

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROVING THE LIMITED SCALABILITY OF CENTRALIZED DISTRIBUTED OPTIMIZATION VIA A NEW LOWER BOUND CONSTRUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

We consider centralized distributed optimization in the classical federated learning setup, where n workers jointly find an ε -stationary point of an L -smooth, d -dimensional nonconvex function f , having access only to unbiased stochastic gradients with variance σ^2 . Each worker requires at most h seconds to compute a stochastic gradient, and the communication times from the server to the workers and from the workers to the server are τ_s and τ_w seconds per coordinate, respectively. One of the main motivations for distributed optimization is to achieve scalability with respect to n . For instance, it is well known that the distributed version of SGD has a variance-dependent runtime term $h\sigma^2 L\Delta/n\varepsilon^2$, which improves with the number of workers n , where $\Delta := f(x^0) - f^*$, and $x^0 \in \mathbb{R}^d$ is the starting point. Similarly, using unbiased sparsification compressors, it is possible to reduce *both* the variance-dependent runtime term and the communication runtime term from $\tau_w dL\Delta/\varepsilon$ to $\tau_w dL\Delta/n\varepsilon + \sqrt{\tau_w d h \sigma^2/n\varepsilon} \cdot L\Delta/\varepsilon$, which also benefits from increasing n . However, once we account for the communication from the server to the workers τ_s , we prove that it becomes infeasible to design a method using unbiased random sparsification compressors that scales both the server-side communication runtime term $\tau_s dL\Delta/\varepsilon$ and the variance-dependent runtime term $h\sigma^2 L\Delta/\varepsilon^2$, better than polylogarithmically in n , even in the homogeneous (i.i.d.) case, where all workers access the same function or distribution. Indeed, when $\tau_s \simeq \tau_w$, our lower bound is $\tilde{\Omega} \left(\min \left\{ h \left(\frac{\sigma^2}{n\varepsilon} + 1 \right) \frac{L\Delta}{\varepsilon} + \tau_s d \frac{L\Delta}{\varepsilon}, h \frac{L\Delta}{\varepsilon} + h \frac{\sigma^2 L\Delta}{\varepsilon^2} \right\} \right)$. To establish this result, we construct a new “worst-case” function and develop a new lower bound framework that reduces the analysis to the concentration of a random sum, for which we prove a concentration bound. These results reveal fundamental limitations in scaling distributed optimization, even under the homogeneous (i.i.d.) assumption.

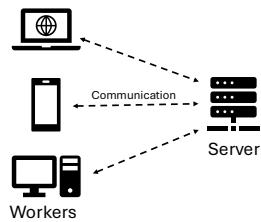
1 INTRODUCTION

We focus on the classical federated learning setup, where n workers, such as CPUs, GPUs, servers, or mobile devices, are connected to a central server via a communication channel (Konečný et al., 2016; McMahan et al., 2017). All workers collaboratively solve a common optimization problem in a distributed fashion by computing stochastic gradients and sharing this information with the server, which then propagates it to other workers. Together, they aim to minimize a smooth nonconvex objective function defined as

$$\min_{x \in \mathbb{R}^d} f(x), \quad (1)$$

where $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and d is the dimension of f . We assume that d is huge, which is indeed the case in modern machine learning and large language model training (Brown et al., 2020; Touvron et al., 2023).

We consider the *homogeneous* (i.i.d.) setting, where all workers have access to stochastic gradients of the same underlying function f . As the reader will see, the **homogeneous setting assumption**



054 **is a challenge, not a limitation of our work:** all results extend, potentially with even stronger
 055 implications, to the more general *heterogeneous* (non-i.i.d.) case, when each worker i works with
 056 $f_i \neq f$. We consider the standard assumptions:

057 **Assumption 1.1.** f is differentiable & L -smooth, i.e., $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|, \forall x, y \in \mathbb{R}^d$.

058 **Assumption 1.2.** There exist $f^* \in \mathbb{R}$ such that $f(x) \geq f^*$ for all $x \in \mathbb{R}^d$. We define $\Delta :=$
 059 $f(x^0) - f^*$, where x^0 is a starting point of methods.

061 For all $i \in [n]$, worker i calculates unbiased stochastic gradients $\nabla f(x; \xi)$ with σ^2 -variance-bounded
 062 variances, where ξ is a random variable with some distribution \mathcal{D}_ξ .

063 **Assumption 1.3 (Homogeneous setting).** For all $i \in [n]$, worker i can only calculate $\nabla f(x; \xi)$ and
 064 $\mathbb{E}_\xi[\nabla f(x; \xi)] = \nabla f(x)$ and $\mathbb{E}_\xi[\|\nabla f(x; \xi) - \nabla f(x)\|^2] \leq \sigma^2$ for all $x \in \mathbb{R}^d$, where $\sigma^2 \geq 0$.

066 The goal in the nonconvex world is to find an ε -stationary point, a (random) point $\bar{x} \in \mathbb{R}^d$ such that
 067 $\mathbb{E}[\|\nabla f(\bar{x})\|^2] \leq \varepsilon$ (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). We also consider a realistic
 068 computation and communication scenario:

069 **Assumption 1.4.** Each of the n workers requires at most h seconds to compute a stochastic gradient,
 070 and communication *from the server to any worker* (s2w communication) takes at most τ_s seconds per
 071 coordinate, and communication *from any worker to the server* (w2s communication) takes at most τ_w
 072 seconds per coordinate.

074 For instance, under Assumption 1.4, it takes $d \times \tau_s$ and $d \times \tau_w$ seconds to send a vector $v \in \mathbb{R}^d$ from
 075 the server to any worker and from any worker to the server, respectively. We consider settings with
 076 bidirectional communication costs, where communication in both directions requires time. Typically,
 077 especially in the early stages of federated learning algorithm development, most works assume that
 078 communication *from the server to the workers* is free, i.e., $\tau_s = 0$, which is arguably not true in
 079 practice: communication over the Internet or 4G/5G networks can be costly in both directions (Huang
 080 et al., 2012; Narayanan et al., 2021).

081 1.1 RELATED WORK

083 **1. Communication is free.** Let us temporarily assume that communication does not take time, i.e.,
 084 $\tau_s = 0$ and $\tau_w = 0$. Then, in this scenario, the theoretically fastest strategy is to run the Synchronized
 085 SGD method, i.e., $x^{k+1} = x^k - \frac{\gamma}{n} \sum_{i=1}^n \nabla f(x^k; \xi_i^k)$, where $\gamma = \Theta(\min\{1/L, \varepsilon n / L \sigma^2\})$, $\{\xi_i^k\}$
 086 are i.i.d., and $\{\nabla f(x^k; \xi_i^k)\}$ are computed in parallel by the workers, which send to the server
 087 that aggregates and calculates x^{k+1} . One can show that the time complexity of this method is
 088 $\mathcal{O}(h(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L \Delta}{n \varepsilon^2}))$, because it requires $\mathcal{O}(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L \Delta}{n \varepsilon^2})$ iterations (Lan, 2020), and each iteration
 089 takes at most h seconds due to Assumption 1.4. Moreover, this result is *optimal and can not be*
 090 *improved* (Arjevani et al., 2022; Tyurin & Richtárik, 2023b).

091 *Observation 1:* One obvious but important observation is that the second “statistical term” in the
 092 complexity bound scales with n . The larger the number of workers n , the smaller the overall time
 093 complexity of Synchronized SGD, with a linear improvement in n . This is a theoretical justification
 094 for the importance of distributed optimization and the use of many workers.

095 **2. Worker-to-server communication can not be ignored.** For now, consider the setup where
 096 communication from workers to the server takes $\tau_w > 0$ seconds, while communication from the
 097 server to the workers is free, i.e., $\tau_s = 0$. In this scenario, the described version of Synchronized
 098 SGD has a suboptimal $\mathcal{O}(h(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L \Delta}{n \varepsilon^2}) + \tau_w d(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L \Delta}{n \varepsilon^2}))$ time complexity, because it takes h
 099 seconds to calculate a stochastic gradient and $\tau_w d$ seconds to send the stochastic gradients of size d
 100 to the server, which calculates x^{k+1} . However, if we slightly modify this method and consider Batch
 101 Synchronized SGD:

$$102 \quad x^{k+1} = x^k - \frac{\gamma}{n} \sum_{i=1}^n \frac{1}{b} \sum_{j=1}^b \nabla f(x^k; \xi_{ij}^k) \quad (\text{Batch Synchronized SGD})$$

105 with $b = \Theta(\sigma^2 / \varepsilon n)$ and $\gamma = \Theta(1/L)$, then the time complexity becomes

$$106 \quad \mathcal{O}\left(h\left(\frac{L\Delta}{\varepsilon} + \frac{\sigma^2 L \Delta}{n \varepsilon^2}\right) + \tau_w d \frac{L\Delta}{\varepsilon}\right), \quad (2)$$

108 because the number of iterations reduces to $\mathcal{O}(L\Delta/\varepsilon)$. In other words, each worker, instead of immediately sending a gradient, locally aggregates a batch of size b to reduce the number of communications. It turns out that the last complexity can be improved further with the help of unbiased compressors:

111 **Definition 1.5.** A mapping $\mathcal{C} : \mathbb{R}^d \times \mathbb{S}_\nu \rightarrow \mathbb{R}^d$ with a distribution \mathcal{D}_ν is an *unbiased compressor* if
 112 there exists $\omega \geq 0$ such that $\mathbb{E}_\nu[\mathcal{C}(x; \nu)] = x$ and $\mathbb{E}_\nu[\|\mathcal{C}(x; \nu) - x\|^2] \leq \omega \|x\|^2$ for all $x \in \mathbb{R}^d$. We
 113 $\mathbb{U}(\omega)$ denote the family of such compressors. The community uses the shorthand $\mathcal{C}(x; \nu) \equiv \mathcal{C}(x)$,
 114 which we also follow.

116 A standard example of an unbiased compressor is $\text{Rand}K \in \mathbb{U}(d/K - 1)$, which selects K random
 117 coordinates of the input vector x , scales them by d/K , and sets the remaining coordinates to zero (see
 118 Def. C.1). Numerous other examples of unbiased compressors have been explored in the literature
 119 (Beznosikov et al., 2020; Xu et al., 2021; Horváth et al., 2022; Szlendak et al., 2021). Using the
 120 seminal ideas (Seide et al., 2014), we can construct a modified version of QSGD (Alistarh et al., 2017)
 121 (special case of Shadowheart SGD from (Tyurin et al., 2024)), which we call Batch QSGD:

$$122 \quad x^{k+1} = x^k - \frac{\gamma}{nbm} \sum_{i=1}^n \sum_{k=1}^m \mathcal{C}_{ik} \left(\sum_{j=1}^b \nabla f(x^k; \xi_{ij}^k) \right), \quad (\text{Batch QSGD})$$

125 where worker i sends m compressed vectors $\{\mathcal{C}_{ik}(\cdot)\}_{k \in [m]}$ to the server, which aggregates and
 126 calculates x^{k+1} . With $\text{Rand}K$ and proper parameters¹ (Tyurin et al., 2024), we can improve (2) to

$$128 \quad \mathcal{O} \left(h \left(1 + \frac{\sigma^2}{n\varepsilon} \right) \frac{L\Delta}{\varepsilon} + \tau_w \left(\frac{d}{n} + 1 \right) \frac{L\Delta}{\varepsilon} + \sqrt{\frac{d\tau_w h\sigma^2}{n\varepsilon} \frac{L\Delta}{\varepsilon}} \right). \quad (3)$$

130 *Observation 2:* As in *Observation 1*, unlike (2), the time complexity (3) scales with the number
 131 of workers n , which once again justifies the use of many workers in the optimization of (1). The
 132 “statistical term” $h\sigma^2 L\Delta/n\varepsilon^2$ and the “communication term” $\tau_w dL\Delta/n\varepsilon$ improve linearly with n , while
 133 the “coupling term” $\sqrt{d\tau_w h\sigma^2/n\varepsilon} L\Delta/\varepsilon$ improves with the square root of n , which can reduce the effect
 134 of d and σ^2/ε for reasonably large n .

136 A high-level explanation for why the dependence on d improves with n is that all workers use i.i.d.
 137 and unbiased compressors $\{\mathcal{C}_{ik}\}$, which allow them to collaboratively explore more coordinates. This
 138 effect is similar to Synchronized SGD, where the variance $\mathbb{E}_\xi[\|\frac{1}{n} \sum_{i=1}^n \nabla f(x; \xi_i^k) - \nabla f(x)\|^2] \leq \frac{\sigma^2}{n}$
 139 also improves with n . There are many other compressed methods that also improve with n , including
 140 DIANA (Mishchenko et al., 2019), Accelerated DIANA (Li et al., 2020), MARINA (Gorbunov et al.,
 141 2021), DASHA (Tyurin & Richtárik, 2023a), and FRECON (Zhao et al., 2021).

142 **3. Both communications can not be ignored.** Consider a more practical scenario, and our main
 143 point of interest, where the communication time from the server to the workers is $\tau_s > 0$. In this case,
 144 **Batch QSGD** requires

$$146 \quad \mathcal{O} \left(h \left(1 + \frac{\sigma^2}{n\varepsilon} \right) \frac{L\Delta}{\varepsilon} + \tau_w \left(\frac{d}{n} + 1 \right) \frac{L\Delta}{\varepsilon} + \sqrt{\frac{d\tau_w h\sigma^2}{n\varepsilon} \frac{L\Delta}{\varepsilon}} + \tau_s d \frac{L\Delta}{\varepsilon} \right) \quad (4)$$

148 seconds because the server has to send $x^k \in \mathbb{R}^d$ of size d to the workers in every iteration.

149 *Observation 3:* If $\tau_s \simeq \tau_w$, then (4) asymptotically equals $\mathcal{O}(h(L\Delta/\varepsilon + \sigma^2 L\Delta/n\varepsilon^2) + \tau_s dL\Delta/\varepsilon)$,
 150 reducing to (2), as in the method that does not compress at all! The “communication term” $\tau_s dL\Delta/\varepsilon$
 151 **does not** improve with n .

153 We now arrive at our **main research question**:

154 In the first case (**1. Communication is free**) and the second case (**2. Worker-to-**

155 **server communication can not be ignored**

156), it is possible to design a method
 157 that scales the complexity with the number of workers n , while improving the
 158 dependencies on d and σ^2/ε .

159 Can we design a similarly efficient method for the third case (**3. Both communica-**
 160 **tions can not be ignored**) using unbiased compressors, where the communication

161 ¹ $b = \Theta(\frac{t^*}{h})$, $m = \Theta(\frac{t^*}{\tau_w})$, $t^* = \Theta \left(\max \left\{ h, \tau_w, \frac{\tau_w d}{n}, \frac{h\sigma^2}{n\varepsilon}, \sqrt{\frac{d\tau_w h\sigma^2}{n\varepsilon}} \right\} \right)$, $\gamma = \Theta(\frac{1}{L})$, $K = 1$ in $\text{Rand}K$

162 time from the server to the workers cannot be ignored, and where the dependence
 163 on both d and σ^2/ε improves with n , either linearly or with the square root of n ?
 164

165 At least, can this be achieved in the simplest homogeneous setting, where all
 166 workers have access to the same function, a scenario that arguably represents the
 167 simplest form of distributed optimization?

168 We know for certain that the answer is “No” in the *heterogeneous case*, due to the result of [Grun-
 169 tkowska et al. \(2024\)](#), who proved that the iteration complexity does not improve with the number of
 170 workers n under Assumptions [1.1](#) and [1.2](#). However, the homogeneous setting is “easier,” giving us
 171 hope that the workers can exploit the fact that they all have access to the same distribution.

172 **1.2 CONTRIBUTIONS**

173 ♠ **Lower bound.** Surprisingly, the answer is “No” to our **main research question**, even in the
 174 *homogeneous case*. We prove the following theorem.

175 **Theorem 1.6** (Informal Formulation of Theorems [4.2](#) and [F.1](#)). *Let Assumptions [1.1](#), [1.2](#), [1.3](#), and
 176 [1.4](#) hold. It is infeasible to find an ε -stationary point faster than*

$$177 \Omega \left(\min \left\{ h \left(\frac{\sigma^2}{n\varepsilon} + 1 \right) \frac{L\Delta}{\varepsilon} + \tau_w \left(\frac{d}{n} + 1 \right) \frac{L\Delta}{\varepsilon} + \sqrt{\frac{d\tau_w h \sigma^2}{n\varepsilon} \frac{L\Delta}{\varepsilon}} + \tau_s d \frac{L\Delta}{\varepsilon}, h \frac{L\Delta}{\varepsilon} + h \frac{\sigma^2 L\Delta}{\varepsilon^2} \right\} \right) \quad (5)$$

180 *seconds (up to logarithmic factors), using unbiased compressors (Def. [1.5](#)) based on random sparsifi-
 181 cation, for all $L, \Delta, \varepsilon, n, \sigma^2, d, \tau_w, \tau_s, h > 0$ such that $L\Delta \geq \tilde{\Theta}(\varepsilon)$ and dimension $d \geq \tilde{\Theta}(L\Delta/\varepsilon)$.*

185 Because of the min, the bound shows that it is possible to improve either the dependence on
 186 d or the dependence on σ^2/ε as the number of workers n increases, but not both simultane-
 187 ously. The lower bound is matched either by **Batch QSGD** or by the non-distributed SGD method
 188 (without any communication or cooperation). Moreover, if $\tau_s \simeq \tau_w$, the lower bound becomes
 189 $\tilde{\Omega} \left(\min \left\{ h \left(\frac{\sigma^2}{n\varepsilon} + 1 \right) \frac{L\Delta}{\varepsilon} + \tau_s d \frac{L\Delta}{\varepsilon}, h \frac{L\Delta}{\varepsilon} + h \frac{\sigma^2 L\Delta}{\varepsilon^2} \right\} \right)$, which can be matched by **Batch Synchro-
 190 nized SGD** with the complexity [\(2\)](#) (without compression) or by the non-distributed SGD method. [In
 191 other words, if \$\tau_s \simeq \tau_w\$, then using methods with random sparsification compression in the distributed
 192 centralized setting offers no advantage. However, if \$\tau_s \lesssim \tau_w\$, the compression techniques can help on the
 193 workers side in the regimes when \$\tau_w d/n + \sqrt{d\tau_w h \sigma^2/n\varepsilon}\$ is larger than \$\tau_s d\$, due to the former scaling with \$n\$.](#)

194 ♠ **New “worst-case” function.** To prove the lower bound, as we explain in Section [2.3](#), we needed a
 195 new “worst-case” function construction (see Section [3](#)). We designed a new function $F_{T,K,a}$ in [\(9\)](#),
 196 which extends the ideas by [Carmon et al. \(2020\)](#). Proving its properties in Lemmas [3.1](#) and [3.2](#), as
 197 well as designing the function itself, can be an important contribution on its own.

198 ♦ **Proof technique.** Using the new function, we develop a new proof technique and explain how the
 199 problem of establishing the lower bound reduces to a statistical problem (see Section [4](#)), where we
 200 need to prove a concentration bound for a special sum [\(13\)](#), which represents the minimal possible
 201 random time required to find an ε -stationary point. Combining this result with the proven properties,
 202 we obtain our main result [\(11\)](#).

203 ♦ **Improved analysis when $\tau_w > 0$.** To obtain the complete lower bound, we extended and improved
 204 the result by [Tyurin et al. \(2024\)](#), which was limited for our scenario and required additional
 205 modifications to finally obtain [\(5\)](#) (see Sections [F](#) and [5](#) for details).

208 **2 PRELIMINARIES**

210 For better comprehension of our new idea, we now present arguably one of the most important
 211 worst-case functions by [Carmon et al. \(2020\)](#), which is widely used to prove lower bounds in
 212 nonconvex optimization. It has been used by [Arjevani et al. \(2022; 2020a\)](#) to derive lower bounds
 213 in the stochastic setting, by [Lu & De Sa \(2021\)](#) in the decentralized setting, by [Tyurin & Richtárik
 214 \(2023b; 2024\)](#); [Tyurin et al. \(2024\)](#) in the asynchronous setting, by [Huang et al. \(2022\)](#) to show the
 215 lower iteration bound for unidirectional compressed methods, and by [Li et al. \(2021\)](#) in problems
 with a nonconvex-strongly-concave structure.

