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ABSTRACT

Dynamic novel view synthesis (D-NVS) critically depends on hardware-based
synchronization. Current approaches that accommodate unsynchronized settings
within the widely-used NeRF or GS frameworks often struggle with local minima,
particularly in textureless scenes or when multi-view videos exhibit large mis-
alignments. To tackle this issue, we propose a novel 3D global–2D local motion
consistency prior, which evaluates the alignment between predicted scene flow
projections and pre-computed optical flows across multi-view videos. Our analy-
sis reveals that the motion, produced by the anisotropy of projected global scene
flow across different views, is inherently more effective for correcting temporal
misalignments compared to the near-isotropic appearance typically leveraged in
NeRF or GS. Extensive experiments on public datasets demonstrate the versatility
of our loss function across various D-NVS architectures (NeRF and GS), achiev-
ing a ∼ 50% reduction in synchronization errors and a PSNR improvement of up
to 4dB, thereby outperforming existing state-of-the-art methods.

1 INTRODUCTION

Novel view synthesis, which takes a set of 2D images from different views and outputs realistic
images from arbitrary views, is a classical task in both the communities of computer vision and
computer graphics, serving as the basis for creating immersive contents for virtual/augmented/mixed
reality. This topic is drawing booming attentions due to the inventions of neural radiance fields
(NeRF) (Mildenhall et al., 2021) and Gaussian splatting (Kerbl et al., 2023), massive papers have
been published and the research scope has been extended from modeling the static world to dynamic
one with multi-view videos input.

However, all of the existing techniques (Li et al., 2022; Park et al., 2021a; Shao et al., 2023;
Fridovich-Keil et al., 2023; Cao & Johnson, 2023; Pumarola et al., 2021; Gao et al., 2024; Wu et al.,
2024; Yang et al., 2024; Xu et al., 2024; Luiten et al., 2023; Li et al., 2024; Katsumata et al., 2024;
Fang et al., 2022) rely on accurate synchronization between videos captured from different cameras.
To achieve synchronization between cameras, researchers typically rely on hardware synchroniza-
tion via dedicated sync cables connecting the devices. This not only increases the cost of the system
but also compounds its complexity, thereby reducing the system’s portability and usability and lim-
iting the application and promotion of NeRF and Gaussian splatting techniques. Although a few of
papers (Kim et al., 2024; Choi et al., 2024) have been published to synchronize without relying on
hardware-based solutions and setting temporal offsets as learnable variables within dynamic recon-
struction framework, these methods could only process videos with small temporal misalignment
and rely heavily on scenes with significant textures, or restricted to human-centric scenes.

The key of achieving synchronization according to multi-view videos only is finding unique priors
which identify consistency not only across different views but also along time stamps. However,
the most commonly used photometric consistency prior is prone to local minima optimization when
processing low/repeated-texture areas, where gradients are weak and provide little guidance, and
multiple candidate correspondences produce ambiguous matches that can mislead the solver and
slow convergence. This ill-posedness is further deteriorated when extending the static novel view

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

SSIM

Ori. Sync. Ours.

0-37 Frames0-13 Frames

Ori. Sync. Ours.

t

y

𝑡1

𝑡2

𝑣𝑖𝑒𝑤1

…

𝑡2

𝑣𝑖𝑒𝑤2

𝑡1

…

unsync

sync

unsync

sync

4DGS(0-13)

4DGS(0-37)

Sync-4D.(0-13)

Sync-4D.(0-37)

Ours.(0-13)

Ours.(0-37)

Reconstruction Metrics Synchronization Metrics

Figure 1: Our method significantly enhances reconstruction quality and temporal consistency com-
pared to baseline methods across different unsynchronized offset settings. Note: 0–13 and 0–37
indicate the ranges of absolute unsynchronized offsets in frames. Left: The radar chart shows our
quantitative advantages. Right: The novel view results, y–t slices, and error maps demonstrate
better temporal consistency and reduced ghosting within our approach.

synthesis to dynamic one, where the low/repeated textures in spatial domain are evolved in the one
along both the spatial and temporal domains, resulting in unreliable optimization of temporal offset.

To address the unreliable synchronization optimization, we propose the global-local motion consis-
tency prior. We notice that the local 2D optical flows projected from the global 3D scene flow differ
significantly from each other due to the camera poses, contrary to the photometric consistency where
the projected appearances in different cameras changes slowly. As a result, the motion consistency
is inherited more suitable for identifying the temporal misalignment than the appearance. Following
this prior, we propose the global-local motion consistency loss function by comparing the projected
optical flow with the pre-calculated one. To verify the efficacy of the proposed global-local mo-
tion consistency loss function, we integrate it with the most popular dynamic novel view synthesis
frameworks, including the dynamic NeRF (Fridovich-Keil et al., 2023) and Gaussian Splatting (Wu
et al., 2024; Katsumata et al., 2024). Experiments on public datasets (Li et al., 2022; Kim et al.,
2024; Abou-Chakra et al., 2024) with various synchronization settings reveal that the proposed loss
function could provide consistent performance for unsynchronized videos with both small and large
temporal misalignment, and not only reduces the synchronization error by a half, but also improves
the quality of novel view synthesis by ∼ 4 dB. Specifically, we make the following contributions,

1. We demonstrate that motion features are more reliable than photometric cues for temporal
offset optimization of unsynchronized multi-view videos.

