
DSCS: Fast CPDAG-Based Verification of Collapsible
Submodels in High-Dimensional Bayesian Networks

Wentao Wu1, Shiyuan He2, Jianhua Guo2∗
1Northeast Normal University, 2Beijing Technology and Business University

Abstract

Bayesian networks (BNs), represented by directed acyclic graphs (DAGs), pro-
vide a principled framework for modeling complex dependencies among random
variables. As data dimensionality increases into the tens of thousands, fitting and
marginalizing a full BN becomes computationally prohibitive—particularly when
inference is only needed for a small subset of variables. Estimation-collapsibility
addresses this challenge by ensuring that directly fitting a submodel, obtained by
ignoring non-essential variables, still yields exact inference on target variables.
However, current DAG-based criterion for checking estimation-collapsibility is
computationally intensive, involving exhaustive vertex searches and iterative re-
movals. Additionally, practical applications typically identify the underlying DAG
only up to its Markov equivalence class, represented by a completed partially
directed acyclic graph (CPDAG). To bridge this gap, we introduce sequential
c-simplicial sets—a novel graphical characterization of estimation-collapsibility
directly applicable to CPDAGs. We further propose DSCS, a computationally effi-
cient algorithm for verifying estimation-collapsibility within CPDAG framework
that scales effectively to high-dimensional BNs. Extensive numerical experiments
demonstrate the practicality, scalability, and efficiency of our proposed approach.

1 Introduction

Bayesian networks (BNs), represented by directed acyclic graphs (DAGs), offer a powerful and
transparent framework to model complex dependency structures among random variables. By
representing each variable as a vertex and each direct influence as a directed edge, BNs allow
practitioners to read off causal or correlational relationships from their DAGs and to leverage
powerful algorithms (such as message-passing) to compute marginals and posteriors efficiently. As
a result, BNs have become indispensable tools across numerous domains, including econometrics
[1], engineering [2–4], bioinformatics [5, 6], causal inference [7–9], and machine learning [10–12].
Recently, hybrid architectures that integrate DAG structure with deep neural networks have further
extended BNs’ expressive power while preserving their causal semantics [e.g. 13–15].

Despite these strengths, the explosive increase of data dimensionality has highlighted a critical
bottleneck: constructing and marginalizing a full BN becomes infeasible when thousands—or even
tens of thousands—of variables are involved, yet in many applications one cares about inference on
only a small subset of variables. For instance, the Cancer Network Galaxy (TCNG) database hosts
768 networks encompassing over 20,000 genes and more than 16 million interactions. Typically,
researchers only focus on disease-related or hub genes (genes with many interactions), which usually
constitute a significantly smaller subset of the entire network. To draw inference and probability
query for the target variables, it is both computationally expensive and wasteful to fit the full model
and then marginalize to obtain a target submodel.

∗Corresponding author: jhguo@btbu.edu.cn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://tcng.hgc.jp/

DSCS () sequential -
simplicial set

sequential -
removable set

[28]

simplicial set
[23,25]

Algorithm complexity

when is a DAG

when is a UG

Algorithm complexity

 CPDAG

Algorithm complexity

Our work

Figure 1: Criteria for verifying estimation-collapsibility along with their worst-case computational
complexities. Our proposed CPDAG-based criterion, sequential c-simplicial sets, generalizes and
unifies previous criteria for DAGs [28] and undirected graphs (UGs) [23, 25]. Our algorithm, DSCS,
achieves a worst-case complexity of O(|V |+ |E∗|).

In such scenarios, we would like to “collapse” away irrelevant graph vertices (variables) and directly
obtain an exact estimate of the submodel. This desideratum is captured by the notion of estimation-
collapsibility, which ensures a submodel’s direct estimation and inference aligns perfectly with that
from the full-model, yielding drastic savings in data collection, computation, and robustness to
unobserved variables [16–20]. However, neglecting proper validation of the submodel’s collapsibility
risks misleading or contradictory conclusions, exemplified by phenomena such as the Yule-Simpson
paradox [21, 22]. Hence, identifying the precise conditions under which collapsibility holds is pivotal
for trustworthy statistical inference with submodels.

Most existing works addressing collapsibility focused on undirected graphical models [e.g., 23–26],
while the literature for Bayesian networks (or DAG models) remains notably limited [27, 28]. Despite
its theoretical and practical significance, estimation-collapsibility in Bayesian networks remains as
substantial challenges that are far from fully resolved. In particular, existing DAG-based criterion,
sequential c-removability [28], can be computationally intensive to verify. It requires multiple
laborious rounds of vertex examination, repeatedly identifying and removing c-removable vertices
until none remain. The complexity can escalate up to O(|V |4), making the algorithm impractical for
a high-dimensional Bayesian network with a large cardinality |V | for its vertex set V .

Moreover, existing works [27, 28] assume the DAG structure is known, which is rarely true in
practical scenarios. Typically, the underlying DAG must be inferred from observational data using
causal discovery methods [29–31, 8, 32–36]. Lacking strong assumptions like linearity [33] or
additive noise [31, 37], causal discovery process usually yields a Markov equivalence class, which is
succinctly represented by a completed partially directed acyclic graph (CPDAG) [29, 38–40, 9, 41–
44]. Consequently, a pressing open problem emerges:

How can we efficiently verify estimation-collapsibility directly on the CPDAG for a high-dimensional
Bayesian network?

To address this challenge, the current work presents the following novel contributions:

• In Section 3.1, we introduce a novel concept, sequential c-simplicial sets, and find it as a
necessary-and-sufficient criterion for estimation-collapsibility based on CPDAG.

• As shown in Figure 1, our framework recovers and unifies prior collapsibility results for
DAGs and undirected graphs (UGs). When a CPDAG G∗ only has directed edges, a
sequential c-simplicial set reduces to a sequential c-removable set of [28]. When G∗ only
contains undirected edges, our sequential c-simplicial criterion is equivalent to the simplicial
criterion for undirected graphs [23, 25].

• In Section 3.2, we develop the Detecting Sequential C-simplicial Sets (DSCS) algorithm, for
rapid verification of estimation-collapsibility. It achieves a complexity order O (|V |+ |E∗|),
where |V | and |E∗| denote the number of vertices and edges in a CPDAG G∗, respectively.

2

• Extensive experiments have been conducted in Section 4 to demonstrate our method’s
practical effectiveness and computational efficiency.

Lastly, we emphasize that while our method addresses typical scenarios where the underlying DAG
is unknown, the DSCS Algorithm also offers significant advantages when the DAG is explicitly
available. Indeed, verifying estimation-collapsibility is substantially simpler with our CPDAG-based
criterion. Given a known DAG G⃗, converting it into its CPDAG representation G∗ and applying our
DSCS Algorithm enables efficient verification at significantly reduced computational cost.

2 Preliminaries and Related Works

We begin by providing a review of graphical model concepts in Section 2.1. More terminologies and
notations can be found in Appendix A. The notion of estimation-collapsibility for Bayesian networks
is formally defined in Section 2.2. In Section 2.3, we review the existing criteria for checking
estimation-collapsibility, as summarized in the right panel of Figure 1.

2.1 Graphical terminologies

A graph G = (V,E) is defined by a set V of nodes (or vertices), and a set E consisting of directed
and (or) undirected edges. We use paG(A), chG(A), neG(A), anG(A), deG(A), and mbG(A) to
denote the union of the parents, children, neighbors, ancestors, descendants, and the Markov boundary
of each vertex in a set A ⊆ V in G, respectively, and with the set A excluded after taking the set
union. Note that, among these, neG(A) is defined with respect to undirected edges, while the other
five notions are defined in terms of directed edges. Formal definitions can be found in Appendix A.
If A needs to be included, we simply capitalize the first letter of the corresponding symbol, e.g.,
PaG(A) ≜ paG(A) ∪A.

