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ABSTRACT

Co-speech gestures are a principal component in conveying messages and enhanc-
ing interaction experiences between humans. Similarly, the co-speech gesture
is a key ingredient in human-agent interaction including both virtual agents and
robots. Existing machine learning approaches have yielded only marginal success
in learning speech-to-motion at the frame level. Current methods generate repet-
itive gesture sequences that lack appropriateness with respect to the speech con-
text. In this paper, we propose a Gesture2Vec model using representation learning
methods to learn the relationship between semantic features and corresponding
gestures. We propose a new conceptual framework that considers gestures as a
non-verbal language itself. Our approach first converts gesture sequences into
symbolic chunks, using frame and sequence level autoencoders and rigorous train-
ing techniques to learn the vocabulary. Using this higher-level representation, we
then take advantage of a machine translation model to learn translations of text to
discrete sequences of associated gesture chunks in the learned gesture space. Ul-
timately, we use these quantized gestures as input to the autoencoder’s decoder to
produce gesture sequences. The resulting gestures can be applied to both virtual
agents and humanoid robots. Ablation studies support that our gesture chunking
approach, fixed decoder weights, and vector quantization are the main drivers of
diversity in objective gesture diversity measures. Further subjective and objec-
tive evaluations confirm the success of our approach in terms of appropriateness,
human-likeness, and diversity.

1 INTRODUCTION

Non-verbal behaviour is an indispensable part of our daily communication. Prior research stated that
70−93% of communication is non-verbal, including facial expression, hand gesture, body pose, and
vocal tones (Mehrabian, 2017; Lapakko, 2007). People spontaneously gesticulate to complement
verbal channels during the speech to convey messages (McNeill, 2011; De Ruiter et al., 2012; Cassell
et al., 1999). Hence, integrating non-verbal communication skills into social robots and virtual
agents is crucial for compelling interactions (Minato et al., 2004; Woods et al., 2004; Breazeal et al.,
2005). Gestures originate from semantic features(Chu & Kita, 2016) and are characterized by speech
context (Lücking et al., 2013). Therefore, co-speech gesture generation has been typically addressed
using textual and acoustic features to generate relevant gestures.

Gesture synthesis can be categorized into deterministic and probabilistic models. Deterministic
models predict a single output for a given input, while probabilistic models estimate a plausible
output probability distribution conditioned on the given input. The limitation of deterministic data-
driven methods is that they neglect to span the variation of many dimensions in data space (Fragki-
adaki et al., 2015; Ferstl et al., 2019). Probabilistic models are potentially able to capture a broader
gesture space, but probabilistic models also suffer from the posterior-collapse problem (Bowman
et al., 2015) which results in repetitive gestures close to the average. The problem arises when the
one-to-one mapping assumption disregards the one-to-many relationship between speech and ges-
ture. This is a common problem among generative models for gestures (Yoon et al., 2019; Ginosar
et al., 2019), as well as in other domains, e.g. image generation models that produce a limited set
of blurry and similar images (Lucas et al., 2019a), and early attempts for natural language genera-
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tion (Bowman et al., 2015; Kingma et al., 2016; He et al., 2019). Literature attempted to address
this posterior collapse problem using different techniques such as adversarial training (Goodfellow
et al., 2014; Ginosar et al., 2019; Arjovsky et al., 2017; Srivastava et al., 2017), variational autoen-
coders (Higgins et al., 2016; Mi et al., 2018; Ling et al., 2020), normalizing flow (Alexanderson
et al., 2020), vector quantization (Oord et al., 2017) (Razavi et al., 2019), weakened decoders (Yang
et al., 2017; Semeniuta et al., 2017). However, as reported, prior work (Yoon et al., 2019; Ferstl
et al., 2019; Kucherenko et al., 2020b) were not successful in capturing long-term dependencies.
Indeed, the model parameters focus on imperceptible and local features such as continuity among
consecutive frames, most likely due to mode collapse.

Inspired by advances in other machine learning fields, especially natural language processing, we
model gestures as a language that contains a vocabulary, and then perform text-to-gesture as a lan-
guage translation task. Specifically, we integrate unsupervised representation learning methods and
a machine translation algorithm. First, we reduce body pose dimensionality using a Denoising Au-
toencoder at the frame level. Then, we perform a discretized motion representation learning to
cluster similar motion sequences to a symbol. This vector quantization method is a form of cluster
pattern recognition where each motion sequence is assigned to a particular word from a codebook.
Finally, we train a machine translation model to translate between utterances and their accompany-
ing gestural motion symbols. This method is effective since it mitigates the complexity of gesture
space and focuses on longer dependencies. In addition to traditional evaluation measurements, we
also present new objective and subjective metrics to evaluate the diversity of gestures.

2 RELATED WORK

We first review co-speech gesture generation methods. Next, we discuss recent gesture generation
approaches and their limitations. Finally, we introduce the deep neural network that we used and its
advantages over prior work.