2. We identify the global-local motion consistency prior and integrate it with popular frame-
works, i.e., dynamic NeRF and Gaussian Splatting, to improve novel view synthesis under
unsynchronized conditions.

3. We substantiate that the proposed global-local motion consistency loss surpasses prior
works, reducing synchronization errors by a half and improving the PSNR by ∼ 4 dB.

2 RELATED WORKS

2.1 DYNAMIC NOVEL VIEW SYNTHESIS

Dynamic novel view synthesis, which models spatiotemporal variations of object motion and ap-
pearance, has advanced through neural scene representations. Building on NeRF’s (Mildenhall et al.,
2021) static formulation, subsequent works (Zhu et al., 2023; Liu et al., 2024; Zhu et al., 2024) ad-
vanced INR modeling and optimization, and progress in light-field rendering (e.g., Geo-NI (Wu
et al., 2025)) explores geometry-aware neural interpolation, while a parallel line of temporal exten-
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sions such as Fang et al. (2022); Park et al. (2021b); Xu et al. (2024); Fridovich-Keil et al. (2022);
Li et al. (2022); Shao et al. (2023); Park et al. (2021a); Fridovich-Keil et al. (2023); Cao & Johnson
(2023); Pumarola et al. (2021) address dynamic scenes through diverse strategies. Pioneering works
like D-NeRF (Pumarola et al., 2021) established canonical space mapping through time-varying de-
formation fields for photorealistic synthesis. NSFF (Li et al., 2021b) introduces neural scene flow
fields to jointly model geometry and 3D motion, enforcing 3D–2D flow-based consistency for dy-
namic view synthesis. Subsequent advancements such as K-Planes (Fridovich-Keil et al., 2023)
and HexPlanes (Cao & Johnson, 2023) further enhanced reconstruction efficiency through tensor
decomposition-based multi-plane factorization. Notably, the emergence of 3DGS (Kerbl et al., 2023)
marked a paradigm shift through anisotropic Gaussian primitives and CUDA-accelerated rasteriza-
tion, achieving real-time rendering without compromising quality and overcoming the limitations
of implicit representations. With the advent of 3DGS, some methods (Wu et al., 2024; Yang et al.,
2023; 2024; Luiten et al., 2023; Li et al., 2024; Katsumata et al., 2024) have extended 3DGS to the
dynamic domain. Yang et al. (2024) employ canonical space deformation fields to model Gaussian
transformations. 4DGS (Wu et al., 2024) innovates through neural voxel encoding and lightweight
MLP-based deformation prediction. EDGS (Katsumata et al., 2024) introduces a compact dynamic
3D Gaussian representation with time-varying Gaussian parameters equipped with basis functions
for representing dynamic scenes. Recent SC-GS (Li et al., 2024) further enhances temporal model-
ing with dedicated motion parameters and time-dependent opacity control.

Despite these advancements, current dynamic novel view systhesis methods share a critical limi-
tation: they strictly require synchronized multi-view inputs. Unsynchronized video sequences of-
ten cause reconstruction failures, particularly in fast-moving regions, due to the lack of a globally
aligned timeline. Although a few methods (Kim et al., 2024; Choi et al., 2024) have been proposed,
their applicability is limited. Sync-NeRF (Kim et al., 2024) sets learnable per-camera temporal off-
sets, but is restricted to textured scenes with only small temporal misalignments. Choi et al. (2024)
introduces human pose priors, but is restricted to human-centric scenes, whereas our approach is
applicable to general dynamic scenes.

2.2 OPTICAL FLOW FOR SYNCHRONIZATION

Motion features have been utilized for synchronizing multi-videos for a long time (Wolf & Zomet,
2006; Pundik & Moses, 2010). Recently, Huo et al. (2020) propose a reference frame alignment
method for frame extrapolation to establish nonlinear temporal correspondence between videos.
Purushwalkam et al. (2020) propose an alignment procedure to connect patches between videos via
cross-video cycle consistency. Wu et al. (2019) propose a new deep network called SynNet to
synchronize multiple motion-camera videos by exploiting and matching view invariant pose fea-
tures. Optical flow (Hur & Roth, 2019; Teed & Deng, 2020; Li et al., 2021a), as one of the most
widely used representations of motion, frequently appears in various synchronization tasks. Cam-
LiFLOW (Liu et al., 2022) takes two consecutive synchronized camera and Lidar frames as inputs
to estimate the optical flow and scene flow simultaneously and builds multiple bidirectional con-
nections between its 2D and 3D branches. ROFT (Piga et al., 2021) exploits real-time optical flow
to synchronize delayed instance segmentation and 6D object pose estimation streams. These prior
works demonstrate the strong effectiveness of motion cues but are limited to settings with signifi-
cant view overlap and do not address joint reconstruction for multi-view inputs with minimal shared
content and temporal misalignment.

