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ABSTRACT

Recently, pseudo label based semi-supervised learning has achieved great suc-
cess in many fields. The core idea of the pseudo label based semi-supervised
learning algorithm is to use the model trained on the labeled data to generate
pseudo labels on the unlabeled data, and then train a model to fit the previously
generated pseudo labels. We give a theory analysis for why pseudo label based
semi-supervised learning is effective in this paper. We mainly compare the gen-
eralization error of the model trained under two settings: (1) There are N labeled
data. (2) There are N unlabeled data and a suitable initial model. Our analysis
shows that, firstly, when the amount of unlabeled data tends to infinity, the pseudo
label based semi-supervised learning algorithm can obtain model which have the
same generalization error upper bound as model obtained by normally training in
the condition of the amount of labeled data tends to infinity. More importantly, we
prove that when the amount of unlabeled data is large enough, the generalization
error upper bound of the model obtained by pseudo label based semi-supervised
learning algorithm can converge to the optimal upper bound with linear conver-
gence rate. We also give the lower bound on sampling complexity to achieve
linear convergence rate. Our analysis contributes to understanding the empirical
successes of pseudo label-based semi-supervised learning.

1 INTRODUCTION

Neural networks often require a large amount of labeled data to train, but in practice labeled data
is usually very time-consuming and labor-intensive to obtain. However, unlabeled data is often less
expensive to obtain. Therefore, semi-supervised learning has become popular in the field of deep
learning. The key to the success of semi-supervised learning is to effectively use unlabeled data to
help us obtain better models. (Kingma et al., 2014), (Laine & Aila, 2016), (Sohn et al., 2020), (Xie
et al., 2020), (Shu et al., 2018), (Zhang et al., 2019) and (Laine & Aila, 2016) have put a lot of effort
into using unlabeled data.

1.1 PSEUDO LABEL BASED SEMI-SUPERVISED LEARNING ALGORITHM

In general, pretraining and generating pseudo label are two main ways to use unlabeled data. Famous
works of pretrain models include (Devlin et al., 2018), (Brown et al., 2020), (Baevski et al., 2020)
and (Liu et al., 2019). In this paper, we focus on pseudo label based semi-supervised learning
algorithm (Grandvalet & Bengio, 2004) and (Lee et al., 2013). The core idea of the pseudo label
based semi-supervised learning algorithm is to use the model trained on the labeled data to generate
pseudo labels on the unlabeled data, and then train a model to fit the previously generated pseudo
labels. The sketch of pseudo label based semi-supervised learning algorithm is shown in Figure 1.
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Algorithm 1 Pseudo label based semi-supervised learning algorithm
1: Input: proper initial model f0, unlabeled data T , i = 0, iteration number I .
2: repeat
3: Generate pseudo label on T using fi.
4: Train on pseudo labeled T and get fi+1.
5: i← i+ 1
6: until i = I

Output: Model fI

Figure 1: Pseudo label based semi-supervised learning algorithm sketch

1.2 INSIGHT

We provide a novel theory analysis of pseudo label based semi-supervised learning algorithm. Under
a simple and realistic assumption on model, we show that when the amount of unlabeled data tends
to infinity, the pseudo label based semi-supervised learning algorithm can obtain model which have
the same generalization error upper bound as when the amount of labeled data tends to infinity.
And when the amount of unlabeled data is large enough, the generalization error upper bound of
the model obtained by pseudo label based semi-supervised learning algorithm can convergence to
the optimal upper bound with linear convergence rate. Here the optimal upper bound represents the
generalization error upper bound of the model trained on equal amount of labeled data.

