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ABSTRACT

The effectiveness of self-supervised learning (SSL) for physiological time series
depends on the ability of a pretraining objective to preserve information about
the underlying physiological state while filtering out unrelated noise. However,
existing strategies are limited due to reliance on heuristic principles or poorly
constrained generative tasks. To address this limitation, we propose a pretraining
framework that exploits the information structure of a dynamical systems gener-
ative model across multiple time-series. This framework reveals our key insight
that class identity can be efficiently captured by extracting information about the
generative variables related to the system parameters shared across similar time
series samples, while noise unique to individual samples should be discarded.
Building on this insight, we propose PULSE, a cross-reconstruction-based
pretraining objective for physiological time series datasets that explicitly extracts
system information while discarding non-transferrable sample-specific ones. We
establish theory that provides sufficient conditions for the system information
to be recovered, and empirically validate it using a synthetic dynamical systems
experiment. Furthermore, we apply our method to diverse real-world datasets,
demonstrating that PULSE learns representations that can broadly distinguish
semantic classes, increase label efficiency, and improve transfer learning.

1 INTRODUCTION

Self-supervised learning (SSL) is a powerful framework for learning general-purpose representa-
tions from unlabeled datasets. These representations may be especially powerful for physiological
time-series, making it possible to track physiological states, detect diseases, and improve our un-
derstanding of biology (Perochon et al.; Chen et al., 2023b; Li et al., 2025a). The success of an
SSL approach here is determined by how well its pretraining objective guides an encoder to pre-
serve information relevant to the identity of the underlying physiological process while filtering out
irrelevant noise (Tian et al., 2020).

Although many time-series SSL methods have been proposed, their strategies often make heuris-
tic assumptions that may poorly match the characteristics of physiological signals. For instance,
time-series contrastive learning (CL) aims to learn representations that encode information shared
between two views of the data while remaining invariant to unshared information. However, pos-
itive pairs formed through augmentations (e.g. jittering, scaling) can incorrectly relate samples
with different clinical diagnoses, and sampling heuristics (e.g. temporal-proximity) may fail to cap-
ture nonstationarity, where physiological states may shift abruptly over time. Masked autoencoding
(MAE) takes a different approach, using a reconstruction task to recover information shared between
masked and unmasked regions while ignoring unshared features (Kong and Zhang, 2023). Yet, sim-
ilar to CL, masking strategies (e.g., random, patch, channel, frequency) are heuristically designed
without regard to the data-generating process, which can inadvertently treat important temporal re-
lationships as noise, thereby misrepresenting the underlying process. Consequently, SSL methods
that rely on heuristics may fail to preserve information essential for distinguishing physiological
states which limits their effectiveness when applied to real-world clinical tasks (Xiao et al., 2020).

Sequential variational autoencoders (SVAEs) offer an alternative to heuristic SSL by defining an
autoencoding task based on the characteristics of physiological time-series. Specifically, SVAEs
define a dynamical systems data-generating process and use structured decoders to guide learned
representations toward components of this process. These structural constraints allow SVAEs to
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Figure 1: Intuition behind PULSE. A dynamical systems model of a physiological time-series
dataset allows us to distinguish between information that is shared between similar time series and
information that is sample-specific and not transferrable. PULSE leverages this distinction to learn
representations that preserve shared system information while discarding sample-specific ones.

capture information about time-series dynamics that heuristic methods may ignore or distort. This
makes them broadly effective for physiological time-series, where information about the dynamics
drive the signal’s evolution and directly reflect the underlying state (Nayak et al., 2018; Sherman,
2011; Marmarelis, 2004; McKenna et al., 1994; Brooks et al., 2021).

However, SVAEs have two critical limitations that prevent them from consistently outperforming
heuristic SSL methods. First, the autoencoding task does not separate signal from noise, as both
are reconstructed jointly. For physiological time series, this distinction is critical because not all
observed information reflects the underlying state. For example, the initial time or amplitude of a
recording is much less informative of a signal’s identity than its temporal behavior, and transient
fluctuations often occur naturally without indicating changes in the physiological process. Second,
because samples are reconstructed independently, there is no mechanism to learn information shared
across different samples. Since physiological time series often exhibit repeated patterns, capturing
this shared information is important because it can relate different samples with similar behaviors.

In this work, we address the limitations of heuristic SSL and dynamical systems models for physi-
ological time-series by introducing PULSE (Physiological self-sUpervised Learning using System
Encoders). This is accomplished by introducing a novel pretraining objective that selectively re-
tains information relevant to the underlying process based on structure available from a dynamical
systems generative model. In our framework, we conceptualize a time series dataset as the result
of a hierarchical graphical model where related samples are generated from the same underlying
dynamical system. Under this model, we obtain our key insight as illustrated in Figure 1: system
information from the generative parameters should be preserved since it relates samples produced
by similar processes, whereas sample-specific information about factors that are unique to each sam-
ple, such as initial conditions and process noise, is non-transferrable and should be discarded. To
operationalize this idea, we propose a practical cross-reconstruction task that encourages the learned
system representation to be invariant to sample-specific factors by reconstructing multiple similar
time series across randomly sampled initial conditions. We then present theory on sufficient con-
ditions under which system information is recovered and empirically validate this theory through
synthetic experiments. Finally, in several real-world datasets and tasks, we demonstrate that PULSE
achieves consistent performance improvements over recent CL and MAE methods. Our contribu-
tions are summarized as follows:

1. This is the first work to develop an SSL pretraining approach that uses the information structure
in dynamical systems to explicitly separate relevant and irrelevant information. We formalize
this distinction through a hierarchical generative model over a time-series dataset and propose a
practical pretraining strategy that selectively extracts the desired information.

2. We introduce theory for PULSE that provides conditions for when system information is recov-
ered and empirically validate this theory on a synthetic dynamical systems experiment.

3. In many real-world physiological applications, PULSE achieves SOTA performance, outperform-
ing a representative set of baselines in linear evaluation, data efficiency, and transferability.

2 BACKGROUND AND RELATED WORK

Self-Supervised Learning for Time Series. CL and MAE are the most studied SSL paradigms
for time-series due to their success in computer vision (Gui et al., 2024; Li et al., 2024; 2025b).
In CL, positive pair design is crucial and determines what information the representation is invari-
ant to (Tian et al., 2020). For time series, positive pairs created via augmentations like scaling,
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jittering, or adding noise as in SimCLR (Chen et al., 2020) often yield inconsistent performance
across datasets (Liu et al., 2024). Positive pairs can also be constructed via sampling methods such
as selecting time neighbors in TNC (Tonekaboni et al., 2021), creating two crops of a single seg-
ment in TS2vec (Yue et al., 2022), or through a learned reconstruction measure as in REBAR (Xu
et al., 2023). In MAE, the masking strategy plays a central role in determining what shared infor-
mation the model must recover to solve the masked reconstruction task (Kong and Zhang, 2023).
TimeMAE (Cheng et al., 2023) introduces block masking to capture shared information across sub-
series. PatchTST (Nie et al., 2022) applies a similar idea termed patch masking, and further shows
that assuming channel independence can improve forecasting performance. Wang et al. (2024) ex-
plores various time and channel masking strategies, but finds their performance to be highly dataset-
dependent. CiTrus (Geenjaar and Lu, 2025) proposes a MAE task that predicts either spectrogram
or time-series, but shows that neither approach is consistently effective across a range of biosignals.
Sensitivity to dataset characteristics limits these approaches when the dataset properties are not well
understood a priori. Instead, PULSE is based on a dynamical systems model across multiple time
series and demonstrates consistent performance in many domains.

