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ABSTRACT

We consider centralized distributed optimization in the classical federated learn-
ing setup, where n workers jointly find an e—stationary point of an L—smooth,
d—dimensional nonconvex function f, having access only to unbiased stochastic
gradients with variance o2. Each worker requires at most A seconds to compute a
stochastic gradient, and the communication times from the server to the workers and
from the workers to the server are 75 and 7, seconds per coordinate, respectively.
One of the main motivations for distributed optimization is to achieve scalability
with respect to n. For instance, it is well known that the distributed version of
SGD has a variance-dependent runtime term ho”LA/ne2 | which improves with the
number of workers n, where A := f(2°) — f*, and 2° € R? is the starting point.
Similarly, using unbiased sparsification compressors, it is possible to reduce both
the variance-dependent runtime term and the communication runtime term from
TwdLA/e to wdLA/pe 4 /Twdho®[n. . LA/ which also benefits from increasing 7.
However, once we account for the communication from the server to the workers
Ts, We prove that it becomes infeasible to design a method using unbiased random
sparsification compressors that scales both the server-side communication runtime
term 7;dLA/= and the variance-dependent runtime term ho”LA/:2  better than poly-
logarithmically in n, even in the homogeneous (i.i.d.) case, where all workers
access the same function or distribution. Indeed, when 73 ~ 7, our lower bound is

~ 2

G (min {n (252 +1) L2 + L REA }) - To establish this result,
we construct a new “worst-case” function and develop a new lower bound frame-
work that reduces the analysis to the concentration of a random sum, for which

we prove a concentration bound. These results reveal fundamental limitations in
scaling distributed optimization, even under the homogeneous (i.i.d.) assumption.

1 INTRODUCTION

We focus on the classical federated learning setup, where n workers,
such as CPUs, GPUs, servers, or mobile devices, are connected N
to a central server via a communication channel (Koneény et al., S
2016; McMahan et al., 2017). All workers collaboratively solve a Communication
common optimization problem in a distributed fashion by computing D ________ ’
stochastic gradients and sharing this information with the server, _--"" Sserver
which then propagates it to other workers. Together, they aim to gi -
minimize a smooth nonconvex objective function defined as Workers

min f(z), M
where f : RY — R and d is the dimension of f. We assume that d is huge, which is indeed the case

in modern machine learning and large language model training (Brown et al., 2020; Touvron et al.,
2023).

We consider the homogeneous (i.i.d.) setting, where all workers have access to stochastic gradients
of the same underlying function f. As the reader will see, the homogeneous setting assumption
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is a challenge, not a limitation of our work: all results extend, potentially with even stronger
implications, to the more general heterogeneous (non-i.i.d.) case, when each worker ¢ works with
fi # f. We consider the standard assumptions:

Assumption 1.1. f is differentiable & L—smooth, i.e., |V f(z) — Vf(y)|| < L ||z — y|, Vz,y € R%.

Assumption 1.2. There exist f* € R such that f(x) > f* for all + € R% We define A :=
f(2%) — f*, where 20 is a starting point of methods.

For all i € [n], worker i calculates unbiased stochastic gradients V f(z; £) with o2-variance-bounded
variances, where ¢ is a random variable with some distribution D¢.

Assumption 1.3 (Homogeneous setting). For all ¢ € [n], worker  can only calculate V f(z; £) and
B[V f(2:¢)] = Vf(z) and E¢[|Vf(2;€) — Vf(2)[*] < 0® forall » € R?, where 0 > 0.

The goal in the nonconvex world is to find an e—stationary point, a (random) point Z € R? such that
E[||Vf(2)||?] < e (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). We also consider a realistic
computation and communication scenario:

Assumption 1.4. Each of the n workers requires at most h seconds to compute a stochastic gradient,
and communication from the server to any worker (s2w communication) takes at most 7, seconds per
coordinate, and communication from any worker to the server (w2s communication) takes at most 7,
seconds per coordinate.

For instance, under Assumption 1.4, it takes d X 75 and d X 7, seconds to send a vector v € R¢ from
the server to any worker and from any worker to the server, respectively. We consider settings with
bidirectional communication costs, where communication in both directions requires time. Typically,
especially in the early stages of federated learning algorithm development, most works assume that
communication from the server to the workers is free, i.e., 7, = 0, which is arguably not true in
practice: communication over the Internet or 4G/5G networks can be costly in both directions (Huang
et al., 2012; Narayanan et al., 2021).

1.1 RELATED WORK

1. Communication is free. Let us temporarily assume that communication does not take time, i.e.,
7s = 0 and 7, = 0. Then, in this scenario, the theoretically fastest strategy is to run the Synchronized
SGD method, ie., "™ = 2% — I3 Vf(a¥;€F), where v = O(min{l/z,n/Lo?}), {€F}
are i.i.d., and {V f(2*;¢F)} are computed in parallel by the workers, which send to the server
that aggregates and calculates z°*'. One can show that the time complexity of this method is

O(h(£& + a’LA )). because it requires O ( % + @) iterations (Lan, 2020), and each iteration

€ ne2 ne2
takes at most h seconds due to Assumption 1.4. Moreover, this result is optimal and can not be

improved (Arjevani et al., 2022; Tyurin & Richtérik, 2023b).

Observation 1: One obvious but important observation is that the second “statistical term” in the
complexity bound scales with n. The larger the number of workers n, the smaller the overall time
complexity of Synchronized SGD, with a linear improvement in n. This is a theoretical justification
for the importance of distributed optimization and the use of many workers.

2. Worker-to-server communication can not be ignored. For now, consider the setup where
communication from workers to the server takes 7, > 0 seconds, while communication from the
server to the workers is free, i.e., 7, = 0. In this scenario, the described version of Synchronized

SGD has a suboptimal O(h(% + Uzi‘ZA) + ) time complexity, because it takes h
seconds to calculate a stochastic gradient and 7,,d seconds to send the stochastic gradients of size d
to the server, which calculates 2z*1. However, if we slightly modify this method and consider Batch

Synchronized SGD:

PRl — gk _

3R

n b
> 52 Vi(kek) (Batch Synchronized SGD)
=1 j=1

with b = ©(2%/en) and v = ©(1/L), then the time complexity becomes

O (h(Le 4+ 2L2) 4 ). )



Under review as a conference paper at ICLR 2026

because the number of iterations reduces to O (LA/¢) . In other words, each worker, instead of immedi-
ately sending a gradient, locally aggregates a batch of size b to reduce the number of communications.
It turns out that the last complexity can be improved further with the help of unbiased compressors:

Definition 1.5. A mapping C : R? x S, — R? with a distribution D, is an unbiased compressor if
there exists w > 0 such that E, [C(z; )] = z and E, [||C(z; v) — z|*] < w ||z||* for all z € R%. We
U(w) denote the family of such compressors. The community uses the shorthand C(x;v) = C(z),
which we also follow.

A standard example of an unbiased compressor is RandK € U(d/k — 1), which selects K random
coordinates of the input vector x, scales them by 4/, and sets the remaining coordinates to zero (see
Def. C.1). Numerous other examples of unbiased compressors have been explored in the literature
(Beznosikov et al., 2020; Xu et al., 2021; Horvath et al., 2022; Szlendak et al., 2021). Using the
seminal ideas (Seide et al., 2014), we can construct a modified version of QSGD (Alistarh et al., 2017)
(special case of Shadowheart SGD from (Tyurin et al., 2024)), which we call Batch QSGD:

NIE

n
k+1 _ kY
z =z nbmlz:1
i=

Cik (i V(" gfj)> , (Batch QSGD)
j=1

k

1

where worker i sends m compressed vectors {Cix(-)}xe[m] to the server, which aggregates and
k+1 With RandK and proper parameters' (Tyurin et al., 2024), we can improve (2) to

O(h(lﬂi)L§+Tw(g+1)Lﬁ+«/f”:f;"”ﬁ>. 3)

Observation 2: As in Observation 1, unlike (2), the time complexity (3) scales with the number
of workers n, which once again justifies the use of many workers in the optimization of (1). The
“statistical term” ho”LA/n:2 and the “communication term” 7wdLA /e improve linearly with n, while
the “coupling term” /dmwho®/neLA /= improves with the square root of 7, which can reduce the effect
of d and o/ for reasonably large n.

calculates x

A high-level explanation for why the dependence on d improves with n is that all workers use i.i.d.
and unbiased compressors {C; }, which allow them to collaboratively explore more coordinates. This
effect is similar to Synchronized SGD, where the variance E¢[||1 Y7 | V f(2;£F) — Vf(2)[]?] < ‘772
also improves with n. There are many other compressed methods that also improve with n, including
DIANA (Mishchenko et al., 2019), Accelerated DIANA (Li et al., 2020), MARINA (Gorbunov et al.,
2021), DASHA (Tyurin & Richtarik, 2023a), and FRECON (Zhao et al., 2021).

3. Both communications can not be ignored. Consider a more practical scenario, and our main
point of interest, where the communication time from the server to the workers is 7, > 0. In this case,
Batch QSGD requires

2\ LA d LA dryho? LA
O<h<1+zs)s+’r‘”(n+]‘)s+v7nsas+ ) “
seconds because the server has to send 2% € R? of size d to the workers in every iteration.

Observation 3: If 7, ~ T, then (4) asymptotically equals O (h (LA/e + 0*LA/ne?) + 7ydEA/e)
reducing to (2), as in the method that does not compress at all! The “communication term” 7,d4/e
does not improve with n.

We now arrive at our main research question:

In the first case (1. Communication is free) and the second case (2. Worker-to-
server communication can not be ignored), it is possible to design a method
that scales the complexity with the number of workers n, while improving the
dependencies on d and o°/«.

Can we design a similarly efficient method for the third case (3. Both communica-
tions can not be ignored) using unbiased compressors, where the communication

'h= @(%), m = @(i—:), t"=0 (max {h,Tw7 T;‘;d, hf: Y %}) ,7¥=0(1), K =linRandK
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time from the server to the workers cannot be ignored, and where the dependence
on both d and #*/= improves with n, either linearly or with the square root of n?

At least, can this be achieved in the simplest homogeneous setting, where all
workers have access to the same function, a scenario that arguably represents the
simplest form of distributed optimization?

We know for certain that the answer is “No” in the heterogeneous case, due to the result of Grun-
tkowska et al. (2024), who proved that the iteration complexity does not improve with the number of
workers n under Assumptions 1.1 and 1.2. However, the homogeneous setting is “easier,” giving us
hope that the workers can exploit the fact that they all have access to the same distribution.

1.2 CONTRIBUTIONS

& Lower bound. Surprisingly, the answer is “No” to our main research question, even in the
homogeneous case. We prove the following theorem.

Theorem 1.6 (Informal Formulation of Theorems 4.2 and F.1). Let Assumptions 1.1, 1.2, 1.3, and
1.4 hold. It is infeasible to find an e—stationary point faster than

Q(min{h(zz—i—l)L€A+TW(Z+1)L€A+\/(1T‘;£02LEA+ R 4 }) 5)

seconds (up to logarithmic factors), using unbiased compressors (Def. 1.5) based on random sparsifi-
cation, for all L, A, e,n,02,d, T, Ts, h > 0 such that LA > ©(g) and dimension d > © (LA/e) .