UGs, DAGs, CPDAGs. If G consists solely of undirected edges, it is referred to as an undirected
graph (UG), denoted as G = (V,E). When G is composed entirely of directed edges and contains no
directed cycles, it is referred to as a directed acyclic graph (DAG), denoted as G⃗ = (V, E⃗). A DAG
encodes a set of conditional independence relations based on the notion of d-separation [11]. Two
DAGs are Markov equivalent if they encode the same set of conditional independence relations. A
Markov equivalence class of a DAG G⃗ can be uniquely represented by a completed partially directed
acyclic graph (CPDAG) [45], denoted by G∗ = (V,E∗). The undirected components of G∗ are
undirected and connected chordal graphs (UCCGs) [46], also known as chain components of G∗

[7, 46]. We useM(G∗) to denote the set of all Markov equivalent DAGs represented by the CPDAG
G∗.

2.2 Bayesian network and estimation-collapsibility

For a DAG G⃗ = (V, E⃗), suppose XV is a random vector indexed by the graph vertices. For A(⊆ V),
let XA be the sub-vector indexed by the subset A. A joint distribution P over XV is compatible with
G⃗ if it holds that P (xV) =

∏
v∈V

P (xv | xpaG⃗(v)) for any xV . This means that P factorizes according

to the parents of each vertex v in G⃗. The family of distributions compatible with G⃗ is denoted as
P(G⃗) and the pair B = (G⃗,P(G⃗)) is termed a Bayesian network (BN) or DAG model.

For a BN, estimation-collapsibility can be formally defined via the commutativity of model fitting and
marginalization [47]. Let R(⊆ V) be the subset of nodes of interests, and let M ≜ V \R represent
the non-irrelevant variables we want to marginalize out. Denote P̂ (xR) as the estimate of P (xR)

obtained by marginalizing the maximum likelihood estimate (MLE) P̂ (x) under the full DAG model
(G⃗,P(G⃗)). Meanwhile, let (G⃗R, P(G⃗R)) be the induced model, where the graph G⃗R is obtained by
removing the vertex set M and all edges incident to any vertex in M . We let P̂G⃗R

(xR) be the MLE
of the joint probability under the induced model (G⃗R, P(G⃗R)). Estimation-collapsibility means that
the MLE obtained from the original DAG model, after marginalization, equals the MLE from the
induced DAG model.
Definition 1. [see 27, Definition 1] Suppose B = (G⃗,P(G⃗)) is a Bayesian network, P(G⃗) is
estimation-collapsible over a single vertex v (or onto V \ {v}) if for any xV \{v}, it holds that

3

AFF

APA

SAN

ALN

AIS

CDR

DET

PER

SUS

HOS

FTW

EGC

(a)

AFF

APA

SAN

ALN

AIS

CDR

DET

PER

SUS

HOS

FTW

EGC

(b)

AFF

APA

SAN

ALN

AIS

CDR

PER

(c)

Figure 2: A DAG from [49] depicting the assumed causal relations between 12 prodromal symptoms
of schizophrenia. Fig. 2(a) shows the causal DAG, and Fig. 2(b) displays the corresponding CPDAG.
Fig. 2(c) presents the largest chain component in the CPDAG. The nodes represent: AFF= Affective
Flattening, AIS= Active Isolation, ALN = Alienation, APA= Apathy, CDR= Cognitive Derailment,
DET= Delusional Thinking, EGC= Egocentrism, FTW= Living in a Fantasy World, HOS= Hostility,
PER= Perceptual Aberrations, SAN= Social Anxiety, SUS= Suspiciousness.

P̂ (xV \{v}) = P̂G⃗V \{v}
(xV \{v}). Estimation-collapsibility over a set M (or onto R ≜ V \M) holds

if P̂ (xR) = P̂G⃗R
(xR).

When this estimation-collapsibility property holds, we only need to work with the induced sub-model
(G⃗R, P(G⃗R)) to directly obtain the estimate P̂ (xR). The obvious benefit is a substantial saving
of data collection and computational efforts while maintaining exact estimate and inference for a
high-dimensional Bayesian network.

2.3 Existing criteria for checking estimation-collapsibility

2.3.1 Criterion for DAG. Kim & Kim [27] discussed estimate-collapsibility for directed acyclic
graph (DAG) models of contingency tables [48]. Xie & Geng [28] further investigated for discrete
and continuous variable DAG models, and introduced the important concepts below.

Definition 2. [see 28, Definition 3] A vertex v is c-removable from DAG G⃗ if any two vertices in
MbG⃗(v) ≜ {v} ∪mbG⃗(v) are adjacent, except when both vertices belong to paG⃗(v). A set M is
sequentially c-removable if all vertices in M can be ordered such that they can be c-removed by that
ordering.

Furthermore, relying on the mild assumption of model non-triviality [see 28, Definition 4]—a
condition satisfied by most DAG models, including those for contingency tables and Gaussian
distributions [28] and implicitly used by [27]—they established the equivalence between sequential
c-removability and estimation-collapsibility for DAG models.

Proposition 1. [see 28, Theorem 2] Suppose that B = (G⃗,P(G⃗)) is a non-trivial DAG model, then
M is sequentially c-removable from G⃗ if and only if P(G⃗) is estimate-collapsible over M .

The above theorem enables us to check estimation-collapsibility via examining the sequential c-
removability. The next example illustrates this procedure.

Example 1. Consider the DAG in Figure 2(a). Suppose we are interested in finding whether the
model is estimate collapsible over M = {AFF,APA,SAN}. Checking sequential c-removability
requires multiple rounds of iterations. In the first round, we find that neither AFF nor SAN is
c-removable from G⃗, but APA is c-removable. After removing APA, the second round is repeated by
examining if any node in {AFF,SAN} is c-removable from G⃗V \{APA}. Upon checking, we find that
no vertex in {AFF,SAN} is further c-removable. The procedure stops by concluding that the model
is not estimate collapsible over M .

The above procedure quickly becomes infeasible as the graph size grows. Given a subset M with
cardinality |M |, it requires O(|M |) iterations of meticulous vertex search. In each round, one must

4

scan the remaining vertices in M to identify the c-removable ones and then remove them. In the worst
case—when the graph is dense and |M | is on the same order as |V |—the first iteration alone costs
O(|V |3), the next O((|V | − 1)3), and so on, leading to a total complexity on the order of O(|V |4).

2.3.2 Criterion for UG. As our criterion also recover those for undirected graph (UG), we conclude
this section by briefly reviewing some important results.
Definition 3. [see 50] In an undirected graph (UG) G = (V,E), for a vertex v ∈ V , if the
neighborhood neG(v) induces a complete subgraph in G, then v is called a simplicial vertex in G.
For a subset M ⊆ V , if the neighborhood neG(M) induces a complete subgraph in G, then M is
called a simplicial (vertex) set in G.

For multinomial and Gaussian undirected graphical models, the collapsibility over M is equivalent to
the condition that each connected component of M is a simplicial set [23, 25]. The complexity of
checking this simplicial property is O(|V |+ |E|).

3 Fast CPDAG-Based Verification of Estimation-Collapsibility

We now address the main query of the current work: how can we efficiently check estimation-
collapsibility for high-dimensional Bayesian Networks using CPDAGs? In Section 3.1, we will
establish an equivalent characterization of estimation-collapsibility from the perspective of CPDAGs.
In Section 3.2, we develop an efficient and scalable algorithm to check the estimation-collapsibility.

3.1 Sequential c-simplicial set

For a Bayesian network (BN), checking estimation-collapsibility of the underlying DAG via the
corresponding CPDAG G∗ is possible, as this property is consistent across all DAGs within the
equivalence classM(G∗). In fact, for two Markov-equivalent DAGs G⃗1 and G⃗2 inM(G∗), they
encode the same set of conditional independence relations, ensuring that the families of distributions
they encode are identical, i.e., P(G⃗1) = P(G⃗2). Similarly, for Markov-equivalent subgraphs, the
corresponding families of distributions are also identical. Therefore, when estimation-collapsibility
holds for the underlying DAG, the property is preserved across all its Markov equivalent DAGs.