Dynamical Systems Models of Physiological Time Series. Many physiological time-series arise
from underlying physical and biochemical processes that can be well described by dynamical sys-
tems models. Thus, dynamical systems provides a shared modeling framework useful for describing
a broad range of physiological processes. Since a physiological system evolves independently of
how it is measured, the observations yt = gy(xt) can be viewed as the output of an observation
function applied to a latent physiological state xt ∈ Rn, which itself evolves over time according to
the dynamics xt+1 = gx(xt,Θ), where gx is parameterized by system variables Θ. This defines a
generative process known as the state-space model (SSM). In this framework, a time series is gener-
ated by specifying an initial condition xt0 , evolving it forward in time according to gx, and producing
measurements according to gy . Although dynamical systems models have been successfully used
to study a wide range of physiological processes, including cardiac dynamics (Bianco et al., 2024),
brain activity (Chen et al., 2024; Mudrik et al., 2024), and motor control (Shenoy et al., 2011), they
have not yet been used to guide which information should be preserved or discarded in a SSL ob-
jective. In this work, we demonstrate that exploiting dynamical system structure in time-series SSL
pretraining can lead to consistent improvements in representation learning for physiological signals.

Sequential Variational Autoencoders. SVAEs can be viewed as a time-series SSL strategy that
leverages the state-space formulation to learn representations corresponding to components of a dy-
namical system models. Training is performed through an autoencoding task by maximizing the
ELBO, Eq(z|y)[log p(y|z)]− βKL(q(z|y)∥p(z)), where z are latent variables, q(z|y) is the approx-
imate posterior, p(y|z) is the likelihood, p(z) is the latent prior, and β is the regularization strength
for the KL term. The encoder q(z|y) and decoder p(y|z) are often parameterized by neural networks,
and are structured to reflect specific generative assumptions. For instance, LFADS (Sussillo et al.,
2016) encodes each time series into an initial condition xt0 that evolves under a shared dynamics
function and uses a GRU decoder to reconstruct the observed data. DSVAE (Li and Mandt, 2018)
assumes that the dynamics is data-dependent and can be factorized into static and dynamic genera-
tive factors. Unlike CL and MAE, which aims to selectively recover useful sources of information
during pretraining, SVAE methods share the common limitation that the Eq(z|y)[log p(y|z)] term
does not distinguish between meaningful signal from noise and instead encourages explaining all
observed variability in the data. Consequently, the learned representations can be overly sensitive to
irrelevant information, reducing their transferability to downstream tasks.

3 PULSE APPROACH

In this section, we present PULSE. First, we develop a dynamical systems generative model for
multiple time-series samples to identify which information is transferrable and which is not. Then,
we introduce a practical pretraining strategy to extract the transferrable information. Finally, we
provide theoretical guarantees for conditions under which the transferrable information is recovered.

3.1 REVEALING SHARED INFORMATION BETWEEN MULTIPLE TIME-SERIES

To determine which information should be retained or discarded, we first need to characterize the
information present in a physiological time-series dataset. We do this by introducing notation to
describe the data and constructing a graphical model of its generative process, which makes explicit
the sources of information available in the observations.
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Notation. A physiological time-series dataset often consists of long continuous time series record-
ings that are segmented into shorter, fixed-length windows. Let D ∈ RR×T×M denote a dataset
of R recordings, each consisting of T time steps and M measurement channels. We use Dr,τ :h to
denote a subsequence from the rth recording, starting at time index τ and ending at index h. We can
then construct a dataset of N time-series windows, Y ∈ RN×W×M , where each window is defined
as Yi = Dri,τi:τi+W for a window size W , with ri and τi denoting the recording and start index of
the ith sample, respectively. A specific time-slice is denoted as Yi,t1 , where t1 ∈ {1, . . . ,W}, and
consecutive time-slices are defined as tk+1 = tk + 1, where k counts the steps forward from t1.

Figure 2: Our graphical model of multiple time-
series windows, based on dynamical systems, dis-
tinguishes transferable system information shared
across similar time-series from non-transferable
information unique to each sample such as initial
conditions and process noise.

Time-Series Dataset Generative Model. As
shown in Figure 2, we model Y with a dynam-
ical systems generative model, where each Yi

is the output of an SSM with system parame-
ters Θi, and an initial condition Xi,t0 . While
each Yi could in principle be generated by a
unique system, physiological activity is often
stereotyped, with many underlying processes
exhibiting consistent, repeatable patterns over
time. For example, a walk cycle captured by
an accelerometer displays repeated phases such
as heel strike, mid-stance, and toe-off, while an
ECG signal shows recurring PQRST complexes
during normal sinus rhythm. As a result, dif-
ferent samples may share the same underlying
system, and the number of unique Θi is gener-
ally smaller than N . To capture this, we modify
the notation such that Θ(s) represents the system parameters corresponding to all indices in Is, the
set of samples generated by system s ∈ {1, . . . , S}. In other words, Θi = Θ(s) for all i ∈ Is. Thus,
the joint distribution for this generative model is given by,

p(Y,X,Θ) =

S∏
s=1

∏
i∈Is

p(Xi,t0 ,Θ
(s))

[
W∏
k=1

p(Yi,tk |Xi,tk)

][
W∏
k=2

p(Xi,tk |Xi,tk−1
,Θ(s))

]
, (1)

where p(Xi,t0 ,Θ
(s)) = p(Xi,t0)p(Θ

(s)) (i.e. Xi,t0 and Θ(s) are independent). The observation
and transition densities follow the SSM, with p(Yi,tk |Xi,tk) given by Yi,tk = gy(Xi,tk)+ ϵi,tk and
p(Xi,tk |Xi,tk−1

,Θ(s)) given by Xi,tk = gx(Xi,tk−1
,Θ(s)) + νi,tk , where ϵ and ν are noise terms.

The factorization in Eq. 1 reveals a hierarchy of information in Y. One source of information
comes from the system variables Θ(s), which govern the evolution of the time series and are shared
across Yi with the same underlying dynamics, making it transferable between different samples.
Learning a representation that captures this system information produces a space in which samples
with similar dynamics are naturally grouped together. Another source of information is unique to
each Yi, such as the initial value Xi,t0 , as well as observation and dynamics noise ϵ and ν. In
our setting, a representation should be invariant to this information, as it is not shared across Yi and
cannot be transferred between different samples. This insight is especially relevant for physiological
time series, where a signal’s identity is determined by the underlying system dynamics rather than
by the exact starting value, sensor noise, or transient fluctuations. Therefore, by extracting system
information and discarding sample-specific information, we obtain a representation that can relate
physiological time series based on their temporal characteristics while ignoring irrelevant factors.

3.2 PULSE PRETRAINING FOR RECOVERING SYSTEM INFORMATION

Our goal is to design a practical pretraining strategy that encourages an encoder to recover system
information while ignoring sample-specific factors. A promising strategy is a dynamical systems
cross-reconstruction task, where given two samples from the same system (i.e., Yi and Yj with
i, j ∈ Is), the system information inferred from Yi is used to reconstruct an independently realized
sample Yj . By requiring the system representation from Yi to reconstruct multiple random
samples of Yj , an encoder is encouraged to keep only the shared information between these
samples. According to Eq. 1, the only shared variables are Θ(s), and encoding irrelevant factors
may lead to poor reconstruction.
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Cross-Reconstruction with Similar Pairs. To formalize this approach, we define an inference
step and generative process given sample pairs (Yi,Yj) produced by Θ(s) as input. For inference,
we introduce two encoders that separate transferable from non-transferable dynamical systems
components: a system encoder fsys to estimate shared system information and an initial condition
encoder finit to estimate the sample-specific initial condition. As shown in Figure 3, fsys uses the
dilated convolution (Yue et al., 2022) to extract information across the entire window according
to Θi = fsys(Yi). In contrast, finit is implemented as a 2-layer CNN whose receptive field is
centered around a specified time t0, producing Xj,t0 = [finit(Yj)]t0 where t0 = 1 selects the initial
condition needed to reconstruct a sample from the first time step until the end of the window. For
generation, we use an SSM decoder and define the cross-reconstruction objective,

LCross(Yi,Yj) = E(Yi,Yj)∼P

[
W∑
k=1

∥Yj,tk − gy(gx(Xj,tk−1
,Θi,tk))∥2

]
, (2)

where P is a distribution over sample pairs i, j ∈ Is, and gx and gy are parameterized by a GRU and
linear projection layer respectively. Here, we implement Θi as the GRU input, since its hidden state
evolves according to dynamics defined by input-dependent gating. Additionally, following prior dy-
namical systems methods (Li and Mandt, 2018), we further factorize Θi into separate time-invariant
and time-varying components to represent nonstationary behaviors, a key feature of physiological
time-series. To do this, we decompose Θi into a time-invariant component θi, obtained via max
pooling over time, and a time-varying component θ̃i,tk , obtained via a two-layer CNN over the
latent dimension, and then concatenate the result at each time step to form Θi,tk = [θi, θ̃i,tk ].