Because of the min, the bound shows that it is possible to improve either the dependence on
d or the dependence on 02/5 as the number of workers n increases, but not both simultane-
ously. The lower bound is matched either by Batch QSGD or by the non-distributed SGD method
(without any communication or cooperation). Moreover, if 7, ~ 7, the lower bound becomes

Q (min {h (Z—i + 1) % + ,h% + }) , which can be matched by Batch Synchro-
nized SGD with the complexity (2) (without compression) or by the non-distributed SGD method. In

other words, if 7, >~ 7, then using methods with random sparsification compression in the distributed
centralized setting offers no advantage. However, if 7, < 7, the compression techniques can help on the

~

workers side in the regimes when ™wd/n + dTthz/ne is larger than 7., due to the former scaling with n.

& New “worst-case” function. To prove the lower bound, as we explain in Section 2.3, we needed a
new “worst-case” function construction (see Section 3). We designed a new function Fr in (9),
which extends the ideas by Carmon et al. (2020). Proving its properties in Lemmas 3.1 and 3.2, as
well as designing the function itself, can be an important contribution on its own.

4 Proof technique. Using the new function, we develop a new proof technique and explain how the
problem of establishing the lower bound reduces to a statistical problem (see Section 4), where we
need to prove a concentration bound for a special sum (13), which represents the minimal possible
random time required to find an e—stationary point. Combining this result with the proven properties,
we obtain our main result (11).

¥ Improved analysis when 7, > 0. To obtain the complete lower bound, we extended and improved
the result by Tyurin et al. (2024), which was limited for our scenario and required additional
modifications to finally obtain (5) (see Sections F and 5 for details).

2 PRELIMINARIES

For better comprehension of our new idea, we now present arguably one of the most important
worst-case functions by Carmon et al. (2020), which is widely used to prove lower bounds in
nonconvex optimization. It has been used by Arjevani et al. (2022; 2020a) to derive lower bounds
in the stochastic setting, by Lu & De Sa (2021) in the decentralized setting, by Tyurin & Richtarik
(2023b; 2024); Tyurin et al. (2024) in the asynchronous setting, by Huang et al. (2022) to show the
lower iteration bound for unidirectional compressed methods, and by Li et al. (2021) in problems
with a nonconvex-strongly-concave structure.
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For any 7' € N, Carmon et al. (2020) define i : R” — R such that °
T
Fr(z) = ) [V(~2i—1)P(—z;) — ¥(zi—1)P(zs)] (6)
i=1

where zo = 1, z; is the i™ coordinate of z € R”,

I PRV ®(z) \f/x ' 7
xr) = an ) =€ e 2" dt.
exp(lfﬁ), 1721/2, — oo

Notice that this function has a “chain-like” structure. If a method starts from 2° = 0 and computes
the gradient of F7, then the gradient will have a non-zero value only in the first coordinate (use
that ¥(0) = ¥’(0) = 0). Thus, by computing a single gradient, any “reasonable” method can
“discover” at most one coordinate. At the same time, if the method wants to find an e—stationary
point, it should eventually discover the 7" coordinate. These two facts imply that every “reason-
able” method should compute the gradient of Fr at least T times. In the construction, Carmon
et al. (2020) take ' = © (%) . This construction is a “more technical” version of the celebrated
quadratic optimization construction from (Nesterov, 2018), which has similar properties. Let us define
prog(z) := max{i > 0|z; # 0} (zo = 1), then the following lemma is a formalization of the
described properties.

Lemma 2.1 (Carmon et al. (2020)). The function Fr satisfies:

1. Forall z € RT  prog(VFr(x)) < prog(z) + 1.
2. Forall z € RT  ifprog(x) < T, then ||V Fr(x)|| > 1.

Actually, in most proofs, the structure of (6) is not needed, and it is sufficient to work with Lemmas 2.1
and Lemma 2.2 from below, where the latter allows us to show that a scaled version of F satisfies
Assumptions 1.1 and 1.2.

Lemma 2.2 (Carmon et al. (2020)). The function Fr satisfies:
1. Fr(0) —inf cpr Fr(z) < AT, where A° := 12.
2. The function Fr is {1—smooth, where {1 := 152.

3. Forallz € RT | |[VFr ()|, < Voo, where ys := 23.

Hence, one of the main results by Carmon et al. (2020) was to show that it is infeasible to find an
e—stationary point without calculating O (%) gradients of a function satisfying Assumptions 1.1
and 1.2. In turn, the classical gradient descent (GD) method matches this lower bound.

2.1 FAMILY OF DISTRIBUTED METHODS

In our lower bound, we focus on the family of methods described by Protocol 1. This protocol takes an
algorithm as input and runs the standard functions of the workers and the server: the workers compute
stochastic gradients locally, send compressed information, the server aggregates them asynchronously
and in parallel, and sends compressed information back based on the local information. For now, we
ignore the communication times from the workers to the server in Protocol 1.

For all ¢ € [n], the algorithm can choose any point, based on the local information I;, at which
worker i will start computing a stochastic gradient. It can also choose any point s¥, based on the
server’s local information I, along with the corresponding compressor C¥, which will be sent to
worker ¢. This protocol captures the behavior of virtually any asynchronous optimization process

with workers connected to a server. We work with zero-respecting algorithms, as defined below.

Definition 2.3. We say that an algorithm A that follows Protocol 1 is zero-respecting if it does not
explore or assign non-zero values to any coordinate unless at least one of the available local vectors
contains a non-zero value in that coordinate. The family of such algorithms we denote as A,;.

zsimilarly FT(x) = —\Il(l)q)($1) + Z;-T:Q [‘P(—xi_l)q)(—:ci) — ‘11(1,’1_1)@(151)] because ‘1’(—1) =0.
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Protocol 1
1: Input: Algorithm A € A,

2: Init I = () (all available information) on the server
3: Init I; = (@ (all available information) on worker 7 for all i € [n]
4: Run the following three loops in parallel. The first two on the workers. The third on the server.
5: fori =1,...,n (in parallel on the workers) do
6: fork=0,1,... do
7: Algorithm A calculates a new point « based on local information I;: (takes 0 seconds)
any vector z € R such that supp(z) € Uyer,supp(y)  (supp(v) :={i € [d] :v; #0})
8: Calculate one stochastic gradient °V f (z; &), € ~ D¢ (Sareiid) (takes h seconds)
9: Add Vf(x;€) to I; (takes 0 seconds)
10:  end for
11: end for
12: for i = 1,...,n (in parallel on the workers) do
13: fork=0,1,... do
14: Algorithm A calculates new points {57} based on local information I;: (takes 0 seconds) any
vector 58 € R? such that supp(5F) € Uyer,supp(y)
15: Send CF (%) to the server
(takes 7, x PF seconds, where PF is the number of coordinates retained by C¥(5%))
16: Addto CF(sK)to I
17:  end for
18: end for
19: for : = 1,...,n (in parallel on the server) do
20:. fork=0,1,... do
21: Algorithm A calculates a new point sf based on local information I: (takes 0 seconds)
any vector s¥ € R? such that supp(s¥) € Uyersupp(y)
22: Algorithm A compresses the point: C(s¥) Vi € [n] (takes 0 seconds)
23: Send C¥(s¥) to the worker i
(takes 7y x P} seconds, where PF is the number of coordinates retained by C¥(s%))
24: Add to CF(s¥) to I (takes 0 seconds)
25:  end for
26: end for

(a vector may be added to I or I; at the same time as the algorithm calculates a new point; in this
case, the protocol adds the vector first (with no delay since the operation takes 0 seconds))

This is the standard assumption (Carmon et al., 2020) that generalizes the family of methods working
with the span of vectors (Nesterov, 2018) and holds for the majority of methods, including GD, Adam
(Kingma & Ba, 2015), DORE (Liu et al., 2020), EF21-P (Gruntkowska et al., 2023), MARINA-P, and
M3 (Gruntkowska et al., 2024).

2.2 PREVIOUS LOWER BOUND IN THE HETEROGENEOUS SETTING

Let us return back to our main question. In order to show that it is impossible to scale with 7 in the
heterogeneous setting, Gruntkowska et al. (2024) have proposed to use scaled versions of

Gilo)mnx X [W(ea)®(—a) - V) D(a)
1<i<T and (:—1) mod n=j—1

for all j € [n], worker ¢ has access only a scaled version of G; for all ¢ € [n]. The idea is that the
first block from (6) belongs to the first worker, the second block to the second worker, . . ., and the
(n 4 1)™ block to the first worker again, and so on. Notice that Fr(z) = + 37" | G;(x).

Notice one important property of this construction: only one worker at a time can discover the next
coordinate. In other words, if the server sends a new iterate to all workers, only one worker, after
computing the gradient, can make progress to the next coordinate.

3i) Multiple queries with the same random variable do not change the lower bound; see Remark E.1 in Section E; ii)
In the heterogeneous setup (Section 2.2), worker ¢ computes V f;(x; £), where f; is its local function.
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The next step in (Gruntkowska et al., 2024), in the proof of the lower bound theorem, was to
analyze Protocol 1. They consider* RandK with K = 1. Then, since the compressor sends only one
coordinate with probability p = 1/4, the probability that the server sends the last non-zero coordinate
to the worker responsible for the current block of (6) that can progress to the new coordinate is
also p. Thus, the number of consecutive coordinates that the server has to send to the workers is
at least Zjll 7n;, where 7; is a geometric-like random variable with P (n; = m|n;_1,...,m) <
p(1 — p)™~! for all m > 1. Using classical tools from statistical analysis, one can show that
Z?Zl n; 2 T/p =~ dLA/e with high probability. Thus, under Assumption 1.4, the communication

~

time complexity cannot be better than € ( ) , which does not improve with n.

2.3  FAILURE OF THE PREVIOUS CONSTRUCTION IN THE HOMOGENEOUS SETTING

However, in the homogeneous setting, if we want to reuse the idea, arguably the only option we have
is to assign (scaled) F7r to all workers to ensure that they all have the same function. But in this case,
the arguments from Section 2.2 no longer apply, because all workers can simultaneously progress to
the next coordinate, since they have access to all blocks of (6).

Indeed, if the server sends i.i.d. Rand K compressors with K = 1, then the number of consecutive
coordinates that the server has to send before the workers receive the last non-zero coordinate is

S ng[lrll] 1ji, where P (1;; = m|{m;}r<i) < p(1 —p)™~" forallm,j > 1,i € [n]. The f?ffj

operation appears because it is sufficient to wait for the first “luckiest” worker. Analyzing this sum,
we can only show that

T
: d LA
T Y min 7;; 2 Tsn e > 3
j=1 i1€[n]

with high probability, which scales with n due to min .

There are two options: either Q(7,4LA/ne) is tight and it is possible to find a method that matches it,
or we need to find another way to improve the lower bound. To prove the latter, we arguably need a
different fundamental construction from (6), which we propose in the next section.