Early attempts for gesture generation use blending to smooth feasible motion clips selected from
a database. Rule-based algorithms (Cassell et al., 2004; Huang & Mutlu, 2012), hidden Markov
models (Levine et al., 2009), conditional random fields (Levine et al., 2010), and hybrid systems
(Kipp, 2005; Neff et al., 2008) (Chiu et al., 2015) were used to select proper gestures conditioned on
a given input. It is now recognized that these kind of systems require extensive efforts to annotate
data and cannot generate gestures for unseen inputs. Also, they provide a single prediction for a
given input and lack variation of generated movement. Furthermore, scheduling the gestures with
speech is challenging since they may not be precisely synchronized (Butterworth & Hadar, 1989;
Kendon, 2004) despite originating from the same source (McNeill, 2011).

Recent deep generative models, e.g. VAEs (Kingma & Welling, 2013; Higgins et al., 2016), GANs
(Goodfellow et al., 2014; Abdal et al., 2019), and transformers (Vaswani et al., 2017; Brown et al.,
2020; Dehghani et al., 2018), achieved notable results on different tasks. A generative model com-
prises the joint probability of given data and output. Therefore, it can generate new plausible in-
stances by taking samples from the learned distribution (Hasegawa et al., 2018). Generative models
have been used for human motion generation (Yan et al., 2018; Hernandez et al., 2019; Ling et al.,
2020) as well as co-speech gesture generation (Ginosar et al., 2019; Yoon et al., 2019; Ferstl et al.,
2021; Li et al., 2021). However, co-speech gesture generation is more challenging since the rela-
tionship between speech and motion is complex (Butterworth & Hadar, 1989).

Input to the generative system can be supplied from either speech-text, audio, or both modalities
with a broad range of semantic and acoustic features (Kucherenko et al., 2021c). Systems that use
acoustic features led to generated beat gestures according to the speech rhythm (Hasegawa et al.,
2018; Ferstl et al., 2020; Ginosar et al., 2019; Kucherenko, 2018; Pouw & Dixon, 2019), and text-
based systems (Yoon et al., 2019; Ishi et al., 2018) produced more semantically aware gestures.
Although text-based models capture communicative features, they lack the strong effect of speech
acoustics, i.e. intonation, prosody, and loudness, on expressed gestures (Pouw et al., 2020). Recent
work benefiting from both modalities generated more compelling co-speech gestures in terms of
appropriateness and naturalness (Yoon et al., 2020).

Typically, co-speech gesture generation systems build upon an encoder and decoder architecture
(Hasegawa et al., 2018; Kucherenko et al., 2019; Yoon et al., 2019; Kucherenko et al., 2020a; Ferstl
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& McDonnell, 2018). Recurrent Neural Networks (RNN) structures have been used extensively for
the encoder and decoder (Hasegawa et al., 2018). However, RNN based models suffer from the error
accumulation problem and are not good at capturing long-term human motion dependencies (Her-
nandez et al., 2019). While Convolutional Neural Network (CNN) based gesture generation models
are not vulnerable to accumulation problems, CNNs are prone to regress to the average motion and
generate repetitive gestures (Li et al., 2021). Variational Autoencoders were also proposed for the
co-speech gesture generation task to generate more realistic and diverse gestures, e.g. (Rezende
et al., 2014; Li et al., 2021; Kucherenko, 2018). VAEs with strong decoders tend to ignore the latent
variable and learn the mode of the output data. This problem, known as “posterior collapse” causes
the model to generate slightly similar outputs close to the average (Lucas et al., 2019b).

Literature considerably explored adversarial training to generate more realistic and diverse gestures
(Ginosar et al., 2019; Ahuja et al., 2020; Yoon et al., 2020; Li et al., 2021; Ferstl et al., 2020;
2021). Although they brought attractive results, GANs are hard to train (Lucic et al., 2017) and
suffer from mode collapse (Tulyakov et al., 2018). Normalizing-flow based models have GANs
advantages while replacing adversarial loss by classical likelihood maximization training (Kingma
& Dhariwal, 2018) and efficient probabilistic inference of VAEs (Henter et al., 2020) (Kingma &
Dhariwal, 2018). Furthermore, autoregressive models on discrete data achieved impressive results
in many sequences-to-sequence tasks such as machine translation (Wang et al., 2019), image gener-
ation(Salimans et al., 2017) (Razavi et al., 2019), and speech synthesis (Oord et al., 2016) (Gârbacea
et al., 2019). VQ-VAE models learn a discrete latents space, enable us to use autoregressive models
on the posterior, and does not suffer from “posterior collapse” (Oord et al., 2017). Ordinarily, ges-
ture generation systems use a generator network that produces gestures from a latent code. To better
regress the data and cover a broad range of motion, (Li et al., 2021; Kucherenko et al., 2021b;a) uses
a motion-specific code space that represents motion attributes.

All of the state-of-the-art models mentioned above generate gestures frame-by-frame. We suggest
that this architecture drains model capabilities on local dependencies at the expense of global fea-
tures and diversity. We therefore reformulate the problem as a machine translation task. Inspired
by VQ-VAE, we propose a method that combines VQ-VAE, Denoising Autoencoders and weakened
decoders to learn a discretized latent space. Finally, we use an autoregressive model on the quantized
motions to produce co-speech gestures from the input.