216 For any $T \in \mathbb{N}$, Carmon et al. (2020) define $F_T : \mathbb{R}^T \rightarrow \mathbb{R}$ such that ²

$$218 \quad 219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad 229 \quad 230 \quad 231 \quad 232 \quad 233 \quad 234 \quad 235 \quad 236 \quad 237 \quad 238 \quad 239 \quad 240 \quad 241 \quad 242 \quad 243 \quad 244 \quad 245 \quad 246 \quad 247 \quad 248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad 254 \quad 255 \quad 256 \quad 257 \quad 258 \quad 259 \quad 260 \quad 261 \quad 262 \quad 263 \quad 264 \quad 265 \quad 266 \quad 267 \quad 268 \quad 269$$

$$F_T(x) := \sum_{i=1}^T [\Psi(-x_{i-1})\Phi(-x_i) - \Psi(x_{i-1})\Phi(x_i)], \quad (6)$$

where $x_0 \equiv 1$, x_i is the i^{th} coordinate of $x \in \mathbb{R}^T$,

$$\Psi(x) = \begin{cases} 0, & x \leq 1/2, \\ \exp\left(1 - \frac{1}{(2x-1)^2}\right), & x \geq 1/2, \end{cases} \quad \text{and} \quad \Phi(x) = \sqrt{e} \int_{-\infty}^x e^{-\frac{1}{2}t^2} dt. \quad (7)$$

Notice that this function has a “chain-like” structure. If a method starts from $x^0 = 0$ and computes the gradient of F_T , then the gradient will have a non-zero value only in the first coordinate (use that $\Psi(0) = \Psi'(0) = 0$). Thus, by computing a single gradient, any “reasonable” method can “discover” at most one coordinate. At the same time, if the method wants to find an ε -stationary point, it should eventually discover the T^{th} coordinate. These two facts imply that every “reasonable” method should compute the gradient of F_T at least T times. In the construction, Carmon et al. (2020) take $T = \Theta\left(\frac{L\Delta}{\varepsilon}\right)$. This construction is a “more technical” version of the celebrated quadratic optimization construction from (Nesterov, 2018), which has similar properties. Let us define $\text{prog}(x) := \max\{i \geq 0 \mid x_i \neq 0\}$ ($x_0 \equiv 1$), then the following lemma is a formalization of the described properties.

Lemma 2.1 (Carmon et al. (2020)). *The function F_T satisfies:*

1. For all $x \in \mathbb{R}^T$, $\text{prog}(\nabla F_T(x)) \leq \text{prog}(x) + 1$.
2. For all $x \in \mathbb{R}^T$, if $\text{prog}(x) < T$, then $\|\nabla F_T(x)\| > 1$.

Actually, in most proofs, the structure of (6) is not needed, and it is sufficient to work with Lemmas 2.1 and Lemma 2.2 from below, where the latter allows us to show that a scaled version of F_T satisfies Assumptions 1.1 and 1.2.

Lemma 2.2 (Carmon et al. (2020)). *The function F_T satisfies:*

1. $F_T(0) - \inf_{x \in \mathbb{R}^T} F_T(x) \leq \Delta^0 T$, where $\Delta^0 := 12$.
2. The function F_T is ℓ_1 -smooth, where $\ell_1 := 152$.
3. For all $x \in \mathbb{R}^T$, $\|\nabla F_T(x)\|_\infty \leq \gamma_\infty$, where $\gamma_\infty := 23$.

Hence, one of the main results by Carmon et al. (2020) was to show that it is infeasible to find an ε -stationary point without calculating $\mathcal{O}\left(\frac{L\Delta}{\varepsilon}\right)$ gradients of a function satisfying Assumptions 1.1 and 1.2. In turn, the classical gradient descent (GD) method matches this lower bound.

2.1 FAMILY OF DISTRIBUTED METHODS

In our lower bound, we focus on the family of methods described by Protocol 1. This protocol takes an algorithm as input and runs the standard functions of the workers and the server: the workers compute stochastic gradients locally, [send compressed information](#), the server aggregates them asynchronously and in parallel, and sends compressed information back based on the local information. For now, we ignore the communication times from the workers to the server in Protocol 1.

For all $i \in [n]$, the algorithm can choose any point, based on the local information I_i , at which worker i will start computing a stochastic gradient. It can also choose any point s_i^k , based on the server’s local information I , along with the corresponding compressor C_i^k , which will be sent to worker i . This protocol captures the behavior of virtually any asynchronous optimization process with workers connected to a server. We work with *zero-respecting* algorithms, as defined below.

Definition 2.3. We say that an algorithm A that follows Protocol 1 is *zero-respecting* if it does not explore or assign non-zero values to any coordinate unless at least one of the available local vectors contains a non-zero value in that coordinate. The family of such algorithms we denote as \mathcal{A}_{zr} .

²similarly $F_T(x) := -\Psi(1)\Phi(x_1) + \sum_{i=2}^T [\Psi(-x_{i-1})\Phi(-x_i) - \Psi(x_{i-1})\Phi(x_i)]$ because $\Psi(-1) = 0$.

270 **Protocol 1**

271 1: **Input:** Algorithm $A \in \mathcal{A}_{\text{zr}}$

272 2: Init $I = \emptyset$ (all available information) on the server

273 3: Init $I_i = \emptyset$ (all available information) on worker i for all $i \in [n]$

274 4: Run the following **three** loops in parallel. The first **two** on the workers. The **third** on the server.

275 5: **for** $i = 1, \dots, n$ (in parallel on the workers) **do**

276 6: **for** $k = 0, 1, \dots$ **do**

277 7: Algorithm A calculates a new point x based on local information I_i : (takes 0 seconds)

278 8: any vector $x \in \mathbb{R}^d$ such that $\text{supp}(x) \in \cup_{y \in I_i} \text{supp}(y)$ ($\text{supp}(v) := \{i \in [d] : v_i \neq 0\}$)

279 9: Calculate **one** stochastic gradient ³ $\nabla f(x; \xi)$, $\xi \sim \mathcal{D}_\xi$ (ξ are i.i.d.) (takes h seconds)

280 10: Add $\nabla f(x; \xi)$ to I_i (takes 0 seconds)

281 11: **end for**

282 12: **end for**

283 13: **for** $i = 1, \dots, n$ (in parallel on the workers) **do**

284 14: **for** $k = 0, 1, \dots$ **do**

285 15: Algorithm A calculates new points $\{\bar{s}_i^k\}$ based on local information I_i : (takes 0 seconds) **any**

286 16: vector $\bar{s}_i^k \in \mathbb{R}^d$ such that $\text{supp}(\bar{s}_i^k) \in \cup_{y \in I_i} \text{supp}(y)$

287 17: Send $\bar{C}_i^k(\bar{s}_i^k)$ to the server (takes $\tau_w \times \bar{P}_i^k$ seconds, where \bar{P}_i^k is the number of coordinates retained by $\bar{C}_i^k(\bar{s}_i^k)$)

288 18: Add to $\bar{C}_i^k(\bar{s}_i^k)$ to I

289 19: **end for**

290 20: **end for**

291 21: **for** $i = 1, \dots, n$ (in parallel on the server) **do**

292 22: **for** $k = 0, 1, \dots$ **do**

293 23: Algorithm A calculates a new point s_i^k based on local information I : (takes 0 seconds)

294 24: any vector $s_i^k \in \mathbb{R}^d$ such that $\text{supp}(s_i^k) \in \cup_{y \in I} \text{supp}(y)$

295 25: Algorithm A compresses the point: $\bar{C}_i^k(s_i^k) \quad \forall i \in [n]$ (takes 0 seconds)

296 26: Send $\bar{C}_i^k(s_i^k)$ to the worker i (takes $\tau_s \times P_i^k$ seconds, where P_i^k is the number of coordinates retained by $\bar{C}_i^k(s_i^k)$)

297 27: Add to $\bar{C}_i^k(s_i^k)$ to I (takes 0 seconds)

298 28: **end for**

299 29: **end for**

300 30: **end for**

301 31: (a vector may be added to I or I_i at the same time as the algorithm calculates a new point; in this case, the protocol adds the vector first (with no delay since the operation takes 0 seconds))

304 This is the standard assumption (Carmon et al., 2020) that generalizes the family of methods working
 305 with the span of vectors (Nesterov, 2018) and holds for the majority of methods, including GD, Adam
 306 (Kingma & Ba, 2015), DORE (Liu et al., 2020), EF21-P (Grunkowska et al., 2023), MARINA-P, and
 307 M3 (Grunkowska et al., 2024).

309 2.2 PREVIOUS LOWER BOUND IN THE HETEROGENEOUS SETTING

311 Let us return back to our main question. In order to show that it is impossible to scale with n in the
 312 *heterogeneous setting*, Grunkowska et al. (2024) have proposed to use scaled versions of

313

$$314 G_j(x) := n \times \sum_{1 \leq i \leq T \text{ and } (i-1) \bmod n = j-1}^T [\Psi(-x_{i-1})\Phi(-x_i) - \Psi(x_{i-1})\Phi(x_i)]$$

315

316 for all $j \in [n]$, worker i has access only a scaled version of G_i for all $i \in [n]$. The idea is that the
 317 first block from (6) belongs to the first worker, the second block to the second worker, \dots , and the
 318 $(n+1)^{\text{th}}$ block to the first worker again, and so on. Notice that $F_T(x) = \frac{1}{n} \sum_{i=1}^n G_i(x)$.

319 Notice one important property of this construction: only one worker at a time can discover the next
 320 coordinate. In other words, if the server sends a new iterate to all workers, only one worker, after
 321 computing the gradient, can make progress to the next coordinate.

323 ³i) Multiple queries with the same random variable do not change the lower bound; see Remark E.1 in Section E; ii)
 In the heterogeneous setup (Section 2.2), worker i computes $\nabla f_i(x; \xi)$, where f_i is its local function.

The next step in (Gruntkowska et al., 2024), in the proof of the lower bound theorem, was to analyze Protocol 1. They consider⁴ RandK with $K = 1$. Then, since the compressor sends only one coordinate with probability $p = 1/d$, the probability that the server sends the last non-zero coordinate to the worker responsible for the current block of (6) that can progress to the new coordinate is also p . Thus, the number of consecutive coordinates that the server has to send to the workers is at least $\sum_{j=1}^T \eta_j$, where η_j is a geometric-like random variable with $\mathbb{P}(\eta_j = m | \eta_{j-1}, \dots, \eta_1) \leq p(1-p)^{m-1}$ for all $m \geq 1$. Using classical tools from statistical analysis, one can show that $\sum_{j=1}^T \eta_j \gtrsim T/p \simeq dL\Delta/\varepsilon$ with high probability. Thus, under Assumption 1.4, the communication time complexity cannot be better than $\Omega(\tau_s dL\Delta/\varepsilon)$, which does not improve with n .

2.3 FAILURE OF THE PREVIOUS CONSTRUCTION IN THE HOMOGENEOUS SETTING

However, in the *homogeneous* setting, if we want to reuse the idea, arguably the only option we have is to assign (scaled) F_T to all workers to ensure that they all have the same function. But in this case, the arguments from Section 2.2 no longer apply, because all workers can simultaneously progress to the next coordinate, since they have access to all blocks of (6).

Indeed, if the server sends i.i.d. RandK compressors with $K = 1$, then the number of consecutive coordinates that the server has to send before the workers receive the last non-zero coordinate is $\sum_{j=1}^T \min_{i \in [n]} \eta_{ji}$, where $\mathbb{P}(\eta_{ji} = m | \{\eta_{kj}\}_{k < i}) \leq p(1-p)^{m-1}$ for all $m, j \geq 1, i \in [n]$. The $\min_{i \in [n]}$ operation appears because it is sufficient to wait for the first “luckiest” worker. Analyzing this sum, we can only show that

$$\tau_s \sum_{j=1}^T \min_{i \in [n]} \eta_{ji} \gtrsim \tau_s \frac{d}{n} \frac{L\Delta}{\varepsilon}, \quad (8)$$

with high probability, which scales with n due to min.

There are two options: either $\Omega(\tau_s dL\Delta/n\varepsilon)$ is tight and it is possible to find a method that matches it, or we need to find another way to improve the lower bound. To prove the latter, we arguably need a different fundamental construction from (6), which we propose in the next section.

3 A NEW “WORST-CASE” FUNCTION

In this section, we give a less technical description of our lower bound construction and the main theorem from Section D. Instead of (6), we propose to use another “worst-case” function. For any $T, K \in \mathbb{N}$, and $e \geq a > 1$, we define the function $F_{T,K,a} : \mathbb{R}^T \rightarrow \mathbb{R}$ such that

$$F_{T,K,a}(x) = - \sum_{i=1}^T \Psi_a(x_{i-K}) \dots \Psi_a(x_{i-2}) \Psi_a(x_{i-1}) \Phi(x_i) + \sum_{i=1}^T \Gamma(x_i), \quad (9)$$

$$\Psi_a(x) = \begin{cases} 0, & x \leq 1/2, \\ \exp \left(\log a \cdot \left(1 - \frac{1}{(2x-1)^2} \right) \right), & x > 1/2, \end{cases} \quad \Phi(x) = \sqrt{e} \int_{-\infty}^x e^{-\frac{1}{2}t^2} dt, \quad (10)$$

$$\Gamma(x) = \begin{cases} -xe^{1/x+1}, & x < 0, \\ 0, & x \geq 0, \end{cases}$$

and $x_0 = \dots = x_{-K+1} \equiv 1$. The main modification is that instead of the block $-\Psi(x_{i-1})\Phi(x_i)$, we use $-\Psi_a(x_{i-K}) \dots \Psi_a(x_{i-2}) \Psi_a(x_{i-1}) \Phi(x_i)$ (ignore a for now). In the previous approach, it was sufficient for a worker to have $x_{i-1} \neq 0$ to discover the next i^{th} coordinate. However, in our new construction, the worker needs $x_{i-1} \neq 0, x_{i-2} \neq 0, \dots, x_{i-K+1} \neq 0$ for that. With this modification, it is not sufficient for the “luckiest” worker to get the non-zero $i-1^{\text{th}}$ coordinate to discover the next coordinate: to progress to the i^{th} coordinate, the worker should also have non-zero $i-2^{\text{th}}, \dots, i-K+1^{\text{th}}$ coordinates.

⁴In general, they presented a more general setting where the server can zero out coordinates with any probability, capturing not only RandK with $K = 1$ and $p = 1/d$, but also RandK with $K > 1$ and other compressors.

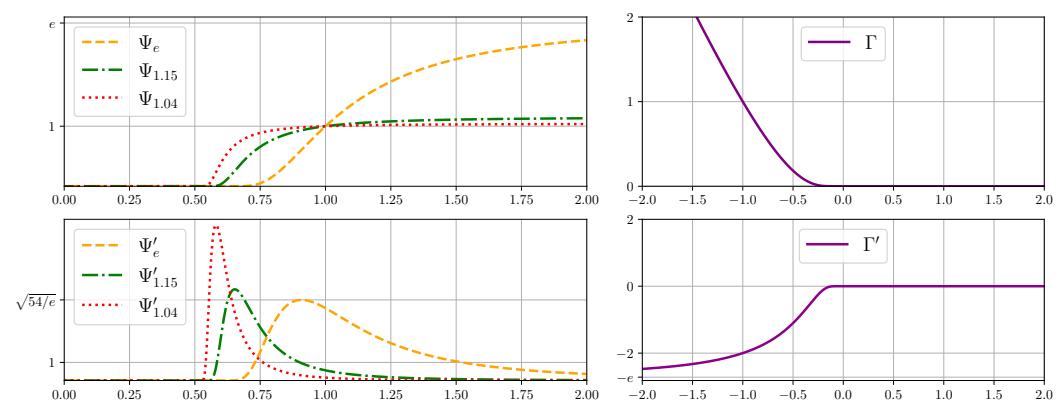


Figure 1: The functions $\Psi_a(x)$ and $\Gamma(x)$, along with their derivatives $\Psi'_a(x)$ and $\Gamma'(x)$. The plots of $\Phi(x)$ and $\Phi'(x)$ are shown in (Carmon et al., 2020).

Next, we remove the positive blocks $\Psi(x_{i-1})\Phi(x_i)$, which we believe was introduced to prevent the methods from ascending, exploring negative values of x_i , and finding a nearby stationary point “above.” Instead, we introduce $\Gamma(x_i)$, which serves the same purpose: if a method starts exploring negative values, this term prevents it from reaching a stationary point there. Let us define

$$\text{prog}^K(x) := \max\{i \geq 0 \mid x_i \neq 0, x_{i-1} \neq 0, \dots, x_{i-K+1} \neq 0\}.$$

Instead of Lemma 2.1, we prove the following lemma:

Lemma 3.1 (Lemmas D.4 and D.5). *The function $F_{T,K,a}$ satisfies:*

1. *For all $x \in \mathbb{R}^T$, $\text{supp}(\nabla F_{T,K,a}(x)) \in \{1, \dots, \text{prog}^K(x) + 1\} \cup \text{supp}(x)$, where $\text{supp}(v) := \{i \in [d] : v_i \neq 0\}$.*
2. *For all $x \in \mathbb{R}^T$, if $\text{prog}^K(x) < T$, then $\|\nabla F_{T,K,a}(x)\| > 1$.*

The function $F_{T,K,a}$ remains smooth. However, by multiplying with additional Ψ terms, we alter its geometry and make it more chaotic: the difference $F_{T,K,a}(0) - \inf_{x \in \mathbb{R}^T} F_{T,K,a}(x)$, the smoothness constant, and the maximum ℓ_∞ -norm may increase. To mitigate this, we introduce the parameter a in (10) that allows us to control these properties. Notice that if $a = e$, then $\Psi_a(x) = \Psi(x)$ for all $x \in \mathbb{R}^T$, where Ψ is defined in (7). Instead of Lemma 2.2, we prove

Lemma 3.2 (Lemmas D.6, D.7, and D.8). *The function $F_{T,K,a}$ satisfies:*

1. $F_{T,K,a}(0) - \inf_{x \in \mathbb{R}^T} F_{T,K,a}(x) \leq \Delta^0(K, a) \cdot T$, where $\Delta^0(K, a) := \sqrt{2\pi e} \cdot a^K$.
2. *The function $F_{T,K,a}$ is $\ell_1(K, a)$ -smooth, where $\ell_1(K, a) := 12\sqrt{2\pi}e^{5/2} \cdot \frac{K^2 a^K}{\log a}$.*
3. *For all $x \in \mathbb{R}^T$, $\|\nabla F_{T,K,a}(x)\|_\infty \leq \gamma_\infty(K, a)$, where $\gamma_\infty(K, a) := 6\sqrt{2\pi}e^{3/2} \cdot \frac{K a^K}{\sqrt{\log a}}$.*

Taking $K = 1$ and $a = e$, up to constant factors, Lemmas 3.1 and 3.2 reduce to Lemmas 2.1 and 2.2. The larger the value of K , the larger the bounds in Lemma 3.2, and this growth can be exponential if $a = e$. However, with a proper choice of $1 < a \ll e$, we can mitigate the increase caused by K .

