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Abstract

How should agents explore efficiently over extended horizons in sequential decision-
making problems? While Thompson sampling (TS) is a widely used exploration
strategy, its theoretical performance in reinforcement learning (RL) in the pres-
ence of complex temporal structure remains poorly understood. We take a step
towards filling this gap by studying TS in episodic RL using models with Gaussian
marginal distributions, namely joint Gaussian process (GP) priors over rewards and
transitions. To characterize the impact of temporal structure on performance, we
derive a regret bound of Õ(

√
KHΓ(KH)) over K episodes of horizon H , where

Γ(·) captures the complexity of the GP model. Our analysis addresses the way
that uncertainty compounds through recursive updates and offers insights into how
uncertainty and temporal structure influences exploration.

1 Introduction

Sequential decision-making under uncertainty lies at the core of reinforcement learning (RL) systems,
from robotics [1] and chip design [2] to large language models [3]. In these settings, an agent must
make a series of decisions where each choice influences future states and rewards, creating intricate
temporal dependencies. Solving complex tasks often requires planning and acting over extended
decision horizons. As this horizon grows, exploration becomes more challenging due to uncertainty
compounding over time. This raises a central question: how does the length of the decision horizon
affect the efficiency of exploration strategies in RL?

We focus on Thompson sampling (TS) which offers a simple and widely used strategy for exploration:
sample from a posterior over models and act optimally under the sample [4]. This naturally balances
exploration and exploitation and aligns exploration with the agent’s uncertainty. TS underpins a
range of applications including bandits [5, 6, 7], Bayesian optimization [8, 9], and reinforcement
learning (RL) [10, 11, 12]. Empirically, TS has demonstrated strong performance across domains and
is widely adopted in practice. Theoretical guarantees for TS have been well-developed in multi-armed
bandit settings [13, 14] and have also been extended to RL settings [15, 11, 16, 17]. Existing RL
analyses typically rely on discrete state-action spaces, assume linear or kernelized dynamics, or
yield regret bounds that scale poorly with state dimensionality [15, 11, 16, 17]. This leaves an open
question on how temporal structure, particularly extended horizons, affects TS performance in more
general settings. Developing regret bounds for TS in continuous-state, finite-horizon MDPs without
strong structural assumptions remains an important problem.
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In this work, we study TS-driven exploration in episodic RL with continuous state-action spaces and
sequential decision-making under general models where each decision is described by a Gaussian
distribution. This setting captures a wide range of problems, including those modeled with Gaussian
processes (GPs), a standard tool in Bayesian optimization and RL. Specifically, rewards and transitions
are jointly modeled using a multi-output GP, as proposed in [12]. This enables the agent to model
correlations across different components of the environment in a flexible and data-efficient manner.
We consider an episodic MDP with K episodes of horizon H , where at the start of each episode, the
agent samples a realization from the GP posterior and computes an optimal policy with respect to this
sample. We use regret, defined as the cumulative loss in value relative to the optimal policy, as a tool
to characterize performance over extended horizons. Specifically, we provide a stylized analytical
upper bound on the regret, showing its dependence on the horizon, number of episodes, and the
complexity of the GP kernel. Our analysis highlights the key theoretical challenges of applying TS in
sequential settings, particularly due to the recursive and compositional nature of value functions.

1.1 Contributions

We establish a sublinear regret bound for TS in model-based RL under GP models, an approach
we refer to as Reinforcement Learning with GP Sampling (RL-GPS). We prove a regret bound of
Õ(
√
KHΓ(KH)) over K episodes of horizon H , where Γ(·) captures the complexity of the GP.

Our theoretical analysis introduces intermediate contributions for deriving the final regret bound.
Extending TS regret guarantees to RL presents two main challenges: (i) the optimal value function
is a recursive composition of GPs which is not a GP itself [18]; and (ii) TS operates on proxy
models induced by Bellman updates, rather than sampling directly from the posterior over the optimal
value function. To address (i), we develop high-probability confidence bounds for compositional
functions of GPs, formalized in Theorem 1, which allow us to control value estimation errors across
the decision horizon. To address (ii), we apply these bounds to derive high-probability confidence
intervals for value functions in episodic MDPs, which inherently take a recursive and compositional
form (Corollary 1). We then bound the regret in terms of cumulative posterior uncertainty. Here,
we derive a new multi-output elliptical potential lemma (Lemma 1) to bound this quantity. This
result improves upon naively applying the standard versions [8, 19, 20] independently to each output
dimension. Instead, our bound jointly tracks uncertainty across multiple outputs, leveraging their
correlation structure to obtain tighter regret guarantees.

Finally, we conduct controlled experiments that mirror our theoretical assumptions and validate our
regret bounds. The results confirm sublinear cumulative regret on GP-sampled MDPs and sparse
navigation tasks. Furthermore, we empirically illustrate how the choice of GP kernel affects learning
efficiency, with smoother kernels such as Radial Basis Function (RBF) leading to faster regret decay
in smooth environments, and rougher Matérn kernels outperforming in sparse settings. These findings
are consistent with the theoretical dependence on model complexity and temporal structure.

1.2 Related work

RL with TS. The theoretical performance of Thompson sampling (TS) has been extensively
studied in the bandit setting, where it achieves near-optimal regret bounds and strong empirical
performance [13, 21, 6, 22, 23, 7, 24]. In the GP bandit setting, regret bounds were established
for TS under kernel-based assumptions on the target functions, using techniques that our analysis
builds on [9]. Extending TS to RL introduces new challenges due to the recursive structure of
value functions and the dependence on both states and actions. Several works have established
foundational regret guarantees for TS in finite MDPs [15, 25, 26, 27]. In particular, regret analyses
for the Posterior Sampling for Reinforcement Learning (PSRL) approach [15] showed that PSRL
achieves Õ(H

√
SAT ) Bayesian regret, where H is the horizon, S is the number of states, A is the

number of actions, and T is the total number of steps [11]. Beyond the tabular setting, a TS method
with tighter guarantees under linearity assumptions was introduced, although their bounds scale
poorly with state dimensionality [17]. Regret bounds have been derived in kernelized RL settings
where transition dynamics are modeled as functions in a reproducing kernel Hilbert space (RKHS),
with the bounds depending on the maximum information gain of the kernel [16]. Our work differs
fundamentally in modeling assumptions as we model both the reward and transition functions jointly
as a multi-output GP. As a result, much of our analysis is novel.
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Episodic MDP. The episodic MDP framework is a central setting for RL. Sublinear regret
bounds have been established for Upper Confidence Bound (UCB) methods in tabular finite-horizon
MDPs [28, 29, 30]. Subsequent works have developed regret analyses for UCB-style methods with
structural assumptions, including linear [31] and kernelized MDPs [16, 32, 33], as well as under
standard assumptions for GP models [34]. These approaches all rely on optimism via constructed con-
fidence sets to guide exploration. In contrast, TS offers an exploration approach that avoids explicit
construction of confidence sets and has been less theoretically studied in complex RL settings.

