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Abstract

Calculating adversarial examples for Bayesian neural networks is cumbersome. Due to the
inherent stochasticity, the gradient of the network can only be reliable approximated by
sampling multiple times from the posterior, leading to a greatly increased computational
cost. In this paper we propose to efficiently attack Bayesian neural networks with adversar-
ial examples calculated for a deterministic network with parameters given by the mean of
the posterior distribution. We show in a series of experiments, that the proposed approach
can be used to effectively attack Bayesian neural networks while using 4.2 times less of the
resources of existing adversarial example estimation methods with comparable strength.
We demonstrate that this is especially helpful during adversarial training, when multiple
different model configuration need to be evaluated.

1. Introduction

Machine learning is ubiquitous. Starting from breakthroughs in computer vision (Krizhevsky
et al., 2012; He et al., 2016) and natural language processing (Collobert and Weston, 2008);
machine learning systems have evolved to play games at human level (Silver et al., 2016;
Vinyals et al., 2019; Mnih et al., 2015), leverage drug discovery (Senior et al., 2020), recog-
nize speech at the level of human listeners (Ram et al., 2017), and drive cars (Shankland,
2019). Given the influence on more and more parts of human live, the existence of adver-
sarial examples (AEs) (Biggio et al., 2014; Szegedy et al., 2014) is worrisome. These small
perturbations, added to benign inputs, cause even state-of-the-art models to misbehave.

Recent work suggest Bayesian neural networks (BNNs) (Neal, 1995) as a more robust
alternative (Feinman et al., 2017; Gal and Smith, 2018; Liu et al., 2019; Bekasov and Murray,
2018). Carbone et al. (2020) even show that under certain assumptions the gradient has
zero expectation under the posterior distribution and hence any gradient based attack in the
limit is ineffective. Despite these theoretical efforts BNNs have successfully been attacked
by taking multiple samples from the posterior distribution to approximate their gradient as
proposed as a general attack strategy for networks with stochastic gradients (Athalye et al.,
2018; Zimmermann, 2019). While effective, this approach is computationally costly. This
is less of a problem for a malicious actor, since they simply need to find one AE to serve
their purpose. Yet, from the defending parties point of view, evaluating several different
models with regards to adversarial robustness can quickly become a costly endeavor. This
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Attacking BNNs

cost is severely multiplied in the context of adversarial training (Madry et al., 2017), where
adversarial examples are used in the training process to generate robust models.

Recognizing these problems, we introduce MEAN—an efficient way to compute AEs for
BNNs, which can also be adopted to other types of stochastic networks. Our approach
employs the means of the posterior distribution as the parameters of a deterministic network
of equal architecture. We then employ this network to estimate AEs which are then used
to attack the original BNN. In a first experiment, we demonstrate that MEAN can be used to
generate effective AEs while using substantially fewer resources than existing approaches.
In a second experiment, we evaluate MEAN in the setting of adversarial training, where
a computational efficient method allows a defending party to evaluate multiple different
models with a much smaller computational budget.

2. Background and Approach

Notation: We denote with D = {(xi,yi)
n
i=1} the training data where xi are inputs, yi the

corresponding outputs and θ the network’s parameters.

2.1. Background

Bayesian neural networks serve as a mathematical quantified way to capture model uncer-
tainty by marginalizing over the posterior distribution of the network’s parameters:

p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ ≈ 1

S

S∑
s=1

p(y|x,θs) , (1)

where the last approximation is the Monte Carlo approximation of this intractable integral.
Central to the training of BNNs is the derivation of the posterior distribution p(θ|D). In
this work we use variational inference (Graves, 2011; Kingma et al., 2015; Louizos and
Welling, 2016) where the true posterior is approximated via a simpler distribution q(θ) by
maximizing the so called evidence lower bound (ELBO):

ELBO =

n∑
i=1

Eq(θ)[p(yi|xi,θ)]−KL[q(θ)||p(θ)] , (2)

where the last term is the Kullback-Leibler divergence between the approximate posterior
and some prior distribution.