3 A NEW “WORST-CASE” FUNCTION

In this section, we give a less technical description of our lower bound construction and the main
theorem from Section D. Instead of (6), we propose to use another “worst-case” function. For any
T,K € N,and e > a > 1, we define the function Frr g, : RT — R such that

FT7K7a(x) = — i\l/a(l‘i_[{) e \I/a(xi_g)\lla(a:i_l)@(xi) + if(xz), (9)

1= 1=

Waa)={ U aw=ve [ et o)
alX) = ) =€ e 2 y
eXp(lOgG,'(l*ﬁ)), £ﬂ>1/27 — 00 (

—gel/ttl 4 <
F — b) b
() {0, x>0,

and xg = -+ = z_g4+1 = 1. The main modification is that instead of the block —W¥(x;_1)®(x;),
weuse — VU, (vi—k) ... Vo(x;—2)Va(zi—1)P(z;) (ignore a for now). In the previous approach, it
was sufficient for a worker to have x;_; # 0 to discover the next i coordinate. However, in our
new construction, the worker needs x;—1 # 0,z;—2 # 0,...,z;_x+1 # 0 for that. With this
modification, it is not sufficient for the “luckiest” worker to get the non-zero i — 1™ coordinate to
discover the next coordinate: to progress to the 7y, coordinate, the worker should also have non-zero
i—2m . i— K+ 1" coordinates.

“In general, they presented a more general setting where the server can zero out coordinates with any
robability, capturing not only RandK with K = 1 and p = /4, but also RandK with K > 1 and other
p Yy, cap g y
compressors.
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Figure 1: The functions ¥, (z) and I'(x), along with their derivatives ¥/ (x) and I (z). The plots of
®(z) and ®’(z) are shown in (Carmon et al., 2020).

Next, we remove the positive blocks ¥(x;_1)®(x;), which we believe was introduced to prevent
the methods from ascending, exploring negative values of x;, and finding a nearby stationary point
“above.” Instead, we introduce I'(x;), which serves the same purpose: if a method starts exploring
negative values, this term prevents it from reaching a stationary point there. Let us define

progK(x) :=max{i >0|x; #0,x;—1 #0,...,z;_g+1 # 0}.
Instead of Lemma 2.1, we prove the following lemma:
Lemma 3.1 (Lemmas D.4 and D.5). The function Fr g, satisfies:

1. Forallz € RT  supp(VFr k o(7)) € {1,...,progh(x) + 1} Usupp(z),
where supp(v) := {7 € [d] : v; # 0 }.

2. Forallz € RT, ifprogh () < T, then |V Fr i ()| > 1.

The function Fr  , remains smooth. However, by multiplying with additional ¥ terms, we alter its
geometry and make it more chaotic: the difference Frr k ,(0) — inf, crr Fir k o(2), the smoothness
constant, and the maximum ¢,,—norm may increase. To mitigate this, we introduce the parameter a
in (10) that allows us to control these properties. Notice that if a = e, then ¥, (x) = ¥(x) for all
x € RT where V¥ is defined in (7). Instead of Lemma 2.2, we prove

Lemma 3.2 (Lemmas D.6, D.7, and D.8). The function Fr  , satisfies:
1. Prrq(0) —infuepr Frgq(z) <A%K, a) - T, where A°(K,a) := \/2me - a’¥.

2. The function Fr g o is {1(K, a)-smooth, where {,(K, a) := 12y/271e"/? - K2al

loga

K
3. Forallz € RY, |V Fr i q(2)||,, < YooK, a), where voo (K, a) := 6/2me3/2 - %.

Taking K = 1 and a = e, up to constant factors, Lemmas 3.1 and 3.2 reduce to Lemmas 2.1 and 2.2.
The larger the value of K, the larger the bounds in Lemma 3.2, and this growth can be exponential if
a = e. However, with a proper choice of 1 < a < e, we can mitigate the increase caused by K.

4 LOWER BOUND WITH SERVER-TO-WORKER (S2W) COMMUNICATION

We now present informal and formal versions of our main result:

Theorem 4.1 (Informal Formulation of Theorem 4.2). Let Assumptions 1.1, 1.2, 1.3, and 1.4 hold. It
is infeasible to find an e—stationary point faster than

o e 3 (11)
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seconds (up to logarithmic factors), using unbiased compressors (Def. 1.5) based on random sparsifi-
cation, for all L, A, e,n,02,d, 7, h > 0 such that LA > O(¢) and dimension d > ©(LA/e).

Theoremd4.2. Let L, A e, n,02,d, 7y, Ty, h > 0 be any numbers such that ¢, log* (n+1) < LA and

dimension d > Egm. Consider Protocol 1. For all i € [n] and k > 0, compressor C,f“ selects

and transmits P} uniformly random coordinates without replacement, scaled by any constants’, where
Pk € {0,...,d} may vary across each compressor °. Then, for any algorithm A € Ay, (Def. 2.3),
there exists a function f : R? — R such that f is L-smooth, i.e., |V f(z) — Vf(y)| < L |z — vl
forall z,yy € RY, and f(0) — infcpa f(z) < A, exists a stochastic gradient oracles that satisfies

Assumption 1.3, and E [infyest ||Vf(y)\|2} > ¢ for all

t < % (gt ) min { iy mdomax (b gt 25 1)L ()

where S, is the set of all possible points that can be constructed by A up to time t based on I and
{I;}. The quantities ¢, ¢, and 5 are universal constants.

The formulation of Theorem 4.2 is standard in the literature. However, following Tyurin & Richtarik
(2023b), we present the lower bound in terms of time complexities rather than iteration complexities.
Then, following Huang et al. (2022); He et al. (2023); Tyurin et al. (2024), we consider a subfamily of
unbiased compressors based from Definition 1.5 on random sparsification to prove the lower bound;
this is standard practice for taking the “worst-case” compressors from the family (similarly to taking
the “worst-case” functions (Carmon et al., 2020; Nesterov, 2018)). Moreover, due to the uncertainty
principle (Safaryan et al., 2022), all unbiased compressors exhibit variance and communication cost
comparable to those of the Rand K sparsifier in the worst case (up to constant factors).

The main observation in Theorems 4.1 and 4.2 is that it is not possible to scale both d and #*/= by more
than log*(n + 1) and log®(n + 1), respectively. Asymptotically, this scaling is significantly worse
than the linear n and square-root 1/n scalings discussed in Section 1.1. For instance, if n = 10,000
and d is increased by a factor of 10, we have to increase n by a factor of 10? (two factors more) to
ensure that 74/log*(n+1) does not change.

In Section A, we present the intuition and the proof sketch of the result.

5 LOWER BOUND WITH BOTH W2S AND S2W COMMUNICATION

In the previous section, we provide the lower bound without taking into account the commu-
nication cost 7. Combining Theorem 4.2 with our new Theorem F.1, which extends the re-
sult by Tyurin et al. (2024) for our setup, we can obtain the complete lower bound (5) from
Theorem 1.6 with 7, > 0 and 7, > 0. Notice that if 7y ~ 7, then the lower bound is

Q (min {h (Z—z + 1) % + ,h% + }) . Up to logarithmic factors, under Assump-

tions 1.1, 1.2, 1.3, and 1.4, it is infeasible to improve both d and 02/5 as n increases.

5.1 ALGORITHMS ALMOST MATCHING THE LOWER BOUND

Due to the min, there are two regimes in which the lower bound (5) operates. If the second term
is smaller in (5), then the lower bound is Q ( % + , which is matched by the vanilla

SGD method run locally (without any communication or cooperation). Otherwise, if the first term
is smaller, then the lower bound is matched by Batch QSGD, which has the matching complexity
(4) (up to logarithmic factors). Moreover, in the latter case, if 7y ~ 7, the lower bound becomes

Q (min {h (2—2 + 1) % + }) , which can be matched by Batch Synchronized SGD with the

complexity (2); thus, if 7, ~ 7, then unbiased sparsified compression is not needed at all, as it cannot
help due to the lower bound.

>To potentially preserve unbiasedness. For instance, Rand K scales by 4/x.
SFor instance, the compressors can be RandK (see Def. C.1) with any K € [d], PermK (Szlendak et al.,
2021), Identity compressor when PF = d.
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6 CONCLUSION

We prove nearly tight lower bounds for centralized distributed optimization under the computation
and communication Assumption 1.4. We show that even in the homogeneous scenario, it is not
possible to scale both d and ¢”/= by more than poly-logarithmic factors in 7. Notice that the family of
unbiased compressors contains the family of biased compressors (Beznosikov et al., 2020). Therefore,
our lower bounds also apply to methods that use biased compressors, in the sense that there exists a
“worst-case” compressor for which these methods cannot achieve a convergence rate faster than the lower
bound in Theorem 1.6.

The lower bounds are tight only up to logarithmic factors. Thus, a possible challenging direction is
to improve the powers of the logarithms, or even eliminate the logarithms entirely. The latter (if at
all possible) may be very challenging and would likely require entirely different constructions and
techniques. Another limitation is that the lower bounds are constructed using random sparsifiers.
Due to the uncertainty principle (Safaryan et al., 2022), we conjecture that the bounds also hold
for the entire family of unbiased compressors, but proving this would require more sophisticated
constructions.

In practice, however, biased and unbiased compressors, including TopK and Rank K (Alistarh et al.,
2018; Vogels et al., 2019), exhibit significantly better compression properties than those predicted by
worst-case analysis (Beznosikov et al., 2020). When used on the server side in combination with EF
or EF21-P (Gruntkowska et al., 2023; Tyurin et al., 2024), they may help mitigate the pessimistic term

. Moreover, our pessimistic lower bound may potentially be broken under additional assumptions
such as convexity or second-order smoothness.
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A PROOF SKETCH

We illustrate the main idea behind the proof and how the new “worst-case” function helps to almost
eliminate the scaling with n. Consider the first K coordinates of Iy g , (which is scaled in the proof
to satisfy Assumptions 1.1 and 1.2). Recall that, due to Lemma 3.1, the only way to discover the
K + 1™ coordinate in any worker is to ensure that all of the first K coordinates are non-zero.

Reduction to a statistical problem. There are only two options by which a worker may discover a
new non-zero coordinate: through local stochastic computations or through communication from the
server. In the first option, a worker computes a stochastic gradient, which takes h seconds. However,
due to the construction of stochastic gradients (Arjevani et al., 2022), even if the computation is
completed, the worker will not make progress or discover a new non-zero coordinate, as it will be
zeroed out with probability p, = © (5 Voo (K 41)/02) . In the second option, due to the condition of
Theorem 4.2, a worker receives a stream of uniformly sampled coordinates v, v5, ... (workers get
different streams), and the worker can discover a new non-zero coordinate only if random variable
v; € [K], which satisfies P (v; € [K]|v1,...,vi—1) < E/T—it1 < pg = 2K/7 forall i < T/a.