3 METHOD

3.1 PRELIMINARY

In dynamic scene reconstruction, temporal alignment serves as a fundamental requirement for es-
tablishing consistent spatiotemporal representations across asynchronous multi-view observations.
We represent the dynamic scene as a continuous function Ft(x⃗, d⃗) that encodes spatial coordinates
x⃗ ∈ R3, viewing direction d⃗ ∈ S2, and temporal dimension t ∈ R+. This neural representation can
be formulated as,

Ft = R
(
{Pi, Ii(t)}Mi=1

)
, (1)
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Figure 2: Illustration of the global-local motion consistency framework. Our framework introduces
Global-Local Motion Consitency that jointly optimizes 3D scene flow estimation and dynamic scene
reconstruction. The pipeline operates on two complementary levels: (1) Local 2D optical flows ex-
tracted from multi-view video streams, and (2) Global 3D scene flows derived via projection of
neural radiance fields. Our method establishes geometric consistency between image-space flow
warping and 3D scene flow reprojection through co-optimization of global-local constraints, en-
abling simultaneous spatiotemporal alignment and geometry reconstruction within an end-to-end
trainable architecture.

where R(·) denotes the reconstruction operator, which can be implemented using methods like
NeRF or 3D Gaussian Splatting to synthesize the scene from M camera observations. Each camera
provides a video stream {Ii(t)}Nt=1 (with N temporal samples) along with projection matrixes Pi =
{Ki,Ei}, where Ki and Ei represent intrinsic and extrinsic matrices, respectively.

To address temporal misalignment between asynchronous cameras, temporal offsets per camera
{∆ti}Mi=1 are introduced to compensate for unsynchronized frame captures. We focus on correcting
large frame-level temporal misalignments and do not account for minor sub-frame variations induced
by other camera effects(e.g., rolling shutter, clock drift, and exposure differences). Finally, the scene
and the temporal offsets are optimized by minimizing the RGB loss function, i.e.,

F∗
t , {∆t∗i }Mi=1 = argmin

Ft,{∆ti}M
i=1

LRGB

= argmin
Ft,{∆ti}M

i=1

M∑
i=1

∥π(Ft,Pi)− Ii(t+∆ti)∥22 ,
(2)

where π(·) denotes the projection operator that projects the scene representation onto the image
plane using the camera projection matrix Pi. This formulation enables joint optimization of scene
geometry, appearance, and temporal offsets through gradient-based methods.

3.2 MOTION CONSISTENCY ENHANCED UNSYNC. D-NVS

3.2.1 MOTION CONSISTENCY PRIOR
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Figure 3: Comparison between color and motion
clues for D-NVS across temporal-view dimensions.

Despite the fact that the exploration mentioned in
preliminary has achieved some success in certain
scenarios, the inborn ambiguity of the photomet-
ric consistency results in an unreliable optimization
of the temporal offsets and the reconstructed dy-
namic scenes especially when the scenes are com-
posed of weakly textured or textureless regions. As
shown in the Fig. 3, an actress dressed entirely
in blue is moving with the rhythm of time. Two
points (marked as red and orange, respectively) are
tracked across different frames (left-bottom panel).
Because of the isotropy of the pure blur color, it is
almost impossible to build correct correspondences
between different frames and views for these two
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points. As a result, existing dynamic novel view synthesis frameworks with only color supervision
(i.e., the Eqn. 2) fail in optimizing F∗

t and {∆t∗i }Mi=1.

On the contrary, the inborn ambiguity of photometric consistency-based supervision could be fun-
damentally eliminated by introducing the motion consistency. As shown in the right half of the
Fig. 3, the marked two points shared similar 3D scene flow vectors. Due to the perspective trans-
formation caused by camera’s projection matrixes, similar 3D scene flow vectors will be projected
to 2D optical flows which differ significantly from each other (i.e., the amplitude and the direction),
as shown in the right-bottom panel of the Fig. 3. Leveraged from these unique view/time-dependent
characteristics, both the optimizations for F∗

t and {∆t∗i }Mi=1 could be improved by introducing the
motion consistency prior into the Eqn. 2, i.e., the projected scene flow should be equal to the inherit
optical flow in each input video.

3.2.2 GLOBAL-LOCAL MOTION CONSISTENCY FOR D-NVS

Following the motion consistency previously analyzed, we propose the global-local motion consis-
tency loss function by comparing the projected scene flow with the inherit optical flow, i.e.,

LFlow =
M∑
i=1

∥∥∥fi(t)− f̂i(t+∆ti)
∥∥∥
1
, (3)

where f̂i and fi refer to the projected scene flow according to projection matrix Pi of the i-th camera
and the optical flow in the video stream provided by the i-th camera, respectively. ∥ · ∥ calculates
the L1-norm of vector ·.

The projected scene flow f̂i could be obtained by applying the 3D flow operator F3D to the scene
function F, and then applying the project operator π according to the projection matrix,

f̂i =π(F3D(Ft),Pi). (4)

Note that, we only provide a general form here. The 3D flow operator F3D varies from each other,
and is determined by the adopted NeRF, GS or other frameworks, we provide detailed discussions
in the experimental section.