To minimize Eq. 2, fsys must extract shared information from Yi that can explain the evolution of
Yj . This means encoding only the underlying system variables Θ(s), since these are the factors that
remain invariant across samples from the same system. Furthermore, because P involves optimizing
over randomly chosen pairs, fsys cannot rely on sample-specific information from Yi, since this
information will not be present in Yj and may increase LCross if present. Thus, the LCross loss
encourages the encoder to discard non-shared factors and focus only on shared system information.

Figure 3: PULSE aims to recover system infor-
mation through an inference process that uses two
encoders, fsys to estimate shared parameters of
a latent dynamical systems and finit to estimate
sample-specific initial conditions. By requiring
Θi to support reconstruction of randomly sampled
Xi,t0 , we encourage the recovered system infor-
mation to be invariant to the sample-specific ones.

Cross-Reconstruction with PULSE Pseudo-
Pairs. Unfortunately, a problem in Eq. 2 is
that, in an unlabeled dataset, we do not have
access to Is and therefore cannot sample from
P . Instead, we propose a sampling strategy
that constructs semantically similar time se-
ries pseudo-pairs (Yi, Ỹi) from a single sam-
ple. Since Θ(s) are independent of the initial
condition in Eq. 1 and should define dynamics
that can generate time series from any starting
state, representations that capture system infor-
mation should generalize across multiple ini-
tial conditions. However, initial conditions can-
not be chosen arbitrarily, as data may not be
available to supervise reconstruction from ar-
bitrary starting points. To address this, we se-
lect an initial condition at a random time step
t0 ∼ Uniform(1,W/2) within each window Yi, and task the model with reconstructing the seg-
ment from t0 to the end. Note we restrict t0 to the first half of the window to prevent overfitting
to short subsequences. Thus, for any window Yi, we generate a semantically similar time se-
ries Ỹi = Yi,t0:W to serve both as a pair for estimating sample-specific information and as a
cross-reconstruction target. By requiring Θi to support accurate reconstruction across varying ini-
tial conditions, the encoder learns to recover only system information while remaining invariant to
information about the initial condition. This leads to the PULSE pretraining objective,

LPULSE(Yi) = Et0

[
W∑
k=1

∥Ỹi,tk − gy(gx(Xi,tk−1
,Θi,tk)∥2

]
, (3)

where Xi,t0 = [finit(Yi)]t0 and Θi = fsys(Yi). We find that using multiple Ỹi’s to estimate the
expectation can improve performance, and in our experiments we use up to four samples.
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3.3 PROVABLE RECOVERY OF SYSTEM INFORMATION

We now provide a theoretical analysis of our framework and identify conditions under which cross-
reconstruction provably recovers system information. Our strategy is to build on prior work show-
ing that MAE pretraining implicitly recovers information from the minimal set of latent variables
shared1 C between masked and unmasked regions in a hierarchical data-generating process (Kong
and Zhang, 2023). By viewing cross-reconstruction as an MAE task under a specific masking strat-
egy, we can extend this theory to characterize how different masking choices determine the type of
information recovered in our own time-series generative model.

Cross-reconstruction can be viewed as an MAE task by treating the pair (Yi,Yj) as a single joint
input with a pair of masking variables (mi,mj), where each mi ∈ {0, 1}W×M indicates for every
element (w,m) whether it is observed (mi,w,m = 1) or masked (mi,w,m = 0). In this view, Eq. 2
corresponds to setting mi,1:W,1:M = 1 to retain Yi as input, while fully masking the other sample
mj,1:W,1:M = 0, so that Yj is removed and can serve as the reconstruction target. The effect of this
masking strategy on the type of information recovered can then be characterized given our generative
model in Eq. 1. To make this precise, we outline assumptions on the generative process.

Assumption 1 (Data-Generating Process). The process in Equation (1) satisfies the following con-
ditions: (i) the fully factorized generative model is a DAG; and (ii) each function gk is invertible.

Assumption Interpretation. Part (i) ensures that our theory applies to complex systems with
elaborate parameter factorizations, as long as they remain acyclic. Part (ii) guarantees that no
information is lost during the generative process and is adopted from prior work on identifiable
deep generative models (Locatello et al., 2020; Von Kügelgen et al., 2021).

Given this data-generating process and the cross-reconstruction masking scheme described above,
we present our theory, which identify the C between masked and unmasked regions. This C corre-
sponds to the information that is implicitly recovered during MAE pretraining (Kong and Zhang,
2023).

Theorem 1. Given two time series Yi and Yj independently sampled from the same system (i.e.,
Θi = Θj = Θ(s)) under the generative process defined by Eq. 1 and Assumption 1, the minimal
set of latent variables shared is the system parameters Θ(s) if and only if all observables from one
series is fully masked (i.e., mi,1:W,1:M = 0 and mj,1:W,1:M = 1).

A proof is provided in Appendix A. Theorem 1 states that system information is recovered during a
masked reconstruction task when an entire time series is removed from the input pair, as this mask-
ing scheme uniquely ensures that the C connecting the masked and unmasked regions contains the
system parameters. Importantly, this reconstruction task with whole-sample masking corresponds
exactly to the pretraining objective LCross. Moreover, this theory predicts that when a time series
contains both masked and unmasked regions, C necessarily includes the state variables X, causing
the recovered information to confound sample-specific and system information.

Figure 4: We illustrate how these different masking strategies recover different sources of in-
formation in our data-generating process for sample pairs (Yi,Yj) where i, j ∈ Is. Y marks an
observable that is removed from the input and used as a reconstruction target. Blue highlights C, rep-
resenting the information that is recovered during pretraining. Theorem 1 predicts that C = {Θ(s)}
only when information from one sample is fully removed. Gray boxes group latent variables that
are specific to each time-series sample.

Since LPULSE can be viewed as an approximation of LCross that uses pseudo-pairs to simulate in-
dependent samples, this theory offers an explanation for how LPULSE recovers system information.

1Our minimal set of shared latent variables C is defined in Theorem 1 of (Kong and Zhang, 2023) as c.
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4 SYNTHETIC DYNAMICAL SYSTEMS EXPERIMENTS

Set up. We investigate how our findings in Theorem 1 extrapolate to settings where Assumption
1 may not completely hold. Specifically, we consider a synthetic dynamical systems experiment,
where gx can not be practically inverted due to system chaos. The goal of this task is to learn
a representation space that can distinguish between parameter settings while remaining robust to
increasing levels of dynamical system noise. This task is motivated by real-world scenarios in which
parameter changes in the underlying system may correspond to shifts in physiological state, and
effective representations must reliably capture these shifts. Time series data are generated from three
stochastic differential equations (Lorenz, Thomas, and Hindmarsh-Rose) across a grid of parameters
in bifurcation regions and noise levels σ = {0, 1, 3, 5}. Datasets are then constructed by randomly
selecting five parameter settings to form a five-class classification problem, with trials split into
70:15:15 for train, validation, and test sets and subsequently segmented into windows where W =
100. For each system at each noise level, we average classification accuracy over 10 random seeds
over both dataset sampling and model initialization. The reported values are averaged across all
three systems. Full dataset details are provided in Appendix B.