Broader RL settings. Beyond episodic MDPs, it is common to study performance in infinite-
horizon discounted [35] and average-reward settings [36]. In the discounted setting, the contraction
properties of the Bellman operator enable provably efficient learning [37]. In the infinite-horizon
average-reward setting, regret bounds have been established for tabular communicating MDPs with
finite diameter using UCB-based strategies [36, 38, 39, 40]. More recent works established regret
guarantees in structured infinite-horizon settings for linear mixture MDPs with known feature map-
pings [41], linear function approximation in weakly communicating MDPs [42], and for nonepisodic
RL under continuity and bounded energy assumptions [43]. These approaches rely on structural
assumptions with resulting regret bounds depending explicitly on their properties. By focusing on the
episodic setting, we sidestep these complications and exploit the finite-horizon structure to derive
regret bounds using GP-based recursive analysis.

2 Problem formulation

Reinforcement learning. An episodic MDP is defined by the tuple (S,A, fR, fS, H), where
S ⊂ RdS is the state space, A ⊂ RdA is the action space, and H is the episode length. The reward
function is fR : S × A 7→ R, and the state transition function is fS : S × A 7→ S. The policy
π = {πh : S 7→ A}Hh=1 specifies the action πh(s) the agent takes in state s at step h. At the start
of each episode k, the environment provides an initial state s1,k and the agent executes a policy
πk = {πh,k}Hh=1. At each step h, the agent observes the state sh,k, selects action ah,k = πh,k(sh,k),
receives reward fR(sh,k, ah,k), and transitions to the new state sh+1,k = fS(sh,k, ah,k).

In an episodic MDP, the agent aims to maximize the cumulative reward collected over an episode. To
formalize this, we define the value function of a policy π as the expected total reward obtained when
starting at state s at step h and following π thereafter:

V π
h (s) = E

[
H∑

h′=h

fR(sh′ , ah′) | sh = s

]
, ∀s ∈ S, h ∈ [H].

The associated state-action value function is defined as:

Qπ
h(s, a) = E

[
H∑

h′=h

fR(sh′ , ah′) | sh = s, ah = a

]
.

We assume the existence of an optimal policy π⋆ that maximizes the expected total reward from
any state and time step. The optimal value and optimal state-action value functions are defined
as: V ⋆

h (s) = maxπ V
π
h (s), Q⋆

h(s, a) = maxπ Q
π
h(s, a). The optimal value function satisfies the

Bellman optimality equation: Q⋆
h(s, a) = fR(s, a) + V ⋆

h+1(fS(s, a)), V
⋆
h (s) = maxa∈A Q⋆

h(s, a),
with V ⋆

H+1(s) = 0 for all s ∈ S . An RL algorithm aims to find a near-optimal policy while interacting
with the environment. The regret over T timesteps is defined as:

Regret(T ) =
K∑

k=1

(V ⋆
1 (s1,k)− V πk

1 (s1,k)), (1)

where πk is the policy executed by the agent in episode k, and s1,k is the initial state of that episode,
and we use T = KH for the total number of steps.

Gaussian process modeling. GPs specify distributions over the space of functions, offering cal-
ibrated uncertainty estimates that can be leveraged for exploration and decision making. In the
single-output case, we model an unknown function f : Z → R as a Gaussian process f ∼ GP(0, k)

3



Algorithm 1 RL with GP Sampling (RL-GPS)

1: Require: number of episodes K, episode length H , GP kernel k
2: Initialize: reward-dynamics model p(f), reward and transition buffer D
3: for episode k = 1, . . . ,K do
4: // Create the proxy value functions Qh,k

5: Sample functions [f̂R,k, f̂S,k] from GP posterior p(f | D)
6: Initialize VH+1,k(·) = 0
7: for h = H, . . . , 1 do
8: Qh,k(s, a) = f̂R,k(s, a) + Vh+1(f̂S,k(s, a))
9: Vh,k(s) = maxa∈A Qh,k(s, a)

10: // Follow the greedy policy with respect to Qh,k

11: Observe initial state s1,k
12: for h = 1, . . . ,H do
13: Select action ah,k = argmaxa∈A Qh,k(sh,k, a)
14: Observe next state sh+1,k = fS(sh,k, ah,k) and reward rh,k = fR(sh,k, ah,k)
15: Store reward and transition in buffer (sh,k, ah,k, rh,k, sh+1,k) → D
16: Update GP posterior p(f | D) using new transitions

with a scalar-valued kernel k : Z × Z → R. Given n noisy observations {(zi, yi)}ni=1 with
yi = f(zi) + εi and εi ∼ N (0, λ2), the posterior mean and variance at any test point z ∈ Z are:

µn(z) = k⊤
n (Kn + λ2In)

−1yn, σ2
n(z) = k(z, z)− k⊤

n (Kn + λ2In)
−1kn,

where Kn ∈ Rn×n is the kernel matrix with [Kn]ij = k(zi, zj), kn(z) ∈ Rn has entries k(zi, z),
and yn ∈ Rn is the vector of observed outputs.

Multi-output Gaussian processes. In many applications, we wish to model a vector-valued
function f : Z → Rd jointly across multiple correlated outputs. In this setting, f is modeled
as a multi-output GP where k : Z × Z → Rd×d is a matrix-valued positive semidefinite kernel
that encodes both input similarity and output correlations. Given n input points z1, . . . , zn, let the
observed outputs be collected into a vector yn ∈ Rnd by stacking all d outputs at each input. The full
joint prior over yn is a multivariate Gaussian with zero mean and block kernel matrix Kn ∈ Rnd×nd

defined by: Kn[(i− 1)d+ r, (j − 1)d+ s] = [k(zi, zj)]rs for i, j ∈ [n], r, s ∈ [d].

The posterior at test point z is Gaussian with mean µn(z) ∈ Rd and covariance Σn(z) ∈ Rd×d given
by:

µn(z) = kn(z)
⊤(Kn + λ2Ind)

−1yn, Σn(z) = k(z, z)− kn(z)
⊤(Kn + λ2Ind)

−1kn(z),

where kn(z) ∈ Rnd×d is the cross-covariance between f(z) and the training outputs, defined via
[kn(z)](i−1)d+r,s = [k(zi, z)]rs. We define σ2

n(z) := diag(Σn(z)) ∈ Rd as the marginal predictive
variances. With slight abuse of notation, we use σn(z) to denote the vector of marginal standard
deviations, where σn,i(z) = (σ2

n,i(z))
1/2 for i = 1, . . . , d. The posterior mean µn(z) and covariance

Σn(z) enable multi-output GPs to jointly model transitions and rewards with uncertainty, making
them well-suited for RL where both functions must be estimated simultaneously.