The optical flow fi could be pre-calculated using the operator F2D,
fi = F2D(Ii(t)). (5)

Note that, we do not restrict the operator F2D to be a specific optical flow algorithm. Actually, as
shown in the ablation study section, both the algorithms published in 2018 and 2023 could provide
significantly improvements compared with previous methods. Fig. 2 visualizes the pipeline of the
global-local motion consistency for unsynchronized dynamic novel view synthesis.

However, as analyzed in many optical flow papers, it is difficult to provide reliable predictions for
low/repeated-texture regions. As a result, the reconstruction accuracy of F∗

t and {∆t∗i }Mi=1 will be
reduced if unreliable flow is used. Fortunately, we notice that All pixels in a frame from any camera
share a same temporal offset. Following this observation, we introduce a reliability masking strategy
to filter out unreliable pixels, and thus the Eqn. 3 is modified as

LFlow =

M∑
i=1

∥∥∥mi ⊙
(
fi(t)− f̂i(t+∆ti)

)∥∥∥
1
, (6)

where ⊙ denotes element-wise multiplication and mi denotes a binary reliability mask, which is
implemented by selecting the pixels which have the largest 50% optical flow amplitudes.

The final loss function integrates multiple constraints, including the RGB loss, the proposed motion
consistency loss, and a regularization term on ∆t to prevent excessive time shifts, i.e.,

F∗
t , {∆t∗i }Mi=1 = argmin

Ft,{∆ti}M
i=1

LRGB + λFlow LFlow + λt

M∑
i=1

|∆ti| , (7)

where λFlow and λt control the relative weights of the flow consistency and temporal regularization,
respectively. To ensure consistency with Sync-NeRF, we include the temporal regularization term
λt, but set it to a negligible weight to avoid overly strong constraints. By jointly optimizing these
terms, we achieve robust, temporally aligned, and motion-consistent dynamic scene reconstruction.

5
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Table 1: Metrics comparing the original framework, offset-optimized framework, and our global-
local motion prior-optimized framework on unsynchronized Plenoptic and Blender datasets across
varying camera offsets, with the Kplanes baselines excluded from ParticleNeRF’s scenes.

4DGS EDGS Kplanes Improvement

Offset Metric Ori. Sync. Ours Ori. Sync. Ours Ori. Sync. Ours vs Ori. vs Sync.

Pl
en

op
tic

D
at

as
et

s 0-13
Frames

PSNR↑ 30.27 30.84 31.29 28.07 27.62 29.72 29.65 30.12 30.45 +1.16 +0.96
SSIM↑ 0.9376 0.9392 0.9403 0.9280 0.9245 0.9344 0.9188 0.9251 0.9264 +0.0056 +0.0041
LPIPS↓ 0.1003 0.0979 0.0970 0.1052 0.1025 0.0995 0.2103 0.1997 0.1992 -0.0067 -0.0015

0-21
Frames

PSNR↑ 29.50 30.16 30.59 28.26 27.80 29.34 28.42 28.62 29.45 +1.07 +0.93
SSIM↑ 0.9280 0.9321 0.9336 0.9231 0.9195 0.9297 0.9062 0.9090 0.9164 +0.0075 +0.0064
LPIPS↓ 0.1245 0.1173 0.1156 0.1246 0.1250 0.1168 0.2255 0.2206 0.2069 -0.0118 -0.0079

0-33
Frames

PSNR↑ 28.79 29.80 30.65 27.88 28.03 30.05 28.44 27.88 29.10 +1.56 +1.36
SSIM↑ 0.9256 0.9292 0.9340 0.9210 0.9212 0.9331 0.9003 0.9003 0.9120 +0.0107 +0.0095
LPIPS↓ 0.1246 0.1171 0.1159 0.1253 0.1200 0.1172 0.2297 0.2295 0.2131 -0.0111 -0.0068

B
le

nd
er

D
at

as
et

s 0-13
Frames

PSNR↑ 31.61 33.75 36.46 32.24 35.52 36.68 32.92 39.11 39.14 +5.17 +1.30
SSIM↑ 0.9711 0.9815 0.9853 0.9704 0.9855 0.9873 0.9764 0.9855 0.9848 +0.0132 +0.0016
LPIPS↓ 0.0265 0.0135 0.0121 0.0276 0.0105 0.0095 0.0297 0.0158 0.0163 -0.0153 -0.0006

0-23
Frames

PSNR↑ 26.51 28.06 33.50 28.03 28.50 31.37 29.82 29.54 30.59 +3.70 +3.12
SSIM↑ 0.9568 0.9637 0.9751 0.9593 0.9604 0.9738 0.9695 0.9700 0.9725 +0.0119 +0.0091
LPIPS↓ 0.0373 0.0213 0.0127 0.0381 0.0232 0.0229 0.0322 0.0270 0.0221 -0.0166 -0.0046

0-37
Frames

PSNR↑ 24.72 26.05 30.21 26.30 29.67 32.01 28.47 28.72 29.08 +3.94 +2.29
SSIM↑ 0.9495 0.9558 0.9640 0.9507 0.9611 0.9662 0.9651 0.9669 0.9690 +0.0113 +0.0051
LPIPS↓ 0.0421 0.0305 0.0249 0.0414 0.0266 0.0263 0.0386 0.0351 0.0274 -0.0145 -0.0045