3 METHOD

We considered Yoon et al. (2019) as our baseline since we also focus on word embedding textual
features (Bojanowski et al., 2017) as the control signal for gesture generation. The authors in (Yoon
et al., 2019) used an RNN based Encoder-Decoder architecture with a soft attention mechanism
(Bahdanau et al., 2014; Cho et al., 2014). The encoder extracts textual features, and the decoder
produces co-speech gestures frame-by-frame. We extend the baseline model by utilizing represen-
tation learning approaches. Our proposed system has the following steps.

• Pose representation learning at the frame-level

• Discrete motion representation learning at the sequence-level.

• Translation from text to the learned discrete motion representation space.

Learning powerful representations without supervision is of utmost importance to reduce problem
complexity. Autoencoders are unsupervised models that learn significant data features and discard
spurious patterns by minimizing the reconstruction error (Kingma & Welling, 2013). They consist of
an encoder network followed by a decoder network. An autoencoder’s bottleneck finds a shared data
representation (Goodfellow et al., 2009; Bengio et al., 2007) by learning the correlations between
input dimensions and reconstructs them from a low-dimensionality representation. We used two
different autoencoders with different components, both at the frame-level and sequence-level, as
explained in the following sections.

3.1 FRAME-LEVEL AUTOENCODER

Inspired from Kucherenko et al. (2019; 2021a) we used a Denoising Autoencoder (DAE) archi-
tecture (Vincent et al., 2010; Goodfellow et al., 2016) to reduce dimensionality at the frame level.
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Figure 1: Pose DAE: Representation learning at the frame-level.

DAE learns a lower-dimensionality representation of data while corrupting the data intentionally
through additive isotropic Gaussian noise. The bottleneck in the middle of DAE’s encoder and de-
coder is generated from the noisy input, and the DAE learns to reconstruct the original input from it.
DAEs can capture fundamental structures in the input distribution while preventing it from simply
learning the identity function as each feature is encoded and decoded independently to the others
(Vincent et al., 2010). The frame-level DAE includes an encoder and decoder as follows. The DAE

Encoder maps a noise injected input
∼
mf from pose space to the representation zf and decodes the

representation zf back to a single frame m̂f in motion space.
zf = EncoderDAE(

∼
mf ) ;

∼
mf = mf +N(0, I) (1)

m̂ = DecoderDAE(zf ) (2)

As the DAE minimizes the reconstruction mean square error (MSE) loss, it learns a more informative
representation to resemble the original input closely. Figure. 1 illustrates our representation learning
for poses at the frame level.

3.2 SEQUENCE-LEVEL AUTOENCODER

In this step, we aim to create a vocabulary over the gesture space in which we will have a specific to-
ken for a set of similar motion sequences in the real world. We use a variational autoencoder (VAE)
framework armed with a discrete latent representation (Oord et al., 2017). Given a set of observa-
tions, a Vector Quantized Variational Autoencoder (VQ-VAE) learns to create a motion vocabulary
by parameterizing the posterior distribution of discrete latents.

In more detail, the VAE defines the posterior distribution as p(z|x) ∝ p(x|z)p(z). Typically, the
prior p(z) has been considered z ∼ N(o; I) on the latent variable z ∈ RD where D is the bottle-
neck’s dimensionality. Accordingly, the VAE encoder creates a posterior distribution q(z|x) over the
latent representation of input x. Meanwhile, for a chosen approximate posterior q(z|x), the decoder
is trained on the reparametrized sample

∼
z ∼ q(z|x) instead of deterministic encoded z (Kingma

& Welling, 2013). The VAE arranges the latent space such that motions with similar movements
are projected close to each other while reducing the reconstruction loss (Kingma & Welling, 2013;
Stewart et al., 2021).

Additionally, we consolidated a denoising characteristic to the variational autoencoder framework
(DVAE), presenting a more flexible and robust posterior distribution approximation than the standard
VAE (Im Im et al., 2017). It can be considered as a standard VAE with the denoising criterion, which
samples a noise injected input x̂ ∼ p(x̂|x) rather than x itself. Afterward, it samples

∼
z ∼ q(z|x̂)

using an encoder network, and samples the reconstructed input from the p(x|z).
Furthermore, we discretize the latent space by decomposing it into a set of embedding vectors
(Oord et al., 2017). Previous work has shown that VQ led to better representation learning, pre-
vented mode collapse, and provided high reconstruction resolution (Oord et al., 2017; Razavi et al.,
2019; Chorowski et al., 2019; Baevski et al., 2019). Additionally, discretization allows employ-
ing algorithms from the NLP community to model long-range temporal dependencies rather than
imperceptible details at the frame level.