4 LOWER BOUND WITH SERVER-TO-WORKER (S2W) COMMUNICATION

We now present informal and formal versions of our main result:

Theorem 4.1 (Informal Formulation of Theorem 4.2). *Let Assumptions 1.1, 1.2, 1.3, and 1.4 hold. It is infeasible to find an ε -stationary point faster than*

$$\tilde{\Omega} \left(\min \left\{ \tau_s d \frac{L\Delta}{\varepsilon}, h \frac{L\Delta}{\varepsilon} + h \frac{\sigma^2 L\Delta}{\varepsilon^2} \right\} \right) \quad (11)$$

432 seconds (up to logarithmic factors), using unbiased compressors (Def. 1.5) based on random sparsification, for all $L, \Delta, \varepsilon, n, \sigma^2, d, \tau_s, h > 0$ such that $L\Delta \geq \tilde{\Theta}(\varepsilon)$ and dimension $d \geq \tilde{\Theta}(L\Delta/\varepsilon)$.
 433
 434

435 **Theorem 4.2.** Let $L, \Delta, \varepsilon, n, \sigma^2, d, \tau_s, \tau_w, h > 0$ be any numbers such that $\bar{c}_1 \varepsilon \log^4(n+1) < L\Delta$ and
 436 dimension $d \geq \bar{c}_3 \frac{L\Delta}{\log^3(n+1)\varepsilon}$. Consider Protocol 1. For all $i \in [n]$ and $k \geq 0$, compressor C_i^k selects
 437 and transmits P_i^k uniformly random coordinates without replacement, scaled by any constants⁵, where
 438 $P_i^k \in \{0, \dots, d\}$ may vary across each compressor⁶. Then, for any algorithm $A \in \mathcal{A}_{\text{zr}}$ (Def. 2.3),
 439 there exists a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that f is L -smooth, i.e., $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$
 440 for all $x, y \in \mathbb{R}^d$, and $f(0) - \inf_{x \in \mathbb{R}^d} f(x) \leq \Delta$, exists a stochastic gradient oracles that satisfies
 441 Assumption 1.3, and $\mathbb{E} \left[\inf_{y \in S_t} \|\nabla f(y)\|^2 \right] > \varepsilon$ for all
 442

$$443 \quad t \leq \bar{c}_2 \times \left(\frac{1}{\log^3(n+1)} \cdot \frac{L\Delta}{\varepsilon} \right) \min \left\{ \frac{1}{\log(n+1)} \cdot \tau_s d, \max \left\{ h, \frac{1}{\log^3(n+1)} \cdot \frac{h\sigma^2}{\varepsilon} \right\} \right\}, \quad (12)$$

444 where S_t is the set of all possible points that can be constructed by A up to time t based on I and
 445 $\{I_i\}$. The quantities \bar{c}_1 , \bar{c}_2 , and \bar{c}_3 are universal constants.
 446
 447

448 The formulation of Theorem 4.2 is standard in the literature. However, following Tyurin & Richtárik
 449 (2023b), we present the lower bound in terms of *time complexities* rather than *iteration complexities*.
 450 Then, following Huang et al. (2022); He et al. (2023); Tyurin et al. (2024), we consider a subfamily of
 451 unbiased compressors based from Definition 1.5 on random sparsification to prove the lower bound;
 452 this is standard practice for taking the “worst-case” compressors from the family (similarly to taking
 453 the “worst-case” functions (Carmon et al., 2020; Nesterov, 2018)). Moreover, due to the uncertainty
 454 principle (Safaryan et al., 2022), all unbiased compressors exhibit variance and communication cost
 455 comparable to those of the RandK sparsifier in the worst case (up to constant factors).
 456

457 The main observation in Theorems 4.1 and 4.2 is that it is not possible to scale both d and σ^2/ε by more
 458 than $\log^4(n+1)$ and $\log^6(n+1)$, respectively. Asymptotically, this scaling is significantly worse
 459 than the linear n and square-root \sqrt{n} scalings discussed in Section 1.1. For instance, if $n = 10,000$
 460 and d is increased by a factor of 10, we have to increase n by a factor of 10^3 (two factors more) to
 461 ensure that $\tau_s d / \log^4(n+1)$ does not change.
 462

463 In Section A, we present the intuition and the proof sketch of the result.
 464

465 5 LOWER BOUND WITH BOTH W2S AND S2W COMMUNICATION

466 In the previous section, we provide the lower bound without taking into account the communication
 467 cost τ_w . Combining Theorem 4.2 with our new Theorem F.1, which extends the re-
 468 sult by Tyurin et al. (2024) for our setup, we can obtain the complete lower bound (5) from
 469 Theorem 1.6 with $\tau_w > 0$ and $\tau_s > 0$. Notice that if $\tau_s \simeq \tau_w$, then the lower bound is
 470 $\tilde{\Omega} \left(\min \left\{ h \left(\frac{\sigma^2}{n\varepsilon} + 1 \right) \frac{L\Delta}{\varepsilon} + \tau_s d \frac{L\Delta}{\varepsilon}, h \frac{L\Delta}{\varepsilon} + h \frac{\sigma^2 L\Delta}{\varepsilon^2} \right\} \right)$. Up to logarithmic factors, under Assump-
 471 tions 1.1, 1.2, 1.3, and 1.4, it is infeasible to improve both d and σ^2/ε as n increases.
 472

473 5.1 ALGORITHMS ALMOST MATCHING THE LOWER BOUND

474 Due to the min, there are two regimes in which the lower bound (5) operates. If the second term
 475 is smaller in (5), then the lower bound is $\tilde{\Omega} \left(\frac{hL\Delta}{\varepsilon} + \frac{h\sigma^2 L\Delta}{\varepsilon^2} \right)$, which is matched by the vanilla
 476 SGD method run locally (without any communication or cooperation). Otherwise, if the first term
 477 is smaller, then the lower bound is matched by **Batch QSGD**, which has the matching complexity
 478 (4) (up to logarithmic factors). Moreover, in the latter case, if $\tau_s \simeq \tau_w$, the lower bound becomes
 479 $\tilde{\Omega} \left(\min \left\{ h \left(\frac{\sigma^2}{n\varepsilon} + 1 \right) \frac{L\Delta}{\varepsilon} + \tau_s d \frac{L\Delta}{\varepsilon} \right\} \right)$, which can be matched by **Batch Synchronized SGD** with the
 480 complexity (2); thus, if $\tau_s \simeq \tau_w$, then unbiased sparsified compression is not needed at all, as it cannot
 481 help due to the lower bound.
 482

483 ⁵To potentially preserve unbiasedness. For instance, RandK scales by d/K .
 484

485 ⁶For instance, the compressors can be RandK (see Def. C.1) with any $K \in [d]$, PermK (Szlenkak et al.,
 486 2021), Identity compressor when $P_i^k = d$.

486 6 CONCLUSION
487

488 We prove nearly tight lower bounds for centralized distributed optimization under the computation
489 and communication Assumption 1.4. We show that *even in the homogeneous scenario*, it is not
490 possible to scale both d and σ^2/ε by more than poly-logarithmic factors in n . Notice that the family of
491 **unbiased compressors** contains the family of **biased compressors** (Beznosikov et al., 2020). Therefore,
492 our lower bounds also apply to methods that use biased compressors, in the sense that there exists a
493 “worst-case” compressor for which these methods cannot achieve a convergence rate faster than the lower
494 bound in Theorem 1.6.

495 The lower bounds are tight only up to logarithmic factors. Thus, a possible challenging direction is
496 to improve the powers of the logarithms, or even eliminate the logarithms entirely. The latter (if at
497 all possible) may be very challenging and would likely require entirely different constructions and
498 techniques. Another limitation is that the lower bounds are constructed using random sparsifiers.
499 Due to the uncertainty principle (Safaryan et al., 2022), we conjecture that the bounds also hold
500 for the entire family of unbiased compressors, but proving this would require more sophisticated
501 constructions.

502 In practice, however, biased **and unbiased** compressors, including Top K and Rank K (Alistarh et al.,
503 2018; Vogels et al., 2019), exhibit significantly better compression properties than those predicted by
504 worst-case analysis (Beznosikov et al., 2020). When used on the server side in combination with EF
505 or EF21-P (Gruntkowska et al., 2023; Tyurin et al., 2024), they may help mitigate the pessimistic term
506 $\tau_s d^{L\Delta/\varepsilon}$. Moreover, our pessimistic lower bound may potentially be broken under additional assumptions
507 such as convexity or second-order smoothness.

508
509 REFERENCES
510

511 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
512 efficient SGD via gradient quantization and encoding. In *Advances in Neural Information Processing
513 Systems (NIPS)*, pp. 1709–1720, 2017.

514 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
515 Renggli. The convergence of sparsified gradient methods. *Advances in Neural Information
516 Processing Systems*, 31, 2018.

517 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridharan.
518 Second-order information in non-convex stochastic optimization: Power and limitations. In
519 *Conference on Learning Theory*, pp. 242–299. PMLR, 2020a.

520 Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
521 descent with delayed updates. In *Algorithmic Learning Theory*, pp. 111–132. PMLR, 2020b.

522 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
523 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, pp. 1–50,
524 2022.

525 Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression
526 for distributed learning. *arXiv preprint arXiv:2002.12410*, 2020.

527 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
528 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
529 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
530 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
531 jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
532 Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
533 M. F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33,
534 pp. 1877–1901. Curran Associates, Inc., 2020. URL [https://proceedings.neurips.
535 cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf](https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf).

536 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
537 points i. *Mathematical Programming*, 184(1):71–120, 2020.

540 Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex SGD.
 541 *arXiv preprint arXiv:1905.10018*, 2019.
 542

543 Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex op-
 544 timization via stochastic path integrated differential estimator. In *NeurIPS Information Processing*
 545 *Systems*, 2018.

546 Margalit R. Glasgow, Honglin Yuan, and Tengyu Ma. Sharp bounds for federated averaging (Local
 547 SGD) and continuous perspective. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera
 548 (eds.), *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*,
 549 volume 151 of *Proceedings of Machine Learning Research*, pp. 9050–9090. PMLR, 28–30 Mar
 550 2022. URL <https://proceedings.mlr.press/v151/glasgow22a.html>.

551 Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-
 552 convex distributed learning with compression. In *38th International Conference on Machine*
 553 *Learning*, 2021.

554 Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. EF21-P and friends: Improved theoreti-
 555 cal communication complexity for distributed optimization with bidirectional compression. In
 556 *International Conference on Machine Learning*, pp. 11761–11807. PMLR, 2023.

557 Kaja Gruntkowska, Alexander Tyurin, and Peter Richtárik. Improving the worst-case bidirectional
 558 communication complexity for nonconvex distributed optimization under function similarity. In
 559 *Advances in Neural Information Processing Systems*, 2024.

560 Yutong He, Xinmeng Huang, and Kun Yuan. Unbiased compression saves communication in
 561 distributed optimization: When and how much? *Advances in Neural Information Processing*
 562 *Systems*, 36:47991–48020, 2023.

563 Samuel Horváth, Chen-Yu Ho, Ľudovít Horváth, Atal Narayan Sahu, Marco Canini, and Peter
 564 Richtárik. Natural compression for distributed deep learning. In *Mathematical and Scientific*
 565 *Machine Learning*, pp. 129–141. PMLR, 2022.

566 Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen, and Oliver Spatscheck.
 567 A close examination of performance and power characteristics of 4g lte networks. In *Proceedings*
 568 *of the 10th international conference on Mobile systems, applications, and services*, pp. 225–238,
 569 2012.

570 Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal algo-
 571 rithms in distributed learning with communication compression. *Advances in Neural Information*
 572 *Processing Systems*, 2022.

573 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *International*
 574 *Conference on Learning Representations*, 2015.

575 Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
 576 Dave Bacon. Federated learning: Strategies for improving communication efficiency. *arXiv*
 577 *preprint arXiv:1610.05492*, 2016.

578 Guanghui Lan. *First-order and stochastic optimization methods for machine learning*. Springer,
 579 2020.

580 Haochuan Li, Yi Tian, Jingzhao Zhang, and Ali Jadbabaie. Complexity lower bounds for nonconvex-
 581 strongly-concave min-max optimization. *Advances in Neural Information Processing Systems*, 34:
 582 1792–1804, 2021.

583 Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient
 584 descent in distributed and federated optimization. In *International Conference on Machine*
 585 *Learning*, 2020.

586 Xiaorui Liu, Yao Li, Jiliang Tang, and Ming Yan. A double residual compression algorithm for
 587 efficient distributed learning. In *International Conference on Artificial Intelligence and Statistics*,
 588 pp. 133–143. PMLR, 2020.

594 Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In *International*
 595 *Conference on Machine Learning*, pp. 7111–7123. PMLR, 2021.
 596

597 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 598 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
 599

600 Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning
 601 with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.
 602

603 Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
 604 programming. Technical report, 1985.
 605

606 Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan
 607 Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley Mao, et al. A variegated look at 5g in
 608 the wild: performance, power, and qoe implications. In *Proceedings of the 2021 ACM SIGCOMM*
 609 *2021 Conference*, pp. 610–625, 2021.
 610

611 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
 612 efficiency in optimization. 1983.
 613

614 Yurii Nesterov. A method of solving a convex programming problem with convergence rate $o(1/k^{**})$.
 615 *Doklady Akademii Nauk SSSR*, 269(3):543, 1983.
 616

617 Yurii Nesterov. *Lectures on convex optimization*, volume 137. Springer, 2018.
 618

619 Kumar Kshitij Patel, Lingxiao Wang, Blake Woodworth, Brian Bullins, and Nati Srebro. Towards
 620 optimal communication complexity in distributed non-convex optimization. In *Proceedings*
 621 *of the 36th International Conference on Neural Information Processing Systems*, 2022. ISBN
 622 9781713871088.
 623

624 Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication compres-
 625 sion in distributed and federated learning and the search for an optimal compressor. *Information*
 626 *and Inference: A Journal of the IMA*, 11(2):557–580, 2022.
 627

628 Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
 629 application to data-parallel distributed training of speech DNNs. In *Fifteenth Annual Conference*
 630 *of the International Speech Communication Association*, 2014.
 631

632 Rafal Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster
 633 distributed nonconvex optimization. In *International Conference on Learning Representations*,
 634 2021.
 635

636 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 637 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 638 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
 639

640 Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with communi-
 641 cation compression, optimal oracle complexity, and no client synchronization. *11th International*
 642 *Conference on Learning Representations (ICLR)*, 2023a.
 643

644 Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
 645 methods under a fixed computation model. *Advances in Neural Information Processing Systems*,
 646 2023b.
 647

648 Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
 649 asynchronous optimization. *Advances in Neural Information Processing Systems*, 37, 2024.
 650

651 Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed
 652 asynchronous SGD with optimal time complexity under arbitrary computation and communication
 653 heterogeneity. *Advances in Neural Information Processing Systems*, 37, 2024.
 654

655 Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient
 656 compression for distributed optimization. In *Neural Information Processing Systems*, 2019.
 657

648 Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan McMahan,
649 Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In *International*
650 *Conference on Machine Learning*, pp. 10334–10343. PMLR, 2020.

651

652 Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
653 *Advances in neural information processing systems*, 29, 2016.

654

655 Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
656 oracle models, lower bounds, and gaps for parallel stochastic optimization. *Advances in Neural*
657 *Information Processing Systems*, 31, 2018.

658

659 Blake E Woodworth, Brian Bullins, Ohad Shamir, and Nathan Srebro. The min-max complexity of
660 distributed stochastic convex optimization with intermittent communication. In *Conference on*
Learning Theory, pp. 4386–4437. PMLR, 2021.

661

662 Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
663 Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication framework
664 for distributed machine learning. In *2021 IEEE 41st International Conference on Distributed*
Computing Systems (ICDCS), pp. 561–572. IEEE, 2021.

665

666 Haoyu Zhao, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. Faster rates for compressed
667 federated learning with client-variance reduction. *arXiv preprint arXiv:2112.13097*, 2021.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702	CONTENTS	
703		
704		
705	1 Introduction	1
706	1.1 Related work	2
707	1.2 Contributions	4
708		
709		
710	2 Preliminaries	4
711	2.1 Family of distributed methods	5
712	2.2 Previous Lower Bound in the Heterogeneous Setting	6
713	2.3 Failure of the previous construction in the homogeneous setting	7
714		
715		
716	3 A New “Worst-Case” Function	7
717		
718	4 Lower Bound with Server-to-Worker (S2W) Communication	8
719		
720	5 Lower Bound with Both W2S and S2W Communication	9
721		
722	5.1 Algorithms almost matching the lower bound	9
723		
724	6 Conclusion	10
725		
726	A Proof Sketch	15
727		
728	B Additional Related Work	16
729		
730	C Auxiliary Facts and Notations	16
731		
732	C.1 Notations	16
733		
734	D Lower Bound	16
735		
736	D.1 New Construction	16
737		
738	D.2 Auxiliary Lemmas	17
739	D.3 Proof of lemmas	18
740		
741	E Proof of Theorem 4.2	21
742		
743	E.1 Main Concentration Lemma	27
744		
745	F Main Theorem with Worker-to-Server Communication	31
746		
747	F.1 Main Concentration Lemma	34
748		
749		
750		
751		
752		
753		
754		
755		

756 A PROOF SKETCH
757

758 We illustrate the main idea behind the proof and how the new “worst-case” function helps to almost
759 eliminate the scaling with n . Consider the first K coordinates of $F_{T,K,a}$ (which is scaled in the proof
760 to satisfy Assumptions 1.1 and 1.2). Recall that, due to Lemma 3.1, the only way to discover the
761 $K + 1^{\text{th}}$ coordinate in any worker is to ensure that all of the first K coordinates are non-zero.

762 **Reduction to a statistical problem.** There are only two options by which a worker may discover a
763 new non-zero coordinate: through local stochastic computations or through communication from the
764 server. In the first option, a worker computes a stochastic gradient, which takes h seconds. However,
765 due to the construction of stochastic gradients (Arjevani et al., 2022), even if the computation is
766 completed, the worker will not make progress or discover a new non-zero coordinate, as it will be
767 zeroed out with probability $p_\sigma = \Theta(\varepsilon \cdot \gamma_\infty^2(K,a)/\sigma^2)$. In the second option, due to the condition of
768 Theorem 4.2, a worker receives a stream of uniformly sampled coordinates ν_1, ν_2, \dots (workers get
769 different streams), and the worker can discover a new non-zero coordinate only if random variable
770 $\nu_i \in [K]$, which satisfies $\mathbb{P}(\nu_i \in [K] | \nu_1, \dots, \nu_{i-1}) \leq K/T - i+1 \leq p_K := 2K/T$ for all $i \leq T/2$.

771 Next, we define two sets of random variables: (i) let $\eta_{1,i,k}$ denote the number of stochastic gradient
772 computations until the first moment when a coordinate is not zeroed out in the stochastic gradient
773 oracle (see (26)), after the moment when the $(k-1)^{\text{th}}$ coordinate is no longer zeroed out in worker
774 i ; (ii) let $\mu_{1,i,k}$ be the number of received coordinates until the moment when the last received
775 coordinate belongs to $[K]$, after the $(k-1)^{\text{th}}$ time this has happened. In other words, $\eta_{1,i,1}$ is the
776 number of stochastic gradient computations until the moment when the algorithm receives a “lucky”
777 stochastic gradient where the last coordinate is not zeroed out. The random variable $\eta_{1,i,2}$ is the
778 number of computations until it happens for the second time, and so on. Similarly, $\mu_{1,i,1}$ is the
779 position of the first coordinate from the stream sent by the server to worker i that belongs to $[K]$. The
780 random variable $\mu_{1,i,2}$ refers to the second time this occurs, and so on. By definition, the sequences
781 $\{\eta_{1,i,k}\}$ and $\{\mu_{1,i,k}\}$ follow *approximately* geometric-like distributions with parameters p_σ and p_K ,
782 respectively.

783 To discover all of the first K coordinates, either the first or the second process must uncover at
784 least $K/2$ coordinates. If worker i has discovered fewer than $K/2$ coordinates through stochastic
785 gradient computations, and fewer than $K/2$ coordinates through receiving them from the server,
786 then it will not be able to cover all K coordinates. Thus, the algorithm should wait at least
787 $\min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{K/2} \eta_{1,i,k}, \tau_s \sum_{k=1}^{K/2} \mu_{1,i,k} \right\} \right\}$ seconds until the moment when it can potentially
788 discover the $K + 1^{\text{th}}$ coordinate, where the outer minimum $\min_{i \in [n]}$ appears because it is sufficient
789 for the algorithm to wait for the first “luckiest” worker. Repeating the same arguments $B := \lfloor T/K \rfloor$
790 times, the algorithms requires at least

$$791 \quad t_B := \sum_{b=1}^B \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{K/2} \eta_{b,i,k}, \tau_s \sum_{k=1}^{K/2} \mu_{b,i,k} \right\} \right\} \quad (13)$$

794 seconds to discover the T^{th} coordinate and potentially find an ε -stationary point, where the sequences
795 $\{\eta_{b,i,k}\}$ and $\{\mu_{b,i,k}\}$ follow *approximately* geometric-like distributions with p_σ and p_K , respectively.