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Unsynchronized datasets and metrics. We evaluated our method on an unsynchronized Plenoptic
Dataset (derived from the Plenoptic Video Dataset (Li et al., 2022) with 6 scenes) and an unsynchro-
nized Dynamic Blender Dataset with 3 scenes, both provided by Sync-NeRF (Kim et al., 2024), as
well as two scenes from the Blender Datasets provided by ParticleNeRF (Abou-Chakra et al., 2024).
To test the robustness of our method under larger synchronization challenges, we further extend the
datasets by introducing random integer temporal offsets in both synthetic and real datasets. During
training, the model is allowed to learn continuous (non-integer) offsets. For the Blender Datasets,
the absolute offset ranges are set to 0–23 and 0–37 frames, and for the Plenoptic Dataset, 0–21 and
0–33 frames, where the actual offsets are randomly sampled within these ranges (including neg-
ative values). This results in average misalignments of approximately 10–11 and 14–15 frames,
respectively.

Table 2: Performance comparison of temporal metrics
on Blender Datasets with Kplanes baselines excluded
from ParticleNeRF’s scenes. Metrics (unit): MAE:
Mean absolute error (second), SR: Success rate (%),
defined as the percentage of predictions with offset
errors within a pre-defined threshold. To avoid bias
from a single threshold, we report Avg.SR, the aver-
age success rate over thresholds from 3 to 10 frames.

4DGS EDGS Kplanes

Offset Metric Sync. Ours Sync. Ours Sync. Ours

0-13
Frames

MAE↓ 0.062 0.029 0.047 0.026 0.015 0.015
Avg.SR↑ 94.6 99.7 96.2 100.0 100 100

0-23
Frames

MAE↓ 0.163 0.083 0.207 0.139 0.319 0.176
Avg.SR↑ 70.0 91.9 47.9 75.5 24.4 62.2

0-37
Frames

MAE↓ 0.319 0.141 0.262 0.171 0.460 0.315
Avg.SR↑ 28.5 70.0 34.3 60.5 20.5 31.1

To evaluate the quality of the rendered
images, we use several commonly used
metrics: PSNR, SSIM, and LPIPS. For
the unsynchronized Blender Datasets with
ground truth, we additionally calculate
MAE (Mean Absolute Error) and SR (Suc-
cess Rate, defined as the percentage of pre-
dictions with offset errors ≤ a pre-defined
threshold, e.g., 3 frames) to assess the accu-
racy of the predicted time offsets.

Baselines. To validate the universality
of our approach across different scene
representations, we adopt our method on
the original baselines: 4DGS (Wu et al.,
2024), EDGS (Katsumata et al., 2024) and
Kplanes (Fridovich-Keil et al., 2023) with
hybrid encoder. Similarly, we applied the
Sync-NeRF method to these baselines, named Sync-4DGS, Sync-EDGS, and Sync-Kplanes.
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Figure 4: Compared to other methods, our approach better preserves structural details and fine
textures. Notably, our method retains sharper contours, clearer boundaries, and smoother surface
details in challenging dynamic scenes.
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Figure 5: Qualitative comparison of spatiotemporal image rendering. Our method demonstrates
enhanced detail preservation and spatiotemporal coherence in temporal-axis sampling slices, with
improved dynamic range compared to baseline approaches.

Explicit Gaussian Representations. To cover the mainstream approaches of dynamic Gaussian
modeling, we adopt 4DGS and EDGS as representative frameworks, which capture temporal dynam-
ics by using a deformation field and by directly parameterizing Gaussian centers as time-dependent
functions, respectively. For EDGS (Katsumata et al., 2024), the implementation of the 3D flow oper-
ator F3D is carried out by tracking time-parameterized 3D Gaussians’ motions between consecutive
time steps, and the projected scene flow f̂i is obtained via projection π(·), blending contributions
with Gaussian weights. For 4DGS (Wu et al., 2024), inspired by Gao et al. (2024), the 3D flow
operator F3D is implicitly realized through splatting. The projected scene flow f̂i is then obtained
by measuring the displacement of each Gaussian’s 2D mean position between consecutive frames,
weighted by its contribution to the pixel.

Hybrid Factorization Representations. Hybrid methods (e.g., KPlanes (Fridovich-Keil et al.,
2023)) balance efficiency-accuracy trade-offs via combined explicit-implicit representations. For
Kplanes, the 3D flow operator F3D is implemented by first extracting features from six orthogonal
planes and feeding them into a scene flow decoder to predict per-point 3D motion. The projected
scene flow f̂i is then obtained via the projection operator π(·), by transforming the predicted 3D
flow into the image plane using the camera’s intrinsic and extrinsic parameters.

4.2 RESULTS

4.2.1 SPATIAL CONSISTENCY.

Across both Plenoptic and Blender Datasets under varying temporal offsets, our method consistently
improves spatial coherence and novel view synthesis quality. Under larger offset ranges, absolute
performance may fluctuate across datasets due to differences in their frame ranges and sequence
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Ground Truth EDGS Sync-EDGS Ours

1
0

0-13 frames

0-21 frames

Figure 6: Comparison of error map under different temporal offsets. Our method exhibits more
pronounced performance improvements under larger temporal offsets, particularly in dynamic tex-
tureless regions where motion artifacts are predominant.