Results. Table 1 shows that PULSE consistently achieves the highest classification accuracy among
all practical baselines (described in Section 5 and Appendix C), even as σ increases. This demon-
strates that PULSE pretraining on pseudo-pairs (Yi, Ỹi) is more robust to dynamical system noise
and can extract class-discriminative features that reveal changes in system parameters under noisy
conditions. Furthermore, we validate Theorem 1 by considering a PULSE Oracle where label infor-
mation is used to identify true (Yi,Yj) pairs to construct the positive and negative set ups illustrated
in Figure 4. Specifically, the positive model leverages labels to select pairs in LCross, whereas the
negative model applies random temporal masking to each pair before inputting both into finit and
fsys. According to Theorem 1, the negative oracle captures sample-specific information that is
uninformative for classifying system parameters, so the positive oracle is expected to consistently
outperform it.

σ
PULSE Oracle

SimCLR TS2Vec REBAR PatchTST TimeMAE LFADS DSVAE PULSE Positive Negative

0 93.08 98.68 98.90 77.59 96.29 99.06 98.56 99.58 99.29 98.86
1 83.10 93.07 93.36 50.36 93.42 93.02 90.84 96.09 97.26 96.66
3 70.05 79.78 79.36 39.88 75.08 79.03 76.70 83.42 89.00 84.62
5 62.29 73.67 72.37 37.82 66.63 71.33 69.90 77.34 82.65 76.90

Table 1: Our results confirm Theorem 1’s predictions: The positive oracle improves classification
accuracy over PULSE pretraining without labels, while the negative oracle reduces performance
relative to the positive model and, at σ = 5, performance even falls below the practical PULSE
algorithm. Moreover, PULSE is the most effective practical algorithm, being the best at distinguish-
ing parameter changes across all σ. Black bold indicates the best practical algorithm (pretrained
without labels), while blue bold indicates the best oracle (pretrained with labels) when it exceeds
practical methods. Fig. 4 illustrates the masking strategy used in the positive and negative oracle.

5 REAL PHYSIOLOGICAL DATA EXPERIMENTS

In this section, we describe our experimental set up for comparing PULSE pretraining with other
SSL pretraining approaches across several physiological datasets and downstream tasks.

Data. We consider 4 commonly used physiological time-series datasets from distinct sensor do-
mains, each consisting of long trials with time-varying classification labels. We use Human Activity
Recognition (HAR) (Reyes-Ortiz et al., 2015), where human activity is estimated from accelerome-
ter and gyroscope signals; PPG (Schmidt et al., 2018), where optical blood volume signals are used
to estimate stress levels; ECG (Moody, 1983), where the heart’s electrical activity is used to detect
rhythm abnormalities; and EEG (Kemp et al., 2000), where the brain’s electrical activity is used to
estimate sleep stages. A detailed description of these datasets is provided in Appendix D.

Baselines. We benchmark performance against a representative set of SSL pretraining approaches,
including three CL methods: SimCLR (Chen et al., 2020), TS2Vec (Yue et al., 2022), and RE-
BAR (Xu et al., 2023), two SVAE models: LFADS (Sedler and Pandarinath, 2023; Sussillo et al.,
2016) and DSVAE (Yingzhen and Mandt, 2018), and two masked modeling approaches: TimeMAE
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Metric SimCLR TS2Vec REBAR PatchTST TimeMAE LFADS DSVAE PULSE

H
A

R Accuracy ↑ 94.65 93.24 95.35 83.04 92.25 93.55 93.55 93.27
AUROC ↑ 99.38 99.31 99.65 97.44 99.14 99.49 99.36 99.42
AUPRC ↑ 97.63 97.66 98.91 89.90 97.05 98.29 97.69 98.10

PP
G

Accuracy ↑ 34.48 40.23 41.38 59.78 61.35 52.81 58.65 64.27
AUROC ↑ 61.19 64.28 69.77 71.08 78.08 71.10 76.78 80.29
AUPRC ↑ 36.08 39.59 44.57 52.91 56.74 49.59 55.38 59.89

E
C

G Accuracy ↑ 69.92 76.12 81.54 64.40 69.80 61.84 70.42 87.41
AUROC ↑ 82.54 86.56 91.46 70.96 76.61 71.69 82.88 94.93
AUPRC ↑ 80.63 85.16 89.85 68.16 76.62 69.21 81.31 94.75

E
E

G

Accuracy ↑ 66.38 83.76 83.71 80.62 83.83 82.43 84.25 85.56
AUROC ↑ 85.45 94.99 95.08 93.55 95.09 94.49 95.42 96.17
AUPRC ↑ 50.95 70.22 70.77 67.37 73.22 68.55 72.25 73.82

Table 2: Linear Probe Classification Results. PULSE performs competitively on HAR and achieves
the best results on PPG, ECG, and EEG. Note that while HAR scores are lower than SOTA in this
experiment, this representation leads to improved performance in Tables 3 and 4.

(Cheng et al., 2023) and PatchTST (Nie et al., 2022). To evaluate the pretraining objective, we
use the same dilated convolution encoder architecture (Yue et al., 2022) across all CL and SVAE
experiments, ensuring that performance differences reflect the quality of the pretraining rather than
differences in architectures. For MAE baselines, we retain the original transformer encoders, since
the architecture is often a critical component of the method and changing it can reduce performance.
Additional details on baseline design are provided in Appendix C.

5.1 LINEAR PROBE EVALUATION

To assess the ability of pretraining to learn class-discriminative features, we train a linear probe (lo-
gistic regression) on the frozen embeddings from each pretrained model to predict the ground truth
physiological class labels from each dataset. Table 2 shows that PULSE pretraining achieves strong
linear probe performance across all four datasets, performing competitively on HAR and achiev-
ing the highest overall scores on PPG, ECG, and EEG. Notably, PULSE substantially outperforms
LFADS and DSVAE on ECG and PPG, highlighting that explicitly removing noise provides an clear
advantage over standard VAE objectives that do not distinguish between noise and signal. Moreover,
the improvements over SimCLR, TS2Vec, and REBAR show that CL’s sensitivity to false positive
pairs may limit its effectiveness across diverse sensor domains. Finally, the performance increase
over PatchTST and TimeMAE demonstrates that designing a generative task to explicitly extract
system information produces representations that better distinguish physiological states than those
learned by standard masked modeling, which does not leverage this structure.

5.2 SEMI SUPERVISED EVALUATION

Next, we evaluate the label efficiency of the pretrained representations using a semi-supervised
classification task on the pretrained frozen embeddings. For each pretrained model, we train a linear
probe on 1% and 5% of the ground truth labels and apply Laplace smoothing so that all downstream
classes are represented. Reported accuracies are averaged over five random label subsets for each of

Dataset Supervised SimCLR TS2Vec REBAR PatchTST TimeMAE LFADS DSVAE PULSE

1 %

HAR 78.39 71.74 80.57 81.10 33.27 80.79 80.97 79.94 84.74
ECG 45.46 63.83 62.77 67.56 57.68 65.15 57.34 67.60 84.77
PPG 34.38 30.34 31.98 32.33 41.74 40.45 40.22 41.28 42.97
EEG 77.76 56.72 77.39 77.19 63.45 70.55 74.19 78.40 80.69

5 %

HAR 92.34 85.01 91.76 91.04 54.79 91.55 91.48 90.72 93.14
ECG 69.20 65.00 63.97 70.12 60.73 68.73 60.04 67.66 84.23
PPG 42.47 30.62 33.13 38.25 49.48 49.53 45.35 51.15 53.39
EEG 84.90 61.98 77.09 76.75 73.48 77.50 75.19 78.17 80.45

Table 3: Semi-supervised classification accuracy for 1% and 5% of labels averaged over 25 random
seeds. Higher score is better. PULSE outperforms all SSL baselines and most supervised baselines.
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the five model initializations from Section 5.1, for a total of 25 seeds. We also include a supervised
baseline to estimate performance achievable without pretraining. Table 3 shows that PULSE
pretraining consistently outperforms the baselines across all four sensor domains, achieving the
highest scores among SSL methods across all datasets. Interestingly, PULSE’s HAR representation
is more label-efficient, achieving strong performance with very few labels despite lower linear
probe scores on the full labeled dataset, suggesting that it captures key class-discriminative features
more efficiently. PULSE also outperforms most supervised baselines, highlighting the advantage of
its pretrained representations in limited data scenarios.