Building on this consistency, we re-state estimation-collapsibility (see Definition 1) from the perspec-
tive of CPDAG. The definition below formalizes this extension based on the family of distributions
compatible with a CPDAG. For a CPDAG G∗ = (V,E∗), a joint distribution P over XV is said to be
compatible with G∗ if it is compatible with a DAG G⃗ inM(G∗). The set of all such distributions is
denoted as P(G∗).
Definition 4. For a CPDAG G∗ = (V,E∗) and some M ⊆ V , P(G∗) is estimation-collapsible over
the set M if for every DAG G⃗ ∈M(G∗), P(G⃗)(= P(G∗)) is estimation-collapsible over the set M .

It is evident that, to examine the estimation-collapsibility for the underlying DAG model, we only
need to check the estimation-collapsibility from CPDAG. Analogous to sequential c-removability in
DAGs, we introduce the concept of a sequential c-simplicial (vertex) set for CPDAGs, which proves
to be a key for addressing the problem.
Definition 5. Given a CPDAG G∗ = (V,E∗), for a vertex v ∈ V , if chG∗(v) = ∅ and neG∗(v) is
complete, then v is called a c-simplicial vertex in G∗. Similarly, for M ⊆ V , if every vertex in M
can be identified as a c-simplicial vertex during successive removals according to some vertex order,
then M is called a sequential c-simplicial (vertex) set in G∗.
Remark 1. The set chG∗(v) consists of nodes pointed to by directed edges from node v, i.e.,
chG∗(v) = {w ∈ V \ {v} : v → w in G∗}, while neG∗(v) refers to the set of nodes adjacent to v
via undirected edges, i.e., neG∗(v) = {w ∈ V \ {v} : v − w in G∗}.
Example 2. Consider the CPDAG in Figure 2(b). Since chG∗(APA) = ∅ and its neigh-
bor set neG∗(APA) = {AFF, ALN, SAN} is complete, the node APA is a c-simplicial ver-
tex in G∗. Similarly, HOS is also a c-simplicial vertex in G∗. The subset of nodes M ≜
{AIS, SUS, FTW, DET, HOS, EGC} forms a sequential c-simplicial vertex set in G∗, as M can
be identified as a c-simplicial vertex during successive removals according to the vertex order
DET, HOS, EGC, FTW, SUS, AIS.

5

The concept of a c-simplicial vertex in a CPDAG generalizes the notion of a leaf node (i.e., a
node with an empty set of children) in DAGs and a simplicial vertex (i.e., a node whose set of
neighbors is complete) [50] in undirected graphs. In particular, when G∗ is a DAG, v is a c-simplicial
vertex if and only if v is a leaf node. This is because when G∗ is a DAG, it naturally holds that
neG∗(v) = ∅, making the completeness of its neighbor trivially satisfied, and the only condition
required is chG∗(v) = ∅. Meanwhile, when G∗ is an undirected graph, v being a c-simplicial vertex
in the CPDAG is equivalent to v being a simplicial vertex in the undirected graph G∗. In this case,
chG∗(v) = ∅ always holds, and the sole requirement is that neG∗(v) forms a complete subgraph.
The "c" in c-simplicial stands for compound, as the c-simplicial property (CPDAG) combines the
features of a simplicial set (undirected graph) and a leaf set (DAG).

The notion of sequential c-simplicial set likewise generalizes sequential c-removable set for DAG.
When G∗ is a DAG and M is a sequential c-simplicial set, it directly follows from the previous
discussion that M is also sequentially c-removable.

Furthermore, we can find the concept of sequential c-simplicial set generalizes that of simplicial set
for undirected graph. When G∗ contains only undirected edges (i.e. G∗ is a chordal graph), recall
a c-simplicial vertex reduces to a simplicial vertex. This means that, for a sequential c-simplicial
M , its vertices can be ordered such that each vertex is a simplicial vertex at the time of its removal.
Consequently, in a chordal graph G, we also term a sequential c-simplicial set M as a sequential
simplicial set. Lemma 1 indicates that sequential simplicity (or sequential c-simplicity) is equivalent
to simplicity for chordal graph.
Lemma 1. For a chordal graph G = (V,E), given a connected subset M ⊆ V , M forms a sequential
simplicial set in G if and only if M is a simplicial set in G .

Remark 2. In a chordal graph G, if M is disconnected, its connected components can be analyzed
independently. Then, M is a sequential simplicial set in G if and only if each connected component
of M is a simplicial set in G.

Remark 3. Lemma 1 connects the classical concept of simplicial set [50] and our concept of
sequential simplicial set for a chordal graph. The correctness of Lemma 1 follows directly from
Proposition B.1 in Appendix B. For general undirected graphs, the relationship between the two
concepts is also discussed in detail in Appendix B. Table C.1 in Appendix C consolidates the key
concepts of simplicial, c-removable, and c-simplicial vertices and sets across UGs, DAGs, and
CPDAGs to facilitate comparison and reference.

Example 3. Consider Figure 2(c), which we denote as G∗
τmax

. Clearly, G∗
τmax

is a chordal graph.
Now, consider the subset M ≜ {AIS, CDR, SAN}. M is a simplicial set in G∗

τmax
because

neG∗
τmax

(M) = {AFF, APA, ALN} is complete. Additionally, M forms a sequential simplicial
vertex set in G∗

τmax
, as M can be identified as a simplicial vertex during successive removals

according to the vertex order CDR, AIS, SAN.

The preceding discussion underscores the profound connection between estimation-collapsibility and
our notion of sequential c-simplicity in two classical situations. When the CPDAG is a DAG, if M is
sequential c-simplicial (hence sequential c-removable), then P(G∗) is estimate-collapsible over the
set M under the non-trivial model assumption [28, Definition 4]. Meanwhile, when the CPDAG is
a undirected chordal graph, if M is sequential c-simplicial (hence each componnent is simplicial),
then the estimate-collapsiblility also holds in multinomial and Gaussian undirected graphical models
[23, 25]. These relations are summarized in Figure 1 and lead us to the question: beyond these
two special cases, can we establish a connection between estimation-collapsibility and sequential
c-simplicity for a CPDAG in general? Theorem 1 below provides an affirmative answer.
Theorem 1. Given a CPDAG G∗ = (V,E∗), letM(G∗) denote the set of all Markov equivalent
DAGs represented by the CPDAG G∗. For M ⊆ V , the following four statements are equivalent:

(1) M is a sequential c-simplicial set in G∗;
(2) there exists a DAG G⃗ ∈M(G∗) such that chG⃗(M) = ∅;
(3) for all DAGs G⃗ ∈M(G∗), M is sequentially c-removable from G⃗;
(4) under the non-trivial model assumption, P(G∗) is estimate-collapsible over the set M .

Theorem 1 establishes the connection between estimation-collapsibility and sequential c-simplicial
sets. It clearly shows that our notion of a c-simplicial set naturally extends to the broader framework
of CPDAG models, including DAGs and undirected chordal graphs as special cases. Specifically,

6

under the non-trivial model assumption [28, Definition 4], it can be employed to verify estimation-
collapsibility for a high-dimensional Bayesian network. The proof of Theorem 1 is in Appendix D.

3.2 DSCS: fast CPDAG-based verification of estimation-collapsibility

Although Theorem 1 establishes CPDAG-based criterion for checking estimation-collapsibility,
directly determining if a subset M is a sequential c-simplicial remains challenging. This is because
multiple iterations are still needed to search for the c-simplicial vertices, which is a daunting task.
Fortunately, for a CPDAG, we can find an equivalent characterization of sequential c-simplicity,
which does not involve vertex order and eliminates the requirement of multiple algorithm iterations.
Remark 4. To highlight the essential concepts and intuitions, the following discussion focuses on
the case where M is connected. For a disconnected M , the conclusion can be easily generalized as
each connected component can be considered separately. In the Appendix, the theoretical derivations
are developed for the general case where M has several connected components.