796 **Analysis of the concentration.** Hence, we have reduced the lower bound to the analysis of the
797 sum t_B . Recall (8), where the lower bound improves with n due to $\min_{i \in [n]}$. In (13), we also
798 get $\min_{i \in [n]}$. However, and this is the main reason for the new construction, there are two sums
799 $\sum_{k=1}^{K/2}$, which allows us to mitigate the influence of the $\min_{i \in [n]}$. In particular, we can show that
800 $t_B \gtrsim \frac{BK}{n^{1/K}} \min \{h/p_\sigma, \tau_s/p_K\}$ with high probability. Notice that the first fraction improves with $n^{\frac{1}{K}}$
801 instead of n due to the sums; thus, the larger K , the smaller the influence of n .

803 **Putting it all together.** However, we cannot take K too large due to Lemma 3.2. Substituting the
804 choice of T, p_σ , and p_K (defined in the proof of Theorem 4.2 to ensure that Assumptions 1.1, 1.2,
805 and 1.3 are satisfied and the scaled version of $F_{T,K,a}$ has the squared norm larger than ε while the
806 T^{th} is not discovered), we can show that

$$807 \quad t_B \gtrsim \frac{L\Delta}{n^{1/K} \cdot \Delta^0(K,a) \cdot \ell_1(K,a) \cdot \varepsilon} \min \left\{ \max \left\{ h, \frac{h\sigma^2}{\varepsilon \cdot \gamma_\infty^2(K,a)} \right\}, \frac{\tau_s d}{K} \right\},$$

808 with high probability, where $\Delta^0(K,a)$, $\ell_1(K,a)$, and $\gamma_\infty(K,a)$ are defined in Lemma 3.2. The final
809 step is to choose $K = \Theta(\log n)$ and $a = 1 + 1/K$ to obtain the result of Theorem 4.2.

810 **B Additional Related Work**
811

812 While we focus on lower bounds in the context of stochastic optimization and compressed vectors in
 813 nonconvex settings, there is much related work in other domains and setups. The seminal works on
 814 lower bounds were done by Nemirovskij & Yudin (1983); Nesterov (2018), where Nesterov (2018) showed
 815 that the accelerated gradient descent (Nesterov, 1983) is optimal in the convex setting using a quadratic
 816 “worst-case” function. In the nonconvex setting, Carmon et al. (2020) provided an alternative function,
 817 described in the main part of the paper. For convex problems, Woodworth et al. (2018) introduced the
 818 graph oracle, a generalization of the classical gradient oracle (Nemirovskij & Yudin, 1983; Nesterov, 2018),
 819 and established lower bounds for a broad class of parallel optimization methods. Arjevani et al. (2020b)
 820 further analyzed the delayed gradient descent method, which corresponds to Asynchronous SGD with
 821 constant iteration delays. Tyurin & Richtárik (2023b; 2024); Tyurin et al. (2024) proved lower bounds for
 822 methods in asynchronous settings. Fang et al. (2018); Patel et al. (2022) studied a different setting from
 823 Assumption 1.3, where they assumed the mean-squared smoothness property to enable the analysis of
 824 methods with variance reduction techniques (Fang et al., 2018; Cutkosky & Orabona, 2019). Woodworth
 825 & Srebro (2016) considered the finite-sum setting in the convex setting. Woodworth et al. (2020; 2021)
 826 proved that the min-max optimal algorithm for optimizing smooth convex objectives in the intermittent
 827 communication setting is the best of accelerated local and minibatch SGD, which leads to a similar
 828 conclusion to ours; however, their results are related to, but not directly comparable with ours, since we
 829 analyze the limited scalability of improving both stochastic noise and communication complexity through
 830 compressors. Glasgow et al. (2022) provided sharp lower bounds for local SGD approaches in terms of
 831 iteration complexity. Huang et al. (2022); He et al. (2023); Gruntkowska et al. (2024) provided lower bounds
 832 for compression techniques, but in the heterogeneous setting.

833 **C AUXILIARY FACTS AND NOTATIONS**
834

835 **Definition C.1** (RandK). Assume that S is a random subset of $[d]$ such that $|S| = K$ for some
 836 $K \in [d]$. A stochastic mapping $\mathcal{C} : \mathbb{R}^d \times \mathbb{S}_v \rightarrow \mathbb{R}^d$ is called RandK if

$$837 \quad 838 \quad 839 \quad \mathcal{C}(x; S) = \frac{d}{K} \sum_{j \in S} x_j e_j,$$

840 where $\{e_i\}_{i=1}^d$ denotes the standard unit basis. The set S can be produced with a uniform sampling
 841 of $[d]$ without replacement.

843 **C.1 NOTATIONS**
844

845 $\mathbb{N} := \{1, 2, \dots\}$; $\|x\|$ is the output of the standard Euclidean norm for all $x \in \mathbb{R}^d$; $\langle x, y \rangle =$
 846 $\sum_{i=1}^d x_i y_i$ is the standard dot product; $\|A\|$ is the standard spectral/operator norm for all $A \in$
 847 $\mathbb{R}^{d \times d}$; $g = \mathcal{O}(f) : \exists C > 0$ such that $g(z) \leq C \times f(z)$ for all $z \in \mathcal{Z}$; $g = \Omega(f) : \exists$
 848 $C > 0$ such that $g(z) \geq C \times f(z)$ for all $z \in \mathcal{Z}$; $g = \Theta(f) : g = \mathcal{O}(f)$ and $g = \Omega(f)$;
 849 $g = \tilde{\mathcal{O}}(f)$, $g = \tilde{\Omega}(f)$, $g = \tilde{\Theta}(f)$: the same as $g = \mathcal{O}(f)$, $g = \Omega(f)$, $g = \Theta(f)$, respectively, but
 850 up to logarithmic factors; $g \simeq h : g$ and h are equal up to universal positive constants; $g \gtrsim h : g$
 851 greater or equal to h up to universal positive constants; \mathcal{C} is an unbiased compressor (Definition 1.5);
 852 $\text{supp}(v) = \{i \in [d] : v_i \neq 0\}$; h : maximum time (in seconds) for any worker to compute one stochastic
 853 gradient; τ_s : communication time per coordinate from the server to any worker; τ_w : communication time
 854 per coordinate from any worker to the server;

855 **D LOWER BOUND**
856857 **D.1 NEW CONSTRUCTION**
858

860 For any $T, K \in \mathbb{N}$, and $e \geq a > 1$ we define the function $F_{T, K, a} : \mathbb{R}^T \rightarrow \mathbb{R}$ such that
 861

$$862 \quad 863 \quad F_{T, K, a}(x) = - \sum_{i=1}^T \Psi_a(x_{i-K}) \dots \Psi_a(x_{i-2}) \Psi_a(x_{i-1}) \Phi(x_i) + \sum_{i=1}^T \Gamma(x_i), \quad (14)$$

864 where x_i is the i^{th} coordinate of a vector $x \in \mathbb{R}^T$ and
 865

$$866 \quad \Psi_a(x) = \begin{cases} 0, & x \leq 1/2, \\ 867 \quad \exp\left(\log a \cdot \left(1 - \frac{1}{(2x-1)^2}\right)\right), & x > 1/2, \end{cases} \quad \Phi(x) = \sqrt{e} \int_{-\infty}^x e^{-\frac{1}{2}t^2} dt,$$

869 and
 870

$$871 \quad \Gamma(x) = \begin{cases} -xe^{1/x+1}, & x < 0, \\ 872 \quad 0, & x \geq 0. \end{cases}$$

873 We assume that $x_0 = \dots = x_{-K+1} \equiv 1$. Importantly, throughout the lower bound analysis, we
 874 assume that $e \geq a > 1$, even if this assumption is not explicitly stated in all theorems.
 875

876 We additionally define
 877

$$878 \quad \text{prog}^K(x) := \max\{i \geq 0 \mid x_i \neq 0, x_{i-1} \neq 0, \dots, x_{i-K+1} \neq 0\} \\ 879 \quad (x_0 = \dots = x_{-K+1} \equiv 1),$$

880 which extends $\text{prog}(x) \equiv \text{prog}^1(x) := \max\{i \geq 0 \mid x_i \neq 0\}$ ($x_0 \equiv 1$).
 881

882 D.2 AUXILIARY LEMMAS

884 In this section, we list useful properties of the functions Φ , Γ , Ψ_a , and $F_{T,K,a}$. We prove them in
 885 Section D.3.
 886

887 **Lemma D.1** (Carmon et al. (2020)). *Function Φ is twice differentiable and satisfies*

$$888 \quad 0 \leq \Phi(x) \leq \sqrt{2\pi e}, \quad 0 \leq \Phi'(x) \leq \sqrt{e}, \text{ and } |\Phi''(x)| \leq 27$$

890 for all $x \in \mathbb{R}$. Moreover, $\Phi'(x) > 1$ for all $-1 < x < 1$.
 891

892 **Lemma D.2.** *Function Γ is twice differentiable and satisfies*

$$893 \quad 0 \leq \Gamma(x), \quad -e < \Gamma'(x) \leq 0, \text{ and } 0 \leq \Gamma''(x) \leq 27e^{-2}$$

895 for all $x \in \mathbb{R}$. Moreover, $\Gamma'(x) \leq -2$ for all $x \leq -1$.
 896

897 **Lemma D.3.** *Function Ψ_a is twice differentiable and satisfies*

$$898 \quad 0 \leq \Psi_a(x) < a, \quad 0 \leq \Psi'_a(x) \leq \frac{2e}{\sqrt{\log a}}, \text{ and } |\Psi''_a(x)| \leq \frac{56e}{\log a}$$

901 for all $x \in \mathbb{R}$ and $1 < a \leq e$. Moreover, $\Psi_a(x) \geq 1$ for all $x \geq 1$ and $1 < a \leq e$.
 902

903 **Lemma D.4.** *For all $x \in \mathbb{R}^T$, $\text{supp}(\nabla F_{T,K,a}(x)) \in \{1, \dots, \text{prog}^K(x) + 1\} \cup \text{supp}(x)$, where
 904 $\text{supp}(v) := \{i \in [d] : v_i \neq 0\}$.*

905 **Lemma D.5.** *For all $x \in \mathbb{R}^T$, if $\text{prog}^K(x) < T$, then $\|\nabla F_{T,K,a}(x)\| > 1$.*
 906

907 **Lemma D.6.** *Function $F_{T,K,a}$ satisfies*
 908

$$909 \quad F_{T,K,a}(0) - \inf_{x \in \mathbb{R}^T} F_{T,K,a}(x) \leq \Delta^0(K, a) \cdot T,$$

911 where $\Delta^0(K, a) := \sqrt{2\pi e} \cdot a^K$.
 912

913 **Lemma D.7.** *For all $x \in \mathbb{R}^T$, $\|\nabla F_{T,K,a}(x)\|_\infty \leq \gamma_\infty(K, a)$, where $\gamma_\infty(K, a) := 6\sqrt{2\pi e}^{3/2} \cdot \frac{Ka^K}{\sqrt{\log a}}$.*
 914

915 **Lemma D.8.** *The function $F_{T,K,a}$ is $\ell_1(K, a)$ -smooth, i.e., $\|\nabla^2 F_{T,K,a}(x)\| \leq \ell_1(K, a)$ for all
 916 $x \in \mathbb{R}^T$, where $\ell_1(K, a) := 12\sqrt{2\pi e}^{5/2} \cdot \frac{K^2 a^K}{\log a}$.*
 917

918 D.3 PROOF OF LEMMAS
919920 **Lemma D.2.** *Function Γ is twice differentiable and satisfies*

921
$$0 \leq \Gamma(x), \quad -e < \Gamma'(x) \leq 0, \text{ and } 0 \leq \Gamma''(x) \leq 27e^{-2}$$

922

923 for all $x \in \mathbb{R}$. Moreover, $\Gamma'(x) \leq -2$ for all $x \leq -1$.924
925 *Proof.* The first fact is due to $\lim_{\Delta \rightarrow 0} \frac{\Gamma(\Delta)}{\Delta} = 0$, $\Gamma'(0) = 0$, and $\lim_{\Delta \rightarrow 0} \frac{\Gamma'(\Delta)}{\Delta} = 0$. Γ is clearly non-negative. Next, for all $x \leq 0$,

926
927
$$\Gamma'(x) = -e^{1/x+1} + \frac{e^{1/x+1}}{x}$$

928

929 and
930

931
932
$$\Gamma''(x) = -\frac{e^{1/x+1}}{x^3}.$$

933

934 Thus, Γ' is strongly increasing for all $x \leq 0$, and $\lim_{x \rightarrow -\infty} \Gamma'(x) = -e < \Gamma'(x) \leq 0$. Next, $\Gamma''(x) \geq 0$
935 for all $x \leq 0$, and $\max_{x \leq 0} \Gamma''(x) = 27e^{-2}$ for all $x \leq 0$. \square
936937 **Lemma D.3.** *Function Ψ_a is twice differentiable and satisfies*

938
939
$$0 \leq \Psi_a(x) < a, \quad 0 \leq \Psi'_a(x) \leq \frac{2e}{\sqrt{\log a}}, \text{ and } |\Psi''_a(x)| \leq \frac{56e}{\log a}$$

940

941 for all $x \in \mathbb{R}$ and $1 < a \leq e$. Moreover, $\Psi_a(x) \geq 1$ for all $x \geq 1$ and $1 < a \leq e$.942
943 *Proof.* The differentiability at $x = \frac{1}{2}$ follows from $\lim_{\Delta \rightarrow 0} \frac{\Psi_a(\frac{1}{2} + \Delta)}{\Delta} = 0$ for all $a > 1$. For all $x \leq \frac{1}{2}$,
944 $\Psi'_a(x) = 0$. For all $x > \frac{1}{2}$, we get

945
946
$$\begin{aligned} 0 \leq \Psi'_a(x) &= \frac{4 \log a}{(2x-1)^3} \exp \left(\log a \left(1 - \frac{1}{(2x-1)^2} \right) \right) \\ &= \frac{4a}{\sqrt{\log a}} \times \frac{\log^{3/2} a}{(2x-1)^3} \exp \left(-\frac{\log a}{(2x-1)^2} \right). \end{aligned}$$

947

948 Taking $t = \frac{\log^{1/2} a}{(2x-1)} > 0$ and using $t^3 e^{-t^2} \leq \frac{1}{2}$, we get

949
950
$$\Psi'_a(x) \leq \frac{4a}{\sqrt{\log a}} \times \frac{1}{2} \leq \frac{2e}{\sqrt{\log a}}$$

951

952 since $a \leq e$.953
954 Clearly, $\Psi_a(x) \geq 0$ for all $x \in \mathbb{R}$, and Ψ_a is non-decreasing. Moreover it is strongly monotonic for
955 all $x > \frac{1}{2}$. Thus $\Psi_a(x) < \lim_{x \rightarrow \infty} \Psi_a(x) = a$ for all $x \in \mathbb{R}$.956
957 The twice differentiability at $x = \frac{1}{2}$ follows from $\lim_{\Delta \rightarrow 0} \frac{\Psi'_a(\frac{1}{2} + \Delta)}{\Delta} = 0$ for all $a > 1$. For all $x \leq \frac{1}{2}$,
958 $\Psi''_a(x) = 0$. For all $x > \frac{1}{2}$, taking the second derivative and using simple algebra, we get

959
960
$$\begin{aligned} |\Psi''_a(x)| &= \left| -\frac{8 \log a \times (3(2x-1)^2 - 2 \log a)}{(2x-1)^6} \exp \left(\log a \left(1 - \frac{1}{(2x-1)^2} \right) \right) \right| \\ &= \left| \frac{8a \log a \times (3(2x-1)^2 - 2 \log a)}{(2x-1)^6} \exp \left(-\frac{\log a}{(2x-1)^2} \right) \right| \\ &\leq \left| \frac{24a \log a}{(2x-1)^4} \exp \left(-\frac{\log a}{(2x-1)^2} \right) \right| + \left| \frac{16a \log^2 a}{(2x-1)^6} \exp \left(-\frac{\log a}{(2x-1)^2} \right) \right| \\ &= \frac{24a}{\log a} \times \frac{\log^2 a}{(2x-1)^4} \exp \left(-\frac{\log a}{(2x-1)^2} \right) + \frac{16a}{\log a} \times \frac{\log^3 a}{(2x-1)^6} \exp \left(-\frac{\log a}{(2x-1)^2} \right). \end{aligned}$$

961
962
963
964
965
966
967
968
969
970
971

972 Taking $t = \frac{\log a}{(2x-1)^2} > 0$ and using $t^2 e^{-t} \leq 1$ and $t^3 e^{-t} \leq 2$,
 973

$$974 \quad |\Psi_a''(x)| \leq \frac{24a}{\log a} \times 1 + \frac{16a}{\log a} \times 2 \leq \frac{56e}{\log a}$$

975 since $a \leq e$. □
 976

977 **Lemma D.4.** For all $x \in \mathbb{R}^T$, $\text{supp}(\nabla F_{T,K,a}(x)) \in \{1, \dots, \text{prog}^K(x) + 1\} \cup \text{supp}(x)$, where
 978 $\text{supp}(v) := \{i \in [d] : v_i \neq 0\}$.
 979

980 *Proof.* Let $j = \text{prog}^K(x)$ and $p = \text{prog}^1(x)$, then
 981

$$982 \quad F_{T,K,a}(x) = - \sum_{i=1}^{j+1} \Psi_a(x_{i-K}) \dots \Psi_a(x_{i-2}) \Psi_a(x_{i-1}) \Phi(x_i) \\ 983 \\ 984 \quad - \sum_{i=j+2}^T \Psi_a(x_{i-K}) \dots \Psi_a(x_{i-2}) \Psi_a(x_{i-1}) \Phi(x_i) \\ 985 \\ 986 \quad + \sum_{i=1}^p \Gamma(x_i) + \sum_{i=p+1}^T \Gamma(x_i).$$

987 Since $j = \text{prog}^K(x)$, for all $i \geq j + 2$, at least one of the values $x_{i-K}, \dots, x_{i-2}, x_{i-1}$ is zero.
 988 Noting that $\Psi_a(0) = \Psi_a'(0) = 0$, the gradient of the second sum is zero. The first sum depends only
 989 on the first $j + 1$ coordinates; thus, the gradient of the first sum is non-zero in at most the $(j + 1)^{\text{th}}$
 990 coordinate.
 991

992 Since $p = \text{prog}^1(x)$, the gradient of the last sum is zero because $\Gamma'(0) = 0$. Moreover, if $x_i = 0$, then
 993 $\Gamma'(x_i) = 0$; thus, $\nabla(\sum_{i=1}^p \Gamma(x_i)) \in \text{supp}(x)$. □
 994

995 **Lemma D.5.** For all $x \in \mathbb{R}^T$, if $\text{prog}^K(x) < T$, then $\|\nabla F_{T,K,a}(x)\| > 1$.
 996

1000 *Proof.* For all $j \in [T]$, the partial derivative of $F_{T,K,a}$ with respect to x_j is
 1001

$$1002 \quad \frac{\partial F_{T,K,a}}{\partial x_j}(x) = \left[-\Psi_a(x_{j-K}) \dots \Psi_a(x_{j-1}) \Phi'(x_j) \right. \\ 1003 \\ 1004 \quad - \Psi_a(x_{j-K+1}) \dots \Psi_a(x_{j-1}) \Psi_a'(x_j) \Phi(x_{j+1}) \\ 1005 \\ 1006 \quad - \dots \\ 1007 \quad \left. - \Psi_a'(x_j) \Psi_a(x_{j+1}) \dots \Psi_a(x_{\min\{j+K, T\}-1}) \Phi(x_{\min\{j+K, T\}}) \right] + \Gamma'(x_j). \\ 1008$$

1009 We now take the smallest $j \in [T]$ for which $x_j < 1$ and $x_{j-1} \geq 1, \dots, x_{j-K} \geq 1$.
 1010

1011 If such j does not exist, then $x_1 \geq 1$ due to $x_0 = \dots = x_{-K+1} \equiv 1$. Then $x_2 \geq 1$, and so
 1012 on. Meaning that $x_j \geq 1$ for all $j \in [T]$, which contradicts the assumption of the theorem that
 1013 $\text{prog}^K(x) < T$.
 1014

Fixing such j , consider (15). There are two cases.