5.3 TRANSFER LEARNING EVALUATION

EEG → Epilepsy HAR → Gesture

ACC AUROC ACC AUROC

SimCLR 93.52 97.52 78.83 93.80
TS2Vec 93.95 95.87 77.67 95.45
REBAR 95.27 98.33 78.17 95.54

PatchTST 95.03 98.04 77.00 95.21
LFADS 94.71 98.01 78.50 95.42
DSVAE 94.97 98.17 78.00 95.34
PULSE 95.82 98.51 83.67 97.20

Table 4: In-Domain Transfer Learning.

We investigate in-domain transfer learning for clas-
sification in two scenarios from Zhang et al. (2022).
This task is motivated by real-world applications
where we want to transfer knowledge between
datasets collected from similar sensors. In the first
scenario, a model is pretrained on EEG (Kemp et al.,
2000) and fine-tuned on the Epilepsy dataset (An-
drzejak et al., 2001). In the second, a model is pre-
trained on HAR (Reyes-Ortiz et al., 2015) and fine-
tuned on Gesture (Liu et al., 2009). Our setup fol-
lows Zhang et al. (2022), where we attach a 2-layer
MLP head and fine-tune for 40 epochs using the
Adam optimizer with a learning rate of 0.0003. A detailed description of the fine-tuning datasets
is provided in Appendix D. Table 4 reports accuracy and AUROC averaged over five random seeds
for both model initialization and fine-tuning. In both scenarios, PULSE consistently achieves the
highest transfer performance, with a substantial gain on the HAR-to-Gesture task. This demon-
strates that pretraining designed to explicitly prioritize system information can produce features that
transfer effectively to related downstream tasks.

5.4 ABLATION STUDY

HAR ECG PPG EEG Avg.

PULSE 93.27 87.41 64.27 85.56 -

w/o TV-Params θ̃i,tk -1.73 -6.83 -9.22 -12.7 -7.62
w/o Sample t0 -1.16 -7.73 -15.96 -0.81 -6.42
Shared fsys and finit -1.02 -1.75 -1.58 -0.54 -1.22

Table 5: Relative effect of ablation on linear
probe accuracy. Baseline accuracy (top row) and
relative effect (∆) of removing components (other
rows). Avg. reports the mean ∆ across datasets.

Table 5 shows the effect of ablating various
PULSE components on the linear probe
accuracy across all datasets, reported as
∆ = AccAblated − AccPULSE. In w/o
TV-Params θ̃i,tk , we remove time-varying
parameters and retain only time-invariant ones,
i.e., Θi = θi. This has the largest effect,
resulting in an average accuracy drop of 7.6%,
underscoring the importance of modeling
non-stationary dynamics in physiological
time series. In w/o Sample t0, we no longer
construct pseudo-pairs by randomly sampling t0. Instead, we fix t0 = 1 during initial condition
inference for every sample. This leads to a 6.4% drop in average accuracy, showing that training the
system representation to reconstruct multiple related samples is important and that our pseudo-pair
strategy effectively constructs relevant samples without labels. In Shared fsys and finit, we estimate
Xi,tk from the output of fsys such that Xi,tk = [finit(fsys(Yi))]tk , rather than using two separate
encoders. This results in a 1.22% drop, suggesting that explicitly separating transferrable and
non-transferrable information can improve time-series representation learning.

6 CONCLUSION

In this work, we introduced PULSE, an improved SSL pretraining framework that improves
performance across diverse tasks by preserving system information and filtering out sample-specific
noise. By explicitly using dynamical systems to guide the design of time-series SSL objectives, we
hope to inspire future research on formulating SSL pretraining strategies based on an underlying
generative model to obtain improved representations of more complex physiological phenomena.
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7 REPRODUCIBILITY STATEMENT

Upon acceptance, we will release our GitHub code publicly. This will include code for downloading
and preprocessing the datasets used in our work, training our approach, and evaluating results. It
will also provide baseline implementations and the configuration files used to run our experiments
as well as model checkpoints.
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Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In International confer-
ence on machine learning, pages 6348–6359. PMLR, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

EN40214341417 Lorenz. E. 1963. deterministic nonperiodic flow. J. Atmos. Sci, 20(1):30–41, 1963.

Vasilis Z Marmarelis. Nonlinear dynamic modeling of physiological systems. John Wiley & Sons,
2004.

TM McKenna, TA McMullen, and MF Shlesinger. The brain as a dynamic physical system. Neuro-
science, 60(3):587–605, 1994.

George Moody. A new method for detecting atrial fibrillation using rr intervals. Proc. Comput.
Cardiol., 10:227–230, 1983.

Noga Mudrik, Yenho Chen, Eva Yezerets, Christopher J Rozell, and Adam S Charles. Decomposed
linear dynamical systems (dlds) for learning the latent components of neural dynamics. Journal
of Machine Learning Research, 25(59):1–44, 2024.

Suraj K Nayak, Arindam Bit, Anilesh Dey, Biswajit Mohapatra, and Kunal Pal. A review on the non-
linear dynamical system analysis of electrocardiogram signal. Journal of healthcare engineering,
2018(1):6920420, 2018.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, 15(10):805–815, 2018.

Sam Jean Perochon, Salar Abbaspourazad, Joseph Futoma, Andrew Miller, and Guillermo Sapiro.
Time-varying representations of longitudinal biosignals using self-supervised learning. In
NeurIPS 2024 Workshop: Self-Supervised Learning-Theory and Practice.

JL Reyes-Ortiz, Davide Anguita, Luca Oneto, and Xavier Parra. Smartphone-based recognition
of human activities and postural transitions data set. UCI Machine Learning Repository. School
Inf. Comput. Sci. Univ. California at Irvine, Irvine, CA, USA, available online: http://archive.
ics. uci. edu/ml/datasets/Smartphone-Based+ Recognition+ of+ Human+ Activities+ and+ Pos-
tural+ Transitions, 2015.

Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van Laerhoven. In-
troducing wesad, a multimodal dataset for wearable stress and affect detection. In Proceedings of
the 20th ACM international conference on multimodal interaction, pages 400–408, 2018.

Andrew R Sedler and Chethan Pandarinath. lfads-torch: A modular and extensible implementation
of latent factor analysis via dynamical systems. arXiv preprint arXiv:2309.01230, 2023.

Krishna V Shenoy, Matthew T Kaufman, Maneesh Sahani, and Mark M Churchland. A dynamical
systems view of motor preparation: implications for neural prosthetic system design. Progress in
brain research, 192:33–58, 2011.

Arthur Sherman. Dynamical systems theory in physiology. Journal of General Physiology, 138(1):
13–19, 2011.

Idan Sorin and Michael Tulchinsky. Infinite bifurcations in thomas system. arXiv preprint
arXiv:2408.09525, 2024.

Colin Sparrow. The Lorenz equations: bifurcations, chaos, and strange attractors, volume 41.
Springer Science & Business Media, 2012.