First, we establish a necessary condition for M to be a sequential c-simplicial set.
Lemma 2. Suppose G∗ = (V,E∗) is a CPDAG. For any M ⊆ V , if M is a sequential c-simplicial
set in G∗, then it holds that chG∗(M) = ∅.

If chG∗(M) ̸= ∅, then by Lemma 2, it follows directly that M is not a sequential c-simplicial set
in G∗, thereby avoiding further effort for verification. However, the condition chG∗(M) = ∅ alone
does is not sufficient to ensure that M is a sequential c-simplicial set. Consider the CPDAG in
Figure 2(b) for example, and let M = {AFF, SAN}. Although chG∗(M) = ∅, neither AFF nor SAN
is a c-simplicial vertex in G∗. It follows that M is not a sequential c-simplicial set in G∗.

In addition to requiring chG∗(M) = ∅, additional conditions must be imposed for sequential c-
simplicity to hold. We start by examining a special case where M is contained within a single chain
component, and provide an equivalent characterization of its sequential c-simplicial property.
Lemma 3. Suppose G∗ = (V,E∗) is a CPDAG with its chain components denoted by T =
{τ1, τ2, . . . , τK}. For a connected subset M ⊆ V , if there exists i ∈ [K] such that M ⊆ τi, then the
following two statements are equivalent:

(1) M is a sequential c-simplicial set in G∗;
(2) chG∗(M) = ∅, and M is a simplicial set in G∗

τi , meaning that neG∗
τi
(M) forms a complete

subgraph.

Remark 5. For a disconnected M , it is sufficient to impose the constraints separately on each of its
connected components. In this case, statement (2) in Lemma 3 can be easily reformulated as follows:

(2′) chG∗(M) = ∅, and each connected component of M is a simplicial set in the
subgraph G∗

τi .

We continue to consider the general case where a connected M is contained within multiple chain
components of G∗. Let T = {τ1, τ2, . . . , τK} be the set of chain components of G∗, and define
α as a mapping from T to {1, 2, . . . ,K} such that if there is a directed edge from τi to τj , then
α(τi) < α(τj). This mapping α is called a topological ordering of the chain components in G∗.
Without loss of generality, assume α(τ1) < α(τ2) < · · · < α(τK). For M to be a sequential
c-simplicial set in G∗, in addition to requiring chG∗(M) = ∅, it suffices that each Mi ≜ M ∩ τi is
a sequential simplicial set in G∗

τi for all i ∈ [K]. By Lemma 1, this is equivalent to requiring each
connected Mi in G∗

τi forms a simplicial set. This is because we can always remove the sets in the
reverse order MK ,MK−1, · · · ,M1. The specific conclusion is given by Theorem 2.
Theorem 2. Given a CPDAG G∗ = (V,E∗) with its chain component set T = {τ1, τ2, . . . , τK}, for
connected M ⊆ V , let Mi ≜ M ∩ τi for each i ∈ [K]. The following two statements are equivalent:

(1) M is a sequential c-simplicial set in G∗;
(2) chG∗(M) = ∅, and Mi in G∗

τi being a simplicial set for all i ∈ [K].

Remark 6. For a disconnected M , statement (2) in Theorem 2 naturally extends to:

(2′) chG∗(M) = ∅, and each connected component of Mi in G∗
τi being a simplicial

set for all i ∈ [K].

7

Algorithm 1: DSCS Algorithm
Input :A CPDAG G∗ = (V,E∗), M ⊆ V .
Output :If M is a sequential c-simplicial set in G∗, the algorithm returns TRUE; otherwise, the

algorithm returns FALSE.
1 if chG∗(M) ̸= ∅ then
2 return FALSE;
3 Search for the set of chain components of G∗, and denote them as {τ1, τ2, · · · , τK};
4 for i← 1 to K do in parallel
5 if M ∩ τi ̸= ∅ then
6 Search for the connected components of M ∩ τi, and denote them as

{M1,M2, · · · ,Mli};
7 for j ← 1 to li do in parallel
8 if neG∗

τi
(Mj) is not complete then

9 return FALSE;

10 return TRUE.

The significance of Theorem 2 is that it provides an order-free way to check sequential c-simplicity.
Recall from Section 3.1 that sequential c-simplicity for CPDAG implies estimation-collapsibility for
the underlying DAG model. Therefore, Theorem 2 provides a convenient avenue to determine the
estimation-collapsibility. The proof of Theorem 2 can be found in Appendix D.

Building on Theorem 2, we introduce the Detecting Sequential C-simplicial Set (DSCS) algorithm
in Algorithm 1. The algorithm proceeds in two steps. In the first step (Lines 1–2), we check whether
chG∗(M) is empty; if not, we can immediately conclude that M is not a sequential c-simplicial set
in G∗. If chG∗(M) is empty, we proceed to the second step (Lines 3–19). For each chain component
τi and each connected component Mlj of M within τi, we examine whether its neighboring nodes of
Mlj form a complete subgraph. Note that these checks are independent across chain components in
parallel. The next example illustrates the execution of the algorithm.

Example 4. Let us re-examine Example 1 and recall we are interested in checking estimate-
collapsibility with M = {AFF,APA,SAN}. Our DSCS algorithm works with the CPDAG in
Figure 2(b). The CPDAG has chain components τ1 = {AFF,APA,ALN,SAN,PER,CDR,AIS},
τ2 = {SUS}, τ3 = {FTW}, τ4 = {EGC}, τ5 = {HOS}, and τ6 = {DET}. DSCS starts by
checking if chG∗(M) = ∅, which is clearly true. Next, it checks whether each connected component
of M ∩ τi in G∗

τi for i = 1, 2, · · · , 6 is a simplicial set. From Figure 2(b), it is evident that M ⊂ τ1,
so only the connected components of M in G∗

τ1 need to be checked for being simplicial. Since
M is connected in G∗

τ1 , and neG∗
τ1
(M) = {ALN,AIS,CDR} is not complete, we conclude the

underlying DAG model is not estimate-collapsible over M .

The complexity of DSCS Algorithm is O (|V |+ |E∗|), where |V | and |E∗| denote the number of
vertices and edges in G∗, respectively. While operations such as identifying the children subset
chG∗(M), detecting connected components in M , and analyzing their neighborhoods have relatively
low complexity, the chain component decomposition of G∗, requiring O(|V |+ |E∗|), constitutes the
primary bottleneck. Following reviewer feedback, we can use the maximum cardinality search (MCS)
algorithm [51–53] — which identifies all maximal cliques in a chordal graph and finds a perfect
elimination ordering in linear time — to perform parallel verification of whether each neighborhood
forms a clique across all chain components. This is done by checking whether the neighborhood
is a subset of the maximal clique associated with the node (within that neighborhood) that appears
earliest in the elimination ordering. Consequently, the complexity of Line 8 in the DSCS algorithm is
O(|τmax|+ |E∗

τmax
|), where |τmax| is the number of vertices in the largest chain component τmax,

and |E∗
τmax
| is the number of edges in this component. Thus, the overall complexity of the DSCS

algorithm is O(|V |+ |E∗|).

8

50 100 150 200 250 300 350 400 450

0.1

1

10

100

0.03

200

100 200 300 400 500 600 700 800 900

0.1

1

10

100

1000

0.05

2750

150 300 450 600 750 900 1050 1200 1350

1

10

100

1000

0.1

10000

Av
er

ag
e

ru
nn

in
g

tim
e

(s
ec

)

|M|

 p=0.1(DSCS) p=0.05(DSCS) p=0.01(DSCS) p=0.005(DSCS)
 p=0.1(DCR) p=0.05(DCR) p=0.01(DCR) p=0.005(DCR)

|M| |M|

n=500 n=1000 n=1500

Figure 3: The average running time of DSCS (solid curves) versus DCR (dash-dotted curves) for
different values of n = |V |, p, and |M |. The y-axis (average running time in seconds) is in logarithmic
scale, and the x-axis represents |M |. The three panels correspond to different values of n.