3 Reinforcement learning with GP sampling

In this section, we present RL-GPS for learning episodic MDPs with joint GP modeling of the reward
and transition functions, following a recently proposed model [12].
Assumption 1. Let f = [fR, fS] denote the joint reward and transition function. We assume f is
distributed as a multi-output GP: f ∼ GP(0, k), for a known kernel k : Z × Z 7→ Rd×d.

The RL-GPS algorithm follows a value-iteration form of TS, where at the start of each episode, the
agent samples a realization of the reward and transition functions from the GP posterior and computes
proxy value functions Qh,k : Z 7→ R via backward induction. The agent then executes the greedy
policy under the function during the episode. This approach encourages exploration by introducing
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structured randomness into value estimates, naturally balancing exploitation of high-reward regions
with exploration of uncertain areas of the state-action space. Pseudocode is given in Algorithm 1.

4 Analysis

In this section, we derive a regret bound for RL-GPS (Algorithm 1) in episodic MDPs with a multi-
output GP model. We introduce intermediate results and provide the regret bound in Theorem 2.

4.1 Confidence intervals

To analyze the regret, we require high-probability bounds on the accuracy of GP predictions. For a
single-output GP f with posterior mean µn and standard deviation σn, the tail decay of the Gaussian
distribution implies that, with probability at least 1− δ, the following holds uniformly over z:

|f(z)− µn(z)| ≤ βn(δ)σn(z) (2)

where βn(δ) = O(
√
log(nδ )) [e.g., see 8].

In the RL setting, we must also construct confidence intervals for v(fS(·)) as part of the policy’s
recursive design where v : S 7→ R is a generic value function. The following theorem addresses this.
Theorem 1 (Confidence bounds for composed GPs). Assume f : Z 7→ S ⊂ RdS is a multi-output
GP with posterior mean µn and standard deviation σn. Let v : S 7→ R be a twice differentiable
value function where for all s ∈ S, ∥∇v(s)∥ ≤ uG and ∥∇2v(s)∥op ≤ uH . Define the composition
g(z) = v(f(z)). We have, with probability 1− δ, for all z ∈ Z ,

|g(z)− v(µn(z))| ≤ uGβn(δ/dS)∥σn(z)∥+
1

2
uHβn(δ/dS)

2∥σn(z)∥2. (3)

The proof uses a Taylor expansion of v to bound |g(z)− v(µn(z))| in terms of the first- and second-
order behavior of v, together with the standard GP confidence intervals given in (2). A detailed proof
is provided in Appendix A.

4.2 Performance analysis of RL-GPS

We first introduce our assumption regarding the smoothness of the value functions.
Assumption 2 (Smoothness of the value functions). We assume that for all h, Vh is twice differentiable
where for all s, ∥∇Vh(s)∥ ≤ uG and ∥∇2Vh(s)∥op ≤ uH .
Remark 1. The assumptions on the gradient and Hessian norms are mild compared to those typically
imposed on value functions in the literature. For example, in [31] and [44], it is assumed that
all proxy value functions belong to a function class defined using linear or kernel-based models,
respectively. In contrast, we impose a weaker assumption only on the first and second derivatives.

Now we present the main theorem bounding the regret of RL-GPS.
Theorem 2. Consider the episodic MDP setting described in Section 2 and the RL-GPS algorithm
given in Algorithm 1.Under Assumptions 1 and 2, with probability 1− δ,

Regret(T ) = O
(
log(Td/δ)

√
TΓ(T )

)
,

where Γ(T ) = supzh,k,h∈[H],k∈[K] IT , IT := 1
2 log det(ITd +

1
λ2KT ).

The determinant in Γ(·) represents the complexity of the function space described by the GP [45] and
serves as an upper bound on the information gain, which is discussed in detail in the next section.
The regret bound holds with high probability, where the randomness accounts for both the joint GP
distribution of the environment and the randomness in the Thompson samples.
Remark 2. The Matérn family is both theoretically significant and practically prevalent among
kernel choices. By substituting the bounds on Γ(·) from [46], we obtain the following regret rates.
For a base Matérn kernel with smoothness parameter ν > 1, our regret bound becomes:

Regret(T ) = Õ
(
T

ν+d
2ν+d

)
,

while for the radial basis function (RBF) kernel, the regret bound simplifies to Õ
(√

T
)

.
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Remark 3. When H = 1, learning in episodic MDPs reduces to the degenerate special case of
Bayesian optimization, also known as GP bandits. In this setting, we have T = K and our regret
bound becomes:

Regret(T ) = O
(
log(T/δ)

√
TΓ(T )

)
,

which recovers the standard regret bounds in Bayesian optimization [e.g., see 8].

4.3 Proof of Theorem 2

We bound total regret by analyzing the per-episode difference between the optimal value function
and that of RL-GPS. The full proof is in Appendix B and proceeds in four steps:

Step 1: Regret decomposition. We decompose the per-step regret into two parts: immediate regret
due to TS and a recursive component from propagating value uncertainty through transitions:
V ⋆
h (sh,k)− V πk

h (sh,k) = Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k)︸ ︷︷ ︸
Immediate regret

+V ⋆
h+1(sh+1,k)− V πk

h+1(sh+1,k)︸ ︷︷ ︸
Recursive term

. (4)

Step 2: Bounding the immediate regret. We build on techniques from the analysis of TS in GP
bandits [9], but face two key challenges: (i) the target function Q⋆

h(s, a) = fR(s, a)+V ⋆
h+1(fS(s, a))

is recursive and cannot be directly modeled as a GP; (ii) TS samples from the posterior of a proxy
Qh,k, not the true posterior over Q⋆

h. To address these issues, we construct high-probability upper
and lower confidence bounds on the proxy and target value functions.
Definition 1 (Upper and lower confidence bounds for value functions). We define the upper confidence
bounds recursively as:

Qu
h,k(s, a) = µR,k(s, a) + V u

h+1,k(µS,k(s, a)) + ξk(s, a), V u
h,k(s) = max

a∈A
Qu

h,k(s, a),

with V u
H+1,k(s) = 0. Similarly, the lower confidence bounds are defined as:

Ql
h,k(s, a) = µR,k(s, a) + V l

h+1,k(µS,k(s, a))− ξk(s, a), V l
h,k(s) = max

a∈A
Ql

h,k(s, a),

with V l
H+1,k(s) = 0. The confidence width ξk(s, a) is given by:

ξk(s, a) = βk(δ/Td)σR,k(s, a) + uGβk(δ/Td)∥σS,k(s, a)∥+
1

2
uHβk(δ/Td)

2∥σS,k(s, a)∥2,

based on Theorem 1 where µR,k, σR,k and µS,k, σS,k are the posterior mean and standard deviation
of fR and fS, respectively.
Corollary 1. With probability at least 1− δ, we have:

Ql
h,k(s, a) ≤ Qh,k(s, a), Q

⋆
h(s, a) ≤ Qu

h,k(s, a), ∀(h, k, s, a).