David Sussillo, Rafal Jozefowicz, LF Abbott, and Chethan Pandarinath. Lfads-latent factor analysis
via dynamical systems. arXiv preprint arXiv:1608.06315, 2016.
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APPENDIX

A PROOF FOR THEOREM 1

Theorem 1. Given two time series Yi and Yj independently sampled from the same system (i.e.,
Θi = Θj = Θ(s)) under the generative process defined by Eq. 1 and Assumption 1, the minimal
set of latent variables shared is the system parameters Θ(s) if and only if all observables from one
series is fully masked (i.e., mi,1:W,1:M = 0 and mj,1:W,1:M = 1).

Proof. Our proof relies on Theorem 1 from Kong and Zhang (2023), which establishes that the
minimal set of shared information c in a hierarchical DAG is unique and can be identified using
Algorithm 1 presented in their work. We describe the generative model that is considered and
summarize Algorithm 1 before applying it in the proof.

Two-sample Generative Model. We consider the cross-reconstruction setting with a pair of time
series (Yi,Yj) for i, j ∈ Is, generated from the same system such that Θi = Θj = Θ(s). When
considering only two samples, the joint distribution in Eq. 1 reduces to the following form,

p(Yi,Yj ,Xi,Xj ,Θ
(s)) = p(Θ(s))

∏
n={i,j}

p(Xn,t0)

[
W∏
k=1

p(Yn,tk |Xn,tk)

]
[

W∏
k=2

p(Xn,tk |Xn,tk−1
,Θ(s))

]
. (4)

Moreover, we denote masked and unmasked observables respectively as,

Ym =
⋃

k={i,j}

{Yk,t | mk,t = 0} and Ymc =
⋃

k={i,j}

{Yk,t | mk,t = 1}. (5)

In words, Ym and Ymc
are the sets of masked and unmasked time-points across both samples,

respectively.

Algorithm 1 from Kong and Zhang (2023). This approach uses a two-stage procedure for
identifying the minimal set of latent variables C shared between masked and unmasked observables
in a hierarchical graphical model. In the first stage, called the selection stage, all latent variables
that are ancestors of both Ym and Ymc are located. This is done by collecting all parents of
the masked observables and adding those that are also ancestors of the unmasked observables to
C. The resulting set C contains all latent variables shared between Ym and Ymc . In the second
stage, called the pruning stage, each element of C is checked to ensure that no other element in
C lies on the directed path between it and Ymc . If such a descendant exists, the ancestor node is
removed from C. To summarize, given a hierarchical graphical model with masked and unmasked
observables Ym and Ymc , this algorithm returns C, the set of variables with lowest dimension that
block all paths between Ym and Ymc .

Now, we prove each direction of the if-and-only-if condition separately.

If a full sample is masked, then C = Θ(s). Without loss of generality, we define full-sample mask
as mi = 0 and mj = 1 for i, j ∈ Is. In this case, any element in C must be a common parent of
both samples. As illustrated in Fig. 4A, the only parent node that is shared between Yi and Yj is
Θ(s), and thus the only set of variables shared between masked and unmasked regions is the system
variables. When Algorithm 1 from (Kong and Zhang, 2023) is applied to the graphical model
in Eq. 4 under the full-sample masking scheme, it recovers C = {Θ(s)}. In the selection stage,
Θ(s) is the only parent node connecting both samples Yi and Yj . In the pruning stage, nothing
is removed since C contains only a single element, implying no additional shared latent variables
exist as children of Θ(s). Therefore, under full-sample masking, the minimal set of shared latent
variables includes only the shared system parameters Θ(s).

If c = Θ(s), then a full sample is masked. We prove the statement via its contrapositive: if a
sample is not fully masked (i.e. contains both masked and unmasked observables), then the minimal
set of shared latent variables cannot consist solely of the system parameters.
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Intuitively, as shown in Fig. 4B, when a sample contains both masked and unmasked time-points,
there is always a latent state variable X that serves as the parent node connecting Ym and Ymc

. To
formalize this, we define a subsequence mask as a consecutive region of masked observables, i.e.,
mi,t0:t1 = 0, where t0, t1 ∈ 1, . . . , T , t0 ≤ t1, and t1 − t0 < T for a partial mask in a sample of
length T . Thus, t0 = t1 corresponds to masking a single time point at the index t0.

There are three possible types of masked subsequence regions: (1) a mask bordering the left edge,
or the beginning of the sample, (2) a mask bordering the right edge, or the end of the sample, and
(3) a mask in the middle of the sample that is bordered on the left and right by unmasked regions.
We apply Algorithm 1 in Kong and Zhang (2023) to each case to determine what minimal set of
shared latent variables are recovered. We use Csubseq to denote the minimal set of shared latent
variables between masked and unmasked regions induced by a subsequence mask.

Case 1 (Left Edge): When the mask borders the left edge of sample Yi, the masked region satisfies
t0 = 1 and t1 < T . During the selection stage, Algorithm 1 retrieves Csubseq = {Θ(s),Xi,t1},
since these nodes are ancestors of both masked and unmasked regions. In the pruning stage, Θ(s) is
removed because Xi,t1 lies on the directed path between Θ(s) and the unmasked region. Therefore,
Csubseq = {Xi,t1}. Intuitively, the latent variable Xi,t1 serves as the minimal parent connecting the
masked and unmasked unmasked regions, Yi,1:t1 and Yi,t1:T respectively.

Case 2 (Right Edge): The right edge follows a similar analysis, where the masked region satisfies
t0 > 1 and t1 = T . This results in Csubseq = {Θ(s),Xi,t0} after the selection stage, and
Csubseq = {Xi,t0−1} after the pruning stage. Thus, the latent variable above the Xi,t0−1 serves as
the lowest-level parent connecting unmasked and masked regions, Yi,1:t0 and Yi,t0:T respectively.

Case 3 (Middle): When t0 > 1 and t1 < T , the masked region is bordered on both the left and right
by unmasked variables. During the selection stage, Csubseq = {Xi,t0−1,Xi,t1 ,Θ

(s)}, and after
pruning, Csubseq = {Xi,t0−1,Xi,t1}, since the latent state variables lie on the directed paths from
the system variables to the unmasked regions. Therefore, there are two minimal parent nodes: one
at the left boundary, Xi,t0−1, above the unmasked variable Yi,t0−1, and one at the right boundary,
Xi,t1 , above the masked variable Yi,t1 .

Putting these results together, the minimal shared latent variables induced by a subsequence mask
is given by,

Csubseq =


{Xi,t1}, if t0 = 1 and t1 < T,

{Xi,t0−1}, if t0 > 1 and t1 = T,

{Xi,t0−1,Xi,t1}, if t0 > 1 and t1 < T.

(6)

We can extend this result to arbitrary masks, since any masking configuration over timepoints can
be expressed as a union of subsequence masks, mi =

⋃
k mi,t

(k)
0 :t

(k)
1

. To enforce partial masking,
we require that mi,t = 0 for some t and mi,t′ = 1 for some t′ ̸= t. Consequently, for arbitrary
masks, the minimal shared latent set is the union over the minimal sets for each subsequence mask
C =

⋃
k C

(k)
subseq. Since each Csubseq contains only latent state variables, the union C does not

include the system variables. Therefore, we have shown that under partial masking, the minimal set
of shared latent variables does not include the system parameters.

To summarize, applying Algorithm 1 from Kong and Zhang (2023) under a full-sample masking
scheme yields C = {Θ(s)}, since it is the only variable shared between samples in our graphical
model. In contrast, under partial masking, the minimal shared latent set includes only the latent
state variables at the boundaries of the masked subsequences, and never the system parameters.
This follows directly from our hierarchical structure, as the X variables always lie on the directed
path from Θ(s) to Ymc .