4 Simulation

Through numerical experiments, we examine the performance of the proposed DSCS Algorithm
in Algorithm 1. Our algorithm is compared to the approach of directly detecting sequential c-
removability of M , as proposed by [28]. The latter approach is abbreviated as DCR. The experiments
were implemented with R and run on a computer with 2.20GHz CPU and 256 GB memory.

In the experiments, Erdös-Rényi graphs were randomly generated using the R-package pcalg [54],
and the corresponding CPDAGs were obtained from the generated DAGs. We use n = |V | to denote
the number of graph vertices and p to represent the edge creation probability. In each simulation
replicate, we randomly generate a DAG with n ∈ {500, 1000, 1500, 2000, 4000, 6000, 8000, 10000}
and p ∈ {0.1, 0.05, 0.01, 0.005}, and the vertex subset M was randomly selected from the graph
with cardinality |M |. DCR (or DSCS) is then applied to the genrated DAGs (or corresponding
CPDAGs) to check if the models are estimate-collapsible over M . For each combination of n, p,
and |M |, the simulation was run 30 times. The average running time (in seconds) and the standard
error were then calculated. Note that the proposed DSCS Algorithm can be run for each chain
component of a CPDAG in parallel. In this experiment, only serial execution is implemented.
Due to the extremely long computational time of the DCR Algorithm for large graphs, we only
compared the average running time of DSCS with DCR for n ∈ {500, 1000, 1500}. When n ∈
{2000, 4000, 6000, 8000, 10000}, the running times for DSCS are reported in Appendix E. Moreover,
to further highlight the advantages of the DSCS algorithm, we selected three real-world Bayesian
networks from the R-package bnlearn—WIN95PTS (76 nodes, 112 edges), LINK (724 nodes,
1125 edges), and MUNIN (1041 nodes, 1397 edges). A detailed description of the three Bayesian
networks can be found at https://www.bnlearn.com/bnrepository/. For each network, we
randomly sampled a vertex subset M of size |M |, then applied DCR (on the DAGs) and DSCS (on
the corresponding CPDAGs) to test collapsibility over M . The running times are also reported in
Appendix E.

For n ∈ {500, 1000, 1500}, the average running times of the two algorithms are shown in Figure 3.
For different values of p, the corresponding curves are distinguished by color and point shape.
Detailed results, including average running times and standard errors, are also provided in Table E.1
in Appendix E. In Figure 3, across various graph sizes n ∈ {500, 1000, 1500} and different values
of p and |M |, DSCS consistently outperforms DCR in terms of runtime. For a fixed n, the average
running time of the DCR Algorithm increases rapidly with p and |M |, while the DSCS Algorithm

9

https://www.bnlearn.com/bnrepository/

exhibits much slower growth, demonstrating clear computational advantages. As n, p, and |M |
increase, the advantage of the DSCS Algorithm becomes more pronounced. For example, when
n = 500, p = 0.1, and |M | = 450, the proposed DSCS is more than 530 times faster than DCR.
When n = 1500, p = 0.1, and |M | = 1350, DSCS achieves a speedup of more than 4000 times.

5 Conclusion

In this work, we have tackled a fundamental bottleneck in high-dimensional Bayesian network
inference: how to efficiently verify a submodel’s estimation-collapsibility and reliably collapse away
irrelevant variables. Departing from the traditional DAG framework [27, 28], we show that one can
directly work on a CPDAG learned from observational data. We introduce the concept of sequential
c-simplicity and find it as a necessary and sufficient criterion to check estimation-collapsibility. This
criterion generalizes and unifies previous characterizations in both DAG models [28] and undirected
chordal graph models [23, 25]. Remarkably, based on CPDAG, we are able to develop an order-
free characterization (i.e. independent of the vertex permutation) and design an efficient Detecting
Sequential C-simplicial Set (DSCS) algorithm. Beyond its theoretical value and computational
efficiency, DSCS has profound practical consequences: it enables researchers to focus data-collection
and computational effort on small subsets of interest to accelerate scientific discovery. We believe
that incorporating collapsibility checks into researchers’ preprocessing toolkit will significantly aid
scalable probabilistic modeling, paving the way for robust and efficient inference in ever-expanding
data regimes.

A limitation of this work is that we require the CPDAG to be accurately and fully learned from
observational data. One could further relax the requirement of a fully accurate CPDAG by developing
incremental or local CPDAG-learning strategies that suffice for collapsibility checks. Another
direction is to extend DSCS to accommodate interventional data or dynamic Bayesian networks,
broadening its applicability to sequential and adaptive decision-making.

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers and area chair for their insightful comments, which helped
strengthen this paper. This work was partially supported by the Key Program of the National Natural
Science Foundation of China (Grant No.12431009) and the National Key Research and Development
Program of China (Grant No.2020YFA0714100, Grant No.2020YFA0714102). The first two authors
contribute equally. Shiyuan He was partially supported by the National Natural Science Foundation
of China (Grant Numbers 12571278).

References
[1] Norman Fenton and Martin Neil. Risk Assessment and Decision Analysis with Bayesian

Networks. CRC Press, 2018.

[2] Baoping Cai, Yonghong Liu, Jinqiu Hu, Zengkai Liu, Shengnan Wu, and Renjie Ji. Bayesian
Networks in Fault Diagnosis: Practice and Application. World Scientific, 2018.

[3] Baoping Cai, Yonghong Liu, Zengkai Liu, Yuanjiang Chang, and Lei Jiang. Bayesian Networks
for Reliability Engineering. Springer, 2020.

[4] Olivier Pourret, Patrick Na, Bruce Marcot, et al. Bayesian Networks: A Practical Guide to
Applications. John Wiley & Sons, 2008.

[5] Steffen L Lauritzen. Some modern applications of graphical models. In Peter J Green, Nils Lid
Hjort, and Sylvia Richardson, editors, Highly Structured Stochastic Systems, Oxford Statistical
Science Series, pages 13–32. Oxford University Press, 2003.

[6] Marloes Maathuis, Mathias Drton, Steffen Lauritzen, and Martin Wainwright. Handbook of
Graphical Models. CRC Press, 2018.

[7] Steffen L Lauritzen and Thomas S Richardson. Chain graph models and their causal interpre-
tations. Journal of the Royal Statistical Society: Series B (Methodological), 64(3):321–348,
2002.

10

[8] Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3:96–146, 2009.

[9] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search. MIT
Press, 2001.

[10] Zongming Ma, Xianchao Xie, and Zhi Geng. Structural learning of chain graphs via decompo-
sition. Journal of Machine Learning Research, 9(Dec):2847–2880, 2008.

[11] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Elsevier, 2014.

[12] Xianchao Xie, Zhi Geng, and Qiang Zhao. Decomposition of structural learning about directed
acyclic graphs. Artificial Intelligence, 170(4-5):422–439, 2006.

[13] Sourabh Balgi, Adel Daoud, Jose M Pena, Geoffrey T Wodtke, and Jesse Zhou. Deep learning
with DAGs. Sociological Methods & Research, page 00491241251319291, 2024.

[14] Adrián Javaloy, Pablo Sánchez-Martín, and Isabel Valera. Causal normalizing flows: from
theory to practice. Advances in Neural Information Processing Systems, 36:58833–58864, 2023.

[15] Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International
Conference on Learning Representations, 2021.

[16] Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer Science & Business Media, 2011.

[17] Robert G Cowell, Philip Dawid, Steffen L Lauritzen, and David J Spiegelhalter. Probabilistic
Networks and Expert Systems: Exact Computational Methods for Bayesian Networks. Springer
Science & Business Media, 2007.

[18] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),
39(1):1–22, 1977.

[19] David Heckerman. A tutorial on learning with Bayesian networks. In Michael I. Jordan, editor,
Learning in Graphical Models, pages 301–354. Springer, 1998.