Next, we define two sets of random variables: (i) let 7, ; ; denote the number of stochastic gradient
computations until the first moment when a coordinate is not zeroed out in the stochastic gradient
oracle (see (26)), after the moment when the (k — 1) coordinate is no longer zeroed out in worker
1; (ii) let py ;5 be the number of received coordinates until the moment when the last received
coordinate belongs to [K], after the (k — 1) time this has happened. In other words, 7 ; 1 is the
number of stochastic gradient computations until the moment when the algorithm receives a “lucky”
stochastic gradient where the last coordinate is not zeroed out. The random variable 7 ; o is the
number of computations until it happens for the second time, and so on. Similarly, j; ;1 is the
position of the first coordinate from the stream sent by the server to worker ¢ that belongs to [K]. The
random variable f; ; » refers to the second time this occurs, and so on. By definition, the sequences
{m, ik} and {1 ;  } follow approximately geometric-like distributions with parameters p, and p,
respectively.

To discover all of the first K coordinates, either the first or the second process must uncover at
least X/2 coordinates. If worker ¢ has discovered fewer than X/2 coordinates through stochastic
gradient computations, and fewer than X/2 coordinates through receiving them from the server,
then it will not be able to cover all K coordinates. Thus, the algorithm should wait at least

K K
min;e {min {h Do Mk Ts 2 imq M,ik }} seconds until the moment when it can potentially

discover the K + 1" coordinate, where the outer minimum min;¢[,) appears because it is sufficient
for the algorithm to wait for the first “luckiest” worker. Repeating the same arguments B := |7/k |
times, the algorithms requires at least

B K/2 K/2
tg = Z min { min < A Z Mb,i,ks Ts Z Hb,ik (13)
k=1

p—11€[n] k=1

seconds to discover the 7" coordinate and potentially find an e—stationary point, where the sequences
{"b,i.1} and {pp ;. } follow approximately geometric-like distributions with p, and p, respectively.

Analysis of the concentration. Hence, we have reduced the lower bound to the analysis of the
sum ¢p. Recall (8), where the lower bound improves with n due to min;cp,; . In (13), we also

get min;e[,) - However, and this is the main reason for the new construction, there are two sums

kK:/ f, which allows us to mitigate the influence of the min;¢[,,) . In particular, we can show that

tp 2 55 min{#/p,,7/px} with high probability. Notice that the first fraction improves with n%
instead of n due to the sums; thus, the larger K, the smaller the influence of n.

Putting it all together. However, we cannot take K too large due to Lemma 3.2. Substituting the
choice of T, p,, and px (defined in the proof of Theorem 4.2 to ensure that Assumptions 1.1, 1.2,
and 1.3 are satisfied and the scaled version of F i , has the squared norm larger than € while the
T is not discovered), we can show that

> LA : ho? Tid
13:3°¢ /K A0(K,a) £ (K,a)e "I {max{h, e (Ka) [ K [

with high probability, where A°(K, a), ¢1(K, a), and vo (K, a) are defined in Lemma 3.2. The final
step is to choose K = © (logn) and a = 1 + /K to obtain the result of Theorem 4.2.
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B Additional Related Work

While we focus on lower bounds in the context of stochastic optimization and compressed vectors in
nonconvex settings, there is much related work in other domains and setups. The seminal works on
lower bounds were done by Nemirovskij & Yudin (1983); Nesterov (2018), where Nesterov (2018) showed
that the accelerated gradient descent (Nesterov, 1983) is optimal in the convex setting using a quadratic
“worst-case” function. In the nonconvex setting, Carmon et al. (2020) provided an alternative function,
described in the main part of the paper. For convex problems, Woodworth et al. (2018) introduced the
graph oracle, a generalization of the classical gradient oracle (Nemirovskij & Yudin, 1983; Nesterov, 2018),
and established lower bounds for a broad class of parallel optimization methods. Arjevani et al. (2020b)
further analyzed the delayed gradient descent method, which corresponds to Asynchronous SGD with
constant iteration delays. Tyurin & Richtarik (2023b; 2024); Tyurin et al. (2024) proved lower bounds for
methods in asynchronous settings. Fang et al. (2018); Patel et al. (2022) studied a different setting from
Assumption 1.3, where they assumed the mean-squared smoothness property to enable the analysis of
methods with variance reduction techniques (Fang et al., 2018; Cutkosky & Orabona, 2019). Woodworth
& Srebro (2016) considered the finite-sum setting in the convex setting. Woodworth et al. (2020; 2021)
proved that the min-max optimal algorithm for optimizing smooth convex objectives in the intermittent
communication setting is the best of accelerated local and minibatch SGD, which leads to a similar
conclusion to ours; however, their results are related to, but not directly comparable with ours, since we
analyze the limited scalability of improving both stochastic noise and communication complexity through
compressors. Glasgow et al. (2022) provided sharp lower bounds for local SGD approaches in terms of
iteration complexity. Huang et al. (2022); He et al. (2023); Gruntkowska et al. (2024) provided lower bounds
for compression techniques, but in the heterogeneous setting.

C AUXILIARY FACTS AND NOTATIONS

Definition C.1 (RandK). Assume that S is a random subset of [d] such that |S| = K for some
K € [d]. A stochastic mapping C : RY x S, — R is called Rand K if

C(z;S) = %ijej,

jES

where {e;}%_, denotes the standard unit basis. The set S can be produced with a uniform sampling
of [d] without replacement.

C.1 NOTATIONS

N := {1,2,...}; ||=|| is the output of the standard Euclidean norm for all z € RY; (z,y) =

Z?:l x;y; is the standard dot product; ||A|| is the standard spectral/operator norm for all A €
RXd: g = O(f) : exist C > 0 such that g(z) < C x f(z) forall z € Z; g = Q(f) : exist
C > Osuch that g(z) > C x f(z) forall z € Z; g = O(f) : g = O(f) and g = Q(f);

9=0(f),9=Q(f),g = O(f) : the same as g = O(f),g = Q(f),g = O(f), respectively, but
up to logarithmic factors; g ~ h : g and h are equal up to universal positive constants; g = h : g
greater or equal to A up to universal positive constants; C is an unbiased compressor (Definition 1.5);
supp(v) = {7 € [d] : v; # 0}; h : maximum time (in seconds) for any worker to compute one stochastic
gradient; 7, : communication time per coordinate from the server to any worker; 7, : communication time
per coordinate from any worker to the server;

D LOWER BOUND

D.1 NEW CONSTRUCTION

Forany T, K € N, and e > a > 1 we define the function Frr g , : RT — R such that

T T
Frg.a(z) = — Z Wo(zimg) - Valmioo)Valzi1)®(x;) + Z I(z), (14)
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where z; is the i coordinate of a vector x € RT and

\IJ Oa X S 1/27 @ \/» z 1t2d
olz) = = —20dt,
() exp (loga- (1—%)), x>1/2, (@) e[me
and

_epl/z41

(z) = e , <0,

0, x> 0.

We assume that xg = --- = x_g1 = 1. Importantly, throughout the lower bound analysis, we

assume that e > a > 1, even if this assumption is not explicitly stated in all theorems.

We additionally define

prog” (z) := max{i > 0|x; # 0,2,_1 #0,...,2;_g11 # 0}
(o ="+ =z_k41=1),

which extends prog(z) = prog!(z) := max{i > 0|xz; # 0} (zo = 1).

D.2 AUXILIARY LEMMAS

In this section, we list useful properties of the functions ®, I', ¥,,, and Fr k.. We prove them in
Section D.3.

Lemma D.1 (Carmon et al. (2020)). Function ® is twice differentiable and satisfies
0<®(z) <V2me, 0<(z)<+e, and |®"(z)| < 27
forall x € R. Moreover, ®'(z) > 1 forall -1 < z < 1.
Lemma D.2. Function T is twice differentiable and satisfies
0<T(x), —e<T/(xr)<0,and0 <T"(x) < 27e >
Sorall x € R. Moreover, T (x) < =2 forall x < —1.

Lemma D.3. Function U, is twice differentiable and satisfies

and |07 (z)] < 25

0<U,(z) <a, 0< T, (x) < ~ loga

2e
Vioga’
forallz € Rand 1 < a < e. Moreover, V,(x) > 1 forallx > 1and1 < a <e.

Lemma D4. For all z € RT, supp(VFr k..(z)) € {1,...,progf(z) + 1} U supp(x), where
supp(v) :={i € [d]:v; #0}.

Lemma D.5. Forall x € RT | if progh () < T, then |V Fr i o(z)| > 1.

Lemma D.6. Function Fr i o satisfies

FT,K,a(O) - 'clen]RfT FT,K,a(l') < AO(Ka a) T,

where A°(K, a) := /2me - a’X.

Lemma D.7. For all v € RT | |VFr i o ()|
Ka®
Vioga’®

< Yoo (K, @), where oo (K, a) := 61/2me3/? -

o0

Lemma D.8. The function Fr i, is {1(K, a)-smooth, i.e.,
z € RT, where (1(K, a) = 124/27e%/2 . K2a®

loga

V2Fr k.o(2)| < (K, a) for all

17
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D.3 PROOF OF LEMMAS

Lemma D.2. Function I is twice differentiable and satisfies
0<T(x), —e<I'(x)<0,and0 <T"(z)<27e?
forall x € R. Moreover, I (z) < =2 forall x < —1.

Proof. The first fact is due to lim %A) = O7 F/(O) = O, and lim M(E) =0.T1s C]ear]y non-

A—0 AS0 A
negative. Next, for all z < 0,
1/xz+1
F/(ZII) — _el/erl + L
x
and
1/z+1
" _ €
r (J?) - 3
Thus, T is strongly increasing for all z < 0, and lim I’(z) = —e < IV(x) < 0. Next, I''(z) > 0
Tr—r— 00

forall z < 0, and max I (z) = 27e~2 forall < 0.

Lemma D.3. Function U, is twice differentiable and satisfies

56e

0< ¥, , o< <
S Vo(z) <a, 0<V(x) < g

and |0 ()] <

2e
Vioga’
forallz e Rand 1 < a < e. Moreover, V,(z) > 1forallx > 1and1 < a <e.

Proof. The differentiability at = } follows from lim La(3+4)
—

. :Oforalla>1.Forallx§%,

W/ (z) =0.Forall z > %, we get

0S¥ @) = 5, o (loga (1 ) (25511)2»

4a logS/2 a loga
= X exp| ———— | .
Vioga  (2xz —1)3 (22 —1)2

. / .
Taking t = log” 2‘; > 0 and using t3e~!" < 3, we get

(2z—1
4a 1 2e
o’ < x = <
al®) = Vioga 2 = /loga

since a < e.