Thus, under our two-sample generative model and applying Algorithm 1 from Kong and Zhang
(2023), the system parameters appear as the minimal shared latent variables if and only if an entire
sample is masked.
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B SYNTHETIC DATASET DESCRIPTION

Synthetic time-series trials y ∈ RT×M of length T and M measurement dimensions are generated
by numerically integrating the Stratonovich SDE,

dyt = f(yt)dt+ σ̃dBt, (7)

with a fixed step size dt = 10−3, where f(·) is the dynamics function, Bt is multidimensional
Brownian noise. To ensure that the noise levels are comparable across different systems, we set the
diffusion scale as σ̃ = σRMS(Y) where σ is a dimensionless noise level and RMS(Y) is the root-
mean-square amplitude of the noiseless time-series and is estimated empirically through samples Y
from the system. We consider the following noise levels σ = {0, 1, 3, 5} and integrate eq. 7 using
torchsde (Li et al., 2020; Kidger et al., 2021).

We generate time series from three dynamical systems: Lorenz, Thomas, and Hindmarsh-Rose.
These define strange attractor that produces bounded yet nontrivial dynamics. Importantly, for cer-
tain parameter regimes, these systems undergo bifurcations, where changes to parameters induce
qualitative changes in the dynamics, thereby altering the statistical properties of the resulting time
series. We select systems whose behavior is sensitive to parameter changes, as physiological time
series are also generated by nonlinear dynamical systems that are highly sensitive to changes in
their underlying parameters. For example, the bursting behavior of a neuron can be triggered or
suppressed depending on the inputs it receives (Hindmarsh and Rose, 1984; Kim and Lim, 2019).
For each parameter setting and noise level, we generate 20 long time series with T = 105 time-steps
from random initial conditions Yi,0 ∼ N (0, I) and discard the first 200 steps as a burn-in period to
ensure convergence to the attractor manifold. Below, we detail the parameters that we consider for
each system.

Lorenz (Lorenz, 1963). Although originally derived from atmospheric convection, the Lorenz at-
tractor serves as a conceptual tool for studying physiological dynamics. It exhibits bounded, irregu-
lar, and parameter-sensitive behavior, features shared by many biological systems such as heart rate
variability (Billman, 2011) and neural activity (Chen et al., 2024; Mudrik et al., 2024; Sussillo et al.,
2016). This is the canonical 3D nonlinear attractor used to study chaotic behavior in dynamical
systems, with a state-space trajectory that resembles butterfly wings. For this system, M = 3, and
the dynamics are given by,

dy

dt
=

[
s(y2 − y1)

y1(ρ− y3)− y2
y1y2 − βy3

]
(8)

where y = [y1, y2, y3]
⊤. Following prior work (Sparrow, 2012; Kamiya et al., 2024),

we fix β = 8/3 and s = 28, and sweep ρ across the following 10 values:
{28, 41, 55, 69, 83, 96, 110, 124, 138, 152}. These values span a range of distinct chaotic regimes.

Thomas (Thomas, 1999). The Thomas attractor is a 3D strange attractor that produces cylindrically
symmetric time series in state space. For this system, M = 3, and the dynamics are given by

dy

dt
=

[
sin(y2)− by1
sin(y3)− by2
sin(y1)− by3

]
(9)

where we sweep over b ∈ {0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25}, corre-
sponding to 10 equally spaced values from 0.025 to 0.25 in increments of 0.025. This range was
chosen based on prior work (Sorin and Tulchinsky, 2024), which demonstrates significant changes
in system behavior between values of 0 and 0.33.

Hindmarsh-Rose (Hindmarsh and Rose, 1984). This is a 3D dynamical systems model of neu-
ronal activity that exhibits bursting behavior. For this system, M = 3, and the dynamics are given
by,

dy

dt
=

y2 − ay31 + by21 − y3 + I
c− dy21 − y2

r[s(y1 − xR)− y3]

 , (10)
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and we sweep the external current parameter I = {1, 1.33, 1.66, 2, 2.33, 2.66, 3, 3.33, 3.66, 4}, cor-
responding to 9 equally spaced values from 1 to 4 in increments of 0.33. This range of parameters
is chosen based on prior work (Chen et al., 2023a; Dhamala et al., 2004; Goufo et al., 2020), which
shows that the system exhibits different spike–burst behaviors within this region.

Given these generated time-series trials, we construct a dataset for each system, parameter setting,
and noise level by combining data from five randomly selected parameter values from each system’s
grid. By randomly selecting these parameter values, we ensure a range of task difficulty where more
challenging datasets involve classifying parameter values that are close together, whereas easier
datasets involve classifying parameter values that are farther apart. Importantly, we split each trial
into 70:15:15 train, validation, and test splits, and then segment each trial into non-overlapping
windows of size W = 100. For each system and noise level, we measure the classification accuracy
averaged over ten random seeds, accounting for both dataset sampling (classification difficulty) and
model initialization. The results reported in Table 1 are the average result for all three systems.

C BASELINE DESCRIPTION

For contrastive learning and SVAE baselines, we fix the encoder across different training objec-
tives to control for the effects of encoder design and isolate the impact of the pretraining objective.
Specifically, we adopt the time series encoder from TS2Vec (Yue et al., 2022), which consists of
a 10-layer dilated convolutional network with an embedding size of 320. This setup follows the
experimental protocol of (Xu et al., 2023) and report the best available performance from prior work
or our own experiments. To obtain a representative embedding for each time window, we apply a
global max pooling layer to aggregate features across the temporal dimension. Below, we describe
each baseline in more detail.

SimCLR (Chen et al., 2020). SimCLR is a simple augmentation-based method that we adapt for
time series data to evaluate the effectiveness of a purely augmentation-driven strategy. Three stan-
dard augmentations are applied, each with a 50% probability: scaling, which multiplies the entire
time series by a factor drawn from U(0.5, 1.5); shifting, which offsets the time series by a random
value in the range [−subsequence size,subsequence size] ; and jittering, which adds Gaussian noise
with a standard deviation equal to 0.2 times the standard deviation of the dataset.

TS2Vec (Yue et al., 2022). TS2Vec is a competitive time-series contrastive learning method for
time series that learns time-stamp-level representations through augmentations. It employs hierar-
chical contrast, combining instance-level and temporal contrast across multiple resolutions to cap-
ture scale-invariant representations within augmented context views. In our experiments, we adopt
the dilated convolutional encoder from this method and use the official implementation available at
https://github.com/yuezhihan/ts2vec.

REBAR (Xu et al., 2023). REBAR is a recent time-series contrastive learning method that de-
fines positive pairs using a learned similarity measure. This is accomplished through a cross-
attention mechanism that identifies class-specific motifs in one subsequence that can be used to
reconstruct another. Subsequences that have the lowest reconstruction error are selected as posi-
tive pairs for contrastive learning. We use the implementation provided in the official repository:
https://github.com/maxxu05/rebar.

PatchTST (Nie et al., 2022). PatchTST is a transformer model developed for forecasting that uses a
patching mechanism, in which consecutive blocks of time points are processed together, and incor-
porates channel independence, processing each channel separately. It achieves strong performance
in forecasting tasks and has been used as a backbone for extracting information about underlying
physiological states from biosignals (Geenjaar and Lu, 2025). While the original paper focuses
primarily on supervised learning, the model can also be trained in a self-supervised fashion using
a masked autoencoding (MAE) objective. In our experiments, we use the Hugging Face imple-
mentation from the official repository https://github.com/yuqinie98/PatchTST and
train PatchTST in SSL mode, using the CLS token as the summary representation for downstream
evaluations.

TimeMAE (Cheng et al., 2023). TimeMAE explores the idea of block masking in a MAE frame-
work, adapting it to time-series data. During training, random segments of the input time series
are masked, and the unmasked portions are passed through an encoder to produce latent repre-
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sentations. The model also introduces a decoupled autoencoder, where masked and unmasked
regions are encoded separately, allowing it to extract transferable information between these re-
gions. A lightweight decoder then reconstructs the masked segments, and the model is trained
to minimize the reconstruction error. We use the implementation from the official repository:
https://github.com/Mingyue-Cheng/TimeMAE.