In this model, shown in Figure 2, the posterior q(z|x̂) and prior p(z) distributions are categorical.
Indeed, samples from these distributions map to tokens from a codebook of K embedding vec-
tors ei ∈ RD, i ∈ 1, 2, ...,K. The discrete latent variables z‡ is determined from the continuous
VAE’s encoder output z. VQ-DVAE finds the z nearest neighbour embedding vector ei in the K
embedding vectors of RD. As shown in equation 3, the posterior categorical distribution q‡(z|x)
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Figure 2: Motion VQ-DVAE: Discretized representation learning at the sequence-level.

probabilities represent a one-hot. Afterward, the corresponding embedding ei is fed to the decoder
for the reconstruction process.

q‡(z‡ = k|x) =
{
1 for k argmin j∥z − ej∥
0 Otherwise

(3)

Despite the standard VAE, the prior is a uniform distribution over the K elements in the codebook.
Therefore, the KL-divergence term usually incorporated into the ELBO is constant and safely re-
moved. equation 4 defines the loss term for the VQ-DVAE from Oord et al. (2017). Since equation 3
is not differentiable, similar to the straight-through estimator (Bengio et al., 2013), we consider gra-
dients from decoder inputs ei for encoder outputs z.

L = log p(x|z‡) + ∥sg[z]− e∥222 + β∥z − sg[e]∥22; (4)

The first term stands for the reconstruction loss and trains the encoder and decoder. Although the
velocity does not appear on the loss function explicitly, we feed the input concatenated with its
derivative as input to the VQ-DVAE. In fact, we encourage the model to reconstruct not only the
input sequence frame by frame, but also its derivative. This can be counted as a proxy for motion
dynamics (Yoon et al., 2019). The second term encourages the embeddings to move closer to the
encoder output. On the other hand, the third loss term, named commitment loss, encourages the en-
coder to generate latents close to the assigned embeddings from equation 3. Meanwhile, it prevents
the volume of the embedding space from growing arbitrarily.

Note that sg means “stop-gradient”, so we do not propagate the gradient w.r.t. that term. There-
fore, the first term updates both the encoder and decoder, the second term updates the codebook
embeddings, and the third term updates the encoder to commit to its embedding.

3.3 TRANSLATION FROM TEXT TO GESTURE VOCABULARY

Finally, having a gesture vocabulary, the co-speech gesture generation resembles a machine transla-
tion task of English to the Gesture domain. Consequently, we apply a purely autoregressive model of
sequence-to-sequence known as a machine translation model. For instance, n-gram models (Juraf-
sky & Martin, 2009), convolutional neural language models (Dauphin et al., 2017; Bai et al., 2018)
attention-based models (Vaswani et al., 2017; Wang et al., 2019), etc. yielded attractive results. We
use a two-layered bidirectional gated recurrent neural network (GRU) (Cho et al., 2014), with a soft
attention mechanism (Bahdanau et al., 2014). After the translation task of input text to gesture to-
kens is complete, we use the VQ-DVAE’s decoder to reproduce the entire gesture sequence followed
by further post-processes such as the Savitzky-Golay smoothing filter (Savitzky & Golay, 1964).

4 EXPERIMENT

This section describes our implementation and experiment details, such as the specifics of the train-
ing data, model, and the training techniques we used. We obtained our training set from the Trinity
dataset (Ferstl & McDonnell, 2018), which contains 23 clips, each approximately 10 minutes in
length, with 244 minutes of aligned speech text, audio, and gesture training data in total. Using
the GENEA challenge train and test set (Kucherenko et al., 2020b) also enables us to benchmark
our results over provided test cases, including baselines and submitted models. Since this research
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focuses on gaining the most semantic information from text inputs, we do not use the provided audio
data in our approach.

The dataset is captured with a 53 marker setup and 20 Vicon cameras at 59.95 frames per second
(FPS). The motion data was stored as a time series of Euler rotations for each joint in the BioVision
Hierarchy format (BVH) with 59.95 frames per second. Since we focus on the upper body, we
obtain the corresponding 15 upper-body joints out of the available 69 body joints. Moreover, Euler
angles were converted to joint positions in 3D space and normalized regarding shoulder length. We
also down-sampled gestures to the frame rate of 20 FPS and removed finger motions due to the low
accuracy of recordings. Although the dataset provides aligned word transcription in JSON format,
it is inaccurate and might mislead the model. We hence applied the Gentle forced aligner algorithm
(Ochshorn & Hawkins, 2017) to obtain exact timing information for each word.

4.1 DAE

We train our system on 15 joints from the upper body, including: Spine, Spine1, Spine2, Spine3,
Neck, Neck1, Head, RightShoulder, RightArm, RightForeArm, RightHand, LeftShoulder, LeftArm,
LeftForeArm, and LeftHand. Furthermore, we used 3x3 rotational matrices instead of 3D coordi-
nates of each 15 joints to train the DAE network. Thus, the size of input and output vectors for pose
representation at frame-level was 3x3x15=135. We also standardized each dimension to a mean of
zero and a maximum absolute value of one for fast convergence in training.
The DAE consists of one linear layer of input size to the bottleneck dimensionality followed by a
Tanh activation as an encoder and a linear layer of bottleneck to input size as a decoder and learning
rate of 0.001. We injected Gaussian noise of standard deviation 0.1 to input data and the dropout
rate was set to 0.2. To decide proper dimensionality for the bottleneck, we trained the model with
different hidden dimensions fo 20 epochs. Similar to Thangthai et al. (2021); Kucherenko et al.
(2019), we picked 40 dimensions to represent every single motion frame.