[20] Pradeep Ravikumar, Martin J Wainwright, and John D Lafferty. High-dimensional Ising model
selection using ℓ1-regularized logistic regression. The Annals of Statistics, 38(1):1287–1319,
2010.

[21] E.H. Simpson. The interpretation of interaction in contingency tables. Journal of the Royal
Statistical Society: Series B (Methodological), 13(2):238–241, 1951.

[22] G.U. Yule. Notes on the theory of association of attributes in statistics. Biometrika, 2(2):
121–134, 1903.

[23] Søren Asmussen and David Edwards. Collapsibility and response variables in contingency
tables. Biometrika, 70(3):567–578, 1983.

[24] David Madigan and Krzysztof Mosurski. An extension of the results of asmussen and edwards
on collapsibility in contingency tables. Biometrika, 77(2):315–319, 1990.

[25] Morten Frydenberg. Marginalization and collapsibility in graphical interaction models. The
Annals of Statistics, pages 790–805, 1990.

[26] Vanessa Didelez and David Edwards. Collapsibility of graphical CG-regression models. Scan-
dinavian journal of statistics, 31(4):535–551, 2004.

[27] Sung-ho Kim and Seong-Ho Kim. A note on collapsibility in DAG models of contingency
tables. Scandinavian Journal of Statistics, 33(3):575–590, 2006.

[28] Xianchao Xie and Zhi Geng. Collapsibility for directed acyclic graphs. Scandinavian Journal
of Statistics, 36(2):185–203, 2009.

11

[29] David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3(Nov):507–554, 2002.

[30] Diego Colombo, Marloes H Maathuis, et al. Order-independent constraint-based causal structure
learning. Journal of Machine Learning Research, 15(1):3741–3782, 2014.

[31] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear
causal discovery with additive noise models. Advances in Neural Information Processing
Systems, 21, 2008.

[32] Jonas Peters and Peter Bühlmann. Identifiability of Gaussian structural equation models with
equal error variances. Biometrika, 101(1):219–228, 2014.

[33] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael Jordan. A
linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research,
7(10), 2006.

[34] Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72, 1991.

[35] Peter Spirtes, Clark Glymour, Richard Scheines, Stuart Kauffman, Valerio Aimale, and Frank
Wimberly. Constructing Bayesian network models of gene expression networks from microarray
data. 2000.

[36] Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages
647–655, 2009.

[37] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. Journal of Machine Learning Research, 15(1):2009–2053,
2014.

[38] Tom Claassen and Tom Heskes. A logical characterization of constraint-based causal discovery.
In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence,
pages 135–144, 2011.

[39] Tom Claassen, Joris M Mooij, and Tom Heskes. Learning sparse causal models is not NP-hard.
In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages
172–181, 2013.

[40] David Heckerman, Dan Geiger, and David M Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

[41] Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Proceedings of
the Sixth Annual Conference on Uncertainty in Artificial Intelligence, pages 255–270, 1990.

[42] Thomas Verma and Judea Pearl. An algorithm for deciding if a set of observed independencies
has a causal explanation. In Uncertainty in Artificial Intelligence, pages 323–330. Elsevier,
1992.

[43] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with no tears:
Continuous optimization for structure learning. Advances in Neural Information Processing
Systems, 31, 2018.

[44] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning.
arXiv preprint arXiv:1906.04477, 2019.

[45] Christopher Meek. Causal inference and causal explanation with background knowledge. In
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403–410,
1995.

[46] Steen A. Andersson, David Madigan, and Michael D. Perlman. A characterization of Markov
equivalence classes for acyclic digraphs. The Annals of Statistics, 25(2):505–541, 1997.

[47] Joe Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley Publishing, 2009.

12

[48] Steffen L Lauritzen. Graphical Models, volume 17. Clarendon Press, 1996.

[49] D. van Kampen. The SSQ model of schizophrenic prodromal unfolding revised: An analysis
of its causal chains based on the language of directed graphs. European Psychiatry, 29(7):
437–448, 2014.

[50] Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, pages 71–76. Springer, 1961.

[51] Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2):
180–187, 1972.

[52] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM Journal on computing, 5(2):266–283, 1976.

[53] Robert E Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
Journal on computing, 13(3):566–579, 1984.

[54] Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H Maathuis, and Peter Bühlmann.
Causal inference using graphical models with the R package pcalg. Journal of Statistical
Software, 47:1–26, 2012.

[55] Judea Pearl, Dan Geiger, and Thomas Verma. Conditional independence and its representations.
Kybernetika, 25(7):33–44, 1989.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the abstract and the last two paragraphs in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the Section 5 (especially the last two sentences).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: we present the complete proofs in Appendices B and D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 4, we provide a detailed description of the experiment. Additionally,
we provide the code in the supplemental material to ensure the easy reproduction of all
reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the supplemental material for codes in a zip file to ensure easy
reproduction of all reported results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4 for the detailed description of simulating outcome and experi-
mental details. In addition, we provide the supplemental material for codes in a zip file to
ensure easy reproduction of all reported results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Table E.1 and Table E.2, we report the mean running time along with the
standard error of the mean (SEM) computed over multiple independent runs. This provides
a statistically sound measure of the variability in timing results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 4, we provide a detailed description of the type of compute workers,
memory, and execution time required for the simulation experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All experiments are conducted on publicly available datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the second and third paragraphs of Section 1 and Section 5, we outline
various potential applications of our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All experiments are conducted on publicly available datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Section 4, we provide references for the datasets and the simulation setups
of the data-generating process.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In Section 4, we provide references for the datasets and the simulation setups of
the data-generating process. In addition, we provide the supplemental material for datasets
and codes in a zip file to ensure easy reproduction of all reported results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t use a crowdsourcing service.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Graph terminology

A graph G = (V,E) is defined by a set V of nodes (or vertices), and a set E consisting of both
directed and undirected edges. There is at most one edge between any pair of nodes u and v. We
use (u, v) or u → v to denote a directed edge from u to v, and u − v to represent an undirected
edge connecting u and v. The nodes u and v are adjacent if there is an edge connecting them, which
is denoted by u

G∼ v. Otherwise, u, v are nonadjacent and denoted by u
G≁ v. A path connecting

u and v in G, denoted by ℓuv, is a sequence of distinct vertices ⟨c0 = u, c1, . . . , cm−1, cm = v⟩
such that ci

G∼ ci+1 for i = 0, 1, . . . ,m− 1. The path ℓuv is a directed path, denoted by ℓ⃗uv, from
u to v if ci → ci+1 for all i = 0, 1, . . . ,m − 1, and it is an undirected path if ci − ci+1 for all
i = 0, 1, . . . ,m− 1. Additionally, the path ℓuv is a partially directed path from u to v if there are no
edges of the form ci ← ci+1 for all i = 0, 1, . . . ,m− 1. A cycle is a path from a vertex to itself. An
undirected path from u to v, along with the edge v − u, forms an undirected cycle. A directed path
from u to v, along with the edge v → u, forms a directed cycle. A partially directed cycle is formed
by a partially directed path from u to v, together with the edge v → u or v − u. We note that both
directed paths (cycles) and undirected paths (cycles) are partially directed paths (cycles).

When u→ v, u is referred to as the parent node of v, and v is called the child node of u. If u− v, u
is a neighbor node of v. For some u ∈ V , let paG(u) denote the set of parent nodes of u, chG(u)
the set of child nodes of u, and neG(u) the set of neighbor nodes of u. Specifically, these sets are
defined as follows:

paG(u) = {w ∈ V \ {u} : w → u in G},
chG(u) = {w ∈ V \ {u} : u→ w in G},
neG(u) = {w ∈ V \ {u} : u− w in G}.

If chG(u) = ∅, then u is called a leaf node in G. For a subset A ⊆ V , the sets of its parents and
children in G are, respectively, defined as

paG(A) ≜
⋃
u∈A

paG(u) \A, chG(A) ≜
⋃
u∈A

chG(u) \A.