Adversarial examples are manipulated inputs aiming at changing the networks’ behavior.
They are created by adding a well-calibrated perturbation δ to a benign input. One of the
simplest methods to determine this δ is the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015), in which the AE is created by adding an ε-step into the direction of the gradient
sign of some loss function L, e.g.:

xadv = x+ ε · sign (∇xL (θ,x,y)) . (3)

In practice the δ is usually limited by an Lp-norm to avoid changing the benign input too
much. Improving FGSM, Projected Gradient Decent (PGD) (Madry et al., 2017) is an
iterative attack which iterativly applies FGSM with a smaller stepsize than ε.
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To calculate AE for BNNs, multiple draws from the posterior are needed for reliably
approximating the stochastic gradient. For the FGSM attack this results in:

xadv,BNN = x+ ε · sign
(
∇xL

(
θTt=1,x,y

))
. (4)

In this work, we use the loss function introduced by Carlini and Wagner (2017) instead
of the more commonly used cross-entropy loss. The loss function is given by

LCW(x,θ) = max(max
i 6=t

(Z(x,θ)i)− Z(x,θ)t,0) , (5)

where Z(x,θ)t is an arbitrary logit of an output node for input x and parameters θ. We
noticed that our networks often saturated the softmax function, i.e., the networks were so
confident in their prediction that the probability of the correct class effectively reached 1.
This resulted in us being unable to calculate gradients. However, since the Carlini-Wagner
loss function operates on the logits of the classifier, it enables the creation of adversarial
examples.

2.2. Approach

Our approach aims at reducing the cost of sampling from the posterior while at the same
time generating a strong attack. This is done by transforming the stochastic gradients
in eq. (4) to deterministic ones by treating the BNN as a standard neural network where
the posterior means serve as the weights value. We refer to this scheme of replacing the
stochastic neural network with a deterministic one as MEAN. Note that this approach does
not restrict the set of possible adversarial attacks. Under MEAN eq. (4) reduces to:

xadv,MEAN = x+ ε · sign (∇xL (E(θ],x,y)) . (6)

Note the similarity of our approach to the rescaling of weights in dropout networks (Srivas-
tava et al., 2014), where weights are scaled to have the same expectation under the droprate
during testing as during training.

3. Experiments

In this section we evaluate the benefits of the MEAN scheme for creating AEs, in two settings:
as an attack and during adversarial training. We first describe the general experimental
setting in Section 3.1 and compare the effectiveness of adversarial attacks conducted with
MEAN in Section 3.2. Finally, in Section 3.3 we leverage the MEAN approach in the context of
adversarial training.

3.1. Experiment Setup

In our experiments we use the MNIST and Fashion MNIST data sets (LeCun et al., 1998;
Xiao et al., 2017), both consisting of 60,000 training and 10,000 test images of size 28× 28
labeled as one out of 10 classes. We trained two different CNN networks1 using mean field

1. Details on the architecture and implementation can be found in Section A in the Appendix.
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Figure 1: Accuracy of adversarial examples generated using different sample sizes
from the posterior and the MEAN scheme. We report the accuracy depending on the
perturbation strength used (δ) for both MNIST and Fashion MNIST. For generating the
AEs we used FGSM and PGD attack. We used FGSM exclusively for the MEAN scheme. For
reference we include the original accuracy on the test set (Baseline). Best viewed in color.

variational inference and Adam (Kingma et al., 2015) as the optimizer. All our experiments
are conducted on a Nvidia Quadro RTX 5000 graphic card.

AEs are generated using the FGSM and PGD (with 10 iteration steps) methods with
varying perturbation strengths. Note that during the evaluation we refer to the FGSM
attack computed over 10 samples drawn from the posterior as FGSM-10 (15 samples—
FGSM-15; and so forth). Further, we always approximate the Bayesian predictive integral
by 50 samples from the posterior.

Due to the inherent stochasticity we repeat all experiments 20 times, reporting the
calculated mean as well as standard deviation in form of error bars for our results.

3.2. Generating Adversarial Examples

In this section we want to evaluate whether AEs generated by the MEAN scheme are com-
parable to examples generated by sampling from the posterior. Additionally, we will also
evaluate the computational cost associated with the different approaches.

We generate 1,000 AE for ε ∈ {0.05, 0.07, 0.09, 0.11, 0.13, 0.17, 0.25} and depict the re-
sults in Figure 1. When compared to the FGSM attack, MEAN is competitive up to sampling
five (MNIST)2 or seven (Fashion MNIST) times from the posterior. We independently
measured how long it takes to convert a batch of images to AEs, by converting 10,000
batches and computing the average time. The full results can be found in Table 2 in Ap-
pendix C. For MNIST, MEAN takes about 88ms to convert a single batch while FGSM-5 takes
about 366ms, an increase in 315.91 %. The results are mirrored for Fashion MNIST, where
FGSM-7 requires around 554 % more time; proving that MEAN can be used to approximate
computationally more expensive attacks.