LFADS (Sussillo et al., 2016; Sedler and Pandarinath, 2023). Latent Factor Analysis via Dy-
namical Systems (LFADS) is a deep generative model designed to uncover low-dimensional la-
tent dynamics underlying neural population activity (Pandarinath et al., 2018). During inference,
a bidirectional GRU produces an initial condition that serves as a summary representation of a
time-series window. This initial condition is then evolved forward by a GRU with a global dy-
namics function to generate a latent time series, which is linearly projected back into data space
to reconstruct the original time series. Although LFADS was originally developed for neural spik-
ing data, its Poisson likelihood can be replaced with a Gaussian likelihood to adapt the frame-
work for continuous-valued time series. In our experiments, we modify the official codebase
(https://github.com/arsedler9/lfads-torch) by replacing the BiGRU encoder with
the same dilated convolution architecture used in previous baselines, and we find that this modifica-
tion improves performance on downstream tasks.

DSVAE (Li and Mandt, 2018). Disentangled Sequential Variational Autoencoder (DSVAE) (Li and
Mandt, 2018) is a generative model originally developed for sequential data (video and audio) and
has not previously been applied to physiological signals. We include this baseline in our work since
it’s generative process resembles PULSE and our results show it is a competitive baseline when ap-
plied onto physiological time-series. DSVAE uses a BiLSTM and MLP to infer static and dynamic
latent variables, which are then used as initial conditions and inputs to an LSTM for generation.
Importantly, DSVAE does not remove irrelevant information, as both system and sample-specific
latents are observed and reconstructed jointly. In contrast, PULSE explicitly discards information
about noise through the its objective that leverages pseudo-pairs. We use the official implementa-
tion2, replacing the encoder with dilated convolutions, which improves downstream performance.

PULSE. This is our cross-reconstruction based method for physiological time-series SSL proposed
in this paper.

Hyperparameters. We tune hyperparameters for each method using a random search with a bud-
get of 30 trials over a grid of reasonable values. For trial, we uniformly sample within each of the
following grids and select the best setting according to the best validation performance. Training
hyperparameters are swept over epochs [50, 100, 200] and learning rates [0.001, 0.0005, 0.0001].
Model-specific hyperparameters are varied to capture differences in architecture and training objec-
tives. For PULSE, we sweep over the initial condition encoder hyperparameters, including convolu-
tion kernel size [3, 5, 11], dilation [1, 2], and hidden dimensionality [64, 128]. For the GRU decoder,
we sweep across the number of layers [2, 3, 4] and hidden dimensionality [64, 128]. Finally, for the
pseudo-pair construction, we vary the number of samples [1, 2, 3]. Hyperparameter grids for other
baselines are included in the code repository.

D REAL DATASET DESCRIPTION

For the linear probe experiments, we partition the data into training, validation, and test sets with
a 70/15/15 inter-subject splits. Note that the total time of the labeled subsequences may not match
the full length of the original recordings, as some portions of the data can be unlabeled. Extracted
subsequences are non-overlapping.

HAR (Reyes-Ortiz et al., 2015). The HAR dataset consists of time series data recorded from
30 volunteers of ages 19-48 years with a smartphone (Samsung Galaxy S II) attached at the sub-
jects waist. There are 59 samples of 5-minute long time series that are collected at 50 hz. In our
experiment, we use as input 6-channels ( 3-axis linear accelerometer and 3-axis angular velocity). 6-
channels recordings Raw accelerometer and gyroscopic sensor data. Subsequences are 2.56 seconds
long (128 time steps) which matches the labels from the original work. collected from smartphones.
6-class classification task with 4,600 subsequences with the following activity class label names and

2https://github.com/yatindandi/Disentangled-Sequential-Autoencoder
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proportions: walking (17.7 %), walking upstairs (7.6 %), walking downstairs (9.1 %), sitting (18.2
%), standing (20.1 %), and laying (20.1%)

ECG (Moody, 1983). We use data from the MIT-BIH Atrial Fibrillation dataset (Moody, 1983).
Since no subsequence length was defined in the original work, we adopt 10-second segments, fol-
lowing both prior analyses of this dataset (Tonekaboni et al., 2021; Xu et al., 2023) and the con-
vention used in ECG classification studies more broadly (Wagner et al., 2020). In total, 76,590
distinct subsequences are extracted from 23 recordings, each lasting approximately 9.25 hours and
sampled at 250 Hz with two channels. To further improve computational efficiency, each subse-
quence is downsampled by a factor of five and produces subsequences with 500 time-steps. Of
these, 76,567 subsequences are labeled, with 41.7% corresponding to atrial fibrillation and 58.3% to
normal rhythm.

PPG (Schmidt et al., 2018). This dataset is constructed from the WESAD dataset. There are 15
recordings each of approximately 87 minutes in duration, corresponding to 334,080 samples col-
lected at 64 Hz from a single channel. From these recordings we extract 1,305 distinct 1-minute
subsequences, consistent with the segmentation strategy used in the original work. We improve
computational efficiency by downsampling each subsequence by a factor of four, so that each sub-
sequence has 960 time steps. Of these, 666 subsequences are annotated with class labels: baseline
(42.7%), stress (24.0%), amusement (12.4%), and meditation (20.9%). All signals are denoised
following the procedure described in Heo et al. (2021).

EEG (Kemp et al., 2000). Sleep-EDF (Kemp et al., 2000) contains 39 whole-night electroen-
cephalography (EEG) recordings collected using sleep cassettes from 20 healthy subjects. Following
the preprocessing protocol of (Chambon et al., 2018), we use two EEG leads (Fpz-Cz and Pz-Oz)
to evaluate pretraining, sampled at 100 Hz and segmented into non-overlapping 30-second inter-
vals (3,000 time steps). This yields a total of 35,424 samples with the following class distribution:
Wake (22.9%), N1 (8.89%), N2 (51.30%), N3 (9.92%), and REM (7.00%). The data preprocess-
ing is accomplished with the MNE package (Gramfort et al., 2013). For transfer learning, we follow
prior experimental conditions and consider a pretrained model that uses a single EEG lead (Fpz-Cz),
segmented into windows of length 200.

For the fine-tuning experiments, we follow the preprocessing and dataset-splitting procedure de-
scribed in Zhang et al. (2022). The corresponding data are publicly available through the links pro-
vided in their repository at https://github.com/mims-harvard/TFC-pretraining.

Epilepsy. (Andrzejak et al., 2001) The Epilepsy dataset contains 500 single-channel EEG record-
ings, each lasting 23.6 seconds. To minimize subject-specific bias, the recordings are divided into
11,500 one-second segments and randomly shuffled, with signals sampled at 178 Hz. The dataset
has five labels that capture different conditions or recording locations: eyes open, eyes closed, EEG
from healthy regions, EEG from tumor regions, and seizure activity. For our experiments, we re-
duce the task to binary classification by grouping the first four categories as the negative class and
using seizure episodes as the positive class. Fine-tuning is performed on a small labeled subset of 60
samples (30 per class), with 20 additional samples (10 per class) used for validation. The model that
achieves the best validation performance is then evaluated on the remaining 11,420 test samples.

Gesture. (Liu et al., 2009) The Gesture dataset captures eight distinct hand movements recorded
via accelerometers, with each gesture defined by the path of motion. The gestures include swiping
left, right, up, or down; waving in clockwise or counterclockwise circles; tracing a square; and
drawing a right arrow. Each gesture is assigned a unique classification label. While the original
study reports 4,480 recordings, only 440 samples were available from the UCR Database, yielding a
balanced dataset with 55 samples per class. The sampling frequency is not specified in the original
paper but is assumed to be 100 Hz. Despite its modest size, the dataset provides enough samples for
fine-tuning experiments.

E DECLARATION OF LLM USAGE

We used LLMs solely for polishing and revising a base version of the text, for example by converting
bullet points into prose, shortening sentences, or improving clarity. LLMs were not used in any
other stage of this work, such as information retrieval and discovery, research ideation, or narrative
development.
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