E [exp (−syk,j)] ≤ nest max
j∈[n]

E [exp (−syk,j)] . (50)

We focus on the last exponent separately. For all i ∈ [n],

E [exp (−syk,i)] = E
[
exp

(
−s min

j∈[n]
{hηk,j + 1[i ̸= j]τwµk,j + yk−1,j}

)]

= E
[
max
j∈[n]

exp (−s (hηk,j + 1[i ̸= j]τwµk,j + yk−1,j))

]

≤
n∑

j=1

E [exp (−s (hηk,j + 1[i ̸= j]τwµk,j + yk−1,j))]

=

n∑

j=1

E


E [exp (−s (hηk,j + 1[i ̸= j]τwµk,j))| Gk−1]︸ ︷︷ ︸

I1:=

exp (−syk−1,j)




(51)

Considering the inner expectation separately:

I1 = E [exp (−s (hηk,j + 1[i ̸= j]τwµk,j))| Gk−1]

≤ exp (−st) + P (hηk,j + 1[i ̸= j]τwµk,j ≤ t|Gk−1)

for all t ≥ 0. Using the properties of condition expectations,

I1 ≤ exp (−st) + P (hηk,j ≤ t,1[i ̸= j]τwµk,j ≤ t|Gk−1)

= exp (−st) + E [1 [hηk,j ≤ t]1 [1[i ̸= j]τwµk,j ≤ t]| Gk−1]

= exp (−st) + E [E [1 [1[i ̸= j]τwµk,j ≤ t]| ηk,j ,Gk−1]1 [hηk,j ≤ t]| Gk−1]

= exp (−st) + E [P (1[i ̸= j]τwµk,j ≤ t|ηk,j ,Gk−1)1 [hηk,j ≤ t]| Gk−1] .

If i = j, then we bound the probability by 1 and get

I1 ≤ exp (−st) + E [1 [hηk,j ≤ t]| Gk−1]

= exp (−st) + P (hηk,j ≤ t|Gk−1)

≤ exp (−st) +

⌊
t

h

⌋
pσ,

for all t ≥ 0, where we use (47). Otherwise, if i ̸= j, using (48) and (47),

I1 ≤ exp (−st) + E
[
min

{
1, 2

⌊
t

τw

⌋
pd

}
1 [hηk,j ≤ t]

∣∣∣∣Gk−1

]

= exp (−st) + min

{
1, 2

⌊
t

τw

⌋
pd

}
P (hηk,j ≤ t|Gk−1)

≤ exp (−st) + min

{
1, 2

⌊
t

τw

⌋
pd

}
min

{
1,

⌊
t

h

⌋
pσ

}

for all t ≥ 0. Substituting the inequalities to (51),

E [exp (−syk,i)] =
∑

j ̸=i

(
exp (−st) + min

{
1, 2

⌊
t

τw

⌋
pd

}
min

{
1,

⌊
t

h

⌋
pσ

})
E [exp (−syk−1,j)]

+

(
exp (−st) + min

{
1,

⌊
t

h

⌋
pσ

})
E [exp (−syk−1,i)] .

for all i ∈ [n] and t ≥ 0. Thus,

max
i∈[n]

E [exp (−syk,i)]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

≤
[
(n− 1)

(
exp (−st) + min

{
1, 2

⌊
t

τw

⌋
pd

}
min

{
1,

⌊
t

h

⌋
pσ

})
+

(
exp (−st) + min

{
1,

⌊
t

h

⌋
pσ

})]

×max
i∈[n]

E [exp (−syk−1,i)]

=

[
n exp (−st) + (n− 1)

(
min

{
1, 2

⌊
t

τw

⌋
pd

}
min

{
1,

⌊
t

h

⌋
pσ

})
+min

{
1,

⌊
t

h

⌋
pσ

}]
max
i∈[n]

E [exp (−syk−1,i)] .

Taking s = log(8n)
t , we get

max
i∈[n]

E [exp (−syk,i)]

≤



1

8
+ (n− 1)

(
min

{
1, 2

⌊
t

τw

⌋
pd

}
min

{
1,

⌊
t

h

⌋
pσ

})

︸ ︷︷ ︸
I2:=

+min

{
1,

⌊
t

h

⌋
pσ

}

︸ ︷︷ ︸
I3:=


max

i∈[n]
E [exp (−syk−1,i)] .

(52)
Next, we take t = min{t1, t2}, where

t1 := max

{
h

32pσn
,

τw

32pdn
,

√
hτw

32
√
pσpdn

,
h

32
,
τw

32

}
,

and

t2 :=
h

32pσ
to ensure that

I3 ≤ min

{
1,

t2pσ
h

}
≤ 1

16
.

There are five possible values of t1.

If t1 = h
32pσn

, then

I2 ≤ (n− 1)min

{
1,

t1pσ
h

}
≤ 1

16
,

If t1 = τw
32pdn

, then

I2 ≤ (n− 1)min

{
1,

2t1pd
τw

}
≤ 1

16
.

If t1 =
√
hτw

32
√
pσpdn

, then

I2 ≤ (n− 1)
2t21pdpσ
τwh

≤ 1

16
.

If t1 = h
32 , then

I2 ≤ (n− 1)min

{
1,

⌊
t1
h

⌋
pσ

}
= 0.

Finally, if t1 = τw
32 , then

I2 ≤ (n− 1)min

{
1, 2

⌊
t1
τw

⌋
pd

}
= 0.

Thus, using (52), we obtain

max
i∈[n]

E [exp (−syk,i)] ≤
[
1

8
+

1

16
+

1

16

]
max
i∈[n]

E [exp (−syk−1,i)] ≤ e−1 max
i∈[n]

E [exp (−syk−1,i)]

for our choice of t. Unrolling the recursion and using y0,i = 0 for all i ∈ [n],

max
i∈[n]

E [exp (−syk,i)] ≤ e−k.

We substitute it to (50), to get

P (yk ≤ t̄) ≤ est̄+logn−k.

It is left to choose t̄ = k−logn+log δ
s .

36

	Introduction
	Related work
	Contributions

	Preliminaries
	Family of distributed methods
	Previous Lower Bound in the Heterogeneous Setting
	Failure of the previous construction in the homogeneous setting

	A New ``Worst-Case'' Function
	Lower Bound with Server-to-Worker (S2W) Communication
	Lower Bound with Both W2S and S2W Communication
	Algorithms almost matching the lower bound

	Conclusion
	Proof Sketch
	Additional Related Work
	Auxiliary Facts and Notations
	Notations

	Lower Bound
	New Construction
	Auxiliary Lemmas
	Proof of lemmas

	Proof of Theorem 4.2
	Main Concentration Lemma

	Main Theorem with Worker-to-Server Communication
	Main Concentration Lemma