2. Results on the ratio of coincident gradient signs underlining this result can be found in the Appendix B.
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When compared to the PGD attack, MEAN is stronger than PGD-1. It is on par with
PGD-2 on Fashion MNIST, but otherwise outperformed. While surprising at first, we
hypothesize that PGD, through iterative sampling, approximates the stochastic gradient
quite well. Thus, even PGD-1 with 10 iteration steps can therefore be thought of as sampling
10 times from the posterior.

Note, we exclusively used FGSM to generate the AEs with the MEAN scheme. During our
experiments we discovered that using PGD in conjunction with the deterministic network
created by the MEAN scheme would overfit to this specific network, resulting in worse overall
performance.

3.3. Adversarial Training
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Figure 2: Robustness comparison of differently adversarial trained models against
PGD attacks. All adversarial trained networks were attacked with the PGD attack for
{5, 15} draws from the posterior. A higher accuracy stands for a higher robustness against
adversarial attacks. We include the accuracy of a normal trained network for reference
(Baseline). Best viewed in color.
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Table 1: Training time for different adversarial training techniques. We report the
time it took to train a model in seconds and the increase relative to the MEAN in brackets.

Dataset MEAN FGSM-10 PGD-2 PGD-5 PGD-10

MNIST 134s 208s (+55 %) 304s (+126 %) 592s (+341 %) 1067s (+696 %)
Fashion MNIST 336s 624s (+85 %) 958s (+185 %) 1871s (+456 %) 3549s (+956 %)

As demonstrated in Section 3.2 the MEAN attack leads to significantly stronger adversarial
examples than computational equivalent attacks. While the resource overhead of drawing
multiple samples might be condoned by an attacker, this practice would be infeasible if a
defending party wants to compare multiple model architectures and hyperparameter combi-
nations. Even though prior work suggest that using the strongest attack possible results in
more robust models (Madry et al., 2017), sampling multiple times can quickly become in-
feasible. Additionally, robustness often requires a trade-off in regards to accuracy (Tsipras
et al., 2019), leading to evaluating even more combinations in practice. In this scenario
MEAN can serve as a good approximation of stronger training techniques. It can be used in
the early stages of development to gauge the resistance to adversary examples, while the
final model can be trained with the strongest attack possible.

We train multiple networks using different techniques to get a thorough understand-
ing of how well we can utilize MEAN for training adversarial robust networks. We calculate
adversarial examples on-the-fly during the training process, mixing “normal” and adversar-
ial samples, i.e., with probability 0.3 we convert the current training batch to a batch of
adversarial examples. The results can be found in Figure 2.

We plot the accuracy of different training schemes when attacked with PGD in different
sample configurations ({5, 15}). Additionally, we provide the time it took to train the
strongest models in Table 1 (a full table can be found in Appendix D). We can observe that
MEAN can reliably approximate more costly techniques. It is only consistently outperformed
by PGD-5 and PGD-10. Which require up to 956 % of the resources. Note that we only use
adversarial examples in 30 % of the training, if we would supply the adversarial examples
more often the discrepancy would be even higher.

4. Conclusion

Bayesian neural networks incorporate an inherent gradient masking effect during the calcu-
lation of adversarial examples due to their stochastic nature. Circumventing this masking
comes at the cost of drawing multiple samples from the posterior for calculating the gradient.
In this paper we proposed a simple and efficient solution to avoid the computational burden
for BNNs, called MEAN. In this scheme, we transfer the BNN into a deterministic network,
of equal architecture, by using the posterior means as weight values. In our experiments we
found that using the MEAN scheme results in attacks as efficient as those produced by taking
multiple samples from the gradient. Further, we found that MEAN has a high impact during
adversarial training where it is only outperformed by PGD-5 and PGD-10, which require
up to 956 % of the resources. Our findings suggest, that MEAN serves as a simple and cheap
baseline for calculating adversarial examples. Therefore, MEAN is especially relevant during
hyperparamerter tuning, extensive model comparison or costly network evaluations.
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Appendix

For the sake of completeness we extend this work by describing the implementation and
adding further details on computational time for the results depict in the main part.