Let us first introduce our assumption . Our assumption about the model is that if we train the model
on dataset which part of them are randomly labeled, when the proportion of randomly labeled data
is low, the model we get can have a lower empirical error on the correct labeled data, and a higher
empirical error on the randomly labeled data. This is reasonable especially when the model is under
parameterized. Though in our analysis the data is pseudo labeled and we always assume that we
have large amount of unlabeled data, the assumption is reasonable. It is worth mentioning that even
for when the DNN models are over parameterized, the DNN models still tends to fitting correct data
before mislabeled data.(Liu et al., 2020) and (Arora et al., 2019). We also show the reasonable of it
in Figure 2 by a toy example. In this toy setting, the dataset consists of (x1, y1), (x2, y2), (x3, y3)
(in color green) and small part of random mislabeled of them (in color orange). So when we train
the DNN models on the dataset as in the Figure 2, the model we get will ignore the mislabeled data.

Then, as our assumption, our insight is that when we train model on the dataset with small part of
them are random labeled, the model tends to fit the correct data first and ignore the small random
data especially if the model is under parameterized. So if we have a proper inital model and use it
to generate pseudo labels on the unlabeled dataset, there will be small part of the pseudo labels are
wrong labeled. And if we use the generated pseudo label to train a new model, the model will try to
fit the correct labels and will be well-trained since the absolute quantity of the pseudo labels is often
large. What’s more, if the model trained on the pseudo labels is good enough, we can reuse it to
generate new pseudo labels on the unlabeled dataset. We hope that the pseudo labels generated by
previous model trained on the pseudo labels will have less wrong labels. So we can get better model
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Figure 2: A toy example for our assumption

by them and the iteration can continue. Thus, our analysis contributes to understand the empiri-
cal successes of pseudo label-based semi-supervised learning (Laine & Aila, 2016), (Tarvainen &
Valpola, 2017), (Lee et al., 2013), (Li et al., 2019), (Graves, 2012), (Chiu et al., 2018) and (Bengio
et al., 2015).

In summary, our contributions include:

• We give a therory analysis of the pseudo label based algorithm from the perspective of
pseduo labeled data and contribute to understand the empirical successes of pseudo label-
based semi-supervised learning.

• We show that, if we have a proper initial model, when the amount of unlabeled data tends to
infinity, the pseudo label based semi-supervised learning algorithm can obtain model which
have the same generalization error upper bound as model obtained by noramlly training in
the condition of the amount of labeled data tends to infinity.

• We prove that when the amount of unlabeled data is large enough (not need to be infi-
nite), the generalization error upper bound of the model obtained by pseudo label based
semi-supervised learning algorithm can convergence to the optimal upper bound with lin-
ear convergence rate. We also give the lower bound on sampling complexity to achieve
linear convergence rate.

2 RELATED WORK

2.1 THEORY ABOUT THE PSEUDO LABEL BASED SEMI-SUPERVISED LEARNING

In the early stage of machine learning, (Sain, 1996) proposes transductive SVM which tried to utilize
the unlabeled data. Then (Derbeko et al., 2003) estimates error bounds for transduction learning.
Later, (Oymak & Gulcu, 2020) shows pseudo label based semi-supervised learning iterations im-
prove model accuracy even though the model may be plagued by suboptimal fixed points. (Chen
et al., 2020) shows that, for a certain class of distributions, entropy minimization on unlabeled target
data will reduce the interference of fake features. However, the analysis in (Oymak & Gulcu, 2020)
and (Chen et al., 2020) mainly focus on linear models and DNN models are not analyzed. For DNN
models, (Wei et al., 2020) shows that pseudo label based semi-supervised learning method is indeed
beneficial to improve the performance of the DNN models, and gives a sample complexity.

2.2 RANDOM LABELED DATA AND POPULATION RISK

There are lots of methods to estimate the population risk of the DNN models. One of the most
important methods is estimating the upper bound on the generalization error of DNN models by
estimating the complexity of the hypothesis classes (Neyshabur et al., 2015), (Neyshabur et al.,
2017), (Ma et al., 2018) and (Weinan et al., 2019). However, this method often is strict to a specific
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model and it is hard to use it to create a unified analysis to illustrate the advantage of pseudo label
based semi-supervised learning for DNN models. Recently, (Garg et al., 2021) established a method
to estimate the population risk of the DNN models via the model performance on random labeled
data. In the method of (Garg et al., 2021), we will not need to estimate the complexity of the
hypothesis classes. So it can help us create a unified analysis for DNN models. And it is clearly
using this method is very convenient to show the benefit of pseudo label based semi-supervised
learning since there often will be some mislabeled data in the pseudo labels.