Clearly, U, (z) > 0 for all z € R, and ¥, is non-decreasing. Moreover it is strongly monotonic for
allz > §. Thus ¥, (z) < lim ¥, (z) =aforallz € R.
T—>00

L ACEDS
A

The twice differentiability at z = 1 follows from Aimo =0foralla > 1. Forallz < 1,
—

U/ (z) =0.Forall x > %, taking the second derivative and using simple algebra, we get

8loga x (3(2x — 1)% — 2log a) 1
ql// — | 1 1 s
W ()] (2r — 1) exp ( loga (o1 172
~ |8aloga x (3(2z — 1)? — 2loga) . ~_loga
- 2z —1)8 AT 2r - 1)
24aloga loga 16alog® a loga
< |27 _ B
= @e—1r 7P ( (27 — 1)2) ‘ * ' 2z —1)8 P\ @12
24a log®a loga 16a log®a loga
= X exp | — X exp | ———s | -
loga (22— 1)* (2z — 1)2 loga (2 —1)8 (2z —1)2

18
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Taking t = (215%‘11)2 > 0 and using t?e~? < 1 and t3e~! < 2,

24a 16a 56e
x 1 x 2 <
loga loga loga

W ()| <

since a < e. O
Lemma D.4. For all x € RT, supp(VFr x..(z)) € {1,...,progf(z) + 1} U supp(x), where
supp(v) :={i€[d] :v; #0}.
Proof. Let j = progi (z) and p = prog! (), then
j+1
Pria@)=—=> V(i k). Va(wi2)Wa(wi1)®(z;)
i=1

T
- Z Vo(imk) . Va(wio)Wal(wio1)P(x;)
i=j+2
T

—I—ZF(%)—F > T(w).

i=p+1

Since j = progK(x)7 for all ¢ > j + 2, at least one of the values z;_g,...,x;_o,%;_1 iS zero.
Noting that ¥, (0) = ¥/ (0) = 0, the gradient of the second sum is zero. The first sum depends only
on the first j + 1 coordinates; thus, the gradient of the first sum is non-zero in at most the (j + 1)
coordinate.

Since p = prog! (), the gradient of the last sum is zero because I'V(0) = 0. Moreover, if x; = 0, then
IV(z;) = 05 thus, V (3°F_, T'(z;)) € supp(z). O

Lemma D.5. Forall x € RT | if progl (z) < T, then |V Fr i o(z)| > 1.

Proof. For all j € [T, the partial derivative of Fr i, with respect to z; is
OFr K.a

oz, (@) = | = Valzj-x) .. Valz;-1)P'(2;)
= Wa(zj-k41) - Valmj—1) T (2;)(2)41) (15)
— \P:l(l‘j)\lfa(xj+1) . \I/a(a:min{j+K)T},1)‘P(Jsmin{jJrK’T}) + F/(J?j).
We now take the smallest j € [T] for whichz; < landx;_q > 1,...,z,_x > L.
If such j does not exists, then z; > 1 duetoxg = --- = x_g41 = 1. Then 25 > 1, and so

on. Meaning that ; > 1 for all j € [T'], which contradicts the assumption of the theorem that
progi(z) < T.

Fixing such j, consider (15). There are two cases.
Case 1: x; > —1. Note that ¥, ®, ', ' > ( are non-negative and I < 0 is non-positive. Thus

OFr K o
o (@) = ~Valzj-k). . Uo(2j—2)Walzj—1)® (25).
J
Sincexj_1 >1,...,2j_g > 1land 1 > z; > —1 (see Lemmas D.1 and D.3), we get
OFr K o
P bl < —1.
e @)
Case 2: x; < —1. Note that U, &, ¥/, &’ > 0 are non-negative. Thus
OFr k.

Gt () <T'(a))

19
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Since z; < —1 (see Lemma D.2), we get

OFr K q

oz, () < —1.

Finally, we can conclude that

oOF o
IV Pk a(@)]] \”

Z "o, (x)‘ > 1.

Lemma D.6. Function Fr i o satisfies

Fra(0) = inf Fra(e) < A’K,a)-T,
zE
where A°(K,a) := \/2me - a¥.

Proof. Since I'(0) = 0 and ¥,, ® > 0, we get Fip k (0) < 0. Next, due toI'(z) > 0,0 < &(z) <
V2meand 0 < U, (x) < aforall z € RY,

T
FT)K)Q(JT) Z — Z \IJQ(LL‘Z‘,K) e \I/a(wi72)\pa(xifl>q)($i) Z -T 2me - CLK
=1

for all v € RT. O
Lemma D.7. Forall z € R, |[VFr g ()|, < 7oo(K,a), where voo (K, a) = 6v/2me3/? -
Ka*

Vioga®

Proof. Using (15),

OFr K.q
(0 < [atagor0) o a0
+ Vo (jok1) - Walaj—1) W () P(x41)
+...
+ W (7)) W (T)41) - - - \I/a(Imin{j-l-K,T}—l)(I)(zmin{j-‘rK,T})‘ + T (x5)] -
(16)
Thus,
OFT K a K K—1 2e 3 Ka¥
T hKa gy < K 2 < 6v2me?? ——— 17
‘ or; (z)] <a*Ve+ Ka ﬂe\/@—ke_ Te Tosa (17)
due to Lemmas D.1, D.2, and D.3. O

Lemma D.8. The function Fr i, is {1(K, a)-smooth, i.e.,

o RT, where gl(K’ a) = 12/27ed/2 . %.

VQFT,K,(L(Z)H S él(K,a)for all

Proof. Taking the second partial derivative in (15),

O?Fr k.

5a? () = | = Va(rj—K) .. Valzj_1)0"(2;)

—Va(rj-k+1) - - Yal@j—1) Vg ()P (2j41) (18)
— \I/Z(mj)\lla(l‘j+1) - \Ila(:Cmin{j%»K,T}fl)(I)(xmin{j+K,T}) + F//<.'I,'j)
Due to Lemmas D.1, D.2, and D.3,

O*Fr k.q ()
895?

564/2med/ 2K 1

. Ka¥X
+27e7? < 168V2me¥? . ——  (19)
log a log a

< [27(11( + K x

20
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Clearly, for all min{j + K, T} <i < T,

O*Fr k.
- — 0 20
due to the construction of Frr . Next, for all j < ¢ < min{j + K, T},
DL (1) [ Wi se) o Walry )W ()Wl 11) - s 1) (1)
61‘j8$i a\Li—K)- .- Faldj—1 a\Lj a\Lj4+1) .- Falli—1 7
~Wo(@iok1) - Va1V (2)Walzjp) - Walwio1) Wy () P(2iy1)
- ‘I’;(Ij)‘l’a(xjﬂ) e ‘I’a(xi—l)‘lfé(xi)\lfa(:cm) . ‘I’a(Imin{j+K,T}—1)‘I’(xmin{j+K,T}) )
and
0?°Fr k4 2¢3/2¢ K1 4y/2me?/2q K2 Ka*
Ry < T (K- 1) X ————————— < 427 21
‘ O0x;0x; (z)] < Vioga + )% loga - e loga @h

forall ¢ # j € [T] due to Lemmas D.1 and D.3 and e > a > 1

Notice that V2 Fr . is (2K + 1)-diagonal Hessian. Repeating a textbook analysis for completeness
and denoting temporary H := V2 Fr k., we will show that

2F “
IV2Pr g a(2)| < (2K +1) max |52 (22)
K 1je[T] O0x;0x;
for all z € RT. Indeed, for all z € R” such that ||z|| < 1,
T T min{i+K,T} T min{i+K,T}
o Ha| =} @iy oiHi| = le > wHy) < omax [Hyl (D el > lal ),
=1 j=1 i=1  j=max{i—K,1} BIelT] =1 j=max{i—K,1}

where the second equality due to H is (2K + 1)-diagonal. Using the Cauchy—Schwarz inequality,

min{i+K,T} 2 T min{i+K,T} 2

T T
CEE AT AND DD U D DN 7 BTSN D DY WD DR 1

=1 i=1 \j=max{i—K,1} =1 \ j=max{i—K,1}

since ||z|| < 1. Next, using Jensen’s inequality and ||z| < 1,

min{i+K,T} T
|a" Hz| < max, |H;;| | (2K +1 Z Z z3 < na |H;j| | (2K +1)2 Z z?
i i=1 j=max{i—K,1} J i=1
< (2K +1) max |H;;| .

1,j€

We have proved (22). It is left to combine (22), (21), and (19).

E PROOF OF THEOREM 4.2

Theorem4.2. Let L, A e, n,02,d, 7y, Ty, h > 0 be any numbers such that ¢, log* (n+1) < LA and

dimension d > Egm. Consider Protocol 1. For all i € [n] and k > 0, compressor C,f“ selects

and transmits P} uniformly random coordinates without replacement, scaled by any constants’, where
Pk € {0,...,d} may vary across each compressor 8. Then, for any algorithm A € Ay, (Def. 2.3),

"To potentially preserve unbiasedness. For instance, Rand K scales by 4/x.
8For instance, the compressors can be RandK (see Def. C.1) with any K € [d], PermK (Szlendak et al.,
2021), Identity compressor when PF = d.
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there exists a function f : R? — R such that f is L-smooth, i.e., |V f(x) — Vf(y)|| < Lz — y||
forall z,y € RY and f(0) — infcpa f(z) < A, exists a stochastic gradient oracles that satisfies

Assumption 1.3, and E [infyest IV f(y) HQ} > ¢ for all

= 1 LA : 1 1 ho?
t < cg X <log3(n+1) : T) mln{log(7L+1) . Tsd, max {h7 Tog? (n+1) : ?}} 5 (12)

where S is the set of all possible points that can be constructed by A up to time t based on I and
{I;}. The quantities ¢, ¢, and C3 are universal constants.

Proof. (Step 1: Construction). Using the construction from Section D.1, we define a scaled version
of it. Let us take any A > 0, d,T € N, d > T, and take the function f : R¢ — R such that

L\? x
fz) = mFT,K,a (%) )
where /1 (K, a) is defined in Lemma D.8 and z(7} € RT is the vector with the first T coordinates of
x € RZ. Notice that the last d — T coordinates are artificial.
First, we have to show that f is L-smooth and f(0) — inf, cpe f(2) < A, Using Lemma D.8,
IV f(@) = Vi)l = m [ Fruca (F2) = VErica (B2)] < 22|22 - 21|
= Lljom —ymll < Lllw -yl Va,y e RY

Let us take
T — A 61 (K7 a‘)
T LA2- AY(K,a) |’
Due to Lemma D.6,

L)? LNAY(K,a)T
0) — inf = ———(F 0) — inf F < —1 2 <A
f( ) zlean f(I) €1(K7a)( T,K,a( ) a:lenRT TKG( )) — él(K,a) = )
where A°(K, a) is defined in Lemma D.6. We also choose
2el1 (K
Ao VL) 1L( ) (23)
to ensure that
[;2)\2 T 2 T 2
IV = 2 ey HVFTK o (S| =2 | VPrma (KF)| > 25 1 [prog™ (o) < 77,
(24)
where the last inequality due to Lemma D.5. Note that
LA
T= 25
EAO(K@) (K, a) J 2
(Step 2: Stochastic Oracle).
We take the stochastic oracle construction form (Arjevani et al., 2022). For all j € [d],
[V f(2;€)]; = Vif(z) (14 1[j > progh(z)] £ vz € RY, (26)
b

and D¢ = Bernouilli(p,) for all j € [n], where p, € (0, 1]. We denote [z]; as the ;™ index of a
vector x € RY. Tt is left to show this mapping is unbiased and o2-variance-bounded. Indeed,

BV ] = Vis@) (141 1> pog(o)] (S5 1)) = wista)

Ge)]

for all ¢ € [d], and

E[IVF(:6) = VI@)*] < max |9,/ (@) B
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because the difference is non-zero only in one coordinate. Thus

2 242 Ty |12 1
E ||Vf($,§)—Vf(as)||2 < ||vf(x)|‘oo<1_p0') — L7A HFT7K7U’< A )Hoo(l pg)

Po (K, a)po
L2N*y5, (K, a) (1 — po)
- (1(K, a)ps ’
where we use Lemma D.7 in the last inequality. Taking
LN (K a) @3 [ 293 (K, a)
pU:mln{ﬁ@(I{’a),l} = mln{o_271}, (27)

we ensure that E {HVf(x,ﬁ) - Vf(x)||2] <o

(Step 3: Reduction to the Analysis of Concentration). At the beginning, due to Definition 2.3,
sY =0 forall i € [n]. Thus, if k = 0, all workers can receive zero vectors from the server. Thus, at
the beginning, all workers can only calculate stochastic gradients at the point zero.