OursGT 4DGS Sync-4D. OursGT EDGS Sync-ED.

Figure 7: Optical flow comparison: Our method matches GT flow in key regions (color/contour
accuracy) vs baselines.

lengths. As shown in Table 1, our method outperforms all baselines, achieving average gains of at
least 1.30 dB and 0.93 dB on the Blender and Plenoptic Datasets respectively. Notably, performance
remains stable even with increasing misalignment, demonstrating strong adaptability to unsynchro-
nized inputs. The qualitative results in Figure 4 show that the baseline methods suffer from structural
artifacts, such as unclear textures, object boundary distortion, and ghosting, for instance, the out-
line of a coffee cup and the ears of a deer. In contrast, our method preserves object silhouettes and
geometric integrity, producing spatially consistent, visually coherent novel views. Error maps in
Figure 1 further highlight improvements in regions like the texture of fox fur. Additionally, flow
maps in Figure 7 show that our synthesized views align more closely with ground-truth motion,
reducing ambiguities in challenging regions like finger joints and box edges.

4.2.2 TEMPORAL CONSISTENCY.

Our method also achieves strong temporal consistency across dynamic scenes. As shown in Fig-
ure 5, temporal-axis slices demonstrate that our approach preserves coherent motion over time,
while Sync-Kplanes and Sync-EDGS suffer from noticeable blurring and texture inconsistency in
terms of both color and contour, especially in regions with fine structures and significant motion
such as handheld tools and the reflective surfaces of cups. In contrast, our method reconstructs the
spring’s subtle oscillations with smooth temporal transitions, avoiding motion blur and edge insta-
bility. Figure 1 further confirms this: as temporal misalignment increases from 0–13 to 0–37 frames,
baseline methods exhibit significant error accumulation. In contrast, our results remain stable, with
error maps consistently aligned with ground truth. This robustness against temporal misalignment
highlights the effectiveness of our global-local motion consistency prior and ensuring reliable per-
formance despite increasing synchronization challenges.

As shown in Table 2, our method achieves the highest MAE reduction of 56% (0.141s vs 0.319s at
0-37 frames) and the highest SR improvement of 2.6× (62.2% vs 24.4% at 0-23 frames) among all
evaluated models and offset ranges, demonstrating superior robustness to severe temporal misalign-
ment.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 ABLATION STUDY

Table 3: Quantitative ablation on the reliability mask and
flow supervision under different offset ranges.

Offset Model PSNR SSIM LPIPS

0-13
Frames

Ours 29.72 0.9344 0.0995
w/o Reliability Mask 29.53 0.9850 0.1021
w/o flow 27.62 0.9245 0.1025

0-21
Frames

Ours 29.34 0.9297 0.1168
w/o Reliability Mask 28.77 0.9260 0.1216
w/o flow 27.80 0.9195 0.1168

0-33
Frames

Ours 30.05 0.9331 0.1172
w/o Reliability Mask 29.38 0.9294 0.1153
w/o flow 28.03 0.9212 0.1200

Effectiveness of Flow Supervision and
Reliability Masking. To evaluate the con-
tributions of the flow-consistency supervi-
sion and the reliability masking strategy, we
conduct an ablation study on the Plenop-
tic Datasets on the EDGS baseline. In the
ablated variants, either the flow term is re-
moved (w/o flow) or the reliability mask is
removed (w/o Reliability Mask). As shown
in Table 3, removing the flow term leads to
a large performance drop across all offset
ranges, demonstrating that global-local flow
consistency is the dominant contributor to synchronization quality. Removing the reliability mask
while keeping the flow term results in a smaller but noticeable drop in performance, indicating
that the mask further improves optimization by focusing the loss on dynamically reliable regions.
Overall, our full method with both flow supervision and reliability masking achieves the best recon-
struction quality.

Table 4: Ablation with PWC-Net flow surpasses Sync. and
nearly matches VideoFlow performance.

Offset Model PSNR SSIM LPIPS

0-13
Frames

Sync. 35.02 0.9810 0.0172
Ours(PWC-Net) 36.96 0.9836 0.0151
Ours(VideoFlow) 37.60 0.9843 0.0151

0-23
Frames

Sync. 29.95 0.8727 0.0195
Ours(PWC-Net) 35.80 0.9816 0.0150
Ours(VideoFlow) 36.24 0.9818 0.0076

0-37
Frames

Sync. 27.08 0.9652 0.0253
Ours(PWC-Net) 32.05 0.9766 0.0181
Ours(VideoFlow) 34.74 0.9802 0.0162

Robustness to Flow Estimation Qualities.
To further validate the effectiveness of our
proposed reliability masking strategy, we
conducted an ablation study on the 4DGS
baseline using PWC-Net (Sun et al., 2018),
a classical optical flow algorithm, to gen-
erate the precomputed flow on the Blender
Datasets provided by Sync-NeRF. Although
PWC-Net is significantly less accurate than
recent models such as VideoFlow (Shi et al.,
2023) (used in our 4DGS baseline), the re-
sults in Table 4 show that with our masking
strategy, the reconstruction performance not only surpasses the Sync., but also approaches the qual-
ity achieved with high-precision flow estimation. These results highlight that our mask is robust to
flow quality and can effectively suppress unreliable supervision.