3 PRELIMINARY

3.1 NOTATION

To be clearly, we first show the notation in our paper. We mainly focus on k classification problem.
Using S represents the labeled data, n represents the amount of dataset S, S̃ represents the randomly
labeled data and m represents the amount of dataset in S̃. Using ES represents 0-1 loss on S, ES̃
represents 0-1 loss on S̃, ED represents popluation 0-1 loss.

3.2 POPULATION RISK UPPER BOUND BASED ON RANDOM LABELED DATA

As described in Section 2.2, estimating population risk upper bound based on random labeled data
is convenient to show the benefit of pseudo label based semi-supervised learning since there often
will be some mislabeled data in the pseudo labels. What’s more, it can help us to make an unified
analysis for DNN models. Now we describe the theorem. This is obviously crucial for our following
analysis.

Assumption 1 Let f̂ be a model obtained by training with an algorithm A on a mixture of clean
data S and randomly labeled data S̃. Then with probability 1− δ over the (uniform but without the
correct label) mislabeled data S̃M , we assume that the following condition holds:

ES̃M
(f̂) ≤ ED′(f̂) + c

√
log(1/δ)

2m
(1)

for a fixed constant c > 0. Where the ED′(f̂) represents the population loss of f̂ on (uniform but
without the correct label) mislabeded data. (Garg et al., 2021)

Theorem 1 Under the Assumption 1, then for any δ > 0, with probability at least 1− δ, we have

ED(f̂) ≤ ES(f̂) + (k − 1)

(
1− k

k − 1
ES̃(f̂)

)
+ c

√
log

(
4
δ

)
2m

(2)

for some constantc satisfy

c ≤
(
2k +

√
k +

m

n
√
k

)
(3)

Where m represents the amount of dataset S̃ and n represents the amount of dataset S. (Garg et al.,
2021)

Remark 1 The randomly labeled data is not equal to mislabeled data. For k classification problem,
the randomly labeled data means for any x, its label is uniformly randomly selected from k labels
y1, y2, y3, ..., yk. However, the mislabeled data means for any x, its label is uniformly randomly
selected from all k labels except its ground truth label. For example, for x1, and we suppose its
ground truth label is y1, then mislabeled data of x1 is uniformly randomly selected from k−1 labels
y2, y3, ..., yk.

Remark 2 The Assumption 1 holds in almost all scenarios. Since when we train DNN models,
they always tend to overfit the training data. In practice, we often need to take steps to prevent the
overfitting.

4



Under review as a conference paper at ICLR 2023

3.3 ASSUMPTION ON THE MODEL AND THE DATA STRUCTURE

As we describe in Section 1.2, our assumption about the model is that if we train the model on
the dataset, which parts of it are randomly labeled. When the proportion of randomly labeled data
is low, we can obtain models with low empirical error on correctly labeled data and high empirical
error on randomly labeled data. Here we give a mathematical formula that describes this assumption
in Assumption 2.

Assumption 2 ∃ε, ∃δ̃, if the training dataset S ∪ S̃ satisfy
m

n
≤ δ̃ < 1 (4)

we can get f̂ that satisfy
ES(f̂) ≤ ε (5)

ES̃(f̂) ≥ 1− 1

k
− ε (6)

At the following section, we will go further under the condition of Assumption 2. Since the ε and δ̃
change as the architecture of the model and training data change, exploring how the ε and δ̃ change
as the architecture of the model and training data change is still an important work, and we think we
will do it in the future. And we will discuss under the fixed ε and δ̃ in this paper.