Let t1* denote the earliest time at which all of the first K coordinates become non-zero in the local
information available to worker 4. In other words, ¢ is the first time when worker 7 has discovered
all of the first K coordinates. Consequently, prior to time

Ifl ‘= min tl,i (28)

i€[n]

neither the server nor any worker is able to discover (filled with non-zero values) the (K + 1)" and
subsequent coordinates due to Lemma D.4.

There are two options by which a worker may discover a new non-zero coordinate: through
local stochastic computations or through communication from the server.

Option 1: In the first option, a worker computes a stochastic gradient, which takes h sec-
onds. However, due to the construction of stochastic gradients, even if the computation is completed,
the worker will not make progress or discover a new non-zero coordinate, as it will be zeroed out
with probability p,. Due to Lemma D.4, each worker can discover at most one coordinate at position
progK(x) + 1 before time t; in the first K coordinates, where x is a query point.

Remark E.1. For this reason, making multiple queries with the same random variable instead of a single
query does not help the algorithm progress: if the coordinates are zeroed out, then they are zeroed out in
all vectors.

Let 11 4,1 be the number of stochastic gradients computations’ until the first moment when a co-
ordinate is not zeroed out in (26) in worker ¢. Assume that &1, &5, ... is a stream of i.i.d. random
Bernoulli variables from (26) in worker ¢ (all workers have different streams), then

Lt] [t]
IP)(771,1'71 S t) S Zp(gk = 17€k71 = 07 .. afl = O) = Zpa(l _po')j_l S tpa~
k=1 k=1

for all ¢ > 0. Similarly, let 7); ; ;, denote the number of stochastic gradient computations until the first
moment when a coordinate is not zeroed out in (26), after the moment when the (k — 1)™ coordinate is
no longer zeroed out in worker 4. In other words, worker ¢ should calculate 7, ; 1 stochastic gradients
to discover the first coordinate, calculate 7, ; » stochastic gradients to discover the second coordinate,
and so on. Since the draws of £ in (26) are i.i.d., we can conclude that

Pk <tnik—1,-->M,i1) < the
forall k > 1and ¢t > 0.

Option 2: In the second option, worker i receives P € {0,...,d} random coordinates
with the set of indices {11 1, ..., 11, p} without replacement, where it takes 7, seconds to receive one

°It is possible that P (1 ;.1 = 0o) > 0 if, for instance, the algorithm decides to stop calculating stochastic
gradients. And even IP (115,71 = co) = 1 if it does not calculate at all.
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coordinate. Then, the worker receives P € {0,...,d} random coordinates with the set of indices
{v2,1,. .., Vs p} without replacement, and so on (all workers get different sets; we drop the indices
of the workers in the notations).

Consequently, the worker receives a stream of coordinate indices (11, 2, .. . ) where we concatenated
the sets of indices, preserving the exact order in which the server sampled them. Note that all workers
have different streams, and we now focus on one worker.

Notice that
K
P(nelK) =~
since v is uniformly random coordinate from the set [d]. Next,
K

P (e € [K]|11) <

)

d—1
because either v € [K], in which case the probability is =L, or v, ¢ [K], in which case the
probability is dTKr Using the same reasoning,
K
P(v; € [K|lv1,.. o Vi) € 57—
(vi € [K]|v1, ..., vi-1) R
forall 7 < d.
Hence, the worker receives a stream of coordinates v, v, ... such that P (v; € [K]|v1,...,vi-1) <
K

prm for all ¢ < d. Let p; ;,1 be the number of received coordinates until the moment when the
last received coordinate belongs to [K] in worker ¢. Similarly, let 111 ; 5, be the number of received
coordinates until the moment when the last received coordinate belongs to [K], after the (k — 1)
time this has happened in worker 7. In other words, worker ¢ should receive i1 ;,1 coordinates to
obtain a coordinate that belongs to [K]. To get the next coordinate that belongs to [K], the worker
should receive (i1 ;2 coordinates, and so on. Then,

P(pri1=7) =P € [Kl,vj1 € [K],...,v1 & [K])

K
=P(v; € [Kllvj-1 € [K],...,11 € [K])P(vj—1 € [K],...,11 € [K]) < m
forall1 < j <d, and
Lt]
) Kt
P(u1in <t) = Z]P)(/h,m =J) < i—ir1 (29)

j=1
for all 0 <t < d. Similarly,

P (Ml,i,k = j|lt1,i,k—1, cee ,Ml,i,l)

= ]ID(VU-Fj € [K]7Vu+j—1 ¢ [K]v <y Yyt ¢ [K”VU € [K]a"'vyl g [KD
K

< )

~ max{d—u,0} —j+1

where u = 25;11 1,4, for all j < max{d — u,0}. Thus,
Kt
max{d — Zf;ll H1,i,5, 0} —t+ ].’

P(p1,ie < tp1ih—1s---H1,i1) <

forall 0 < ¢t < max{d — Ef;ll M550}

Recall that the workers can discover new non-zero coordinates only through the stochastic processes
discussed above. To discover all of the first K coordinates, either the first or the second process

must uncover at least % coordinates'?. If worker i has discovered fewer than % coordinates through

10At the end of the proof, we take K mod 2 = 0.

24



Under review as a conference paper at ICLR 2026

stochastic gradient computations and fewer than % coordinates through receiving coordinates from

the server, then it will not be able to cover all K coordinates. Hence,

t1>m1n min th.k TSZ,Ullk ) (30)

i€[n]

{1

K
where ¢, is defined in (28). This is because h ) ;> | 11,5« is the time required to obtain % “lucky

K
stochastic gradients, those for which the coordinates are not zeroed out, and 73 ) > | fi1,5,% is the
time required to receive % “lucky” coordinates that belong to [K].

Remark E.2. The previous derivations hold for all 7, > 0. If we start taking the communication time 7,
into account, then the bound on ¢; in (30) may only increase. For all 7, > 0, worker ¢ still has to discover
new non-zero coordinates either through stochastic gradient computations or by receiving coordinates from
the server and it will take at least

K

min < min hE nl.k,TgE ik

i€[n] =1
seconds to discover all of the first K coordinates.

Once the workers have discovered the first K coordinates, the discovery process repeats for the set
{K +1,...,2K}, which similarly requires at least

K K
2

min { min hg T]ka,qu U2 ik

i€ln] k=1 k=1

seconds, where {n; 1} and {y ; 1 } are random variables such that

P (Me,i0 < tMbsise—15- 50,515, Go—1) < tDgr 3D
forallb > 1,k > 1,4 € [n],t > 0, and
Kt

P (i < o k-1, s Mp,i1,Gp—1) < (32)
max{d — Z; 1 ubw,O} t+1

forallb > 1,k > 1,7 € [n], and ¢t < max{d — Z; 1 U in.ij, 0}, where Gy is the sigma-algebra
k—1
generated by {nb’,i,k}ie[nme[%],b’<b and {Mb’,i,k}ie[n]7ke[§],b’<b and u = Ej:l Hb,ij-

More formally, 72 ; j, can be defined as the number of stochastic gradient computations until the first
moment when a coordinate is not zeroed out in (26), after the moment when the (k — 1) coordinate
is no longer zeroed out, when prog of the input points to the stochastic gradients is > K, and pa ; k
be the number of received coordinates until the moment when the last received coordinate belongs to
{K +1,...,2K}, after the (k — 1)™ time this has happened, when prog® of the input points to the
compressor is > K + 1, and so on.

We define

P = (33)

Finally, to discover the T™ coordinates it takes at least

B K

min { min hE nbzk,ﬁg Wb,k

b €l k=1

seconds, where B = | L& | . It it left to use the following lemma.
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Lemma E.3. Let {ny; j }i j >0 and {1 i j }i j.o>0 be random variables such that
P b,ike < tMbi k=155 Mb,i,15 Gb-1) < tpo (34)
Sforallb> 1,k >1,i € [n],t >0, and
Kt
max{d — Zj:ll Hoi, 0} —t+ 1
forallb>1,k>1,i€[n],0 <t <max{d— Zf;ll Wb,i 5,0}, and 1 < K < d, where Gy_1 is the
sigma-algebra generated by {77b’,i,k}ie[n],ke[%]7b/<b and {,Ub’,i,k}ie[n},ke[g]7b/<b. Then

(35)

P (ttp,i0 < t{itbyie—1s- -5 o315 Go—1) <

B £ 5
,12[1,% min Zﬁb, ks T Zub, K

b=1 k=1 k=1
with

_ BK +1logd R

t:= —— 36

ARnZE@A+ Zlog2n)) {pa K (30)
where
_ 2K

(Step 4: Endgame). Thus, with probability at least 1 — 4, any zero-respecting algorithm requires at
least £ seconds to discover the T coordinate. Since prog” () < prog!(x) for all z € R”, and due
to (24),

. f v 2 2 : f]]_ 1 T
inf [V S()|* > 2¢ inf 1 [prog!(yr) < 7]

where S, is the set of all possible candidate points to be an e—stationary point up to time ¢, which can
be computed by A. Taking § = 3,

inf 2 inf 1 1 )| >
| uf IV7G)I°| > 28 | inf 1 [prog ) < 71| >

for t = 11 because prog! (y;71) < T for all y € S, with probability at least .