If chG(A) = ∅, then A is called a leaf set in G. We define the Markov boundary of u and A as
mbG(u) = chG(u) ∪ paG(u) ∪ paG(chG(u)) \ {u} and mbG(A) =

⋃
u∈A

mbG(u) \A.

For simplicity, we also define

PaG(u) = paG(u) ∪ {u}, PaG(A) = paG(A) ∪A;

ChG(u) = chG(u) ∪ {u}, ChG(A) = chG(A) ∪A;

NeG(u) = neG(u) ∪ {u}, NeG(A) = neG(A) ∪A;

MbG(u) = mbG(u) ∪ {u}, MbG(A) = mbG(A) ∪A.

If there exists a directed path from u to v in G, u is referred to as an ancestor of v, and v is called a
descendant of u. The set of ancestors of u in G is denoted as anG(u), and the set of descendants of u
in G is denoted as deG(u). Specifically, these sets are defined as follows:

anG(u) =
{
w ∈ V \ {u} : ∃ℓ⃗wu ⊆ G

}
, deG(u) =

{
w ∈ V \ {u} : ∃ℓ⃗uw ⊆ G

}
.

For a subset A ⊆ V , the sets of its ancestors and descendants in G are defined as follows:

anG(A) ≜
⋃
u∈A

anG(u) \A, deG(A) ≜
⋃
u∈A

deG(u) \A.

We also define
AnG(u) = anG(u) ∪ {u}, AnG(A) = anG(A) ∪A;

DeG(u) = deG(u) ∪ {u}, DeG(A) = deG(A) ∪A.

If G consists solely of undirected edges, it is referred to as an undirected graph (UG). In contrast, if G
is composed entirely of directed edges and contains no directed cycles, it is referred to as a directed
acyclic graph (DAG). Let G⃗ = (V, E⃗) denote a DAG, where V is the set of vertices and E⃗ is the set
of directed edges in G⃗. A path ℓuv between u and v in G⃗ is said to be blocked by a set S ⊆ V of
vertices if and only if one of the following holds:

21

(i) ℓuv contains a chain x→ z → y or a fork x← z → y such that the middle vertex z is in S (i.e.,
z ∈ S);

(ii) ℓuv contains a collider x→ z ← y such that the middle vertex z is not in S and no descendant of
z is in S (i.e., DeG⃗(z) ∩ S = ∅).

If all paths between u and v are blocked by S in G⃗, then u and v are d-separated by S in G⃗, denoted
as u ⊥⊥ v | S [G⃗]. For disjoint subsets A,B, S ⊆ V, if every path between any vertex a ∈ A and any
vertex b ∈ B is blocked by S in G⃗, then A and B are d-separated by S in G⃗, denoted as A ⊥⊥ B|S
[G⃗]. The collection of all d-separation relations induced by G⃗ is denoted as

I(G⃗) = {⟨A,B|S⟩ : A ⊥⊥ B|S[G⃗] with pairwise disjoint subset A,B, S ⊆ V }.

For two directed acyclic graphs (DAGs) G⃗1 = (V, E⃗1) and G⃗2 = (V, E⃗2), if I(G⃗1) = I(G⃗2), they
are said to be Markov equivalent, denoted as G⃗1 ≈ G⃗2. For three distinct vertices u, v, and w,
if u → w ← v and u is not adjacent to v in G⃗, the triple (u,w, v) is referred to as a v-structure
collided on w. The skeleton of G⃗ is an undirected graph resulted from turning every directed edge
in G⃗ into an undirected edge. Pearl et al. [55] showed that two DAGs are equivalent if and only
if they share the same skeleton and the same v-structures. The Markov equivalence class of G⃗, or
simply an equivalence class, denoted byM(G⃗), contains all DAGs that are equivalent to G⃗. This
equivalence class can be uniquely represented by a partially directed graph known as a completely
partially directed acyclic graph(CPDAG) [45]. Let G∗ = (V,E∗) denote a CPDAG, where V is the
vertex set and E∗ is the set of directed and undirected edges of G∗. We useM(G∗) to denote the set
of all Markov equivalent DAGs represented by the CPDAG G∗. It can be shown that the skeleton of a
CPDAG G∗ is identical to the skeleton of every DAG inM(G∗), and an edge is directed in a CPDAG
if and only if it is directed in every DAG inM(G∗) [55]. As demonstrated by Andersson et al.[46],
G∗ is a chain graph composed of both directed and undirected edges, and it contains neither directed
cycles nor partially directed cycles with directed edges. Additionally, the undirected components
of a CPDAG G∗ are undirected and connected chordal graphs. A chordal graph (also known as a
triangulated graph) is an undirected graph in which every cycle of length greater than three contains a
chord—that is, an edge connecting two non-consecutive vertices in the cycle. Equivalently, a graph is
chordal if and only if it contains no induced cycles of length greater than three.

B Estimation-collapsibility for UG models

For undirected graph models, estimation-collapsiblity has been characterized via simplicial set [50].
Asmussen & Edwards [23] and Frydenberg [25] established the equivalence between collapsibility
over M and the condition that each connected component of M is a simplicial set, in the context of
multinomial and Gaussian undirected graphical models. Below, we provide a brief introduction to
the core concept of simplicial (vertex) sets in UG [50]. By drawing an analogy with the concept of
sequentially c-removable sets in DAGs, we introduce the concept of sequential simplicial (vertex)
sets in UG and explore its relationship with the concepts of simplicial (vertex) sets.
Definition B.1. (Dirac [50]) In an undirected graph (UG) G = (V,E), for a vertex v ∈ V , if the
neighborhood neG(v) forms a complete subgraph in G, then v is called a simplicial vertex in G. For
a subset M ⊆ V , if the neighborhood neG(M) forms a complete subgraph in G, then M is called a
simplicial (vertex) set in G.

Similar to the concept of sequentially c-removable in a DAG, we introduce the concept of sequen-
tial simplicial (vertex) sets in an undirected graph. An illustration of the concept is provided in
Example B.1.
Definition B.2. In an undirected graph G = (V,E), for a subset M ⊆ V , if all vertices in M can be
ordered such that each vertex is a simplicial vertex according to that ordering, meaning each vertex
can be identified as a simplicial vertex during successive removals, then M is called a sequential
simplicial (vertex) set in G.

Example B.1. Consider the UGs in Figures B.1 (a)–(c), and let’s denote the three graphs as G1, G2,
and G3, respectively. For the G1, we have neG1

(a) = {b, c} where b
G1∼ c. By the Definition B.1,

22

(a) (b) (c)

Figure B.1: Simpliciality and sequential simpliciality.

a is a simplicial vertex in G1. After removing a, the resulting UG G2 has neG2(b) = {c, d} with

c
G2∼ d. As a result, b is a simplicial vertex in G2. Similarly, after removing node b, we obtain the UG

G3, where c is clearly a simplicial vertex in G3. Therefore, the set {a, b, c} is a sequential simplicial
set in original UG G1.

Note the classical concept of simplicial set and our proposed concept of sequential simplicial set are
generally not equivalent. We illustrate this via Example B.2.

(a) (b)

Figure B.2: This example illustrates that the concepts of a simplicial set and a sequential simplicial
set in undirected graphs are not equivalent. Figure B.2(a) shows that when M = {a, b}, M is a
simplicial set but not a sequential simplicial set. Figure B.2(b) shows that when M = {a, b}, M is a
sequential simplicial set but not a simplicial set.

Example B.2. In Figure B.2(a), let M = {a, b}, with neG(M) = {c, d} and c
G∼ d, which makes

M a simplicial set in G. However, neither a nor b is a simplicial vertex on its own, meaning that
M is not a sequential simplicial set. In Figure B.2(b), M = {a, b}, and both a and b are simplicial

vertices in G, making M a sequential simplicial set. However, neG(M) = {c, d, e, f}, where c
G≁ d,

c
G≁ f , and d

G≁ e, implying that M is not a simplicial set in G.