In Section 4, we discuss the population risk under the condition that we have N labeled data as the
normal training setting. In Section 5, we discuss the population risk under the condition that we
have N unlabeled data and a proper initial model as the pseudo label based algorithm setting. And
we compare the population risk in Section 4 and Section 5 as amount of (unlabeled) data tends to
infinite. This is to show the power of pseudo label based algorithm in ONE iteration as the amount of
unlabeled data tend infinite. In Section 6, We focus on whether the population risk by pseudo label
based algorithm can approximated to the normally trained population risk E∗D as the pseudo label
based algorithm iteration progresses and the convergence rate of it. Besides, we provide a precise
mathematical characterization of the required initialization model. This is to show the great power
of pseudo label based algorithm when we have enough but limited unlabeled data as the iteration
progresses.

4 TRAINING ON THE LABELED DATA

Firstly, according to Assumption 2, we have
m

n
≤ δ̃ < 1 (7)

and we can give a more relax upper bound in Theorem 1 to simplify our analysis and notation latter.

Theorem 2 Under the Assumption 1, and if m
n < 1, then for any δ > 0, with probability at least

1− δ, we have

ED(f̂) ≤ ES(f̂) + (k − 1)

(
1− k

k − 1
ES̃(f̂)

)

+4k

√
log

(
4
δ

)
m

(8)

Where m represents the amount of dataset S̃ and n represents the amount of dataset S. (Garg et al.,
2021)

Now, we want to estimate the population risk upper bound of the models normal training on N
labeled data by Theorem 2. On the one hand, we observe that the second term in Theorem 2 is

related to performance on random labeled data S̃. And the third term 4k

√
log( 4

δ )
m decreases as m
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increases. On the other hand, in Assumption 2, the ε show the model performance on both correct
labeled data S and random labeled data S̃ . The δ̃ limit the upper bound of amount of random labeled
data S̃.

Thus, we can randomly labeled small part of N labeled data and we can use the Theorem 2 to
estimate the population risk and the randomly labeled small part won’t affect much compared with
training purely on N labeled data. To satisfy Assumption 2, we have{m

n
= δ̃

m+ n = N
(9)

So we have 
m =

δ̃

1 + δ̃
N

n =
1

1 + δ̃
N.

(10)

According to Assumption 2 and Theorem 2, we have f∗ which satisfy

ED(f∗) ≤ (k + 1)ε+ 4k

√
log

(
4

δ

)
1√
δ̃

1+δ̃
N

(11)

We denote the population risk upper bound of f∗ as

E∗D := (k + 1)ε+ 4k

√
log

(
4

δ

)
1√
δ̃

1+δ̃
N

(12)

which reflect the population risk upper bound under the normal setting which we have N labeled
training dataset.

Remark 3 We observe that the E∗D is nearly optimal since it has the error rate order of O( 1√
N
)

which is equal to Monte Carlo estimation error rate order. This also implies the reasonableness of
our assumption.

5 AMOUNT OF DATA TENDS TO INFINITY

In this section, we firstly discuss the population risk under the condition that we have N unlabeled
data and a proper initial model as the pseudo label based algorithm setting. Then we compare the
population risk in Section 4 and Section 5 as amount of (unlabeled) data tends to infinite. We show
that when the amount of unlabeled data tends to infinity, the pseudo label based semi-supervised
learning algorithm can obtain model which have the same generalization error upper bound as model
obtained by noramlly training in the condition of the amount of labeled data tends to infinity. We
show the limitation of pseudo label based algorithm in ONE iteration as the amount of unlabeled
data tend infinite. We reemphasize here that we discuss under the fixed ε and δ̃ in this paper as in
Section 3.3.

5.1 TRAINING ON PSEUDO LABELS

Now we talk about when we only have N unlabeled data and a initial f0 as the pseudo label based
semi-supervised learning algorithm setting as described in Section 1.1.