%l

1
2
It is left to choose K and a, and substitute all quantities to ¢. Using B = L
_ LK —logs h 7
= |_KJ 20g min { Ts }
e(2n)¥/ K (4 4 7 log(2n))

S T—K —1log8 min h 7
~ et(2n)2/K (4 + £ log(2n)) '

Due to (25), (27), and (33),
LA
> LzAO(K,a).zl(K,a).eJ — K —log8 { . {h ho? } Tsd}
min § max e —— —_— .
T e(2n)Y K (44 £log(2n)) "2ev2 (K, a) | 2K
Using the definitions of A%(K,a), Yoo (K, a), and ¢1(K, a),

_ 2 -t LAloga ho?loga Tod

4 2/K . S
r= ( (20)* <4+Klog<2’”‘>>) QwJ ‘K‘10g8> mm{max{h’mmm}’zf(}'
1
2K

We can take any a from the interval (1, €]. We choose a = 1 + +, thenloga = log (1 + 7) >
forall K > 1, a?! <e?forall K > 1, and

_ 2 - LA ha? Tsd
T S i R (o (-
= <e (2n) + 5 los(2n) 967ed K e 088 | min qmax | b oo SKE: 2K
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Taking K = 2 [2log(2n)], (2n)*/ %X < e, K < 16log(n + 1) and

_ 1 LA . ho? T.d
t> —32log(n + 1) | min { max < h, 3 ,
5¢5 \ | 96 - 84med log® (n + 1)e 288 - 84meSlog®(n + 1)e J " 32log(n + 1)

1 LA . ho? Tod
> — 3 —36log(n + 1) | min < max q h, 3 , .
5e> \ 96 - 8*med log” (n + 1)e 288 - 84medlog’(n + 1)e )~ 32log(n + 1)

We assume % > log4(n + 1) for a universal constant ¢;. Taking ¢; large enough, one can see
that

_ 1 LA . ho? Tsd
2 3 min § max < h, 3 , .
5e®> \2-96 - 8*medlog®(n + 1)e 288 - 84meSlog’(n + 1)e J " 32log(n + 1)

For a small enough universal c5, we get the inequality

_ LA . ho? Ted
t>¢ X | —5——— | min<{max<{h, — , ,
log”(n + 1)e log®(n + 1)e J "log(n +1)

which finishes the proof. Notice that we can take

LAloga LA
- {487re3K2a2K€J © <log3(n + 1)5)

E.1 MAIN CONCENTRATION LEMMA

Lemma E.3. Let {ny; j}i ;>0 and { i j }i j.v>0 be random variables such that
P (mo,i < tMbyik—15- -5 Mb,i,15,Go—1) < tDg 34
forallb> 1,k >1,i € [n],t >0, and
Kt
P (pev,i ke < titbyie—1s- -5 fb,i1, Go1) < ) (35)
i i, v max{d — 25;11 Hb.i 5 0} —t+1
forallb> 1,k >1,i€[n],0 <t < max{d— ZJ 1 /Lb”70}7andl < K < d, where Gy_1 is the
sigma-algebra generated by {nb’,z,k}ze[n],ke[ﬂ,b%b and {Nb’,i,k}ie[n},ke[g],b'<b~ Then

B 2 >
P min < min hznb,i,kﬂ—s Zﬂb,i,k <t| <6

b1 i€[n] P
with

_ BK +logd . h

t:= —, 36

e(2n)?/K (4 4+ 2 log(2n)) i {po PK} GO
where
2K

K K
Proof. Let us temporarily define 8 ; := min {h Do Mk Ts D iy ,ub’i,k} . Using Chernoff’s
method, we get

B
z:mlnﬂbZ <t|=P|lexp —Z)\minﬁbyi > exp (—Af)
LE[ b1 i€[n]
B
<exp (M) E [eXp (— ; A Znel[lf} ﬁb,i)] (37)

B-1
=exp(M)E |E [exp (—)\ min 6312-) (]31] exp | — Z Amin S ;
1€[n] b1 1€[n]
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forall A > Osince 31 4,...,Bp—1,; are Gp_1—measurable. Consider the inner expectation separately:

i€[n] i€[n]

E{exp( )\mm631>‘93 1} = [maxexp( ABB.i)

Gp— 1] ZE exp (—A\BB,i)| GB-1],

where we bound max by > . Using the temporal definitions of {85z ;},

E{exp( )\mlnﬁBz)’gB 1}
zen

K K
n
gZ]E exp [ —Amin thBlk,TSZ/lek g1
=1 | k=1 k=1
= ZIE max { exp —)\thB}i,k ,exp | —ATg ZMB,i,k gp-1 (38)
i=1 L k=1 k=1
n [ % n 2
< Z]E exp —AthBM Gp-1 +Z]E exp _)\TSZNB,i,k p-1
i=1 k=1 i=1 =

he= 12%::

Using the tower property,

K
2
I = ZE E [exp( Ahng 7) ‘ NBi K 15 J]B,z‘,thq] exp | —Ah Z NB.ik || 981
i=1 k=1
J1::
(39)
Next,
J1 =K {exp( )‘hnBz )‘7’]3 177_1,...,77331"1,ng1:|
<exp(—=At)P (}”73,1‘,% > t‘nB’i%fl, e s MBLis 9371)
P (hnB,i,% S t‘nB,i,%—h ... 7nB,i71a gB—l)
= exp (—)\t) —|— (1 — exXp (—)\ht))P (hnB,i,% S t‘”B,i,%—l’ ey ’173’1"1, ngl)
<exp(=At)+P (hnB’i% < t‘nB’i’%fl, ey MBS 9371)
t
=exp (—At) + P (773,i,’§ S 3Bk 1B QB1)
for all ¢ > 0. Due to (34),
s
J1 <exp(—=At) + %
Substituting to (39),
K1
11 < Z <exp /\t + h) E exp —Ah ]; NB,i.k QB_l
Using the same arguments % — 1 times, we obtain
K
o\ ?
I <n(exp(=Xt)+ e (40)
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IA
wlx

for all t > 0. The analysis of 12K /2 a little bit more evolved. Forall 1 < j

n J
I = ZE lexp <—>\Ts ZMB,i,k) ‘ g311
i=1 k=1

n
:Z]E E [exp (=ATspB,ij)| 1Bij—1s- -+ IB,i,1, GB-1 eXp( AT;ZMBM) Gp_1

Ko:=

and I3 = n. Let us define u = Z?C:l wB,ik- Ifu> %, then

ATod
Ky = Eexp (=ATspB,ij)| KB,ij—1s- - - > 1B,i,1, GB—1] €xp (= ATyu) < exp (- 28 )

Otherwise, if u < %, then, for all £ > 0,

E [exp (=ATspB,ij)| Bij—1,-- - Bi,1, GB—1]

KB j—1y--- ,MB,i,l,gB—1>

t
<exp(=At) +P <MB,i,j < —
Ts
Kt 2Kt

< M) T < —\t
< exp )+d7ufi+l_eXp( )+’Tsd—2t

Ts

due to (35) and u < %. Combining both cases,

K5 < max { (exp(—At) flli 2t> exp ( )‘T*Z“B i k) ,exp <_)\72'sd> }

forall t < 752‘1 and v > 0, and
( )\’Tsd>
+nexp | — 5

n

; 2Kt
] <
I < (exp( At) + Tsd Qt) g E

j—1
exp (ATS Z ﬂB,i,k) | Gp-1

i=1 k=1
2Kt . Ard
- <exp(—)\t) + i Qt) 7'+ nexp (— 5 ) , (41)

where we use the inequality max{a, b} < a + b for all a,b > 0. Substituting (40) to (38),

E{exp( )\mln631> QB_l} Sn(exp()\t)thza) +12%,

i1€[n]

4+ £ log(2n)

where ¢, A > 0 are free parameters. Taking t = —E—=—,
K
] et (44 glog2n))ps\* o x
e o (-aumiy om0 ] <0 (i + ) i

Choosing \ = ¢*(2n)?/" (4 + 7 log(2n)) max { b 22}

K
2¢7t \?* & 1
E — A mi i il <n — I = - (274
[exp( 52[1;1]537)’gB 1} _n((2n)2/K) + I, 2(6 )
With this choice of A and ¢ in (41), we get

; 3e~4 -
< (W) 7'+ nexp (—64(2n)2/K(4K + 210g(2n))>

3e~* =1 4K 3¢\’ 4ot K
< () 27 < (e )
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forall j > 1 because ¢ < 254(2E$/KK7 A= & lfg(%) > 2e*(2n)%/ 5 (4 + Z1og(2n))£;. In the

- J
third inequality, we unrolled the recursion with I3 = n and use (%) <2.

K
Finally, 121(/2 < % (3674) 2 4 9e 2K < %671{ and
1 1 1
E | exp )\mmﬂBz Gp_1 §7(2 ) +IK/2 < e K4 e K< e K,
ZE n 2 2 2

Substituting the last inequality to (37) and repeating the steps B — 1 more times, we get

(meﬂbz <t> <exp (M — BK).

1€[n]

It is left to take ¢ = BK+IOE5. -
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F  MAIN THEOREM WITH WORKER-TO-SERVER COMMUNICATION

In this section, we extend the result of Theorem 4.2 by taking into account the communication time
Tw. However, in this section, we ignore the communication times from the server to the workers in the
analysis, which will be sufficient to obtain an almost tight lower bound if combined with Theorem 4.2.

Tyurin et al. (2024) consider a similar setup with 7, = 0. However, their protocol does not allow the
workers to modify the iterate computed by the server and operates in the primal space. For instance,
the workers are not allowed to run local steps. Moreover, Pik are fixed in their version of Protocol 1.
We improve upon this in the following theorem:

Theorem F.1. Let L, A, e,02,n,d, Ty, Ts, h > 0 be any numbers such that € < ¢, LA and d > CAZ—?.
Consider Protocol 1. For all i € [n] and k > 0, compressor éf selects and transmits I:’ik uniformly
random coordinates without replacement, scaled by any constants, where PF € {0,...,d} may
vary across each compressor. For any algorithm A € Ay, there exists a function f : R — R
such that f is L-smooth, f(0) — inf cra f(x) < A, exists a stochastic gradient oracle that satisfies

Assumption 1.3, and E {infyest IV f(y) HQ} > ¢ for all

LA . ho? 7wd [ho?7yd ho?
t<ec3X ————— -minqmax{ —, — {/——— h, Ty p,maxq —,h o,
elog(n+1) ne’ n ne €

where Sy is the set of all possible points that can be constructed by A up to time t based on I and
{I;}. The quantities ¢y, co, and c3 are universal constants.

Proof. The proof closely follows the analysis from (Tyurin et al., 2024; Tyurin & Richtarik, 2024)
and the proof of Theorem 4.2, but with some important modifications. In this proof, it is sufficient to
work with (6) and Lemmas 2.1 and 2.2.

Let us fix A > 0 and define the function f : R¢ — R such that
LX)
().
f(z) oty
where the function Fr is given in (6) and z (1) € RT is the vector with the first T coordinates of
x € R?. Notice that the last d — T' coordinates are artificial.
First, we have to show that f is L-smooth and f(0) — inf,cg« f(2) < A. Using Lemma 2.2,

IV5@) - V)l = 2 [vrr () - v (U0 < 2 |12 - 210

=Lz —ynl| <Lz -yl Va,yeR™

Aty
7= | o)

0 inf = L® Fr (0 inf F
O /@ =7 O g o) s =7

Taking

2 A0
LA

due to Lemma 2.2.