1015 *Case 1:* $x_j > -1$. Note that $\Psi, \Phi, \Psi', \Phi' \geq 0$ are non-negative and $\Gamma' \leq 0$ is non-positive. Thus

$$1016 \quad \frac{\partial F_{T,K,a}}{\partial x_j}(x) \leq -\Psi_a(x_{j-K}) \dots \Psi_a(x_{j-2}) \Psi_a(x_{j-1}) \Phi'(x_j).$$

1019 Since $x_{j-1} \geq 1, \dots, x_{j-K} \geq 1$ and $1 > x_j > -1$ (see Lemmas D.1 and D.3), we get
 1020

$$1021 \quad \frac{\partial F_{T,K,a}}{\partial x_j}(x) < -1.$$

1022 *Case 2:* $x_j \leq -1$. Note that $\Psi, \Phi, \Psi', \Phi' \geq 0$ are non-negative. Thus
 1023

$$1024 \quad \frac{\partial F_{T,K,a}}{\partial x_j}(x) \leq \Gamma'(x_j).$$

1026 Since $x_j \leq -1$ (see Lemma D.2), we get
 1027

$$1028 \frac{\partial F_{T,K,a}}{\partial x_j}(x) < -1. \\ 1029$$

1030 Finally, we can conclude that
 1031

$$1032 \|\nabla F_{T,K,a}(x)\| \geq \left| \frac{\partial F_{T,K,a}}{\partial x_j}(x) \right| > 1. \\ 1033$$

1034 \square

1035 **Lemma D.6.** *Function $F_{T,K,a}$ satisfies*

$$1037 F_{T,K,a}(0) - \inf_{x \in \mathbb{R}^T} F_{T,K,a}(x) \leq \Delta^0(K, a) \cdot T, \\ 1038$$

1039 where $\Delta^0(K, a) := \sqrt{2\pi e} \cdot a^K$.
 1040

1041 *Proof.* Since $\Gamma(0) = 0$ and $\Psi_a, \Phi \geq 0$, we get $F_{T,K,a}(0) \leq 0$. Next, due to $\Gamma(x) \geq 0$, $0 \leq \Phi(x) \leq \sqrt{2\pi e}$ and $0 \leq \Psi_a(x) \leq a$ for all $x \in \mathbb{R}^d$,

$$1044 F_{T,K,a}(x) \geq - \sum_{i=1}^T \Psi_a(x_{i-K}) \dots \Psi_a(x_{i-2}) \Psi_a(x_{i-1}) \Phi(x_i) \geq -T \sqrt{2\pi e} \cdot a^K \\ 1045 \\ 1046$$

1047 for all $x \in \mathbb{R}^T$. \square

1048 **Lemma D.7.** *For all $x \in \mathbb{R}^T$, $\|\nabla F_{T,K,a}(x)\|_\infty \leq \gamma_\infty(K, a)$, where $\gamma_\infty(K, a) := 6\sqrt{2\pi e}^{3/2} \cdot \frac{Ka^K}{\sqrt{\log a}}$.*

1051 *Proof.* Using (15),

$$1053 \left| \frac{\partial F_{T,K,a}}{\partial x_j}(x) \right| \leq \left| \Psi_a(x_{j-K}) \dots \Psi_a(x_{j-1}) \Phi'(x_j) \right. \\ 1054 \\ 1055 \quad + \Psi_a(x_{j-K+1}) \dots \Psi_a(x_{j-1}) \Psi_a'(x_j) \Phi(x_{j+1}) \\ 1056 \quad + \dots \\ 1058 \quad \left. + \Psi_a'(x_j) \Psi_a(x_{j+1}) \dots \Psi_a(x_{\min\{j+K, T\}-1}) \Phi(x_{\min\{j+K, T\}}) \right| + |\Gamma'(x_j)|. \\ 1059 \\ 1060 \quad (16)$$

1061 Thus,

$$1062 \left| \frac{\partial F_{T,K,a}}{\partial x_j}(x) \right| \leq a^K \sqrt{e} + K a^{K-1} \sqrt{2\pi e} \frac{2e}{\sqrt{\log a}} + e \leq 6\sqrt{2\pi e}^{3/2} \frac{Ka^K}{\sqrt{\log a}} \\ 1063 \\ 1064$$

due to Lemmas D.1, D.2, and D.3. \square

1065 **Lemma D.8.** *The function $F_{T,K,a}$ is $\ell_1(K, a)$ -smooth, i.e., $\|\nabla^2 F_{T,K,a}(x)\| \leq \ell_1(K, a)$ for all
 1066 $x \in \mathbb{R}^T$, where $\ell_1(K, a) := 12\sqrt{2\pi e}^{5/2} \cdot \frac{K^2 a^K}{\log a}$.*

1068 *Proof.* Taking the second partial derivative in (15),

$$1070 \frac{\partial^2 F_{T,K,a}}{\partial x_j^2}(x) = \left[-\Psi_a(x_{j-K}) \dots \Psi_a(x_{j-1}) \Phi''(x_j) \right. \\ 1071 \quad - \Psi_a(x_{j-K+1}) \dots \Psi_a(x_{j-1}) \Psi_a''(x_j) \Phi(x_{j+1}) \\ 1072 \quad - \dots \\ 1075 \quad \left. - \Psi_a''(x_j) \Psi_a(x_{j+1}) \dots \Psi_a(x_{\min\{j+K, T\}-1}) \Phi(x_{\min\{j+K, T\}}) \right] + \Gamma''(x_j). \\ 1076$$

1077 Due to Lemmas D.1, D.2, and D.3,

$$1078 \left| \frac{\partial^2 F_{T,K,a}}{\partial x_j^2}(x) \right| \leq \left[27a^K + K \times \frac{56\sqrt{2\pi e}^{3/2} a^{K-1}}{\log a} \right] + 27e^{-2} \leq 168\sqrt{2\pi e}^{3/2} \cdot \frac{Ka^K}{\log a} \\ 1079$$

1080 Clearly, for all $\min\{j + K, T\} < i \leq T$,

$$\frac{\partial^2 F_{T,K,a}}{\partial x_j \partial x_i}(x) = 0 \quad (20)$$

1081 due to the construction of $F_{T,K,a}$. Next, for all $j < i \leq \min\{j + K, T\}$,

$$\begin{aligned} \frac{\partial^2 F_{T,K,a}}{\partial x_j \partial x_i}(x) = & \left[-\Psi_a(x_{i-K}) \dots \Psi_a(x_{j-1}) \Psi'_a(x_j) \Psi_a(x_{j+1}) \dots \Psi_a(x_{i-1}) \Phi'(x_i) \right. \\ & - \Psi_a(x_{i-K+1}) \dots \Psi_a(x_{j-1}) \Psi'_a(x_j) \Psi_a(x_{j+1}) \dots \Psi_a(x_{i-1}) \Psi'_a(x_i) \Phi(x_{i+1}) \\ & - \dots \\ & \left. - \Psi'_a(x_j) \Psi_a(x_{j+1}) \dots \Psi_a(x_{i-1}) \Psi'_a(x_i) \Psi_a(x_{i+1}) \dots \Psi_a(x_{\min\{j+K, T\}-1}) \Phi(x_{\min\{j+K, T\}}) \right], \end{aligned}$$

1093 and

$$\left| \frac{\partial^2 F_{T,K,a}}{\partial x_j \partial x_i}(x) \right| \leq \frac{2e^{3/2}a^{K-1}}{\sqrt{\log a}} + (K-1) \times \frac{4\sqrt{2\pi}e^{5/2}a^{K-2}}{\log a} \leq 4\sqrt{2\pi}e^{5/2} \cdot \frac{Ka^K}{\log a} \quad (21)$$

1094 for all $i \neq j \in [T]$ due to Lemmas D.1 and D.3 and $e \geq a > 1$

1095 Notice that $\nabla^2 F_{T,K,a}$ is $(2K+1)$ -diagonal Hessian. Repeating a textbook analysis for completeness
1096 and denoting temporary $\mathbf{H} := \nabla^2 F_{T,K,a}$, we will show that

$$\| \nabla^2 F_{T,K,a}(x) \| \leq (2K+1) \max_{i,j \in [T]} \left| \frac{\partial^2 F_{T,K,a}}{\partial x_j \partial x_i}(x) \right|. \quad (22)$$

1103 for all $x \in \mathbb{R}^T$. Indeed, for all $x \in \mathbb{R}^T$ such that $\|x\| \leq 1$,

$$|x^\top \mathbf{H} x| = \left| \sum_{i=1}^T x_i \sum_{j=1}^T x_j \mathbf{H}_{ij} \right| = \left| \sum_{i=1}^T x_i \sum_{j=\max\{i-K, 1\}}^{\min\{i+K, T\}} x_j \mathbf{H}_{ij} \right| \leq \max_{i,j \in [T]} |\mathbf{H}_{ij}| \left(\sum_{i=1}^T |x_i| \sum_{j=\max\{i-K, 1\}}^{\min\{i+K, T\}} |x_j| \right),$$

1108 where the second equality due to \mathbf{H} is $(2K+1)$ -diagonal. Using the Cauchy–Schwarz inequality,

$$|x^\top \mathbf{H} x| \leq \max_{i,j \in [T]} |\mathbf{H}_{ij}| \sqrt{\sum_{i=1}^T x_i^2 \sum_{j=\max\{i-K, 1\}}^{\min\{i+K, T\}} |x_j|^2} \leq \max_{i,j \in [T]} |\mathbf{H}_{ij}| \sqrt{\sum_{i=1}^T \left(\sum_{j=\max\{i-K, 1\}}^{\min\{i+K, T\}} |x_j| \right)^2}$$

1114 since $\|x\| \leq 1$. Next, using Jensen’s inequality and $\|x\| \leq 1$,

$$\begin{aligned} |x^\top \mathbf{H} x| & \leq \max_{i,j \in [T]} |\mathbf{H}_{ij}| \sqrt{(2K+1) \sum_{i=1}^T \sum_{j=\max\{i-K, 1\}}^{\min\{i+K, T\}} x_j^2} \leq \max_{i,j \in [T]} |\mathbf{H}_{ij}| \sqrt{(2K+1)^2 \sum_{i=1}^T x_i^2} \\ & \leq (2K+1) \max_{i,j \in [T]} |\mathbf{H}_{ij}|. \end{aligned}$$

1121 We have proved (22). It is left to combine (22), (21), and (19).

1122 \square

1123

1124 E PROOF OF THEOREM 4.2

1125 **Theorem 4.2.** Let $L, \Delta, \varepsilon, n, \sigma^2, d, \tau_s, \tau_w, h > 0$ be any numbers such that $\bar{c}_1 \varepsilon \log^4(n+1) < L\Delta$ and
1126 dimension $d \geq \bar{c}_3 \frac{L\Delta}{\log^3(n+1)\varepsilon}$. Consider Protocol 1. For all $i \in [n]$ and $k \geq 0$, compressor \mathcal{C}_i^k selects
1127 and transmits P_i^k uniformly random coordinates without replacement, scaled by any constants⁷, where
1128 $P_i^k \in \{0, \dots, d\}$ may vary across each compressor⁸. Then, for any algorithm $A \in \mathcal{A}_{\text{zr}}$ (Def. 2.3),

1129 ⁷To potentially preserve unbiasedness. For instance, RandK scales by d/K .

1130 ⁸For instance, the compressors can be RandK (see Def. C.1) with any $K \in [d]$, PermK (Szlenkak et al.,
1131 2021), Identity compressor when $P_i^k = d$.

1134 there exists a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that f is L -smooth, i.e., $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$
 1135 for all $x, y \in \mathbb{R}^d$, and $f(0) - \inf_{x \in \mathbb{R}^d} f(x) \leq \Delta$, exists a stochastic gradient oracles that satisfies
 1136 Assumption 1.3, and $\mathbb{E} \left[\inf_{y \in S_t} \|\nabla f(y)\|^2 \right] > \varepsilon$ for all
 1137

$$1138 \quad t \leq \bar{c}_2 \times \left(\frac{1}{\log^3(n+1)} \cdot \frac{L\Delta}{\varepsilon} \right) \min \left\{ \frac{1}{\log(n+1)} \cdot \tau_s d, \max \left\{ h, \frac{1}{\log^3(n+1)} \cdot \frac{h\sigma^2}{\varepsilon} \right\} \right\}, \quad (12)$$

1140 where S_t is the set of all possible points that can be constructed by A up to time t based on I and
 1141 $\{I_i\}$. The quantities \bar{c}_1, \bar{c}_2 , and \bar{c}_3 are universal constants.
 1142

1143 *Proof. (Step 1: Construction).* Using the construction from Section D.1, we define a scaled version
 1144 of it. Let us take any $\lambda > 0$, $d, T \in \mathbb{N}$, $d \geq T$, and take the function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that
 1145

$$1146 \quad f(x) := \frac{L\lambda^2}{\ell_1(K, a)} F_{T, K, a} \left(\frac{x_{[T]}}{\lambda} \right),$$

1148 where $\ell_1(K, a)$ is defined in Lemma D.8 and $x_{[T]} \in \mathbb{R}^T$ is the vector with the first T coordinates of
 1149 $x \in \mathbb{R}^d$. Notice that the last $d - T$ coordinates are artificial.
 1150

1151 First, we have to show that f is L -smooth and $f(0) - \inf_{x \in \mathbb{R}^d} f(x) \leq \Delta$, Using Lemma D.8,
 1152

$$1153 \quad \|\nabla f(x) - \nabla f(y)\| = \frac{L\lambda}{\ell_1(K, a)} \left\| \nabla F_{T, K, a} \left(\frac{x_{[T]}}{\lambda} \right) - \nabla F_{T, K, a} \left(\frac{y_{[T]}}{\lambda} \right) \right\| \leq L\lambda \left\| \frac{x_{[T]}}{\lambda} - \frac{y_{[T]}}{\lambda} \right\| \\ 1154 \quad = L \|x_{[T]} - y_{[T]}\| \leq L \|x - y\| \quad \forall x, y \in \mathbb{R}^d.$$

1155 Let us take

$$1157 \quad T = \left\lfloor \frac{\Delta \cdot \ell_1(K, a)}{L\lambda^2 \cdot \Delta^0(K, a)} \right\rfloor.$$

1158 Due to Lemma D.6,

$$1159 \quad f(0) - \inf_{x \in \mathbb{R}^d} f(x) = \frac{L\lambda^2}{\ell_1(K, a)} (F_{T, K, a}(0) - \inf_{x \in \mathbb{R}^T} F_{T, K, a}(x)) \leq \frac{L\lambda^2 \Delta^0(K, a) T}{\ell_1(K, a)} \leq \Delta,$$

1160 where $\Delta^0(K, a)$ is defined in Lemma D.6. We also choose
 1161

$$1164 \quad \lambda = \frac{\sqrt{2\varepsilon} \ell_1(K, a)}{L} \quad (23)$$

1166 to ensure that

$$1168 \quad \|\nabla f(x)\|^2 = \frac{L^2 \lambda^2}{\ell_1^2(K, a)} \left\| \nabla F_{T, K, a} \left(\frac{x_{[T]}}{\lambda} \right) \right\|^2 = 2\varepsilon \left\| \nabla F_{T, K, a} \left(\frac{x_{[T]}}{\lambda} \right) \right\|^2 > 2\varepsilon \cdot \mathbb{1} [\text{prog}^K(x_{[T]}) < T],$$

1170 where the last inequality due to Lemma D.5. Note that

$$1173 \quad T = \left\lfloor \frac{L\Delta}{2\Delta^0(K, a) \cdot \ell_1(K, a) \cdot \varepsilon} \right\rfloor. \quad (25)$$

1175 **(Step 2: Stochastic Oracle).**

1176 We take the stochastic oracle construction form (Arjevani et al., 2022). For all $j \in [d]$,

$$1178 \quad [\nabla f(x; \xi)]_j := \nabla_j f(x) \left(1 + \mathbb{1} [j > \text{prog}^K(x)] \left(\frac{\xi}{p_\sigma} - 1 \right) \right) \quad \forall x \in \mathbb{R}^d, \quad (26)$$

1180 and $\mathcal{D}_\xi = \text{Bernoulli}(p_\sigma)$ for all $j \in [n]$, where $p_\sigma \in (0, 1]$. We denote $[x]_j$ as the j^{th} index of a
 1181 vector $x \in \mathbb{R}^d$. It is left to show this mapping is unbiased and σ^2 -variance-bounded. Indeed,

$$1183 \quad \mathbb{E} [[\nabla f(x, \xi)]_i] = \nabla_i f(x) \left(1 + \mathbb{1} [i > \text{prog}^K(x)] \left(\frac{\mathbb{E}[\xi]}{p_\sigma} - 1 \right) \right) = \nabla_i f(x)$$

1185 for all $i \in [d]$, and

$$1187 \quad \mathbb{E} \left[\|\nabla f(x; \xi) - \nabla f(x)\|^2 \right] \leq \max_{j \in [d]} |\nabla_j f(x)|^2 \mathbb{E} \left[\left(\frac{\xi}{p_\sigma} - 1 \right)^2 \right]$$

1188 because the difference is non-zero only in one coordinate. Thus
 1189

$$\begin{aligned} \mathbb{E} \left[\|\nabla f(x, \xi) - \nabla f(x)\|^2 \right] &\leq \frac{\|\nabla f(x)\|_\infty^2 (1 - p_\sigma)}{p_\sigma} = \frac{L^2 \lambda^2 \|F_{T,K,a} \left(\frac{x_{[T]}}{\lambda} \right)\|_\infty^2 (1 - p_\sigma)}{\ell_1^2(K, a) p_\sigma} \\ &\leq \frac{L^2 \lambda^2 \gamma_\infty^2(K, a) (1 - p_\sigma)}{\ell_1^2(K, a) p_\sigma}, \end{aligned}$$

1195 where we use Lemma D.7 in the last inequality. Taking

$$p_\sigma = \min \left\{ \frac{L^2 \lambda^2 \gamma_\infty^2(K, a)}{\sigma^2 \ell_1^2(K, a)}, 1 \right\} \stackrel{(23)}{=} \min \left\{ \frac{2\varepsilon \gamma_\infty^2(K, a)}{\sigma^2}, 1 \right\}, \quad (27)$$

1199 we ensure that $\mathbb{E} \left[\|\nabla f(x, \xi) - \nabla f(x)\|^2 \right] \leq \sigma^2$.
 1200

1201 **(Step 3: Reduction to the Analysis of Concentration).** At the beginning, due to Definition 2.3,
 1202 $s_i^0 = 0$ for all $i \in [n]$. Thus, if $k = 0$, all workers can receive zero vectors from the server. Thus, at
 1203 the beginning, all workers can only calculate stochastic gradients at the point zero.

1204 Let $t^{1,i}$ denote the earliest time at which all of the first K coordinates become non-zero in the local
 1205 information available to worker i . In other words, $t^{1,i}$ is the first time when worker i has *discovered*
 1206 all of the first K coordinates. Consequently, prior to time
 1207

$$t_1 := \min_{i \in [n]} t_{1,i} \quad (28)$$

1210 neither the server nor any worker is able to discover (filled with non-zero values) the $(K + 1)^{\text{th}}$ and
 1211 subsequent coordinates due to Lemma D.4.

1212 **There are two options by which a worker may discover a new non-zero coordinate: through
 1213 local stochastic computations or through communication from the server.**

1215 **Option 1:** In the first option, a worker computes a stochastic gradient, which takes h sec-
 1216 onds. However, due to the construction of stochastic gradients, even if the computation is completed,
 1217 the worker will not make progress or discover a new non-zero coordinate, as it will be zeroed out
 1218 with probability p_σ . Due to Lemma D.4, each worker can discover at most one coordinate at position
 1219 $\text{prog}^K(x) + 1$ before time t_1 in the first K coordinates, where x is a query point.

1220 *Remark E.1.* For this reason, making multiple queries with the same random variable instead of a single
 1221 query does not help the algorithm progress: if the coordinates are zeroed out, then they are zeroed out in
 1222 all vectors.