We need to generate the pseudo labels by the f0 then train model by pseudo labels. We denote the
ED(f0) as γ0. Obviously there are about (1 − γ0)N correct labels and γ0N wrong labels in the
generated pseudo labels. However, we can not view wrong labels in the generated pseudo labels as
random label. A direct evidence is there are no correct labels in the wrong labels in the generated
pseudo labels, but there are around 1

k correct labels in the random labels. Since both Assumption
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2 and Theorem 2 connect to the model performance in random labeled data. A correct way is that
we can select small part of generated pseudo labels then random labeled them. Then we can use
Assumption 2 and Theorem 2 to estimate the population risk. To be more clearly, the modified
pseudo label based algorithm, which is used to analyze are shown in Algorithm 2. The step 5 in
Algorithm 2, which is mainly modified compared with Algorithm 1, has little effect on pseudo
label based algorithm in Algorithm 1, because in practice the m << N and we will show how to
determine m below.

Algorithm 2 Modified pseudo label based algorithm

1: Input: initial model f0, N unlabeled data T , test data Ttest, ε, δ̃ that satisfy Assumption 2,
iteration number I , i = 0.

2: repeat
3: Estimate the fi population risk γi on Ttest
4: Generate pseudo label on T using fi.
5: Random select proper m(m << N) part of data from pseudo labeled T and random labeled

them
6: Update the pseudo labeled T .
7: Train on pseudo label T .
8: i← i+ 1
9: until i = I

Output: Model fI

To satisfy Assumption 2, the amount of data selected to random label m in Algorithm 2 has the
following restriction.

m+ γ0(N −m)

(1− γ0)(N −m)
≤ δ̃ (13)

So, we have

m ≤ δ̃(1− γ0)− γ0

(1 + δ̃)(1− γ0)
N (14)

γ0 ≤
δ̃

1 + δ̃
(15)

The equation 14 shows that we can select at most δ̃(1−γ0)−γ0

(1+δ̃)(1−γ0)
N data from N generated pseudo

labels then random labeled them when the γ0 satisfy equation 21. According to Assumption 2 and
Theorem 2, we can get f1 and with at least (1− δ)O(1) probability we have

ED(f1) ≤ (k + 1)ε+ 4k

√
log

(
4

δ

)√
(1 + δ̃)(1− γ0)

δ̃(1− γ0)− γ0

1√
N

(16)

Compare ED(f1) with E∗D := (k + 1)ε + 4k
√

log
(
4
δ

)
1√
δ̃

1+δ̃
N

in equation 12, we can easily show

that

lim
N→+∞

ED(f1)

E∗D
≤ 1. (17)

In summary, we have

Theorem 3 Under the condition of Assumption 2, for fixed ε, δ̃ and ∀δ ∈ (0, 1), if we have f0

with γ0 := ED(f0) < δ̃
1+δ̃

and N unlabeled data, then by Algorithm 2, with at least (1 − δ)O(1)

probability, we can get f1 that satisfies

lim
N→+∞

ED(f1)

E∗D
= 1. (18)
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This result implies that if we have a proper f0 and the amount of input unlabeled data tends to
infinite, pseudo label based semi-supervised algorithm can obtain a model which generalization
error upper bound equal to model trained in condition of amount of labeled data tends to infinite,
and this can achieve even in ONE iteration. This actually shows the power of the pseudo label based
semi-supervised algorithm.

6 CONVERGENCE RATE OF PSEUDO LABEL BASED SEMI-SUPERVISED
LEARNING

In this section, contrast to Section 5, we show the limitation of pseudo label based algorithm when
we have enough but limited unlabeled data as the iteration progresses. We focus on whether the
population risk by pseudo label based algorithm can approximate to the normally trained population
risk E∗D as the pseudo label based algorithm iteration progresses.

More importantly, we show that, when amount of unlabeled data N is big enough, a linear conver-
gence rate can be achieved as the pseudo label based algorithm iteration progresses. We also give
the lower bound on sampling complexity to achieve linear convergence rate. This is an extremely
exciting finding that theoretically demonstrates the effectiveness of pseudo label based algorithms.
We believe this finding contributes to understanding the empirical successes of pseudo label-based
semi-supervised learning. We reemphasize here that we discuss under the fixed ε and δ̃ in this paper
as in Section 3.3.