Next, we construct a stochastic gradient mapping. For our lower bound, we define

V(0 €)= V35) (14115 > proglo] (= -1) ) ve e @)

g

and let D¢ = Bernoulli(p,) for all j € [n], where p, € (0,1]. We denote [z]; as the j® coordinate

of a vector z € R%. We choose
[2)2~2
Do 1= min {%O, 1} .

o203
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Then this mapping is unbiased and o2-variance-bounded. Indeed,

B[99l = Vi (o) (14 103> prog(o)] (S -1) ) = vist@)

o
S 2
< )
po
because the diffel‘ence iS non-zero Only iIl one COOI‘dinate. Thus

212 _ 232 )\ |12 e
E[IVf.6 - V@] < V@)% (1 —ps) _ L2 ||Fr (54, (1 —po)

forall ¢ € [d], and

E [IV/(w:6) = Vi @] < max |V, () E

Po 3ps
_ PN -p) _
— g%pa — )
where we use Lemma 2.2.
Taking
L VEL
=7
we ensure that
L2)2 X 2
IVF@I° = =5 HVFT (%) H > 2¢1 [prog(r)) < T] (43)
1
for all z € R?, where we use Lemma 2.1. Thus
AL
T = {25€1A0J (44)

and

2 2
pU:min{ E,};‘X’,l}.
o

Using the same reasoning as in Tyurin et al. (2024) and our Theorem 4.2, we define two sets of random
variables. Let 7, ; be the first computed stochastic gradient when the oracle draws a “successful”
Bernoulli trial in (42) at worker ¢. Then,

P (771,1' S t) S Z(l - pa)iilpa S Do Ltj

i=1
fort > 0, and

P (m, <t) <min{py [t],1}

For all i € [n], the server receives a stream of coordinates from worker ¢. Let yi1 ; be the number of
received coordinates by the server from worker ¢ until the moment when the index of the last received
coordinate is 1. Let us define

2
Pd ‘= 4
Similarly to the proof of Theorem 4.2 with K = 1 (see (29)),
[t] 1)
P i <tlmsi) = P i1=7) < ——.
(1, < tms) ;:1 (L1610 =) F—

for all ¢ < d. Thus,

L]

< <
P(p1i < tlmy) < {d“rl’ t< < {LtJ Pd, U<

1, s < min{2 |t] pa, 1}

[SIISHNIISW

1, t>

[ ISR IIH
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forall t > 0.

i1

There are two ways in which worker 7 can discover the first coordinate. Either the worker is “lucky
and draws a successful Bernoulli random variable locally, or it gets to discover the first coordinate
through the server. Thus, worker ¢ requires at least

Y1,i = min {hm,m ~min {hn; + Twﬂl,j}} = min {hny; + 1[i # jlTwp1,5}
J€[n],j# J€[n]

seconds because hn;; is the minimal time to discover the first coordinate locally, and
Minjie[n] j£i {hm. g+ Twh) is the minimal time to discover the first coordinate from other workers
via the server, which can transmit it to worker 7.

Remark F.2. The previous derivations hold for all 74 > 0. If we start taking the communication time
T, into account, then y; ; may only increase. For all 7y > 0, worker i still requires at least 31 ; sec-
onds for the same reason that h); ; is the minimal time to discover the first coordinate locally, and
minje[n] i {hnl?j + TW/AL]‘} is the minimal time to discover the first coordinate from other workers. If
we start taking into account the communication time from 7, the lower bound

e ,
mm{ 771"’J-e?3]1?¢1{ M1 +Tw/m}}
still holds.

Using the same reasoning, worker ¢ requires at least

Yk 1= Hel%n] {hng,; + 1[i # jlrwpin; + yr—1,5}
JE€[n

seconds to discover the k™ coordinate for all & > 2, where

P (e, <t|Gr—1) < min{[t] po, 1} (45)
forallk > 1,4 € [n],and t > 0, and
P (pr,s < i, Ge—1) < min{2 [t] pg, 1} (46)

forall k > 1,4 € [n],and t > 0, where Gy _ is the sigma-algebra generated by {9+ i }ic[n) <1 and
{Mk’,i}ie[n}, w <k- Thus, the first possible time when the workers and the server can discover the 7™
coordinate is

Yr = M yr,;.

i€[n]
For this random variable, we prove the lemma below (see Section F.1).

Lemma F.3. Let {ny ;}i x>0 and { i i }i x>0 be random variables such that

P (ki < tGr—1) < min{|t] py, 1} (47)
forallk > 1,i € [n],and t > 0, and
P (i < tMkis Gr—1) < min{2 |t] pg, 1}, (48)

forallk > 1,i € [n], andt > 0, where Gy, is the sigma-algebra generated by {0y i }ic[n] k' <k
and { i i Yie[n] b <k~ Then

P(yr <t)<¢
with
_ T-1 log & h T Iy h
. w.mm{max{,ﬂf’hﬁw},}, 49)
32log(8n) Do PdN \/PoPd Do
where

Yr = mun yr g,

i€[n]
Ykyi 1= HEI%H] {hnk,; + 1[i # jlrwiin; + yr—1,5}
JjE€[n

forallk > 1,i € [n] and yo; = 0 for all i € [n].
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Thus, with probability at least 1 — &, any zero-respecting algorithm requires at least ¢ seconds to
discover the last coordinate. Due to (43),

inf ||V 2592 inf 1 T
Jnf IVl > ¢ lnf [prog(yir)) < T,

where S, is the set of all possible candidate points to be an e—stationary point up to time ¢, which can
be computed by A. Taking § = 1,

E | inf | > 2¢E | inf 1 7| >
ot VS| > 268 | inf 1 fprog(um) < 7] >

for ¢ = %t_ because prog(y(r)) < 7 for all y € S; with probability at least % It is left to substitute all
quantities:

t= {ZEﬁLAOJ _logn+10g% min { max ﬁrn X 702 1 de thW h, , hmax 1
B 64 log(8n) i 2ey2)’ 2672 v * 2672 ’

Since £, A°, v, are universal constants, assuming £ < ¢; LA for some small universal ¢; > 0, we

get
LA . ho? Twd [ho?7yd ho?
t>c3 X ———— -min<{max{ —, —,4/ ——,h, Ty p ,max< —., h
elog(n+1) ne’ n ne €

for some small universal c3 > 0. Notice that we can take any dimension d such that

izT-0("2),

€
O
F.1 MAIN CONCENTRATION LEMMA
Lemma F.3. Let {ny i }i x>0 and { g i }i k>0 be random variables such that
P (ki < t|Gr—1) < min{[?] ps, 1} (47)
Sforallk > 1,i € [n],andt > 0, and
P (pr,i < [0k,is Ge—1) < min{2 [¢] pa, 1}, (48)

forallk > 1,i € [n], andt > 0, where Gy, is the sigma-algebra generated by {ny i }ic[n] k' <k
and {:u’k’,i}ie[n],k’<k‘ Then

P(yp <t) <6
with
_ T —1 1
t::W.mm{ma}({h,w’Ww,hmw},h}, 49)
321og(8n) Do Pan \/DoPan Do
where

yr = min yr;,
i€[n]

Yk,i = Hel%ﬂ] {hnk,; + 1[i # jlrwpn,; + Yr—1,5}
J n
forallk > 1,i € [n]and yo, = 0foralli € [n)].
Proof. Using the Chernoff method for any s > 0 and k& > 1, we get

]P(yk < E) = P(*Syk > 755 =P (6*51% > efsf) < BSEE [e*Syk}
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= ¢*'E {exp (—S min y;m)} =¢"'E [maxexp (—SYk.j)
jen]~ J€[n]

Bounding the maximum by the sum,

P(yx <t) < e ) Elexp (—syx,)] < ne™ max e [exp (—syx. ;)] - (50)
j=1

We focus on the last exponent separately. For all ¢ € [n],
E [exp (—syr,i)] = E [exp (—8 min {hnk; + 1[0 # jl7whn,; + yk—l,j}):|

=E eré%exp( s (hng,j + 1[i # jlTwhin; + yr— 1,1))}

IN

Z [exp (=s (hnej + L[ # jlrwiie + Yr—-1,5))] 1)

E |E[exp (—s (hnk,; + 1[i # jlmwitn,j))| Ge—1] exp (—syk—1,5)
Iy:=

|

<
Il
—

Considering the inner expectation separately:
Iy = Elexp (=s (hny,; + 1[i # jlrwiin,;))] Gr—1]
< exp (=st) + P (hnk; + 1[i # jlrwpn; < t1Gk-1)

for all ¢ > 0. Using the properties of condition expectations,

Iy <exp(—st) +P(hny; <t 1[0 # jlrwpr; < t|Gk—1)
=exp(—st) + E[1 [hne; <] L[L[i # jlrwpn,; < t]| Ge—1]
=exp(—st) + E[E[L[1[i # jlmwpn,; < ][ 1k,5, Gr—1] 1 [hnw,; < 1| Gro—1]
= exp (—st) + E [P (1[¢ # jlrwpn; < tnw,j, Ge-1) L [hne; < ]| Gr-1]-

If © = j, then we bound the probability by 1 and get

I <exp(—st) +E[1 [hn; < t]|Gr-1]
=exp (—st) + P (hng,; < t|Gr-1)

t
<exp(—st)+ {hJ Pos
for all t > 0, where we use (47). Otherwise, if ¢ # j, using (48) and (47),

I <exp(—st)+E {min {1,2 {:J pd} 1 [hng,; < t]’ Qk—1}

t
= exp (—st) + min {1, 2 L_J pd} P (hng,; < t|Gr—1)

< exp (—st) + min {1, 2 {tJ pd} min {1, VJ pg}
Tw h
for all ¢ > 0. Substituting the inequalities to (51),
. t . t
E [exp (—syk,:)] = Z (exp (—st) + min {1, 2 L_J pd} min {1, LhJ p0}> E [exp (—syr—1,5)]
j#i v
t
+ (exp (—st) + min {17 \‘hJ pg}> E [exp (—syk—1i)] -

foralli € [n] and ¢t > 0. Thus,

mfﬁE [exp (—syk,i)]
1€n
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IN

(0 1) (oxp sty +min {12 | [ bmin |} ) o (e (o 4 {1 2] )

X m?)]dE [exp (—syk—1,:)]
1€|n

~ oot 1) (o {122t {1 £ ) a1 | Y] Bl -

Taking s = @, we get

max E [exp (—syg,;)]

i€[n]
+(n—1) <min {1,2 MVJ pd} min {1, ULJ pa}) + min {17 ULJ pa} grel%f]{]E lexp (—syk—1.1)] -

Is:= I3:=

<

| —

(52)
Next, we take t = min{ty, ¢}, where
h Tw VhTy h T
1 := max ’ ’ ' 90 90 [
32p,n" 32pan’ 32, /Dopan 32" 32

and
fy o= "
2 32p,
to ensure that .
. tops
I3 < 1 < —.
3-“““{ "h }_16

There are five possible values of ¢;.

Iftl - 3217%7 then

Ift, = 32?@» then

_ vV hTy
If tl = W, then

Ift; = 4, then

Finally, if t; = 33, then

Thus, using (52), we obtain
1 1 1
max E [exp (—syr.i)] < |= + — + — | maxE [exp (—syp_14)] < e ' max[E [exp (—syp_1.4)]
i€ln] ’ 8 16 16| ie[n] ’ i€[n] ’
for our choice of ¢. Unrolling the recursion and using o ; = 0 for all i € [n],

m?)]{E [exp (—syr.i)] < e *.
i€[n
We substitute it to (50), to get

P(yk < t_> < esf—i—logn—k.

It is left to choose t = M. O
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