4.2 VQ-DVAE

In this section, we explain further details of the VQ-DVAE model as well as the training process.
At this stage, we aimed to map a sequence of si to a latent representation. We selected sequences
with length of 30 frames and a stride size of 10 frames. Also, considering the joint velocity as a
proxy of motion dynamics (Yoon et al., 2019; Kucherenko et al., 2020a; 2021a), we concatenated
the derivative of poses representations to the input . Therefore, we feed 40+40 = 80 features per
frame to the autoencoder to encode and reproduce it. VQ-DVAE consists of an encoder, a quantized
latent space embeddings as bottleneck, and a decoder. In order to learn sequential data, by stacking
Bi-directional GRU networks on top of each other, we defined a multi-layer bi-directional recurrent
neural network architecture for both encoder and decoder networks with the hidden size of 200.
Consequently, we compress 80 ∗ 30 = 2400 dimensions to the continuous latent space of 200 ∗
2 = 400 dimensions. Afterward, we quantize this variable z into the nearest neighbour embedding
ei ∈ RD, D = 400, i ∈ 1, 2, ...,K and feed it to the decoder as discussed before. We empirically
chose the number of embedding vectors k equal to 300.

4.3 WEAKENED DECODERS

As mentioned earlier, VAEs suffer from posterior collapse when a strong decoder network is used.
One simple yet effective solution to this problem could be weakened decoders (Yang et al., 2017;
Semeniuta et al., 2017). A conditional RNN decoder receives the last generated output frame as
input to the current step. In our problem, continuity, short-range correlation, is a strong assumption
(Alexanderson et al., 2020; Srivastava et al., 2015). For instance, the joint positions of a frame are
the same as the previous one with subtle changes. A conditioned decoder simply determines these
correlations and neglects extremely subtle movements requiring long-term dependencies (Srivastava
et al., 2015). An unconditioned decoder that does not receive that input enforces the encoder to find
this information and put it into the encoded vector. To learn a more robust and informative represen-
tation, we weaken the decoder by freezing its weights while minimizing the ELBO loss. Training
the model with no gradient affecting the decoder enforces the encoder to learn informative and ro-
bust representation. In this setup, the decoder only propagates the encoder output through time, and
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the encoder carries reconstruction loss. However, after 20 epochs, we also trained the decoder in a
conditioned fashion for another 20 epochs concerning smooth reproducibility at inference time.

5 EVALUATION

In this section, we elucidate our comprehensive experiments to validate the effectiveness of the
proposed method. We present an ablation study in the Appendix to substantiate the effectiveness of
all the components of VQ-DVAE. We describe the baselines systems as well as the objective and
subjective measures we used to assess our method.

5.1 BASELINE SYSTEMS

We assessed our system against the ground-truth, and three recently published co-speech gesture
generation systems. Our ground-truth was taken from the natural motions of the actor for a given
speech segment. Baseline Text (BT) from Yoon et al. (2019) is the most similar work to ours since
we both used Fasttext word vectors (Bojanowski et al., 2017) as our features from the input text
transcript. Also, we both used the Bahaduna RNN Encoder-Decoder architecture with a soft at-
tention mechanism (Bahdanau et al., 2014; Cho et al., 2014). The encoder extracts text features,
and the decoder generates poses frame-by-frame. However, our sequence-to-sequence model maps
extracted features from the text into a series of motion symbols, with each symbol representing
30 frames of motion. Baseline BA proposed by Kucherenko et al. (2019) used audio as input to
generate co-speech gestures composed of an encoder-decoder structure. In this model, the encoder
maps audio input to a sequence of learned pose representations while the decoder projects them
back to poses. The third baseline model (BTA) (Korzun et al., 2020) achieved impressive results
(Kucherenko et al., 2020b) using both audio and text modalities. In order to extract acoustic and
textual features, BTA combined two separate encoders, one for each modality. This work was in-
teresting since it used both modalities and scored the highest in human-likeness and second-highest
in terms of appropriateness among (Yoon et al., 2019; Kucherenko et al., 2019; Alexanderson et al.,
2020; Lu et al., 2021; Thangthai et al., 2021).

5.2 OBJECTIVE MEASURES

Although improving subjective measures is our ultimate goal, they are costly, time-consuming, and
require human labour. Moreover, evaluating generative models is tricky since there is not a one-and-
only true motion sequence for a given speech utterance. Accordingly, we support our experimental
results with numerical evaluations recently proposed to unveil gesture qualities.

Average jerk and velocity metrics have been used in prior work to quantitatively assess gesture
systems (Kucherenko et al., 2020b). We used average jerk and velocity metrics proposed by
Kucherenko et al. (2019). Jerk, the third derivative of joint positions, characterizes smoothness
by calculating the rate of acceleration in a movement. We used the average over third derivative of
joints as an objective metric to compare systems. We also posit that plausible generated gestures
should follow similar velocity characteristics to the ground truth. Note that the gestures were con-
verted from joint rotational angles to 3D joint positions. Hellinger distance (Hellinger, 1909) has
extensively been used to compare two distributions. Accordingly, we compare each system to the
ground truth to see how close the gestures are to the natural motion w.r.t that structural aspect.