Step 3: Accumulating episode regret. Unrolling the decomposition over h = 1, . . . ,H yields a
per-episode bound in terms of the confidence widths: for a constant c,

Regret(T ) ≤ c

K∑
k=1

H∑
h=1

ξk(sh,k, ah,k).

Step 4: Bounding cumulative regret. Summing over K episodes leads to total regret bounds
involving posterior variances. These are controlled using a new elliptical potential lemma for multi-
output GPs (Lemma 1) and its delayed-update extension (Lemma 2). The latter accounts for the
batched nature of episode-level GP updates, introducing dependence on H . We apply techniques
from delayed feedback GP analysis [47, 48] to obtain the final bound.

4.4 Elliptical potential lemma for multi-output GPs

A key term in bounding cumulative regret is the sum of posterior variances along a sequence of
inputs. For scalar-output GPs, this is bounded by a log-determinant term (sometimes referred to as
the elliptical potential lemma [8, 20]):

∑T
t=1 σ

2
t−1(zt) ≤ C log det

(
ITd + (1/λ2)KT

)
.

In our setting, the transition function is modeled as a multi-output GP. Applying the scalar result
separately to each dimension leads to suboptimal dependence on the state dimension dS. To avoid
this, we derive a version tailored for vector-valued GPs:
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Lemma 1 (Elliptical potential lemma for multi-output GPs). Let f : Z → Rd be modeled by
a multi-output GP with kernel k. For inputs z1, . . . , zT , let σt−1(zt) ∈ Rd denote the posterior
standard deviations. Then,
T∑

t=1

∥σt−1(zt)∥2 ≤ CIT , where IT =
1

2
log det

(
ITd + λ−2KT

)
, and C =

2

log(1 + λ−2)
.

The proof, given in Appendix C.2, extends the classical scalar result to the multi-output setting.

5 Experiments

Figure 1: Cumulative regret over different kernels
on GP-sampled environments over 200 trials. The
shaded region around each curve represents ±1
standard error of the mean across trials. Dotted
lines represent median regrets.

To empirically validate the regret scaling in The-
orem 2, we study how kernel complexity im-
pacts regret in synthetic MDPs generated from
GP-sampled environments. The state and action
spaces are continuous, S = [0, 1]2 and A =
[0, 1], but each dimension is discretized into 25
equally sized bins to enable tractable value func-
tion approximation. We compare three com-
mon kernel functions: the Radial Basis Function
(RBF) kernel and Matérn kernels with smooth-
ness parameters ν = 2.5 and ν = 1.5. For the
multi-output GP model, we use the popular lin-
ear model of coregionalization (LMC) [49, 50],
which predicts the vector-valued output as a lin-
ear combination of independent latent GPs (see
Appendix D for details). For each kernel, a
sparse LMC multi-output GP with zero mean
and fixed linear correlations is used to sample
the ground-truth reward and transition functions,
fR and fS with rewards normalized to r ∈ [0, 1]
per step, thereby defining the MDP. The optimal
value function V ⋆ is computed using finite-horizon value iteration with H = 20. Algorithm 1 is run
for K = 1000 episodes and cumulative regret relative to the optimal value function is quantified. The
results are averaged over 200 randomly sampled environments and shown in Figure 1. Across all
kernels, cumulative regret grows sublinearly, which is consistent with our theoretical analysis. Perfor-
mance varies with the complexity of the kernel: the RBF kernel yields the lowest regret, followed
by Matérn ν = 2.5 and then Matérn ν = 1.5, as predicted by Remark 2. This reflects that rougher
kernels correspond to more complex function classes and require more data to accurately estimate
value functions. These results empirically confirm the theoretical link between kernel smoothness and
learning efficiency that our analysis elucidates through the regret bound’s dependence on information
gain Γ(·). Additional experiments and information are given in Appendix E.

6 Conclusion

This work investigated the performance of Thompson sampling in episodic reinforcement learning
with extended decision horizons. Using a multi-output Gaussian Process model over rewards
and transitions, we provided theoretical evidence that learning efficiency depends on the horizon
length, number of episodes, and complexity of the underlying model. The sublinear regret bound,
Õ(
√
KHΓ(KH)), serves as a characterization of these relationships. To derive this bound, we

introduced new tools for bounding uncertainty in recursive value functions, including confidence
intervals for compositional functions of GPs and a multi-output elliptical potential lemma that
captures correlations across components. Our experiments on synthetic tasks validated our theoretical
predictions and highlighted how GP kernel structure influences learning dynamics.

Overall, this work underscores the role of temporal structure and posterior uncertainty in exploration
efficiency and provides a foundation for further analysis of TS in sequential settings. Future directions
for research include extending these results to non-Gaussian or learned model classes as well as
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infinite-horizon problems. More broadly, understanding how exploration performance scales with
horizon length remains a key challenge in reinforcement learning with implications for designing
agents that can reason effectively over long time scales in complex environments.
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A Proof of Theorem 1

In this section, we provide a detailed proof of Theorem 1. Recall from (2) that for a single-output GP
f with posterior mean and standard deviation µn and σn, we have, with probability 1− δ, uniformly
in z,

|f(z)− µn(z)| ≤ βn(δ)σn(z) (5)

where βn(δ) = O(
√

log(nδ )).

To extend this to a composition v(f(z)), where f(z) ∈ Rd is drawn from a multi-output GP and
v : Rd → R is a smooth function, we apply Taylor’s theorem. For any z ∈ Z , there exists a point ζ
on the line segment connecting f(z) and µn(z) such that:

v(f(z)) = v(µn(z)) +∇v(µn(z))
⊤(f(z)− µn(z)) +

1

2
(f(z)− µn(z))

⊤∇2v(ζ) (f(z)− µn(z)).

Taking absolute values and using the bounds on gradient and Hessian

|v(f(z))− v(µn(z))| ≤ ∥∇⊤v(µn(z))∥∥f(z)− µn(z)∥+
1

2
∥∇2v(ζ)∥op∥f(z)− µn(z)∥2

≤ uG∥f(z)− µn(z)∥+
1

2
u2
H∥f(z)− µn(z)∥2

By the standard single GP confidence bound (2), with probability 1 − δ/dS , we have |fj(z) −
µn,j(z)| ≤ βn(δ/dS)σn,j(z) for all j, and hence, applying a probability union bound, with probabil-
ity 1− δ,

∥f(z)− µn(z)∥ ≤ βn(δ/ds)∥σn(z)∥.
Substituting into the bound above, we obtain

|v(f(z))− v(µn(z))| ≤ uGβn(δ/ds)∥σn(z)∥+
1

2
u2
Hβn(δ/ds)

2∥σn(z)∥2,

that completes the proof of Theorem 1.