A. Network Architecture

The networks are constructed using pyro 1.3 and are based on the work of Carbone et al.
(2020). For training the models we used mean-field variational inference with standard
Gaussian distributions as priors. We used ADAM (Kingma and Ba, 2015) as our optimizer
with an initial learning rate of 0.01 (MNIST) and 0.001(Fashion MNIST). Further, we
trained for 5 (MNIST) and 10 (Fashion MNIST) epochs with a batch size of 128 for both
data sets. As our activation function we used the Leaky ReLu function (Xu et al., 2015)
with a negative slope of 0.01 throughout the network.

MNIST

Conv 5x5 (32)

Max-Pooling (2)

Conv 5x5 (512)

Max-Pooling (1)

Dense (10)

Fashion MNIST

Conv 5x5 (32)

Max-Pooling (2)

Conv 5x5 (1024)

Max-Pooling (1)

Dense (10)

The network architecture for our simple CNN. We report in brackets: For convo-
lution layers the amounts of feature maps learned, for dense layers the amount of hidden
units, and, for pooling layers the amount of stride. We use exclusively max-pooling with a
kernel size of two.
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B. Analyzing the Gradient Direction

In this section we want to investigate how accurate the approximation of MEAN is in com-
parison with sampling from the posterior. To this end, for a given image, we first obtain
a ground truth gradient by sampling 100 times from the posterior. We then calculate how
often the gradient entriespoint in the same direction as gradient entries obtained by using
MEAN and sampling {1, 5, 10, 20}-times from the posterior. We investigate the model trained
on MNIST and report the result for 1,000 test images.

We summarize our findings in Figure 3. For MEAN around 70% of the gradient entries have
the same sign as the baseline. This outperforms gradients based on {1, 5, 10} samples which
is in line with the results from Section 3. The outliers in the plot are caused by examples
where the gradient entries were either zero everywhere for the ground truth and/or the
objects of interest. We hypothesize that these observation are caused by model structure
in coherence to the findings of Carbone et al. (2020).

Figure 3: Comparing the agreement of the direction of the gradient entries. The
boxplots show the results for 1,000 test images. For each image the signs of the gradient
entries calculated based on {1, 5, 10, 20, MEAN} are compared to the signs of a gradient
obtained from 100 samples from the posterior. We report the ratio of agreement.
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C. Time Required to Create Adversarial Examples

In this section we report the time it took for converting AEs with different techniques. We
convert a batch of images 10,000 times and average over all runs.

Table 2: Time for converting AEs. We report the time it takes to convert a single
batch with the given technique, averaged over 10,000 samples. Additionally, we report the
increase relative to the MEAN scheme in brackets.

Technique MNIST Fashion MNIST

MEAN 88 ms 107 ms

FGSM-1 122 ms (+38.63 %) 119 ms (+11.21 %)
FGSM-3 295 ms (+235.22 %) 307 ms (+186.92 %)
FGSM-5 366 ms (+315.91 %) 504 ms (+371.03 %)
FGSM-7 499 ms (+467.05 %) 700 ms (+554.21 %)
FGSM-10 614 ms (+597.72 %) 996 ms (+830.84 %)
FGSM-20 1,128 ms (+1,181.81 %) 1,981 ms (+1,751.40 %)

PGD-1 699 ms (+ 694.32 %) 1,068 ms (+898.13 %)
PGD-2 1,521 ms (+ 1,628.41 %) 2,100 ms (+1,862.62 %)
PGD-5 3,184 ms (+ 3,518.18 %) 5,016 ms (+4,587.85 %)
PGD-15 8,507 ms (+ 9,567.05 %) 14,771 ms (+13,704.67 %)

D. Training Time for Adversarial Training

In this section we report the time it took to adversarially train a network given the technique
used to create AEs.

Table 3: Training time for different adversarial training techniques. We report the
time it took to train a model in seconds and the increase relative to the MEAN in brackets.

Technique MNIST Fashion MNIST

MEAN 134 s 336 s

FGSM-1 133 s (-0.87 %) 341 s (+1.48 %)
FGSM-2 144 s (+7.46 %) 372 s (+10.71 %)
FGSM-5 169 s (+26.12 %) 468 s (+39.29 %)
FGSM-10 208 s (+55.23 %) 642 s (+91.07 %)

PGD-1 220 s (+64.18 %) 650 s (+93.45 %)
PGD-2 304 s (+126.87 %) 958 s (+185.12 %)
PGD-5 592 s (+341.79 %) 1,871 s (+456.85 %)
PGD-10 1,067 s (+696.27 %) 3,549 s (+956.25 %)
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