Additionally, we introduce an objective metric to evaluate gesture diversity over the long term,
thanks to our proposed discretized latent space at the sequence level. Indeed, we used our trained
VQ-DVAE model to cluster predicted gestures for each condition at the sequence level. We adopted
the Hellinger metric to evaluate how a system’s output distribution follows the real-world gesture
vocabulary distribution. The Hellinger distance metric was applied between each system and the
ground truth to evaluate its closeness in terms of diversity.

5.3 SUBJECTIVE MEASURES

Our ultimate purpose is to generate realistic gestures that are as valid and natural as the ground truth.
Therefore, we conducted a human study to evaluate our performance subjectively. Comparable to
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Table 1: Objective Evaluation Results
System Average Jerk Hellinger Distance

Velocity Acceleration Diversity
GT 1588.63± 2899.61 0 0 0
BT 795.09± 73.27 0.0988 0.1651 0.7495
BA 1275.43± 78.21 0.0793 0.1592 0.6298

BTA 904.19± 81.61 0.0710 0.1268 0.5715
Proposed 1601.22± 104.03 0.0511 0.06465 0.59184

Table 2: Subjective Evaluation Results
System Human-Likeness Appropriateness Diversity

Mean STD Mean STD Mean STD
GT 0.69 0.22 0.71 0.23 0.72 0.21
BT 0.41 0.23 0.31 0.21 0.43 0.20
BA 0.39 0.20 0.42 0.21 0.45 0.19

BTA 0.50 0.22 0.53 0.22 0.45 0.20
Proposed 0.50 0.20 0.45 0.22 0.53 0.18

the prior work in this area (Ginosar et al., 2019; Salvi et al., 2009; Kucherenko et al., 2020b; Alexan-
derson et al., 2020; Thangthai et al., 2021; Lu et al., 2021; Yoon et al., 2019; Korzun et al., 2020;
Kucherenko et al., 2019), we evaluated generated gestures regarding perceived human-likeness and
appropriateness of the motion given the speech context. These two measures indeed disentangle
motion quality from the relevancy to the speech context. In addition, we also assessed systems in
terms of diversity as opposed to repetitive movements over longer intervals. Specifically, we asked
the following questions in our human-study: “How human-like does the motion appear?”, “How
appropriate are the gestures for the speech?” and “How diverse does the motion appear?”.

For the appropriateness evaluation, we selected 40 speech segments each contains a complete sen-
tence or phrase with an average of 10 seconds. Similarly, we selected 40 muted segments randomly
for the human-likeness study and diversity study with a fixed length of 10 seconds and 20 seconds,
respectively.

5.4 EXPERIMENTAL PROCEDURE

We recruited participants from the Amazon Mechanical Turk (MTurk) to evaluate the results sub-
jectively. MTurk is a crowdsourcing website proven effective in recruiting more diverse participants
than in college experiments (Keith et al., 2017). MTurk provides the option to set requirements for
the intended population based on different factors, i.e. age, gender, nationality, HIT approval rate.
The HIT approval rate is defined as the percentage of completed work that other requestors have
approved for that specific person. We posted a Human Intelligence Task (HIT) on MTurk containing
an external link to our web interface. More details about our human-study interface are provided
in the Appendix section. Participants were asked to complete the HIT, obtain a survey completion
code, and enter it in MTurk to be compensated based on the minimum wage per hour in their coun-
try. We restricted our intended population to collect high-quality results by setting the minimum
HIT approval rate to 95% and approved HITs greater than 5000. We also required participants to be
located in Canada due to ethical review board policies.

6 RESULTS

We recruited 24 participants and filtered out 6 judgments based on attention checks and ratings to the
ground-truth gestures as a superior system over all conditions. The average age was 33.1 (STD=8.9)
years with 12 men and 6 women, all English native speakers living in Canada. Among accepted
judgments, the average experiment duration was approximately 41 minutes. The mean and standard
deviation (STD) of ratings for the three studies are presented in Table 2.

Objective results on the 20 minute test set for all conditions is summarized in Table 3. We report
the mean and standard deviation of the average jerk. Table 1 also presents the Hellinger distance of
velocity and acceleration histograms to the ground truth. The diversity column shows the Hellinger
distance on vocabulary frequency based upon assigned labels to constituent sequences (30 frames)
obtained from VQ-DVAE.

7 DISCUSSION

Gesture generation is challenging, especially in terms of appropriateness for the speech. Conse-
quently, the difference between systems is subtle and a long way from the natural gestures. Objec-
tive metrics are consistent with the subjective results; however, we can see that different systems
performed differently on evaluation metrics.