B Proof of Theorem 2

In this section, we provide a detailed proof of Theorem 2 on the regret performance of RL-GPS. We
bound the total regret by analyzing the per-episode difference between the optimal value function and
the value function of the GP-TS-RL algorithm. We structure the proof in four main steps.

First, we decompose the per-step regret into two components: an immediate regret term arising from
TS, and a recursive term capturing uncertainty in value propagation through the transition model.

Second, we bound the immediate regret using techniques inspired by those used in the analysis of TS
in GP bandits. There are however certain challenges which are discussed below.

Third, we unroll the recursion and accumulate these bounds over all steps within an episode.

Fourth, we bound the cumulative regret by bounding the sum of posterior standard deviations in GPs,
which appear in the third step, to complete the regret bound.

First step: Decomposing the per-step regret.

We begin by analyzing the regret incurred at step h of episode k. Let ah,k = πk(sh,k) denote the
action taken by the algorithm, and let a⋆h,k = argmaxa∈A Q⋆

h(sh,k, a) denote the optimal action at
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that state. The per-step regret is defined as the difference between the optimal and executed value
functions:

V ⋆
h (sh,k)− V πk

h (sh,k).

By the Bellman equation, this can be written as:

V ⋆
h (sh,k)− V πk

h (sh,k)

= (fR(sh,k, a
⋆
h,k) + V ⋆

h+1(fS(sh,k, a
⋆
h,k))−

(
fR(sh,k, ah,k) + V πk

h+1(fS(sh,k, ah,k))
)

= (fR(sh,k, a
⋆
h,k) + V ⋆

h+1(fS(sh,k, a
⋆
h,k))−

(
fR(sh,k, ah,k) + V ⋆

h+1(fS(sh,k, ah,k))
)

+
(
V ⋆
h+1(fS(sh,k, ah,k))− V πk

h+1(fS(sh,k, ah,k))
)

= Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k) +
(
V ⋆
h+1(sh+1,k)− V πk

h+1(sh+1,k)
)
, (6)

where the first equality follows from the definition of the value function, the second adds and subtracts
the term V ⋆

h+1(fS(sh,k, ah,k)), and the third rewrites the expression using the definition of Q⋆
h and

noting sh+1,k = fS(sh,k, ah,k).

We split this expression into two terms:

V ⋆
h (sh,k)− V πk

h (sh,k) = Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k)︸ ︷︷ ︸
(immediate regret)

+
(
V ⋆
h+1(sh+1,k)− V πk

h+1(sh+1,k))
)︸ ︷︷ ︸

(recursive part of regret)

.

(7)

The first term captures the immediate regret incurred by TS. The second term reflects the recursive
component of regret, which arises due to uncertainty in the transition model and its impact on value
propagation. We next proceed to bound the immediate regret term.

Second step: Bounding the immediate regret (TS).

This term captures the suboptimality of the action ah,k chosen by TS, relative to the optimal action
a⋆h,k, under the target function Q⋆

h(·, ·). The analysis presents two key challenges compared to the
standard Thompson sampling analysis in kernel bandits [9]:

1. The target function Q⋆
h(·, ·) = fR(·, ·)+V ⋆

h+1(fS(·, ·)) is more complex, as it has a recursive
and compositional structure involving both the reward and value functions and cannot be
directly modeled as a GP.

2. The TS algorithm does not sample directly from the posterior of this target function, but
instead from the posterior of a proxy Qh defined in the algorithm.

To address both challenges, we create upper and lower confidence bounds Qu and Ql for both Qh

and Q⋆
h.

Recall the following upper and lower confidence bounds from Definition 1. We define the upper
confidence bounds recursively as:

Qu
h,k(s, a) = µR,k(s, a) + V u

h+1,k(µS,k(s, a)) + ξk(s, a), V u
h,k(s) = max

a∈A
Qu

h,k(s, a),

initialized with V u
H+1,k(s) = 0. Similarly, the lower confidence bounds are defined as:

Ql
h,k(s, a) = µR,k(s, a) + V l

h+1,k(µS,k(s, a))− ξk(s, a), V l
h,k(s) = max

a∈A
Ql

h,k(s, a).

initialized with V l
H+1,k(s) = 0. The confidence width ξk(s, a) is given by:

ξk(s, a) = βk(δ/Td)σR,k(s, a) +Gβk(δ/Td)∥σS,k(s, a)∥+
1

2
Hβk(δ/Td)

2∥σS,k(s, a)∥2, (8)

which is based on the confidence bound from Theorem 1.

Also recall Corollary 1. With probability at least 1− δ, the optimal and proxy value functions are
bounded by the high-probability confidence intervals:

Ql
h,k(s, a) ≤ Qh,k(s, a), Q⋆

h(s, a) ≤ Qu
h,k(s, a),
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for all (h, k, s, a). Let us denote this event as E .

Following the analysis technique used in the kernel bandit setting [9], we aim to show:

Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k) ≤ c ξk−1(sh,k, ah,k), (9)

for some universal constant c > 0.

To this end, we define the saturated set of actions at step (h, k) as:

Sh,k :=
{
a ∈ A : Q⋆

h(sh,k, a
⋆
h,k)−Q⋆

h(sh,k, a) > 2 ξk−1(sh,k, a)
}
. (10)

Intuitively, Sh,k includes actions that are significantly suboptimal under the true value function Q⋆
h,

with a suboptimality gap that exceeds twice their confidence width.

We now prove a loose lower bound on the probability of selecting an action from unsaturated set.
Specifically:

Pr [ah,k /∈ Sh,k] ≥ Pr
[
Qh,k(sh,k, a

⋆
h,k) > Qh,k(sh,k, a) ∀a ∈ Sh,k]

≥ Pr
[
Qh,k(sh,k, a

⋆
h,k) > Q⋆

h(sh,k, a
⋆
h,k) ∧

Q⋆
h(sh,k, a

⋆
h,k) > Qh,k(sh,k, a), ∀a ∈ Sh,k

]
≥ Pr

[
Qh,k(sh,k, a

⋆
h,k) > Q⋆

h(sh,k, a
⋆
h,k)

]
− Pr

[
Ē
]

≥ 1

2
− δ.

The first inequality holds because a⋆h,k is, by definition, the optimal action under Q⋆
h and therefore

saturated. The second step follows by decomposing the event into two sufficient conditions. To see
the third line, observe that under the event E , for any saturated action a ∈ Sh,k, we have:

Qh,k(sh,k, a) ≤ Q⋆
h(sh,k, a) + 2ξk−1(sh,k, a) ≤ Q⋆

h(sh,k, a
⋆
h,k).