6.1 ITERATION ON PSEUDO LABELS

As analysis in Section 5.1, if we use an initial model with population risk γ0, the population risk
uppper bound of f1 by Algorithm 2 with at least (1− δ)O(1) probability we have

ED(f1) ≤ (k + 1)ε+ 4k

√
log

(
4

δ

)√
(1 + δ̃)(1− γ0)

δ̃(1− γ0)− γ0

1√
N

(19)

If the model f1 trained on the pseudo labels is good enough, we can reuse it to generate new pseudo
labels on the unlabeled dataset then obtained the new model f2. We hope that the pseudo labels
generated by f1 model trained on the pseudo labels will have less wrong labels than f0. So we can
get better model by them and the iteration can continue. Here, we are interested in if the population
risk upper bound can approximate the E∗D and how fast it is. So we should care if we can achieve

ED(fi+1)− E∗D
ED(fi)− E∗D

≤ p (20)

where fi, fi+1 denote the output of ith and i + 1th iteration in Algorithm 2, p is a constant in
(0, 1).We denote the population risk of fi as γi. Then according to the analysis in Section 5.1, if

γi ≤
δ̃

1 + δ̃
(21)

we can get fi+1 that with at least (1− δ)O(1) probability we have

ED(fi+1) ≤ (k + 1)ε+ 4k

√
log

(
4

δ

)√
(1 + δ̃)(1− γi)

δ̃(1− γi)− γi

1√
N

(22)

Without loss of generality, we can further assume the γi satisfies

E∗D + c1 ≤ ED(fi) ≤ E∗D + c2 (23)
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where c1 and c2 are two positive constant and c1 can be arbitrarily small. Then solve the equation
20 we can get the lower bound of amount of data N .

N ≥
(

4k

pc1

)2
√√√√ δ̃ + 1

δ̃ − E∗
D+c2

1−E∗
D−c2

−

√
δ̃ + 1

δ̃

2

log

(
4

δ

)
(24)

In summary, we have

Theorem 4 Under the condition of Assumption 2, for fixed ε, δ̃ satisfy Assumption 2 and
∀δ, c1, c2, p ∈ (0, 1) and c1 < c2, we define E∗D as equation 12. If the number of unlabeled data N
satisfy

N ≥
(

4k

pc1

)2
√√√√ δ̃ + 1

δ̃ − E∗
D+c2

1−E∗
D−c2

−

√
δ̃ + 1

δ̃

2

log

(
4

δ

)
(25)

and
E∗D + c1 ≤ ED(fi) ≤ E∗D + c2 (26)

ED(fi) ≤
δ̃

1 + δ̃
(27)

then with at least O(1− δ)O(1) probability we have

ED(fi+1)− E∗D
ED(fi)− E∗D

≤ p (28)

where fi, fi+1 denote the output of ith and i+ 1th iteration in Algorithm 2.

Since c1 could be arbitrarily small, this result indeed shows that the the population risk by pseudo
label based algorithm can approximated to the normally trained population risk E∗D as the pseudo
label based algorithm iteration progresses. What’s more, we show that a linear convergence rate can
be achieved and we give the lower bound on sampling complexity to achieve linear convergence
rate.

7 CONCLUTION AND FUTURE WORK

We conduct a theoretical analysis of pseudo-label based algorithm. We show that when the amount
of (unlabeled) data tends to infinity, if we have a suitable initial model, pseudo label based semi-
supervised learning algorithm can obtain models with the same upper bound on generalization error
as we usually train models. We also demonstrate that the generalization error upper bound of the
model obtained by the pseudo label based semi-supervised learning algorithm can converge to the
optimal upper bound with a linear convergence rate. Our Assumption 2 is important to our analysis
and we have explained the reasonableness of the assumption in Section 1.2. But how the ε and δ̃
change as the architecture of the model and training data change is still mysterious to us, and we
will explore it in the future. We hope that our analysis helps to understand the empirical success
and reveal the potential of pseudo label based semi-supervised learning algorithm, and facilitate its
application in wider scenarios.
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