The subjective study shows that our model is preferred over all the systems in terms of human like-
ness. This is also aligned with similarity metrics in objective evaluation, where the proposed method
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ranked first in fundamental factors, i.e. jerk, acceleration, and velocity. Indeed, we can conclude
that our representation learning method efficiently captured essential features and reproduced more
natural gestures. Prior research has also shown that vector quantization led to more diverse and
high-quality outputs. The BTA is the best in terms of appropriateness and our method is ranked sec-
ond. We only used text features similar to the BT, while BTA used more advanced semantic features
alongside acoustic features. We interpret it as the effectiveness of quantization against continuous
regression resulted in better performance. Furthermore, raters perceived our model outputs as more
diverse, showing our model’s capability to overcome the mode collapse problem. As shown in Table
3, the proposed gesture generation method is significantly closer to the ground truth than the BT and
approximately similar to BA and BTA in terms of the appearance of gesture sequences distribution.

Subjective and objective results suggest that we avoided the average gesture problem and generated
more diverse and natural outputs than repetitive gestures. Vector quantization of motion representa-
tion narrowed the gesture space complication down to a set of vocabulary in a codebook that clusters
similar sequences into a specific motion symbol. Although we significantly reduced the dimension-
ality with discrete encoding, both objective and subjective measurements show that generated ges-
tures maintain a high quality in terms of naturalness. Quantization of motion representation space
promotes the gesture generation model to focus on longer dependencies rather than local correlation.
Consequently, we can apply machine translation algorithms from the NLP community to perform
co-speech gesture generation tasks using entropy family loss instead of regression type.

We found that weakening the decoder strongly impacts the learned representation during the training
process, resulting in better clusterings. However, its reproducibility was not smooth, and we later
trained the decoder for 20 epochs while other parameters were fixed.

7.1 LIMITATIONS AND FUTURE WORK

The first limitation of our work was that the dataset used in this research was limited to one person
speaking in a monologue situation. Different persons have their own gesticulating style and different
environments lead to complex speech and gestures. In future work we should consider datasets with
mixed speakers in different environments. Another limitation of our research is that we trained our
model on uppe,r body while fingers were excluded. Lower body is also important e.g. stepping
forward and backward motions, standing still, approaching, facial expressions and fingers motions.

Although our system showed a significant improvement over baselines, it is still far behind human-
generated motions. Kucherenko et al. (2020b) reported that raters were inclined to rate mismatched
speech gestures from the ground truth, higher than synthesized gestures for a given input. Therefore,
it is possible that we achieved a high appropriateness rate, especially compared to the Baseline Text
(BT), due to the higher human-likeness quality of our system instead of appropriateness.

In this study, we did not involve audio and only used speech text. Punctuations such as question
marks were also not provided in the source corpus. Therefore, generated gestures may lack move-
ments relevant to acoustic features such intonation at the end of a sentence to indicate question
(Pouw et al., 2020). Current work can be improved by adding punctuation using an automatic punc-
tuation restoration system (Courtland et al., 2020). The proposed method can be extended by looking
for correspondences between motions and audio features.

8 CONCLUSION

We proposed a fully unsupervised co-speech gesture generation system that combines representa-
tion learning methods and a machine translation algorithm. To the best of our knowledge, this is
the first method that uses a representation learning algorithm at the sequence-level for the text-to-
gesture generation task and provides a new state-of-the-art baseline in in this area. We connected
a pose (frame-level) representation learning method and a quantized motion (sequence-level) rep-
resentation learning, each trained separately. We also introduced a new objective evaluation metric
that calculates the Hellinger distance of motions occurrence distributions as a measure for diversity.
Finally, we trained a machine translation model to translate English sentences to gesture vocabulary.
We found that the discretized motion space causes the model to focus on longer dependencies and
generate more diverse and human-like gestures. The main limitation of our work was that we did not
include audio features. In future work, we will consider more advance semantic features, audio fea-
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tures as well as emotional features, i.e. valence and arousal (Lim et al., 2011). The dataset was also
not large enough to generalize a high-performance model, especially in terms of appropriateness.
This can be addressed by creating a proper dataset through an automated process from currently
available datasets. Furthermore, we will investigate hierarchical vector quantization (Razavi et al.,
2019), to generate more natural and diverse gestures.

9 REPRODUCIBILITY

Towards reproducibility of our results, we include here a link to our code implementing the proposed
model as well as statistical analysis used in this paper:

https://osf.io/xznb3/?view_only=8ba7c43f839242678e89f811e4763b6b

We also provide the following link to visualizations and the human-study interface described in our
Experiments section:

https://osf.io/65q4p/?view_only=aa54d9fea4f1452a844a6acf6f6f2ac4

Finally, the Appendix includes more details regarding the human study interface, in order for others
to reproduce the subjective results.
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Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146,
2017.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015.

Cynthia Breazeal, Cory D Kidd, Andrea Lockerd Thomaz, Guy Hoffman, and Matt Berlin. Effects
of nonverbal communication on efficiency and robustness in human-robot teamwork. In 2005
IEEE/RSJ international conference on intelligent robots and systems, pp. 708–713. IEEE, 2005.