The fourth inequality follows from the symmetry and probability bound for E from Corollary 1.

Let bh,k = argmina∈A\Sh,k
ξk−1(sh,k, a) denote the unsaturated action with the smallest confidence

width. Then, using the law of total expectation:

E [ξk−1(sh,k, ah,k)] ≥ E [ξk−1(sh,k, ah,k) | ah,k /∈ Sh,k] Pr [ah,k /∈ Sh,k]

≥ ξk−1(sh,k, bh,k)(
1

2
− δ). (11)

We now upper bound the immediate regret using bh,k as a reference:

Q⋆
h(sh,k, a

⋆
h,k)−Q⋆

h(sh,k, ah,k)

=
(
Q⋆

h(sh,k, a
⋆
h,k)−Q⋆

h(sh,k, bh,k)
)
+ (Q⋆

h(sh,k, bh,k)−Q⋆
h(sh,k, ah,k))

≤ 2 ξk−1(sh,k, bh,k) + (Qh,k(sh,k, bh,k) + ξk−1(sh,k, bh,k))

− (Qh,k(sh,k, ah,k)− ξk−1(sh,k, ah,k))

≤ 3 ξk−1(sh,k, bh,k) + ξk−1(sh,k, ah,k)

≤
(

3
1
2 − δ

+ 1

)
ξk−1(sh,k, ah,k),

where the first inequality adds and subtract the value at bh,k, the first inquality uses definitions of the
set S, bh,k and event E and the final step uses the earlier bound on ξk−1(sh,k, bh,k).

This completes the bound on immediate regret in terms of the confidence width at the selected action.

Third step: Bounding the episode regret.

From the per-step regret decomposition (7) and the bound on the immediate regret (9) and using a
telescoping sum over steps h = 1 to H , we obtain the following bound on the regret incurred in
episode k:

V ⋆
1 (s1,k)− V πk

1 (s1,k) ≤ c

H∑
h=1

ξk−1(sh,k, ah,k).
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Fourth step: Bounding the total regret.

Summing the episode regret over k = 1 to K episodes, we have:

Regret(T ) ≤ c

K∑
k=1

H∑
h=1

ξk−1(sh,k, ah,k).

Replacing ξk, we get:

Regret(T ) ≤ βK(δ/Td)

K∑
k=1

H∑
h=1

(σR,k−1(sh,k, ah,k) + uG ∥σS,k−1(sh,k, ah,k)∥)

+
uHβ2

K(δ/Td)

2

K∑
k=1

H∑
h=1

∥σS,k−1(sh,k, ah,k)∥2 (12)

The sum of sequentially conditioned standard deviations of a sequence of observations from a GP
often appears in the analysis of regret bounds in Bayesian optimization. A classical result shows that
in the case of a single output GP, for a sequence of inputs z1, z2, . . . , zT , we have:

n∑
i=1

σ2
i−1(zi) ≤ C log det

(
In +

1

λ2
Kn

)
,

where λ is the GP noise parameter, Kn is the kernel matrix over the observed inputs and C =
2/log(1 + 1/λ2) is a constant [8]. This result is sometimes referred to as the elliptical potential
lemma, especially in the special case of linear kernels [20].

A direct application of this result to our setting faces two key challenges: i) We model transitions
using a multi-output GP. Naively applying the bound to each output dimension separately results
in a regret bound that scales suboptimally with dS , the dimension of the state space. ii) Our regret
decomposition involves a double sum over episodes k and steps h, but within each episode, the
observations across h are not sequential updates. This structure leads to an additional scaling with
the episode length H .

We address both challenges. First, we derive a new elliptical potential lemma tailored for multi-output
GPs, which improves the dependence on dS in the regret bound. That is given in Lemma 1. Second,
to improve the H dependence, we leverage tools and techniques from the analysis of GPs under batch
observations and delayed feedback [47] to tighten the bound with respect to H (that roughly speaking
can be understood as delay in updating the GP model).

Lemma 2 (Elliptical potential for multi-output GPs with delayed updates). Let f : Z → Rd

be a d-dimensional function modeled as a multi-output GP with a matrix-valued kernel k. Let
z1, . . . , zT ∈ Z be a sequence of input points and suppose the GP posterior is only updated every H
steps, so that the standard deviation at time t is σH⌊(t−1)/H⌋(zt) ∈ Rd. Then,

T∑
t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤

√
4Γ(T )

log(1 + λ−2)

(
T +

4H2Γ(T/H)

log(1 + λ−2)

)
.

Applying Lemma 2 to the regret bound in terms of uncertainties (12), we obtain

Regret(T ) = O
(
log(Td/δ)

√
TΓ(T )

)
. (13)

C Auxiliary proofs

C.1 Proof of Corollary 1

We prove the lower bound by induction; the upper bound can be shown similarly.

As the base case, observe that VH+1 = V ⋆
H+1 = V l

H+1 = 0.
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Now consider the inductive step. We compare the value of Ql
h,k(s, a) to Q⋆

h(s, a):

Ql
h,k(s, a)−Q⋆

h(s, a) = µR,k(s, a) + V l
h+1,k(µS,k(s, a))− ξk(s, a)−

(
fR(s, a) + V ⋆

h+1(fS(s, a))
)

= µR,k(s, a)− fR(s, a) + V ⋆
h+1(µS,k(s, a))− V ⋆

h+1(fS(s, a))− ξk(s, a)︸ ︷︷ ︸
Term 1

+ V l
h+1,k(µS,k(s, a))− V ⋆

h+1(µS,k(s, a))︸ ︷︷ ︸
Term 2

≤ 0.

The first line follows from the definitions of Ql
h,k and Q⋆

h. The second line is obtained by adding and
subtracting V ⋆

h+1(µS,k(s, a)), followed by regrouping terms. The inequality holds since Term 1 is
non-positive due to the confidence bounds in Theorem 1, and Term 2 is non-positive by the induction
hypothesis.

Next, we extend the argument to the value function:

V l
h(s)− V ⋆

h (s) = max
a∈A

Ql
h(s, a)−max

a∈A
Q⋆

h(s, a)

≤ max
a∈A

[
Ql

h(s, a)−Q⋆
h(s, a)

]
≤ 0,

which completes the inductive proof that Ql
h,k(s, a) ≤ Q⋆

h(s, a) and V l
h(s) ≤ V ⋆

h (s) for all s, a, h.