1223 Let $\eta_{1,i,1}$ be the number of stochastic gradients computations⁹ until the first moment when a co-
 1224 ordinate is not zeroed out in (26) in worker i . Assume that ξ_1, ξ_2, \dots is a stream of i.i.d. random
 1225 Bernoulli variables from (26) in worker i (all workers have different streams), then

$$\mathbb{P}(\eta_{1,i,1} \leq t) \leq \sum_{k=1}^{\lfloor t \rfloor} \mathbb{P}(\xi_k = 1, \xi_{k-1} = 0, \dots, \xi_1 = 0) = \sum_{k=1}^{\lfloor t \rfloor} p_\sigma (1 - p_\sigma)^{j-1} \leq t p_\sigma.$$

1226 for all $t \geq 0$. Similarly, let $\eta_{1,i,k}$ denote the number of stochastic gradient computations until the first
 1227 moment when a coordinate is not zeroed out in (26), after the moment when the $(k-1)^{\text{th}}$ coordinate is
 1228 no longer zeroed out in worker i . In other words, worker i should calculate $\eta_{1,i,1}$ stochastic gradients
 1229 to discover the first coordinate, calculate $\eta_{1,i,2}$ stochastic gradients to discover the second coordinate,
 1230 and so on. Since the draws of ξ in (26) are i.i.d., we can conclude that

$$\mathbb{P}(\eta_{1,i,k} \leq t | \eta_{1,i,k-1}, \dots, \eta_{1,i,1}) \leq t p_\sigma$$

1235 for all $k \geq 1$ and $t \geq 0$.
 1236

1238 **Option 2:** In the second option, worker i receives $P \in \{0, \dots, d\}$ random coordinates
 1239 with the set of indices $\{\nu_{1,1}, \dots, \nu_{1,P}\}$ without replacement, where it takes τ_s seconds to receive one
 1240

1241 ⁹It is possible that $\mathbb{P}(\eta_{1,i,1} = \infty) > 0$ if, for instance, the algorithm decides to stop calculating stochastic
 1242 gradients. And even $\mathbb{P}(\eta_{1,i,1} = \infty) = 1$ if it does not calculate at all.

1242 coordinate. Then, the worker receives $\bar{P} \in \{0, \dots, d\}$ random coordinates with the set of indices
 1243 $\{\nu_{2,1}, \dots, \nu_{2,\bar{P}}\}$ *without replacement*, and so on (all workers get different sets; we drop the indices
 1244 of the workers in the notations).

1245 Consequently, the worker receives a stream of coordinate indices (ν_1, ν_2, \dots) where we concatenated
 1246 the sets of indices, preserving the exact order in which the server sampled them. Note that all workers
 1247 have different streams, and we now focus on one worker.

1248 Notice that

$$1250 \quad \mathbb{P}(\nu_1 \in [K]) = \frac{K}{d}$$

1252 since ν_1 is uniformly random coordinate from the set $[d]$. Next,

$$1254 \quad \mathbb{P}(\nu_2 \in [K] | \nu_1) \leq \frac{K}{d-1},$$

1256 because either $\nu_1 \in [K]$, in which case the probability is $\frac{K-1}{d-1}$, or $\nu_1 \notin [K]$, in which case the
 1257 probability is $\frac{K}{d-1}$. Using the same reasoning,

$$1259 \quad \mathbb{P}(\nu_i \in [K] | \nu_1, \dots, \nu_{i-1}) \leq \frac{K}{d-i+1}.$$

1262 for all $i \leq d$.

1263 Hence, the worker receives a stream of coordinates ν_1, ν_2, \dots such that $\mathbb{P}(\nu_i \in [K] | \nu_1, \dots, \nu_{i-1}) \leq$
 1264 $\frac{K}{d-i+1}$ for all $i \leq d$. Let $\mu_{1,i,1}$ be the number of received coordinates until the moment when the
 1265 last received coordinate belongs to $[K]$ in worker i . Similarly, let $\mu_{1,i,k}$ be the number of received
 1266 coordinates until the moment when the last received coordinate belongs to $[K]$, after the $(k-1)^{\text{th}}$
 1267 time this has happened in worker i . In other words, worker i should receive $\mu_{1,i,1}$ coordinates to
 1268 obtain a coordinate that belongs to $[K]$. To get the next coordinate that belongs to $[K]$, the worker
 1269 should receive $\mu_{1,i,2}$ coordinates, and so on. Then,

$$1270 \quad \mathbb{P}(\mu_{1,i,1} = j) = \mathbb{P}(\nu_j \in [K], \nu_{j-1} \notin [K], \dots, \nu_1 \notin [K]) \\ 1271 \quad = \mathbb{P}(\nu_j \in [K] | \nu_{j-1} \notin [K], \dots, \nu_1 \notin [K]) \mathbb{P}(\nu_{j-1} \notin [K], \dots, \nu_1 \notin [K]) \leq \frac{K}{d-j+1}$$

1274 for all $1 \leq j \leq d$, and

$$1276 \quad \mathbb{P}(\mu_{1,i,1} \leq t) = \sum_{j=1}^{\lfloor t \rfloor} \mathbb{P}(\mu_{1,i,1} = j) \leq \frac{Kt}{d-t+1}. \quad (29)$$

1279 for all $0 \leq t \leq d$. Similarly,

$$1281 \quad \mathbb{P}(\mu_{1,i,k} = j | \mu_{1,i,k-1}, \dots, \mu_{1,i,1}) \\ 1282 \quad = \mathbb{P}(\nu_{u+j} \in [K], \nu_{u+j-1} \notin [K], \dots, \nu_{u+1} \notin [K] | \nu_u \in [K], \dots, \nu_1 \notin [K]) \\ 1283 \quad \leq \frac{K}{\max\{d-u, 0\} - j + 1},$$

1286 where $u = \sum_{j=1}^{k-1} \mu_{1,i,j}$, for all $j \leq \max\{d-u, 0\}$. Thus,

$$1288 \quad \mathbb{P}(\mu_{1,i,k} \leq t | \mu_{1,i,k-1}, \dots, \mu_{1,i,1}) \leq \frac{Kt}{\max\{d - \sum_{j=1}^{k-1} \mu_{1,i,j}, 0\} - t + 1},$$

1290 for all $0 \leq t \leq \max\{d - \sum_{j=1}^{k-1} \mu_{1,i,j}, 0\}$.

1292 Recall that the workers can discover new non-zero coordinates only through the stochastic processes
 1293 discussed above. To discover all of the first K coordinates, either the first or the second process
 1294 must uncover at least $\frac{K}{2}$ coordinates¹⁰. If worker i has discovered fewer than $\frac{K}{2}$ coordinates through

1295 ¹⁰At the end of the proof, we take $K \bmod 2 = 0$.

1296 stochastic gradient computations and fewer than $\frac{K}{2}$ coordinates through receiving coordinates from
 1297 the server, then it will not be able to cover all K coordinates. Hence,
 1298

$$1301 \quad t_1 \geq \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{1,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{1,i,k} \right\} \right\}, \quad (30)$$

1304 where t_1 is defined in (28). This is because $h \sum_{k=1}^{\frac{K}{2}} \eta_{1,i,k}$ is the time required to obtain $\frac{K}{2}$ “lucky”
 1305 stochastic gradients, those for which the coordinates are not zeroed out, and $\tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{1,i,k}$ is the
 1306 time required to receive $\frac{K}{2}$ “lucky” coordinates that belong to $[K]$.
 1307

1308 *Remark E.2.* The previous derivations hold for all $\tau_w > 0$. If we start taking the communication time τ_w
 1309 into account, then the bound on t_1 in (30) may only increase. For all $\tau_w > 0$, worker i still has to discover
 1310 new non-zero coordinates either through stochastic gradient computations or by receiving coordinates from
 1311 the server and it will take at least

$$1313 \quad \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{1,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{1,i,k} \right\} \right\}$$

1316 seconds to discover all of the first K coordinates.

1317 Once the workers have discovered the first K coordinates, the discovery process repeats for the set
 1318 $\{K+1, \dots, 2K\}$, which similarly requires at least

$$1320 \quad \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{2,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{2,i,k} \right\} \right\}$$

1324 seconds, where $\{\eta_{b,i,k}\}$ and $\{\mu_{b,i,k}\}$ are random variables such that

$$1325 \quad \mathbb{P}(\eta_{b,i,k} \leq t | \eta_{b,i,k-1}, \dots, \eta_{b,i,1}, \mathcal{G}_{b-1}) \leq tp_\sigma \quad (31)$$

1327 for all $b \geq 1, k \geq 1, i \in [n], t \geq 0$, and

$$1328 \quad \mathbb{P}(\mu_{b,i,k} \leq t | \mu_{b,i,k-1}, \dots, \mu_{b,i,1}, \mathcal{G}_{b-1}) \leq \frac{Kt}{\max\{d - \sum_{j=1}^{k-1} \mu_{b,i,j}, 0\} - t + 1} \quad (32)$$

1331 for all $b \geq 1, k \geq 1, i \in [n]$, and $t \leq \max\{d - \sum_{j=1}^{k-1} \mu_{b,i,j}, 0\}$, where \mathcal{G}_{b-1} is the sigma-algebra
 1332 generated by $\{\eta_{b',i,k}\}_{i \in [n], k \in [\frac{K}{2}], b' < b}$ and $\{\mu_{b',i,k}\}_{i \in [n], k \in [\frac{K}{2}], b' < b}$ and $u = \sum_{j=1}^{k-1} \mu_{b,i,j}$.
 1333

1334 More formally, $\eta_{2,i,k}$ can be defined as the number of stochastic gradient computations until the first
 1335 moment when a coordinate is not zeroed out in (26), after the moment when the $(k-1)^{\text{th}}$ coordinate
 1336 is no longer zeroed out, when prog^K of the input points to the stochastic gradients is $\geq K$, and $\mu_{2,i,k}$
 1337 be the number of received coordinates until the moment when the last received coordinate belongs to
 1338 $\{K+1, \dots, 2K\}$, after the $(k-1)^{\text{th}}$ time this has happened, when prog^1 of the input points to the
 1339 compressor is $\geq K+1$, and so on.

1340 We define

$$1342 \quad p_K := \frac{2K}{d}. \quad (33)$$

1344 Finally, to discover the T^{th} coordinates it takes at least

$$1346 \quad \sum_{b=1}^B \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{b,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{b,i,k} \right\} \right\}$$

1349 seconds, where $B = \lfloor \frac{T}{K} \rfloor$. It is left to use the following lemma.

1350 **Lemma E.3.** Let $\{\eta_{b,i,j}\}_{i,j,b \geq 0}$ and $\{\mu_{b,i,j}\}_{i,j,b \geq 0}$ be random variables such that

$$1352 \quad \mathbb{P}(\eta_{b,i,k} \leq t | \eta_{b,i,k-1}, \dots, \eta_{b,i,1}, \mathcal{G}_{b-1}) \leq tp_\sigma \quad (34)$$

1353 for all $b \geq 1, k \geq 1, i \in [n], t \geq 0$, and

$$1355 \quad \mathbb{P}(\mu_{b,i,k} \leq t | \mu_{b,i,k-1}, \dots, \mu_{b,i,1}, \mathcal{G}_{b-1}) \leq \frac{Kt}{\max\{d - \sum_{j=1}^{k-1} \mu_{b,i,j}, 0\} - t + 1}, \quad (35)$$

1357 for all $b \geq 1, k \geq 1, i \in [n], 0 \leq t \leq \max\{d - \sum_{j=1}^{k-1} \mu_{b,i,j}, 0\}$, and $1 \leq K \leq d$, where \mathcal{G}_{b-1} is the
1358 sigma-algebra generated by $\{\eta_{b',i,k}\}_{i \in [n], k \in [\frac{K}{2}], b' < b}$ and $\{\mu_{b',i,k}\}_{i \in [n], k \in [\frac{K}{2}], b' < b}$. Then

$$1361 \quad \mathbb{P}\left(\sum_{b=1}^B \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{b,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{b,i,k} \right\} \right\} \leq \bar{t}\right) \leq \delta$$

1364 with

$$1365 \quad \bar{t} := \frac{BK + \log \delta}{e^4(2n)^{2/K}(4 + \frac{2}{K} \log(2n))} \min \left\{ \frac{h}{p_\sigma}, \frac{\tau_s}{p_K} \right\}, \quad (36)$$

1368 where

$$1369 \quad p_K := \frac{2K}{d}.$$

1372 **(Step 4: Endgame).** Thus, with probability at least $1 - \delta$, any zero-respecting algorithm requires at
1373 least \bar{t} seconds to discover the T^{th} coordinate. Since $\text{prog}^K(x) \leq \text{prog}^1(x)$ for all $x \in \mathbb{R}^T$, and due
1374 to (24),

$$1375 \quad \inf_{y \in S_t} \|\nabla f(y)\|^2 > 2\varepsilon \inf_{y \in S_t} \mathbb{1}[\text{prog}^1(y_{[T]}) < T],$$

1377 where S_t is the set of all possible candidate points to be an ε -stationary point up to time t , which can
1378 be computed by A . Taking $\delta = \frac{1}{2}$,

$$1380 \quad \mathbb{E} \left[\inf_{y \in S_t} \|\nabla f(y)\|^2 \right] > 2\varepsilon \mathbb{E} \left[\inf_{y \in S_t} \mathbb{1}[\text{prog}^1(y_{[T]}) < T] \right] \geq \varepsilon,$$

1382 for $t = \frac{1}{2}\bar{t}$ because $\text{prog}^1(y_{[T]}) < T$ for all $y \in S_t$ with probability at least $\frac{1}{2}$.

1384 It is left to choose K and a , and substitute all quantities to \bar{t} . Using $B = \lfloor \frac{T}{K} \rfloor$,

$$1386 \quad \bar{t} = \frac{\lfloor \frac{T}{K} \rfloor K - \log 8}{e^4(2n)^{2/K}(4 + \frac{2}{K} \log(2n))} \min \left\{ \frac{h}{p_\sigma}, \frac{\tau_s}{p_K} \right\}$$

$$1388 \quad \geq \frac{T - K - \log 8}{e^4(2n)^{2/K}(4 + \frac{2}{K} \log(2n))} \min \left\{ \frac{h}{p_\sigma}, \frac{\tau_s}{p_K} \right\}.$$

1391 Due to (25), (27), and (33),

$$1393 \quad \bar{t} \geq \frac{\left\lfloor \frac{L\Delta}{2\Delta^0(K,a) \cdot \ell_1(K,a) \cdot \varepsilon} \right\rfloor - K - \log 8}{e^4(2n)^{2/K}(4 + \frac{2}{K} \log(2n))} \min \left\{ \max \left\{ h, \frac{h\sigma^2}{2\varepsilon\gamma_\infty^2(K,a)} \right\}, \frac{\tau_s d}{2K} \right\}.$$

1395 Using the definitions of $\Delta^0(K,a)$, $\gamma_\infty(K,a)$, and $\ell_1(K,a)$,

$$1397 \quad \bar{t} \geq \left(e^4(2n)^{2/K} \left(4 + \frac{2}{K} \log(2n) \right) \right)^{-1} \left(\left\lfloor \frac{L\Delta \log a}{48\pi e^3 K^2 a^{2K} \varepsilon} \right\rfloor - K - \log 8 \right) \min \left\{ \max \left\{ h, \frac{h\sigma^2 \log a}{144\pi e^3 K^2 a^{2K} \varepsilon} \right\}, \frac{\tau_s d}{2K} \right\}.$$

1400 We can take any a from the interval $(1, e]$. We choose $a = 1 + \frac{1}{K}$, then $\log a = \log(1 + \frac{1}{K}) \geq \frac{1}{2K}$
1401 for all $K \geq 1$, $a^{2K} \leq e^2$ for all $K \geq 1$, and

$$1403 \quad \bar{t} \geq \left(e^4(2n)^{2/K} \left(4 + \frac{2}{K} \log(2n) \right) \right)^{-1} \left(\left\lfloor \frac{L\Delta}{96\pi e^5 K^3 \varepsilon} \right\rfloor - K - \log 8 \right) \min \left\{ \max \left\{ h, \frac{h\sigma^2}{288\pi e^5 K^3 \varepsilon} \right\}, \frac{\tau_s d}{2K} \right\}.$$

1404 Taking $K = 2 \lceil 2 \log(2n) \rceil$, $(2n)^{2/K} \leq e$, $K \leq 16 \log(n+1)$ and
 1405
 1406 $\bar{t} \geq \frac{1}{5e^5} \left(\left\lfloor \frac{L\Delta}{96 \cdot 8^4 \pi e^5 \log^3(n+1) \varepsilon} \right\rfloor - 32 \log(n+1) \right) \min \left\{ \max \left\{ h, \frac{h\sigma^2}{288 \cdot 8^4 \pi e^5 \log^3(n+1) \varepsilon} \right\}, \frac{\tau_s d}{32 \log(n+1)} \right\}$
 1407
 1408 $\geq \frac{1}{5e^5} \left(\frac{L\Delta}{96 \cdot 8^4 \pi e^5 \log^3(n+1) \varepsilon} - 36 \log(n+1) \right) \min \left\{ \max \left\{ h, \frac{h\sigma^2}{288 \cdot 8^4 \pi e^5 \log^3(n+1) \varepsilon} \right\}, \frac{\tau_s d}{32 \log(n+1)} \right\}.$
 1409
 1410

1411 We assume $\frac{L\Delta}{\varepsilon} \geq \bar{c}_1 \log^4(n+1)$ for a universal constant \bar{c}_1 . Taking \bar{c}_1 large enough, one can see
 1412 that

1413 $\bar{t} \geq \frac{1}{5e^5} \left(\frac{L\Delta}{2 \cdot 96 \cdot 8^4 \pi e^5 \log^3(n+1) \varepsilon} \right) \min \left\{ \max \left\{ h, \frac{h\sigma^2}{288 \cdot 8^4 \pi e^5 \log^3(n+1) \varepsilon} \right\}, \frac{\tau_s d}{32 \log(n+1)} \right\}.$
 1414
 1415 For a small enough universal \bar{c}_2 , we get the inequality

1416
 1417 $\bar{t} \geq \bar{c}_2 \times \left(\frac{L\Delta}{\log^3(n+1) \varepsilon} \right) \min \left\{ \max \left\{ h, \frac{h\sigma^2}{\log^3(n+1) \varepsilon} \right\}, \frac{\tau_s d}{\log(n+1)} \right\},$
 1418

1419 which finishes the proof. Notice that we can take

1420
 1421 $d \geq T = \left\lfloor \frac{L\Delta \log a}{48\pi e^3 K^2 a^{2K} \varepsilon} \right\rfloor = \Theta \left(\frac{L\Delta}{\log^3(n+1) \varepsilon} \right).$
 1422

1423 \square
 1424

1425 E.1 MAIN CONCENTRATION LEMMA

1426
 1427 **Lemma E.3.** Let $\{\eta_{b,i,j}\}_{i,j,b \geq 0}$ and $\{\mu_{b,i,j}\}_{i,j,b \geq 0}$ be random variables such that

1428 $\mathbb{P}(\eta_{b,i,k} \leq t | \eta_{b,i,k-1}, \dots, \eta_{b,i,1}, \mathcal{G}_{b-1}) \leq tp_\sigma \quad (34)$
 1429

1430 for all $b \geq 1, k \geq 1, i \in [n], t \geq 0$, and

1431
 1432 $\mathbb{P}(\mu_{b,i,k} \leq t | \mu_{b,i,k-1}, \dots, \mu_{b,i,1}, \mathcal{G}_{b-1}) \leq \frac{Kt}{\max\{d - \sum_{j=1}^{k-1} \mu_{b,i,j}, 0\} - t + 1}, \quad (35)$
 1433

1434 for all $b \geq 1, k \geq 1, i \in [n], 0 \leq t \leq \max\{d - \sum_{j=1}^{k-1} \mu_{b,i,j}, 0\}$, and $1 \leq K \leq d$, where \mathcal{G}_{b-1} is the
 1435 sigma-algebra generated by $\{\eta_{b',i,k}\}_{i \in [n], k \in [\frac{K}{2}], b' < b}$ and $\{\mu_{b',i,k}\}_{i \in [n], k \in [\frac{K}{2}], b' < b}$. Then