10

https://osf.io/xznb3/?view_only=8ba7c43f839242678e89f811e4763b6b
https://osf.io/xznb3/?view_only=8ba7c43f839242678e89f811e4763b6b
https://osf.io/65q4p/?view_only=aa54d9fea4f1452a844a6acf6f6f2ac4
https://osf.io/65q4p/?view_only=aa54d9fea4f1452a844a6acf6f6f2ac4


Under review as a conference paper at ICLR 2022

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Brian Butterworth and Uri Hadar. Gesture, speech, and computational stages: A reply to mcneill.
1989.

Justine Cassell, David McNeill, and Karl-Erik McCullough. Speech-gesture mismatches: Evidence
for one underlying representation of linguistic and nonlinguistic information. Pragmatics & cog-
nition, 7(1):1–34, 1999.
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A APPENDIX

A.1 INTERFACE

The human-study interface, shown in Fig. 3, was implemented in Unity3D (Haas, 2014) and pub-
lished in a WebGL format. We used Blender software (Community, 2018) to convert BioVision
Hierarchy (BVH) files to a Filmbox (fbx) format that Unity3D can import as a humanoid animation.
The avatar has 15 joints, excluding fingers in order to be consistent with our benchmarks.

The landing page of the experiment interface presented a consent form and instructions on how to
use the interface with a quick guide tour. We randomly picked 10 clips from each of the three afore-
mentioned segment pools to keep the experiment within 30 minutes and avoid exhausting raters. The
first 10 clips shown to participants were from the human-likeness study. Next, raters were asked to
use their headphone and test the audio settings to rate appropriateness stimuli. In the end, they were
asked to rate 10 muted long clips from the diversity pool. To evaluate several systems simultane-
ously, we used a methodology similar to the (Kucherenko et al., 2020b) inspired by the Multiple
Stimuli with Hidden Reference and Anchor test (Series, 2014). We used a page-wise strategy such
that on each page, we included motions from all conditions corresponding to a specific segment
assigned to that page. Therefore, we could employ pairwise statistical tests since stimuli were rated
in parallel. We selected the 100-point rating scale and labelled them: “Bad”, “Poor”, “Fair”, and
“Excellent” within intervals of 20 points (Kucherenko et al., 2020b). Meantime, we randomized the
order of clips on each page. After rating 30 stimuli, participants were asked to complete a demo-
graphic questionnaire. To see if a participant was paying enough attention and eliminate inattentive
raters, we included an attention check on each page where we asked the participant to rate a specific
value for a stimulus. On each page, the attention video and corresponding answer were selected
randomly. Afterward, we excluded collected data with more than four failures in attention checks.

Figure 3: A screenshot of a page with stimuli from the human-study interface.

A.2 ABLATION STUDY

To evaluate the essence of the contributions of each component in our method, we assess the latent
representation space as well as the final output within an ablation study. To evaluate the latent
representation, we analyze how two shifted sequences related to each other in latent space. We
defined a Neighbour Sample Distance (NSD) metric, which measures the average distance between
a sequence and its shifted version. We assume that in a good representation space, shifted samples’
distances is smaller concerning the average distance in that space. We also apply the Fréchet gesture
distance (FGD) Yoon et al. (2020) to compare distributions on the latent gesture space between
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Table 3: Ablation Study Results
System W D F C Der VAE VQ-VAE Latent distance FGD Wasserstein10 Frames 20 Frames All

Proposed 30 ✓ ✓ ✗ ✓ ✗ ✓ 0.50± 0.16 0.61± 0.16 24.64 4.83 18.69
Proposed - W 20 ✓ ✓ ✗ ✓ ✗ ✓ NA NA NA 7.95 22.36
Proposed - W 15 ✓ ✓ ✗ ✓ ✗ ✓ NA NA NA 6.62 37.02
Proposed - W 10 ✓ ✓ ✗ ✓ ✗ ✓ NA NA NA 7.84 18.31
Proposed - D 30 ✗ ✓ ✗ ✓ ✗ ✓ 0.53± 0.16 0.63± 0.15 24.49 4.57 15.58
Proposed - F 30 ✓ ✗ ✗ ✓ ✗ ✓ 0.35± 0.11 0.50± 0.13 24.39 7.71 22.12
Proposed - C 30 ✓ ✓ ✓ ✓ ✗ ✓ 0.53± 0.14 0.68± 0.16 23.41 4.68 16.61

Proposed - Der 30 ✓ ✓ ✗ ✗ ✗ ✓ 0.51± 0.15 0.62± 0.15 25.52 4.75 22.10
Proposed - VQ 30 ✓ ✓ ✗ ✓ ✗ ✓ 0.75± 0.26 0.89± 0.24 43.65 5.23 22.13

Proposed - Vanilla 30 ✗ ✗ ✓ ✗ ✗ ✗ 0.73± 0.20 0.78± 0.17 5.56 19.79 109.95
Proposed - D&Der 30 ✗ ✗ ✓ ✗ ✗ ✗ 0.39± 0.14 0.53± 0.15 25.4 4.55 20.10

real and generated gestures. The more generated motions similar to the ground truth on the latent
distribution, the smaller FGD value is.
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