We know that Ql
h,k(s, a) ≤ Qh,k(s, a) for all (s, a, h, k). For the inductive step, consider,

Ql
h,k(s, a)−Qh,k(s, a)

= µR,k(s, a) + V l
h+1,k(µS,k(s, a))− ξk(s, a)− (fR,k(s, a) + Vh+1,k(fS,k(s, a)))

= µR,k(s, a)− fR,k(s, a) + Vh+1,k(µS,k(s, a))− Vh+1,k(fS,k(s, a))− ξk(s, a)︸ ︷︷ ︸
Term 1

+ V l
h+1,k(µS,k(s, a))− Vh+1,k(µS,k(s, a))︸ ︷︷ ︸

Term 2

≤ 0.

The decomposition follows by adding and subtracting Vh+1,k(µS,k(s, a)) and regrouping terms. Term
1 is non-positive due to the high-probability confidence bound (Theorem 1). Term 2 is non-positive
by the induction hypothesis.

Hence, we conclude Ql
h,k(s, a) ≤ Qh,k(s, a) for all (s, a).

Extending to the value function:

V l
h,k(s)− Vh,k(s) = max

a∈A
Ql

h,k(s, a)−max
a∈A

Qh,k(s, a)

≤ max
a∈A

(
Ql

h,k(s, a)−Qh,k(s, a)
)

≤ 0.

This completes the inductive proof that Ql
h,k(s, a) ≤ Qh,k(s, a) and V l

h,k(s) ≤ Vh,k(s) for all s, a, h.
The upper bounds, i.e., Q⋆

h(s, a), Qh,k(s, a) ≤ Qu
h,k(s, a) for all s, a, h, are proven analogously

using similar argument.

C.2 Proof of Lemma 1

We consider a d-dimensional GP f : Z → Rd and a sequence of inputs z1, . . . , zT . Define the full
observation vector as:

y1:T =

 f(z1) + ε1
...

f(zT ) + εT

 ∈ RTd, εt ∼ N (0, λ2Id).
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The mutual information between y1:T and the latent function values is:

IT = I(y1:T ; f(z1), . . . , f(zT )) =
1

2
log det

(
ITd + λ−2KT

)
,

where KT ∈ RTd×Td is the prior kernel matrix over all outputs.

Let σt−1(zt) ∈ Rd be the vector of posterior standard deviations at zt given observations up to time
t− 1. Define the total uncertainty:

ST :=

T∑
t=1

∥σt−1(zt)∥2 =

T∑
t=1

d∑
j=1

σ2
t−1,j(zt).

We apply the scalar inequality (used in [8]):

σ2 ≤ 1

log(1 + λ−2)
log

(
1 +

σ2

λ2

)
, for all σ2 ∈ [0, 1].

Applying this to each term σ2
t−1,j(zt) and summing, we obtain:

ST ≤ 1

log(1 + λ−2)

T∑
t=1

d∑
j=1

log

(
1 +

σ2
t−1,j(zt)

λ2

)
.

Since y1:T is jointly Gaussian, the total sum of these log-terms is bounded by 2IT , giving:

ST ≤ 2

log(1 + λ−2)
IT .

Thus, we conclude:
T∑

t=1

∥σt−1(zt)∥2 ≤ CIT , with C =
2

log(1 + λ−2)
.

C.3 Proof of Lemma 2

We begin by naively applying the elliptical potential lemma to the same step index across episodes
T∑

t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤
H∑

h=1

K∑
j=1

∥σH(j−1)+h(zHj+h)∥2

≤ CHΓ(K) (14)

To improve on this, we use the following inequality proven in Lemma 3, for any z and t′ < t,

∥σt′(z)∥2 ≤ ∥σt(z)∥2
1 +

t∑
j=t′+1

∥σt′(zj)∥2
 .

Applying this to the case where the model is updated every H steps, for each t ∈ [T ], we let
t′ = H⌊(t− 1)/H⌋. Then,

∥σt′(zt)∥ ≤ ∥σt(zt)∥

√√√√1 +

t∑
j=t′+1

∥σt′(zj)∥2.

Now, summing over all t = 1, . . . , T , we apply the Cauchy–Schwarz inequality:

T∑
t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤
T∑

t=1

∥σt(zt)∥

√√√√1 +

t∑
j=H⌊(t−1)/H⌋+1

∥σH⌊(t−1)/H⌋(zj)∥2

≤

(
T∑

t=1

∥σt(zt)∥2
)1/2(

T +H

T∑
t=1

∥σH⌊(t−1)/H⌋(zt)∥2
)1/2

.
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We now substitute the same term with the looser bound given earlier in (14),
T∑

t=1

∥σH⌊(t−1)/H⌋(zt)∥ ≤

√
2Γ(T )

log(1 + λ−2)

(
T +

2H2Γ(K)

log(1 + λ−2)

)
.

This completes the proof.
Lemma 3 (Variance ratio inequality for multi-output GPs). Let f : Z → Rd be a d-dimensional
function modeled as a multi-output GP with a matrix-valued kernel k. Let σt(z) ∈ Rd denote the
vector of posterior marginal standard deviations at point z given t observations. Then, for any z ∈ Z
and t′ < t,

1 ≤ ∥σt′(z)∥2

∥σt(z)∥2
≤ 1 +

t∑
j=t′+1

∥σt′(zj)∥2.

Proof. For each output dimension j ∈ [d], the scalar variance update satisfies (see, e.g., Lemma 4
of [47] and Proposition A.1 of [48])

σ2
t′,j(z)

σ2
t,j(z)

≤ 1 +

t∑
i=t′+1

σ2
t′,j(zi).

Now summing over j = 1, . . . , d we get:

∥σt′(z)∥2

∥σt(z)∥2
=

∑d
j=1 σ

2
t′,j(z)∑d

j=1 σ
2
t,j(z)

≤ 1 +

d∑
i=1

t∑
j=t′+1

σ2
t′,i(zj) = 1 +

t∑
j=t′+1

∥σt′(zj)∥2.

Therefore,
∥σt′(z)∥2

∥σt(z)∥2
≤ 1 +

t∑
j=t′+1

∥σt′(zj)∥2.

The lower bound 1 ≤ ∥σt′(z)∥2/∥σt(z)∥2 holds since variance decreases monotonically as more
data is observed. This completes the proof.

D Discussion on the linear model of coregionalization

A widely used and computationally convenient special case of multi-output GPs is the linear model of
coregionalization (LMC) [49, 50]. In this model, the vector-valued function f : Z → Rd is expressed
as a linear combination of L independent latent Gaussian processes:

fj(z) =

L∑
ℓ=1

αjℓgℓ(z), gℓ ∼ GP(0, k(g)), (15)

where k(g) : Z × Z → R is a shared scalar kernel, and α ∈ Rd×L is a matrix of output mixing
weights. This induces a matrix-valued kernel:

k(z, z′) = A k(g)(z, z′), where A = αα⊤ ∈ Rd×d. (16)

Under this kernel structure, the block kernel matrix over the training data admits a Kronecker product
decomposition:

Kn = A⊗K(g)
n , (17)

where K
(g)
n ∈ Rn×n is the input kernel matrix with [K

(g)
n ]ij = k(g)(zi, zj). The cross-covariance

matrix between test point z and training data becomes:

kn(z) = A⊗ k(g)
n (z) ∈ Rnd×d, (18)

with [k
(g)
n (z)]i = k(g)(zi, z).