1436
 1437 $\mathbb{P} \left(\sum_{b=1}^B \min_{i \in [n]} \left\{ \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{b,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{b,i,k} \right\} \right\} \leq \bar{t} \right) \leq \delta$
 1438

1439 with

1440
 1441 $\bar{t} := \frac{BK + \log \delta}{e^4 (2n)^{2/K} (4 + \frac{2}{K} \log(2n))} \min \left\{ \frac{h}{p_\sigma}, \frac{\tau_s}{p_K} \right\}, \quad (36)$
 1442

1443 where

1444
 1445 $p_K := \frac{2K}{d}.$
 1446

1447
 1448 *Proof.* Let us temporarily define $\beta_{b,i} := \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{b,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{b,i,k} \right\}$. Using Chernoff's
 1449 method, we get

1450
 1451 $\mathbb{P} \left(\sum_{b=1}^B \min_{i \in [n]} \beta_{b,i} \leq \bar{t} \right) = \mathbb{P} \left(\exp \left(- \sum_{b=1}^B \lambda \min_{i \in [n]} \beta_{b,i} \right) \geq \exp(-\lambda \bar{t}) \right)$
 1452
 1453 $\leq \exp(\lambda \bar{t}) \mathbb{E} \left[\exp \left(- \sum_{b=1}^B \lambda \min_{i \in [n]} \beta_{b,i} \right) \right] \quad (37)$
 1454
 1455
 1456 $= \exp(\lambda \bar{t}) \mathbb{E} \left[\mathbb{E} \left[\exp \left(- \lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] \exp \left(- \sum_{b=1}^{B-1} \lambda \min_{i \in [n]} \beta_{b,i} \right) \right]$
 1457

1458 for all $\lambda > 0$ since $\beta_{1,i}, \dots, \beta_{B-1,i}$ are \mathcal{G}_{B-1} -measurable. Consider the inner expectation separately:
1459

$$1460 \mathbb{E} \left[\exp \left(-\lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] = \mathbb{E} \left[\max_{i \in [n]} \exp (-\lambda \beta_{B,i}) \middle| \mathcal{G}_{B-1} \right] \leq \sum_{i=1}^n \mathbb{E} [\exp (-\lambda \beta_{B,i}) \mid \mathcal{G}_{B-1}],$$

1463 where we bound max by \sum . Using the temporal definitions of $\{\beta_{B,i}\}$,

$$\begin{aligned} 1464 \mathbb{E} \left[\exp \left(-\lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] \\ 1465 &\leq \sum_{i=1}^n \mathbb{E} \left[\exp \left(-\lambda \min \left\{ h \sum_{k=1}^{\frac{K}{2}} \eta_{B,i,k}, \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{B,i,k} \right\} \right) \middle| \mathcal{G}_{B-1} \right] \\ 1466 \\ 1467 &= \sum_{i=1}^n \mathbb{E} \left[\max \left\{ \exp \left(-\lambda h \sum_{k=1}^{\frac{K}{2}} \eta_{B,i,k} \right), \exp \left(-\lambda \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{B,i,k} \right) \right\} \middle| \mathcal{G}_{B-1} \right] \\ 1468 \\ 1469 &\leq \underbrace{\sum_{i=1}^n \mathbb{E} \left[\exp \left(-\lambda h \sum_{k=1}^{\frac{K}{2}} \eta_{B,i,k} \right) \middle| \mathcal{G}_{B-1} \right]}_{I_1 :=} + \underbrace{\sum_{i=1}^n \mathbb{E} \left[\exp \left(-\lambda \tau_s \sum_{k=1}^{\frac{K}{2}} \mu_{B,i,k} \right) \middle| \mathcal{G}_{B-1} \right]}_{I_2 :=}. \end{aligned} \quad (38)$$

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479 Using the tower property,

$$1480 \\ 1481 I_1 = \sum_{i=1}^n \mathbb{E} \left[\underbrace{\mathbb{E} \left[\exp \left(-\lambda h \eta_{B,i,\frac{K}{2}} \right) \middle| \eta_{B,i,\frac{K}{2}-1}, \dots, \eta_{B,i,1}, \mathcal{G}_{B-1} \right]}_{J_1 :=} \exp \left(-\lambda h \sum_{k=1}^{\frac{K}{2}-1} \eta_{B,i,k} \right) \middle| \mathcal{G}_{B-1} \right]. \quad (39)$$

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3089
3090
3091
3092
3093
3094
3095
3096
3097
309

1512 for all $t \geq 0$. The analysis of $I_2^{K/2}$ a little bit more evolved. For all $1 \leq j \leq \frac{K}{2}$,

$$\begin{aligned} 1514 \quad I_2^j &:= \sum_{i=1}^n \mathbb{E} \left[\exp \left(-\lambda \tau_s \sum_{k=1}^j \mu_{B,i,k} \right) \middle| \mathcal{G}_{B-1} \right] \\ 1515 \quad &= \sum_{i=1}^n \mathbb{E} \left[\underbrace{\mathbb{E} [\exp (-\lambda \tau_s \mu_{B,i,j}) | \mu_{B,i,j-1}, \dots, \mu_{B,i,1}, \mathcal{G}_{B-1}] \exp \left(-\lambda \tau_s \sum_{k=1}^{j-1} \mu_{B,i,k} \right)}_{K_2 :=} \middle| \mathcal{G}_{B-1} \right] \\ 1516 \quad & \\ 1517 \quad & \\ 1518 \quad & \\ 1519 \quad & \\ 1520 \quad & \\ 1521 \quad & \end{aligned}$$

1522 and $I_2^0 = n$. Let us define $u = \sum_{k=1}^{j-1} \mu_{B,i,k}$. If $u \geq \frac{d}{2}$, then

$$1524 \quad K_2 = \mathbb{E} [\exp (-\lambda \tau_s \mu_{B,i,j}) | \mu_{B,i,j-1}, \dots, \mu_{B,i,1}, \mathcal{G}_{B-1}] \exp (-\lambda \tau_s u) \leq \exp \left(-\frac{\lambda \tau_s d}{2} \right) \\ 1525 \quad \\ 1526 \quad \\ 1527 \quad \text{Otherwise, if } u < \frac{d}{2}, \text{ then, for all } t \geq 0,$$

$$\begin{aligned} 1528 \quad & \mathbb{E} [\exp (-\lambda \tau_s \mu_{B,i,j}) | \mu_{B,i,j-1}, \dots, \mu_{B,i,1}, \mathcal{G}_{B-1}] \\ 1529 \quad & \leq \exp (-\lambda t) + \mathbb{P} \left(\mu_{B,i,j} \leq \frac{t}{\tau_s} \middle| \mu_{B,i,j-1}, \dots, \mu_{B,i,1}, \mathcal{G}_{B-1} \right) \\ 1530 \quad & \\ 1531 \quad & \leq \exp (-\lambda t) + \frac{K \frac{t}{\tau_s}}{d - u - \frac{t}{\tau_s} + 1} \leq \exp (-\lambda t) + \frac{2Kt}{\tau_s d - 2t} \\ 1532 \quad & \\ 1533 \quad & \\ 1534 \quad & \end{aligned}$$

1535 due to (35) and $u < \frac{d}{2}$. Combining both cases,

$$1536 \quad K_2 \leq \max \left\{ \left(\exp (-\lambda t) + \frac{2Kt}{\tau_s d - 2t} \right) \exp \left(-\lambda \tau_s \sum_{k=1}^{j-1} \mu_{B,i,k} \right), \exp \left(-\frac{\lambda \tau_s d}{2} \right) \right\} \\ 1537 \quad \\ 1538 \quad \\ 1539 \quad \\ 1540 \quad \text{for all } t < \frac{\tau_s d}{2} \text{ and } u \geq 0, \text{ and}$$

$$\begin{aligned} 1541 \quad I_2^j &\leq \left(\exp (-\lambda t) + \frac{2Kt}{\tau_s d - 2t} \right) \sum_{i=1}^n \mathbb{E} \left[\exp \left(-\lambda \tau_s \sum_{k=1}^{j-1} \mu_{B,i,k} \right) \middle| \mathcal{G}_{B-1} \right] + n \exp \left(-\frac{\lambda \tau_s d}{2} \right) \\ 1542 \quad & \\ 1543 \quad & \\ 1544 \quad & \\ 1545 \quad & \\ 1546 \quad & \end{aligned} \tag{41}$$

1547 where we use the inequality $\max\{a, b\} \leq a + b$ for all $a, b \geq 0$. Substituting (40) to (38),

$$1548 \quad \mathbb{E} \left[\exp \left(-\lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] \leq n \left(\exp (-\lambda t) + \frac{tp_\sigma}{h} \right)^{\frac{K}{2}} + I_2^{\frac{K}{2}}, \\ 1549 \quad \\ 1550 \quad \\ 1551 \quad \text{where } t, \lambda \geq 0 \text{ are free parameters. Taking } t = \frac{4 + \frac{2}{K} \log(2n)}{\lambda}, \\ 1552 \quad \\ 1553 \quad \mathbb{E} \left[\exp \left(-\lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] \leq n \left(\frac{e^{-4}}{(2n)^{2/K}} + \frac{(4 + \frac{2}{K} \log(2n))p_\sigma}{\lambda h} \right)^{\frac{K}{2}} + I_2^{\frac{K}{2}}. \\ 1554 \quad \\ 1555 \quad \\ 1556 \quad \text{Choosing } \lambda = e^4(2n)^{2/K}(4 + \frac{2}{K} \log(2n)) \max \left\{ \frac{p_\sigma}{h}, \frac{p_K}{\tau_s} \right\}, \\ 1557 \quad \\ 1558 \quad \mathbb{E} \left[\exp \left(-\lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] \leq n \left(\frac{2e^{-4}}{(2n)^{2/K}} \right)^{\frac{K}{2}} + I_2^{\frac{K}{2}} = \frac{1}{2} (2e^{-4})^{\frac{K}{2}} + I_2^{\frac{K}{2}}. \\ 1559 \quad \\ 1560 \quad \\ 1561 \quad \text{With this choice of } \lambda \text{ and } t \text{ in (41), we get}$$

$$\begin{aligned} 1562 \quad I_2^j &\leq \left(\frac{3e^{-4}}{(2n)^{2/K}} \right) I_2^{j-1} + n \exp \left(-e^4(2n)^{2/K}(4K + 2 \log(2n)) \right) \\ 1563 \quad & \\ 1564 \quad & \\ 1565 \quad & \end{aligned}$$

1566 for all $j \geq 1$ because $t \leq \frac{\tau_s d}{2e^4(2n)^{2/K}K}$, $\lambda = \frac{4 + \frac{2}{K} \log(2n)}{t} \geq 2e^4(2n)^{2/K}(4 + \frac{2}{K} \log(2n))\frac{K}{\tau_s d}$. In the
 1567 third inequality, we unrolled the recursion with $I_2^0 = n$ and use $\sum_{j=0}^{\infty} \left(\frac{3e^{-4}}{(2n)^{2/K}}\right)^j \leq 2$.
 1568

1569
 1570 Finally, $I_2^{K/2} \leq \frac{1}{2} (3e^{-4})^{\frac{K}{2}} + 2e^{-2e^4 K} \leq \frac{1}{2} e^{-K}$ and
 1571

$$1572 \mathbb{E} \left[\exp \left(-\lambda \min_{i \in [n]} \beta_{B,i} \right) \middle| \mathcal{G}_{B-1} \right] \leq \frac{1}{2} (2e^{-4})^{\frac{K}{2}} + I_2^{K/2} \leq \frac{1}{2} e^{-K} + \frac{1}{2} e^{-K} \leq e^{-K}. \\ 1573$$

1574 Substituting the last inequality to (37) and repeating the steps $B - 1$ more times, we get
 1575

$$1576 \mathbb{P} \left(\sum_{b=1}^B \min_{i \in [n]} \beta_{b,i} \leq \bar{t} \right) \leq \exp(\lambda \bar{t} - BK). \\ 1577 \\ 1578$$

1579 It is left to take $\bar{t} = \frac{BK + \log \delta}{\lambda}$. □
 1580

1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 **F MAIN THEOREM WITH WORKER-TO-SERVER COMMUNICATION**
 1621

1622 In this section, we extend the result of Theorem 4.2 by taking into account the communication time
 1623 τ_w . However, in this section, we ignore the communication times from the server to the workers **in the**
 1624 **analysis**, which will be sufficient to obtain an almost tight lower bound if combined with Theorem 4.2.

1625 Tyurin et al. (2024) consider a similar setup with $\tau_s = 0$. However, their protocol does not allow the
 1626 workers to modify the iterate computed by the server and operates in the primal space. For instance,
 1627 the workers are not allowed to run local steps. Moreover, \bar{P}_i^k are fixed in their version of Protocol 1.
 1628 We improve upon this in the following theorem:

1629 **Theorem F.1.** *Let $L, \Delta, \varepsilon, \sigma^2, n, d, \tau_w, \tau_s, h > 0$ be any numbers such that $\varepsilon < c_1 L \Delta$ and $d \geq \frac{\Delta L}{c_2 \varepsilon}$.*

1630 *Consider Protocol 1. For all $i \in [n]$ and $k \geq 0$, compressor \bar{C}_i^k selects and transmits \bar{P}_i^k uniformly*
 1631 *random coordinates without replacement, scaled by any constants, where $\bar{P}_i^k \in \{0, \dots, d\}$ may*
 1632 *vary across each compressor. For any algorithm $A \in \mathcal{A}_{\text{sr}}$, there exists a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$*
 1633 *such that f is L -smooth, $f(0) - \inf_{x \in \mathbb{R}^d} f(x) \leq \Delta$, exists a stochastic gradient oracle that satisfies*
 1634 *Assumption 1.3, and $\mathbb{E} \left[\inf_{y \in S_t} \|\nabla f(y)\|^2 \right] > \varepsilon$ for all*

$$1636 \quad t \leq c_3 \times \frac{L\Delta}{\varepsilon \log(n+1)} \cdot \min \left\{ \max \left\{ \frac{h\sigma^2}{n\varepsilon}, \frac{\tau_w d}{n}, \sqrt{\frac{h\sigma^2\tau_w d}{n\varepsilon}}, h, \tau_w \right\}, \max \left\{ \frac{h\sigma^2}{\varepsilon}, h \right\} \right\},$$

1637 where S_t is the set of all possible points that can be constructed by A up to time t based on I and
 1638 $\{I_i\}$. The quantities c_1 , c_2 , and c_3 are universal constants.

1639 *Proof.* The proof closely follows the analysis from (Tyurin et al., 2024; Tyurin & Richtárik, 2024)
 1640 and the proof of Theorem 4.2, but with some important modifications. In this proof, it is sufficient to
 1641 work with (6) and Lemmas 2.1 and 2.2.

1642 Let us fix $\lambda > 0$ and define the function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ such that

$$1643 \quad f(x) := \frac{L\lambda^2}{\ell_1} F_T \left(\frac{x_{[T]}}{\lambda} \right),$$

1644 where the function F_T is given in (6) and $x_{[T]} \in \mathbb{R}^T$ is the vector with the first T coordinates of
 1645 $x \in \mathbb{R}^d$. Notice that the last $d - T$ coordinates are artificial.

1646 First, we have to show that f is L -smooth and $f(0) - \inf_{x \in \mathbb{R}^d} f(x) \leq \Delta$. Using Lemma 2.2,

$$1647 \quad \begin{aligned} \|\nabla f(x) - \nabla f(y)\| &= \frac{L\lambda}{\ell_1} \left\| \nabla F_T \left(\frac{x_{[T]}}{\lambda} \right) - \nabla F_T \left(\frac{y_{[T]}}{\lambda} \right) \right\| \leq L\lambda \left\| \frac{x_{[T]}}{\lambda} - \frac{y_{[T]}}{\lambda} \right\| \\ 1648 \quad &= L \|x_{[T]} - y_{[T]}\| \leq L \|x - y\| \quad \forall x, y \in \mathbb{R}^d. \end{aligned}$$

1649 Taking

$$1650 \quad T = \left\lceil \frac{\Delta \ell_1}{L \lambda^2 \Delta^0} \right\rceil,$$

$$1651 \quad f(0) - \inf_{x \in \mathbb{R}^d} f(x) = \frac{L\lambda^2}{\ell_1} (F_T(0) - \inf_{x \in \mathbb{R}^T} F_T(x)) \leq \frac{L\lambda^2 \Delta^0 T}{\ell_1} \leq \Delta.$$

1652 due to Lemma 2.2.

1653 Next, we construct a stochastic gradient mapping. For our lower bound, we define

$$1654 \quad [\nabla f(x; \xi)]_j := \nabla_j f(x) \left(1 + \mathbb{1}[j > \text{prog}(x)] \left(\frac{\xi}{p_\sigma} - 1 \right) \right) \quad \forall x \in \mathbb{R}^d, \quad (42)$$

1655 and let $\mathcal{D}_\xi = \text{Bernoulli}(p_\sigma)$ for all $j \in [n]$, where $p_\sigma \in (0, 1]$. We denote $[x]_j$ as the j^{th} coordinate
 1656 of a vector $x \in \mathbb{R}^d$. We choose

$$1657 \quad p_\sigma := \min \left\{ \frac{L^2 \lambda^2 \gamma_\infty^2}{\sigma^2 \ell_1^2}, 1 \right\}.$$

1674 Then this mapping is unbiased and σ^2 -variance-bounded. Indeed,
 1675

$$1676 \mathbb{E}[[\nabla f(x, \xi)]_i] = \nabla_i f(x) \left(1 + \mathbb{1}[i > \text{prog}(x)] \left(\frac{\mathbb{E}[\xi]}{p_\sigma} - 1 \right) \right) = \nabla_i f(x)$$

1677 for all $i \in [d]$, and
 1678

$$1680 \mathbb{E} \left[\|\nabla f(x; \xi) - \nabla f(x)\|^2 \right] \leq \max_{j \in [d]} |\nabla_j f(x)|^2 \mathbb{E} \left[\left(\frac{\xi}{p_\sigma} - 1 \right)^2 \right]$$

1682 because the difference is non-zero only in one coordinate. Thus
 1683

$$1684 \mathbb{E} \left[\|\nabla f(x, \xi) - \nabla f(x)\|^2 \right] \leq \frac{\|\nabla f(x)\|_\infty^2 (1 - p_\sigma)}{p_\sigma} = \frac{L^2 \lambda^2 \|F_T\left(\frac{x_{[T]}}{\lambda}\right)\|_\infty^2 (1 - p_\sigma)}{\ell_1^2 p_\sigma}$$

$$1685 \leq \frac{L^2 \lambda^2 \gamma_\infty^2 (1 - p_\sigma)}{\ell_1^2 p_\sigma} \leq \sigma^2,$$

1687 where we use Lemma 2.2.
 1688

1689 Taking
 1690

$$1691 \lambda = \frac{\sqrt{2\varepsilon} \ell_1}{L},$$

1692 we ensure that
 1693

$$1694 \|\nabla f(x)\|^2 = \frac{L^2 \lambda^2}{\ell_1^2} \left\| \nabla F_T \left(\frac{x_{[T]}}{\lambda} \right) \right\|^2 > 2\varepsilon \mathbb{1}[\text{prog}(x_{[T]}) < T] \quad (43)$$

1695 for all $x \in \mathbb{R}^d$, where we use Lemma 2.1. Thus
 1696

$$1697 T = \left\lfloor \frac{\Delta L}{2\varepsilon \ell_1 \Delta^0} \right\rfloor \quad (44)$$

1698 and
 1699

$$1700 p_\sigma = \min \left\{ \frac{2\varepsilon \gamma_\infty^2}{\sigma^2}, 1 \right\}.$$

1701 Using the same reasoning as in Tyurin et al. (2024) and our Theorem 4.2, we define two sets of random
 1702 variables. Let $\eta_{1,i}$ be the first computed stochastic gradient when the oracle draws a “successful”
 1703 Bernoulli trial in (42) at worker i . Then,
 1704

$$1705 \mathbb{P}(\eta_{1,i} \leq t) \leq \sum_{i=1}^{\lfloor t \rfloor} (1 - p_\sigma)^{i-1} p_\sigma \leq p_\sigma \lfloor t \rfloor$$

1706 for $t \geq 0$, and
 1707

$$1708 \mathbb{P}(\eta_{1,i} \leq t) \leq \min\{p_\sigma \lfloor t \rfloor, 1\}$$

1709 For all $i \in [n]$, the server receives a stream of coordinates from worker i . Let $\mu_{1,i}$ be the number of
 1710 received coordinates by the server from worker i until the moment when the index of the last received
 1711 coordinate is 1. Let us define
 1712

$$1713 p_d := \frac{2}{d}.$$

1714 Similarly to the proof of Theorem 4.2 with $K = 1$ (see (29)),
 1715

$$1716 \mathbb{P}(\mu_{1,i} \leq t | \eta_{1,i}) = \sum_{j=1}^{\lfloor t \rfloor} \mathbb{P}(\mu_{1,i,1} = j) \leq \frac{\lfloor t \rfloor}{d - t + 1}.$$

1717 for all $t \leq d$. Thus,
 1718

$$1719 \mathbb{P}(\mu_{1,i} \leq t | \eta_{1,i}) \leq \begin{cases} \frac{\lfloor t \rfloor}{d - t + 1}, & t \leq \frac{d}{2} \\ 1, & t > \frac{d}{2} \end{cases} \leq \begin{cases} \lfloor t \rfloor p_d, & t \leq \frac{d}{2} \\ 1, & t > \frac{d}{2} \end{cases} \leq \min\{2 \lfloor t \rfloor p_d, 1\}$$

1728 for all $t \geq 0$.
 1729

1730 There are two ways in which worker i can discover the first coordinate. Either the worker is “lucky”
 1731 and draws a successful Bernoulli random variable locally, or it gets to discover the first coordinate
 1732 through the server. Thus, worker i requires at least

$$1733 y_{1,i} := \min \left\{ h\eta_{1,i}, \min_{j \in [n], j \neq i} \{h\eta_{1,j} + \tau_w \mu_{1,j}\} \right\} = \min_{j \in [n]} \{h\eta_{1,j} + \mathbb{1}[i \neq j] \tau_w \mu_{1,j}\}$$

1735 seconds because $h\eta_{1,i}$ is the minimal time to discover the first coordinate locally, and
 1736 $\min_{j \in [n], j \neq i} \{h\eta_{1,j} + \tau_w \mu_{1,j}\}$ is the minimal time to discover the first coordinate from other workers
 1737 via the server, which can transmit it to worker i .