Table 5: Ablation on the flow-loss weight λFlow.
Metric λFlow = 0.1 λFlow = 0.05 λFlow = 0.01 λFlow = 0.001
PSNR 31.05 31.29 30.94 30.81
SSIM 0.9397 0.9403 0.9402 0.9380
LPIPS 0.0979 0.0970 0.0974 0.0987

The weight of the flow Term. For
4DGS, λFlow is set to 0.05 for real-
world scenes and 0.5 for blender
scenes. To study the effect of vary-
ing the weight of the flow consis-
tency loss, λFlow, we conduct an ablation study on the 0-13 frames unsynchronized Plenoptic Dataset
using the 4DGS baseline. The results are shown in Table 5.These results demonstrate that an appro-
priate choice of the flow-loss weight, λFlow, is essential for the effectiveness of our method. When
λFlow is set too low, the influence of the flow-supervision term is weakened, which reduces its ability
to enforce temporal consistency and leads to a noticeable degradation in reconstruction quality.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a novel framework for dynamic scene reconstruction that effectively ad-
dresses temporal misalignment in unsynchronized multi-view videos. By leveraging global-local
motion consistency, our method achieves robust temporal alignment and high-fidelity reconstruc-
tion. It applies seamlessly to both explicit Gaussian representations and implicit neural radiance
fields, offering a unified solution for diverse scene types. Experiments on real-world and synthetic
datasets demonstrate the superior performance of our method in handling large temporal misalign-
ments, reducing motion artifacts while preserving fine-grained details.

Although our framework achieves strong performance across diverse settings, it still relies on a rela-
tively simple reliability mask. While effective in most cases, it may struggle under heavy occlusion.
Incorporating more advanced visibility checks is a promising direction to enhance robustness. In ad-
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dition, exploring hierarchical spatio-temporal pyramids may improve motion supervision for videos
with very large frame-level misalignments. Moreover, more complex camera effects such as rolling
shutter, clock drift, and exposure differences are also worth considering, and addressing them will
require both methodological extensions and richer dataset support, which we leave for future work.
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A APPENDIX

Multi-scale Flow supervision. In the quantitative analysis of our paper, we employed a single-scale
loss function. We also explored the potential advantages of a multi-scale loss approach. Our study
on multi-scale flow supervision using Plenoptic Datasets with the 4DGS baseline revealed that sup-
plying motion information at various resolutions enables the model to efficiently capture both exten-
sive global motions and fine local details. This multi-scale method bolsters the model’s robustness
against changes in motion scale and helps to avoid overfitting to a single scale, as demonstrated by
its improved performance over the single-scale counterpart in Table 6.

Table 6: Multi-scale flow metrics show consistent gains over single-scale supervision.

Model PSNR SSIM LPIPS
Ours(0-13) 31.29 0.9403 0.0970
Ours-multi(0-13) 31.26 0.9409 0.0970
Ours(0-21) 30.59 0.9336 0.1156
Ours-multi(0-21) 30.95 0.9354 0.1151
Ours(0-33) 30.65 0.9340 0.1159
Ours-multi(0-33) 30.82 0.9340 0.1150

Additional Quantitative Results on Synchronized Videos. To further validate the effectiveness
of our method, we report additional results on synchronized videos. Table 7 presents the average
PSNR performance across different time offset ranges, evaluated against the ground-truth (GT) off-
set videos.

Table 7: Quantitative results of synchronized videos. Average PSNR across different time offset
ranges, compared against GT-offset results(videos pre-aligned using ground-truth temporal offsets).

Average PSNR
Baseline Dataset Ori. Sync. Ours GT-offset

4DGS Plenoptic 29.52 30.27 30.84 30.88
Blender 27.61 29.29 33.39 35.33

EDGS Plenoptic 28.07 27.82 29.70 29.40
Blender 28.86 31.20 33.35 38.97

K-Planes Plenoptic 28.84 28.87 29.67 30.52
Blender 30.40 32.46 32.94 39.32

Averaged over all baselines and datasets, the PSNR drop relative to the GT-offset results is 6.68%
with our method, compared to 14.16% (original) and 11.22% (sync). These results demonstrate
that our approach substantially reduces the gap to perfect synchronization, achieving nearly half the
PSNR drop of the synchronized baseline.

Table 8: Comparison of processing time between different baselines and our method.

Baseline Sync.(min) Ours (min) Relative Time
4DGS 100 min 164 min 1.64×
EDGS 60 min 70 min 1.17×

K-Planes 158 min 198 min 1.25×

Training Runtime. We report the total training time of our method compared with the synchro-
nized baselines in Table 8. All experiments are conducted on a single NVIDIA A100 GPU. These
results show that our joint optimization introduces a moderate runtime overhead, while consistently
providing significant improvements in reconstruction and synchronization quality across different
baselines.
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Effectiveness of the Certainty Mask. In addition to our original reliability mask based on motion
magnitude, we introduce a certainty mask derived from SEA-RAFT(Wang et al., 2024) flow confi-
dence. To evaluate the effectiveness of the certainty-based masking strategy, we conduct an ablation
study on the Sync-NeRF Blender dataset with 0-13 frames unsynchronized. The certainty mask is
derived from the intermediate per-pixel confidence output of the SEA-RAFT flow estimator, which
reflects the certainty of the predicted flow. Pixels with the lowest 10% confidence are removed,
filtering out regions likely to contain flow errors.