This formulation is particularly useful when jointly modeling structured outputs such as reward and
transition functions in reinforcement learning, as it captures both intra- and inter-output correlations
while enabling scalable inference. We provide a brief discussion on the regret bounds with such a
structured kernel.
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D.1 Information gain and regret bounds for LMC

We analyze how the structure of the LMC affects the information gain term Γ(T ) appearing in the
regret bound. Recall that Γ(T ) upper bounds the quantity 1

2 log det(ITd + 1
λ2KT ), where KT is

the kernel matrix of the multi-output GP. Under the LMC structure, KT = A ⊗ K
(g)
T , where A

captures output correlations and K
(g)
T is the kernel matrix corresponding to a shared latent GP. Using

properties of Kronecker products and letting λi denote the eigenvalues of A, we obtain:

log det

(
ITd +

1

λ2
KT

)
= log det

(
ITd +

1

λ2
A⊗K

(g)
T

)
=

d∑
i=1

log det

(
IT +

λi

λ2
K

(g)
T

)
.

For the Matérn family of kernels, the information gain of the latent scalar GP is known to satisfy [46,
51]:

Γ(g)(T ) = Õ
((

T

λ2

)α)
,

where α = d
2ν+d < 1 depends on the input dimension d and the kernel smoothness parameter ν.

Substituting into the sum, we obtain:

Γ(T ) =

d∑
i=1

Õ
((

Tλi

λ2

)α)

= Õ

((
d∑

i=1

λα
i

)(
T

λ2

)α
)
. (19)

In the general case without structure, a standard upper bound is given by:

Γ(T ) = Õ
((

Td

λ2

)α)
.

Comparing the two, we observe that when A has low-rank behavior, specifically, when
∑d

i=1 λ
α
i ≤

dα, the LMC-based bound in (19) can be tighter. In particular, the regret bound becomes:

Regret = Õ

((
d∑

i=1

λ
d

2ν+d

i

)
T

d
2ν+d

)
. (20)

This shows the effect of shared latent structure and output correlations on the regret bounds.

E Additional experiments

In this section, we provide further information about our experiments and additional results.

Model training. We model the reward and transition functions using a multi-output sparse varia-
tional Gaussian process, trained by maximizing the evidence lower bound (ELBO) with the Adam
optimizer [52]. A shared base kernel (either RBF or Matérn) is used across outputs, and the outputs
are linearly mixed according to a matrix following a linear model of coregionalization (LMC). The
model uses 100 inducing points per output dimension, a zero mean function, and is optimized for
20 steps per iteration using GPyTorch [53]. Full code is included in the supplementary material for
reproducibility.

Kernel complexity. We study the effect of kernel complexity on regret using synthetic MDPs
generated from 200 different GP-sampled environments. For all GPs, we fix a random linear mixing
matrix (see Appendix D),

A =

(
0.9926 0.2082 0.4968
−0.3196 0.8869 0.1603
0.1557 −1.4231 −1.3905

)
.
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Figure 2: The first row shows the histogram of cumulative regrets over all trials on the last episode of
RL-GPS training with each kernel. The second row shows the regret growth curves from all trials for
each kernel.

In each trial, we sample new ground-truth reward and transition functions from the multi-output
GP to define an MDP. The optimal value function is then computed for this MDP via finite-horizon
value iteration with horizon H = 20. We train RL-GPS (Algorithm 1) for K = 1000 episodes in
each environment and record the cumulative regret. Since the mixing matrix is fixed, randomness
within a trial arises only from the starting state distribution during rollouts. Across trials, randomness
stems from variation in the sampled environments, which can differ significantly in difficulty. As a
result, we observe a substantial right-skew in cumulative regret, with a few environments producing
particularly challenging instances. To demonstrate this variability, we show the cumulative regret at
the final episode across all trials for each kernel as well as the individual regret curves for each trial
in Figure 2. All trials for each experiment run within 24 hours on one NVIDIA GeForce RTX 2080
Ti GPU.

Multi-output kernel structure. In these experiments, we further study how the multi-output kernel
structure affects regret in sparse navigation tasks. The state space S = [0, 1]2 is discretized into 25
equally spaced bins per dimension and the action space A consists of 9 discrete actions that move
the agent in the cardinal or diagonal directions or allow it to remain stationary. The agent receives a
reward of +1 when within 0.1 of the destination and a penalty of −0.01 otherwise. We study two
settings: free movement within the grid and constrained navigation through a maze. As before, the
optimal value function V ⋆ is computed using finite-horizon value iteration. Algorithm 1 runs for
K = 1000 episodes with a sparse LMC multi-output GP posterior. The results over 200 trials are
shown in Figure 3 and demonstrate sublinear regret growth, consistent with our theory. Notably,
in these sparse, less smooth environments, the RBF kernel accumulates regret more rapidly than
the Matérn kernels. This is due to the RBF kernel’s strong smoothness assumptions, which lead to
model misspecification and slower adaptation when the ground truth is rougher [45]. The results
also highlight the value of modeling output correlations using the LMC. Specifically, the Matérn
1.5 kernel without LMC incurs substantially higher regret in the maze environment compared to its
LMC-enabled counterpart. This indicates that explicitly capturing output dependencies can improve
sample efficiency and reduce regret, especially in structured or high-dimensional tasks.

For this set of experiments, we train the multi-output GP using a Matérn kernel with ν = 1.5,
comparing two modeling approaches: independent GPs and the linear model of coregionalization
(LMC). When using LMC, the mixing weights are learned during training, so the randomness across
trials arises only from the random initialization of the mixing weights and the starting states for
rollouts. In contrast to the earlier experiments, the environment itself is fixed across all trials. For
the unconstrained navigation experiments, the horizon used is H = 20 and the GP is updated for 20
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Figure 3: The reward function (left column), optimal value function (middle column), and cumulative
regret of TS with a multi-output GP with confidence regions representing the standard error over 200
random trials (right column) are given. The first row corresponds to the sparse navigation task and
the second row corresponds to the sparse maze problem.

optimization steps at each iteration. For the maze experiments, the horizon used is also H = 20 and,
due to the increased modeling difficulty, the GP is updated for 50 optimization steps at each iteration.
All trials for each unconstrained navigation experiment run within 24 hours on one NVIDIA GeForce
RTX 2080 Ti GPU. Due to the greater number of GP updates in the maze setting, trials take longer to
run and all 200 trials complete within 80 hours on the same hardware. Note that all experiments are
easily parallelizable.
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