1738 *Remark F.2.* The previous derivations hold for all $\tau_s > 0$. If we start taking the communication time
 1739 τ_s into account, then $y_{1,i}$ may only increase. For all $\tau_s > 0$, worker i still requires at least $y_{1,i}$ sec-
 1740 onds for the same reason that $h\eta_{1,i}$ is the minimal time to discover the first coordinate locally, and
 1741 $\min_{j \in [n], j \neq i} \{h\eta_{1,j} + \tau_w \mu_{1,j}\}$ is the minimal time to discover the first coordinate from other workers. If
 1742 we start taking into account the communication time from τ_s , the lower bound

$$1743 \min \left\{ h\eta_{1,i}, \min_{j \in [n], j \neq i} \{h\eta_{1,j} + \tau_w \mu_{1,j}\} \right\}$$

1744 still holds.

1745 Using the same reasoning, worker i requires at least

$$1746 y_{k,i} := \min_{j \in [n]} \{h\eta_{k,j} + \mathbb{1}[i \neq j] \tau_w \mu_{k,j} + y_{k-1,j}\}$$

1747 seconds to discover the k^{th} coordinate for all $k \geq 2$, where

$$1748 \mathbb{P}(\eta_{k,i} \leq t | \mathcal{G}_{k-1}) \leq \min\{\lfloor t \rfloor p_\sigma, 1\} \quad (45)$$

1749 for all $k \geq 1$, $i \in [n]$, and $t \geq 0$, and

$$1750 \mathbb{P}(\mu_{k,i} \leq t | \eta_{k,i}, \mathcal{G}_{k-1}) \leq \min\{2 \lfloor t \rfloor p_d, 1\} \quad (46)$$

1751 for all $k \geq 1$, $i \in [n]$, and $t \geq 0$, where \mathcal{G}_{k-1} is the sigma-algebra generated by $\{\eta_{k',i}\}_{i \in [n], k' < k}$ and
 1752 $\{\mu_{k',i}\}_{i \in [n], k' < k}$. Thus, the first possible time when the workers and the server can discover the T^{th}
 1753 coordinate is

$$1754 y_T := \min_{i \in [n]} y_{T,i}.$$

1755 For this random variable, we prove the lemma below (see Section F.1).

1756 **Lemma F.3.** Let $\{\eta_{k,i}\}_{i,k \geq 0}$ and $\{\mu_{k,i}\}_{i,k \geq 0}$ be random variables such that

$$1757 \mathbb{P}(\eta_{k,i} \leq t | \mathcal{G}_{k-1}) \leq \min\{\lfloor t \rfloor p_\sigma, 1\} \quad (47)$$

1758 for all $k \geq 1$, $i \in [n]$, and $t \geq 0$, and

$$1759 \mathbb{P}(\mu_{k,i} \leq t | \eta_{k,i}, \mathcal{G}_{k-1}) \leq \min\{2 \lfloor t \rfloor p_d, 1\}, \quad (48)$$

1760 for all $k \geq 1$, $i \in [n]$, and $t \geq 0$, where \mathcal{G}_{k-1} is the sigma-algebra generated by $\{\eta_{k',i}\}_{i \in [n], k' < k}$ and
 1761 $\{\mu_{k',i}\}_{i \in [n], k' < k}$. Then

$$1762 \mathbb{P}(y_T \leq \bar{t}) \leq \delta$$

1763 with

$$1764 \bar{t} := \frac{T - \log n + \log \delta}{32 \log(8n)} \cdot \min \left\{ \max \left\{ \frac{h}{p_\sigma n}, \frac{\tau_w}{p_d n}, \frac{\sqrt{h\tau_w}}{\sqrt{p_\sigma p_d n}}, h, \tau_w \right\}, \frac{h}{p_\sigma} \right\}, \quad (49)$$

1765 where

$$1766 y_T := \min_{i \in [n]} y_{T,i},$$

$$1767 y_{k,i} := \min_{j \in [n]} \{h\eta_{k,j} + \mathbb{1}[i \neq j] \tau_w \mu_{k,j} + y_{k-1,j}\}$$

1768 for all $k \geq 1$, $i \in [n]$ and $y_{0,i} = 0$ for all $i \in [n]$.

1782 Thus, with probability at least $1 - \delta$, any zero-respecting algorithm requires at least \bar{t} seconds to
 1783 discover the last coordinate. Due to (43),
 1784

$$1785 \inf_{y \in S_t} \|\nabla f(y)\|^2 > 2\varepsilon \inf_{y \in S_t} \mathbb{1} [\text{prog}(y_{[T]}) < T],$$

1787 where S_t is the set of all possible candidate points to be an ε -stationary point up to time t , which can
 1788 be computed by A . Taking $\delta = \frac{1}{2}$,
 1789

$$1790 \mathbb{E} \left[\inf_{y \in S_t} \|\nabla f(y)\|^2 \right] > 2\varepsilon \mathbb{E} \left[\inf_{y \in S_t} \mathbb{1} [\text{prog}(y_{[T]}) < T] \right] \geq \varepsilon,$$

1792 for $t = \frac{1}{2}\bar{t}$ because $\text{prog}(y_{[T]}) < T$ for all $y \in S_t$ with probability at least $\frac{1}{2}$. It is left to substitute all
 1793 quantities:
 1794

$$1795 t = \frac{\left\lfloor \frac{\Delta L}{2\varepsilon\ell_1\Delta^0} \right\rfloor - \log n + \log \frac{1}{2}}{64\log(8n)} \cdot \min \left\{ \max \left\{ \frac{h}{n} \max \left\{ \frac{\sigma^2}{2\varepsilon\gamma_\infty^2}, 1 \right\}, \frac{\tau_w d}{2n}, \frac{\sqrt{hd\tau_w}}{\sqrt{2n}} \sqrt{\frac{\sigma^2}{2\varepsilon\gamma_\infty^2}}, h, \tau_w \right\}, h \max \left\{ \frac{\sigma^2}{2\varepsilon\gamma_\infty^2}, 1 \right\} \right\}.$$

1798 Since $\ell_1, \Delta^0, \gamma_\infty$ are universal constants, assuming $\varepsilon < c_1 L \Delta$ for some small universal $c_1 > 0$, we
 1799 get
 1800

$$1801 t \geq c_3 \times \frac{L\Delta}{\varepsilon \log(n+1)} \cdot \min \left\{ \max \left\{ \frac{h\sigma^2}{n\varepsilon}, \frac{\tau_w d}{n}, \sqrt{\frac{h\sigma^2\tau_w d}{n\varepsilon}}, h, \tau_w \right\}, \max \left\{ \frac{h\sigma^2}{\varepsilon}, h \right\} \right\}$$

1803 for some small universal $c_3 > 0$. Notice that we can take any dimension d such that
 1804

$$1805 d \geq T = \Theta \left(\frac{L\Delta}{\varepsilon} \right).$$

□

1809 F.1 MAIN CONCENTRATION LEMMA

1811 **Lemma F.3.** *Let $\{\eta_{k,i}\}_{i,k \geq 0}$ and $\{\mu_{k,i}\}_{i,k \geq 0}$ be random variables such that*

$$1813 \mathbb{P}(\eta_{k,i} \leq t | \mathcal{G}_{k-1}) \leq \min\{\lfloor t \rfloor p_\sigma, 1\} \quad (47)$$

1814 for all $k \geq 1$, $i \in [n]$, and $t \geq 0$, and
 1815

$$1816 \mathbb{P}(\mu_{k,i} \leq t | \eta_{k,i}, \mathcal{G}_{k-1}) \leq \min\{2 \lfloor t \rfloor p_d, 1\}, \quad (48)$$

1817 for all $k \geq 1$, $i \in [n]$, and $t \geq 0$, where \mathcal{G}_{k-1} is the sigma-algebra generated by $\{\eta_{k',i}\}_{i \in [n], k' < k}$
 1818 and $\{\mu_{k',i}\}_{i \in [n], k' < k}$. Then
 1819

$$1820 \mathbb{P}(y_T \leq \bar{t}) \leq \delta$$

1821 with
 1822

$$1823 \bar{t} := \frac{T - \log n + \log \delta}{32\log(8n)} \cdot \min \left\{ \max \left\{ \frac{h}{p_\sigma n}, \frac{\tau_w}{p_d n}, \frac{\sqrt{h\tau_w}}{\sqrt{p_\sigma p_d n}}, h, \tau_w \right\}, \frac{h}{p_\sigma} \right\}, \quad (49)$$

1825 where
 1826

$$1827 y_T := \min_{i \in [n]} y_{T,i},$$

$$1829 y_{k,i} := \min_{j \in [n]} \{h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j} + y_{k-1,j}\}$$

1830 for all $k \geq 1$, $i \in [n]$ and $y_{0,i} = 0$ for all $i \in [n]$.
 1831

1832 *Proof.* Using the Chernoff method for any $s > 0$ and $k \geq 1$, we get
 1833

$$1835 \mathbb{P}(y_k \leq \bar{t}) = \mathbb{P}(-sy_k \geq -s\bar{t}) = \mathbb{P}\left(e^{-sy_k} \geq e^{-s\bar{t}}\right) \leq e^{s\bar{t}} \mathbb{E}[e^{-sy_k}]$$

$$1836 = e^{s\bar{t}} \mathbb{E} \left[\exp \left(-s \min_{j \in [n]} y_{k,j} \right) \right] = e^{s\bar{t}} \mathbb{E} \left[\max_{j \in [n]} \exp(-s y_{k,j}) \right].$$

1838 Bounding the maximum by the sum,

$$1840 \mathbb{P}(y_k \leq t) \leq e^{st} \sum_{j=1}^n \mathbb{E} [\exp(-s y_{k,j})] \leq n e^{st} \max_{j \in [n]} \mathbb{E} [\exp(-s y_{k,j})]. \quad (50)$$

1842 We focus on the last exponent separately. For all $i \in [n]$,

$$\begin{aligned} 1845 \mathbb{E} [\exp(-s y_{k,i})] &= \mathbb{E} \left[\exp \left(-s \min_{j \in [n]} \{h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j} + y_{k-1,j}\} \right) \right] \\ 1846 &= \mathbb{E} \left[\max_{j \in [n]} \exp(-s(h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j} + y_{k-1,j})) \right] \\ 1847 &\leq \sum_{j=1}^n \mathbb{E} [\exp(-s(h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j} + y_{k-1,j}))] \\ 1849 &= \sum_{j=1}^n \mathbb{E} \left[\underbrace{\mathbb{E} [\exp(-s(h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j})) | \mathcal{G}_{k-1}]}_{I_1 :=} \exp(-s y_{k-1,j}) \right] \\ 1852 & \end{aligned} \quad (51)$$

1856 Considering the inner expectation separately:

$$\begin{aligned} 1857 I_1 &= \mathbb{E} [\exp(-s(h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j})) | \mathcal{G}_{k-1}] \\ 1858 &\leq \exp(-st) + \mathbb{P}(h\eta_{k,j} + \mathbb{1}[i \neq j]\tau_w \mu_{k,j} \leq t | \mathcal{G}_{k-1}) \end{aligned}$$

1860 for all $t \geq 0$. Using the properties of condition expectations,

$$\begin{aligned} 1861 I_1 &\leq \exp(-st) + \mathbb{P}(h\eta_{k,j} \leq t, \mathbb{1}[i \neq j]\tau_w \mu_{k,j} \leq t | \mathcal{G}_{k-1}) \\ 1862 &= \exp(-st) + \mathbb{E} [\mathbb{1}[h\eta_{k,j} \leq t] \mathbb{1}[\mathbb{1}[i \neq j]\tau_w \mu_{k,j} \leq t] | \mathcal{G}_{k-1}] \\ 1863 &= \exp(-st) + \mathbb{E} [\mathbb{E} [\mathbb{1}[\mathbb{1}[i \neq j]\tau_w \mu_{k,j} \leq t] | \eta_{k,j}, \mathcal{G}_{k-1}] \mathbb{1}[h\eta_{k,j} \leq t] | \mathcal{G}_{k-1}] \\ 1864 &= \exp(-st) + \mathbb{E} [\mathbb{P}(\mathbb{1}[i \neq j]\tau_w \mu_{k,j} \leq t | \eta_{k,j}, \mathcal{G}_{k-1}) \mathbb{1}[h\eta_{k,j} \leq t] | \mathcal{G}_{k-1}]. \end{aligned}$$

1866 If $i = j$, then we bound the probability by 1 and get

$$\begin{aligned} 1868 I_1 &\leq \exp(-st) + \mathbb{E} [\mathbb{1}[h\eta_{k,j} \leq t] | \mathcal{G}_{k-1}] \\ 1869 &= \exp(-st) + \mathbb{P}(h\eta_{k,j} \leq t | \mathcal{G}_{k-1}) \\ 1870 &\leq \exp(-st) + \left\lfloor \frac{t}{h} \right\rfloor p_\sigma, \end{aligned}$$

1872 for all $t \geq 0$, where we use (47). Otherwise, if $i \neq j$, using (48) and (47),

$$\begin{aligned} 1874 I_1 &\leq \exp(-st) + \mathbb{E} \left[\min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \mathbb{1}[h\eta_{k,j} \leq t] \middle| \mathcal{G}_{k-1} \right] \\ 1875 &= \exp(-st) + \min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \mathbb{P}(h\eta_{k,j} \leq t | \mathcal{G}_{k-1}) \\ 1876 &\leq \exp(-st) + \min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \end{aligned}$$

1881 for all $t \geq 0$. Substituting the inequalities to (51),

$$\begin{aligned} 1883 \mathbb{E} [\exp(-s y_{k,i})] &= \sum_{j \neq i} \left(\exp(-st) + \min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right) \mathbb{E} [\exp(-s y_{k-1,j})] \\ 1884 &+ \left(\exp(-st) + \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right) \mathbb{E} [\exp(-s y_{k-1,i})]. \end{aligned}$$

1888 for all $i \in [n]$ and $t \geq 0$. Thus,

$$1889 \max_{i \in [n]} \mathbb{E} [\exp(-s y_{k,i})]$$

$$\begin{aligned}
&\leq \left[(n-1) \left(\exp(-st) + \min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right) + \left(\exp(-st) + \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right) \right] \\
&\quad \times \max_{i \in [n]} \mathbb{E} [\exp(-sy_{k-1,i})] \\
&= \left[n \exp(-st) + (n-1) \left(\min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right) + \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right] \max_{i \in [n]} \mathbb{E} [\exp(-sy_{k-1,i})].
\end{aligned}$$

Taking $s = \frac{\log(8n)}{t}$, we get

$$\max_{i \in [n]} \mathbb{E} [\exp(-sy_{k,i})] \leq \left[\frac{1}{8} + \underbrace{(n-1) \left(\min \left\{ 1, 2 \left\lfloor \frac{t}{\tau_w} \right\rfloor p_d \right\} \min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\} \right)}_{I_2 :=} + \underbrace{\min \left\{ 1, \left\lfloor \frac{t}{h} \right\rfloor p_\sigma \right\}}_{I_3 :=} \right] \max_{i \in [n]} \mathbb{E} [\exp(-sy_{k-1,i})]. \quad (52)$$

Next, we take $t = \min\{t_1, t_2\}$, where

$$t_1 := \max \left\{ \frac{h}{32p_\sigma n}, \frac{\tau_w}{32p_d n}, \frac{\sqrt{h\tau_w}}{32\sqrt{p_\sigma p_d n}}, \frac{h}{32}, \frac{\tau_w}{32} \right\},$$

and

$$t_2 := \frac{h}{32p_\sigma}$$

to ensure that

$$I_3 \leq \min \left\{ 1, \frac{t_2 p_\sigma}{h} \right\} \leq \frac{1}{16}.$$

There are five possible values of t_1 .

If $t_1 = \frac{h}{32p_\sigma n}$, then

$$I_2 \leq (n-1) \min \left\{ 1, \frac{t_1 p_\sigma}{h} \right\} \leq \frac{1}{16},$$

If $t_1 = \frac{\tau_w}{32p_d n}$, then

$$I_2 \leq (n-1) \min \left\{ 1, \frac{2t_1 p_d}{\tau_w} \right\} \leq \frac{1}{16}.$$

If $t_1 = \frac{\sqrt{h\tau_w}}{32\sqrt{p_\sigma p_d n}}$, then

$$I_2 \leq (n-1) \frac{2t_1^2 p_d p_\sigma}{\tau_w h} \leq \frac{1}{16}.$$

If $t_1 = \frac{h}{32}$, then

$$I_2 \leq (n-1) \min \left\{ 1, \left\lfloor \frac{t_1}{h} \right\rfloor p_\sigma \right\} = 0.$$

Finally, if $t_1 = \frac{\tau_w}{32}$, then

$$I_2 \leq (n-1) \min \left\{ 1, 2 \left\lfloor \frac{t_1}{\tau_w} \right\rfloor p_d \right\} = 0.$$

Thus, using (52), we obtain

$$\max_{i \in [n]} \mathbb{E} [\exp(-sy_{k,i})] \leq \left[\frac{1}{8} + \frac{1}{16} + \frac{1}{16} \right] \max_{i \in [n]} \mathbb{E} [\exp(-sy_{k-1,i})] \leq e^{-1} \max_{i \in [n]} \mathbb{E} [\exp(-sy_{k-1,i})]$$

for our choice of t . Unrolling the recursion and using $y_{0,i} = 0$ for all $i \in [n]$,

$$\max_{i \in [n]} \mathbb{E} [\exp(-sy_{k,i})] \leq e^{-k}.$$

We substitute it to (50), to get

$$\mathbb{P} (y_k \leq \bar{t}) \leq e^{s\bar{t} + \log n - k}.$$

It is left to choose $\bar{t} = \frac{k - \log n + \log \delta}{s}$. \square