Table 9: Effectiveness of the certainty mask. The three variants correspond to: using both the
certainty mask and the motion-based reliability mask, using only the reliability mask, and using
only the certainty mask, respectively.

Model PSNR SSIM LPIPS
w/ certainty mask + reliability mask 37.66 0.9844 0.0139
w/ reliability mask only 36.23 0.9824 0.0152
w/ certainty mask only 36.07 0.9822 0.0161

The results are summarized in Table 9. Using both the certainty mask and the motion-based re-
liability mask achieves the best performance. Using either mask alone consistently yields lower
quality, showing that the two masks provide complementary benefits: the certainty mask suppresses
flow outliers in occluded or fast-moving regions, while the reliability mask focuses on informative
motion. Together, they reduce the impact of erroneous flow on synchronization and mitigate noisy
supervision from unreliable flow estimates.

Table 10: Ablation on the offset regularization
weight λ. Large λ severely harms synchronization
performance under large temporal shifts.

Metric λ = 0 λ = 0.0002 λ = 0.02
PSNR 30.59 30.66 21.73
MAE 0.126 0.138 0.524

Offset Regularization Term. We further investi-
gate the impact of the offset regularization term.
We conducted an ablation study on the Blender
datasets from ParticleNeRF, where the temporal
offset range is [0, 37]. The results are summarized
in Table 10. As shown in the table, a large regu-
larization weight (λ = 0.02) significantly degrades
performance. By contrast, removing the regularization (λ = 0) achieves results comparable to using
a small weight (λ = 0.0002). This indicates that strong regularization restricts the model’s ability
to handle large temporal misalignments, whereas a relaxed or negligible regularization is essential
for allowing sufficient flexibility in synchronization correction.

Implementation Details of the Projected Scene Flow. For EDGS, the position of each 3D Gaus-
sian over time t is represented as a combination of its base position and dynamic basis functions,
xk(t). The 3D scene flow between two consecutive frames is defined as xk(t+1)−xk(t). The pro-
jected scene flow on the 2D image plane for camera i is represented as f̂i,k = Ji (xk(t+1)−xk(t)),
where Ji is the Jacobian of the affine approximation of the projective transformation. Contributions
from multiple Gaussians to the same pixel are fused via α-blending, f̂i =

∑
k αkf̂i,k

∏
m<k(1 −

αm), where αk denotes the opacity of the i-th Gaussian.

For 4DGS, inspired by Gao et al. (2024), the projected Gaussian flow f̂ is obtained by the differen-
tiable renderer by computing per-Gaussian pixel displacements in the image plane and combining
them throughα-blending. Specifically, for the k-th Gaussian, its displacement is computed based on
its 2D mean µ and covariance Σ at times t1 and t2. The computation proceeds as follows: the query
pixel position xt1 is first mapped to the Gaussian’s local canonical space, and then it is mapped back
to the image plane according to the Gaussian’s state at t2 (where t2 = t1+1), yielding the predicted
pixel position xk,t2 . The per-Gaussian pixel displacement is then given by:

gk = xk,t2 − xt1 .

The image-space projected scene flow for camera i at pixel position xt1 is obtained by α-blending
the per-Gaussian displacements, where αk denotes the α value of the k-th Gaussian:
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f̂i =

K∑
k=1

(
αk

∏
m<k

(1− αm)

)
gk

For hybrid methods such as K-Planes, the 3D scene flow operator F3D is implemented by first
extracting features from six orthogonal planes of the factorized 3D feature tensor, XY,XZ,YZ .
These features are then processed through a lightweight MLP-based scene flow decoder, producing
the 3D scene flow, denoted as F3D(Ft). Subsequently, the projected scene flow for the i-th camera,
f̂i, is obtained by applying the camera’s projection operator π:

f̂i = π(F3D(Ft),Pi)

where Pi is the projection matrix of the i-th camera.

B MORE VISUALIZATION RESULTS
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Figure 8: Visualization of spatial-temporal consistency using X-T and Y-T slices. Compared to
baseline methods, our method preserves sharper temporal structures and more continuous motion
patterns. Zoom-in insets highlight that our method reconstructs more coherent textures over time.
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Figure 9: Comparison of optical flow predictions under increasing temporal misalignment (0–13 vs.
0–33 frames). Our method produces flow color distributions that closely resemble the ground truth
(GT), preserving sharper motion boundaries and more accurate structures. In contrast, Sync-4D. and
4DGS exhibit blurred boundaries and flow color distributions that deviate significantly from the GT,
especially under larger temporal offsets.
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Figure 10: Comparison of spatial-temporal consistency in EPI representations (u-y slices). Our
method produces sharper and more coherent EPI lines, closely matching the ground truth, while
EDGS and Sync-EDGS exhibit noticeable distortions and aliasing.
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