Under additional conditions, we can establish the equivalence between simplicial sets and sequential
simplicial sets for undirected graphs. In Figure B.2(a), it is given that M = {a, b} is a simplicial set
in G, but M is not a sequential simplicial set. However, if an additional condition such as a G∼ c

or b G∼ d is imposed, then M becomes a sequential simplicial set. In the more general case, the
additional condition required is that GNeG(M) is a chordal graph, as shown in Lemma B.1.

Lemma B.1. Let G = (V,E) is an undirected graph, for M ⊆ V , if M is a simplicial set in G and
GNeG(M) is a chordal graph, then M is a sequential simplicial set in G.

Proof. Here we consider using proof by contradiction to prove Lemma B.1. Let M =
{m1,m2, · · · ,mk}. Suppose that for any ordering, there exists a subsequence mi,mi+1, · · · ,mk,
where 1 ≤ i ≤ k, such that none of these vertices are simplicial vertices in the induced subgraph
GR ≜ GV \{m1,m2,··· ,mi−1}. This means that for all mj ∈ {mi,mi+1, · · · ,mk}, the neighborhood

neGR
(mj) is not complete, i.e., there exist vertices x, y ∈ neGR

(mj) such that x G≁ y. There are
three possible cases:

23

(a) (b) (c)

Figure B.3: Three subgraphs of the UG. Figure B.3(a), Figure B.3(b), and Figure B.3(c) correspond
to (ia), (ib), and (ii) in case (2), respectively, in the proof of Lemma B.1.

Case (1). When x, y ∈ V \M ,
Since x, y ∈ neGR

(mj) and x, y ∈ V \M , it follows that x, y ∈ neG(M). However, x G≁ y, which
contradicts the fact that M is a simplicial set in G.

Case (2). When x or y is in {mi,mi+1, · · · ,mk} \ {mj},
Without loss of generality, assume x ∈ {mi,mi+1, · · · ,mk} \ {mj} and y ∈ V \M . Since x is not

a simplicial vertex in GR, there exists z ∈ neGR
(x) such that z G≁ mj .

(i) If z ∈ V \M , let’s consider whether y and z are adjacent:

(ia) If y G≁ z, since y, z ∈ neG(M), this contradicts the fact that M is a simplicial
set in G; see Figure B.3(a).
(ib) If y G∼ z, there exists a 4-cycle mj − x− z − y −mj , which contradicts the
fact that GNeG(M) is a chordal graph; see Figure B.3(b).

(ii) If z ∈ {mi,mi+1, · · · ,mk}\{mj , x}, since z is also not a simplicial vertex in GR, similar to the
case with x, we need to analyze the adjacency of z’s neighbors. By applying this reasoning iteratively,
we can construct a maximal connected component containing mj in the form mj − x− z − · · · −
ml−1 −ml. For this maximal connected component, there must exist v ∈ neGR

(ml) ∩ (V \M)

such that v G≁ ml−1 (otherwise, ml would be a simplicial vertex in GR). This situation is analogous
to case (i), leading to a contradiction; see Figure B.3(c).

Case (3). When x, y ∈ ({mi,mi+1, · · · ,mk} \ {mj}),
Since x and y are also not simplicial vertices in GR, and given the arbitrary choice of mj , x and y
will encounter similar situations as in cases (1) and (2).

Given the hereditary property of chordal graphs, any subgraph of a chordal graph is also a chordal
graph. Therefore, for a chordal graph G = (V,E), it is evident that GNeG(M) is also chordal.
Consequently, we have the following corollary.

Corollary B.1. Given a chordal graph G = (V,E), for M ⊆ V , if M is a simplicial set in G, then
M is a sequential simplicial set in G.

In Figure B.2(b), it is given that M = {a, b} is a sequential simplicial set. However, M is not a
simplicial set in G. Nonetheless, if M is a sequential simplicial set and is connected, then M is a
simplicial set in G.

Lemma B.2. Given an undirected graph G = (V,E), if M ⊆ V is a connected subset and M is a
sequential simplicial set in G, then M is a simplicial set in G.

24

Figure B.4: A subgraph of the UG. It corresponds to case(2) in the proof of Lemma B.2.

Proof. Here we consider using proof by contradiction to prove Lemma B.2. Assume M is not a
simplicial set in G, i.e., there exist x, y ∈ neG(M) such that x G≁ y. There are two possible cases:

Case (1). There exists m ∈M such that x, y ∈ neG(m).

Since x
G≁ y and x, y ∈ V \M , m is not a simplicial vertex in G for any ordering. This contradicts

the assumption that M is a sequential simplicial set in G.

Case (2). There exist mx,my ∈M such that x ∈ neG(mx) and y ∈ neG(my).

Since mx and my are connected within M , there exists a chordless path p = ⟨m0 =
mx,m1,m2, · · · ,mn,mn+1 = my⟩ where mi ∈ M for i ∈ [n]. Because p is chordless, for
each mi (where i ∈ [n]), mi−1 and mi+1 are not adjacent, meaning m1,m2, · · · ,mn are not
simplicial vertices. Since the vertices in M can be ordered such that each vertex is a simpli-
cial vertex according to that ordering, either mx or my must be simplicial. Without loss of

generality, assume mx is a simplicial vertex. Thus, x G∼ m1. Now consider the chordless path
p′ = ⟨m1,m2, · · · ,mn,mn+1 = my⟩. In this case, x ∈ neG(m1) and y ∈ neG(my). By similar
analysis, iterating this process will lead to the existence of some m′ ∈ {m1,m2, · · · ,mn} such that
x, y ∈ neG(m

′), which reduces to case (1); see Figure B.4.

In both scenarios, we encounter contradictions. Therefore, the assumption that M is not a simplicial
set in G must be false. Thus, if M is a connected sequential simplicial set in G, then M must be a
simplicial set in G.

By Lemma B.2, we obtain a sufficient condition for GNeG(M) to be chordal.

Lemma B.3. Given an undirected graph G = (V,E), if M ⊆ V is a connected subset and M is a
sequential simplicial set in G, then GNeG(M) is a chordal graph.

Proof. By Lemma B.2, we know that M is a simplicial set in G, which means neG(M) is a complete
subgraph. Suppose GNeG(M) is not a chordal graph. For any cycle µ in GNeG(M) with length greater
than 3, since neG(M) is complete, µ can contain at most two vertices from neG(M). Otherwise, µ
would have a chord. Without loss of generality, assume that µ contains two vertices x and y from
neG(M), and the remaining vertices are in M . Let mi be the first vertex removed from µ, then
neGµ

(mi) is complete. Thus, µ must have at least one chord, i.e., there exists an edge connecting
two neighbors of mi in µ. This contradicts the assumption that µ is a cycle of length greater than 3
without chords. Therefore, GNeG(M) must be a chordal graph.

Based on the above series of lemmas, we can provide an equivalent characterization of a sequential
simplicial set in an undirected graph that does not depend on the order, as stated in the following
PropositionB.1.
Proposition B.1. Given an undirected graph G = (V,E), for M ⊆ V , the following two statements
are equivalent:

(1) M is a sequential simplicial set in G;

25

(2) For each connected component CM of M , the subgraph GNeG(CM) is chordal graph, and CM is a
simplicial set in G.

Proof. (1)⇒ (2). Since M is a sequential simplicial set in G, it is evident that M1,M2, · · · ,MK are
also sequential simplicial sets in G. Therefore, for all i ∈ [K], the vertices in Mi can be ordered such
that each vertex is a simplicial vertex according to that ordering. Additionally, since Mi is connected,
by Lemma B.2, Mi is a simplicial set in G. By Lemma B.3, GNeG(Mi) is a chordal graph.

(2)⇒ (1). Given that for all i ∈ [K], GNe(Mi) is a chordal graph and Mi is a simplicial set in G, by
Lemma B.1, for all i ∈ [K], the vertices in Mi can be ordered such that they are simplicial vertices
in that order, i.e., Mi is a sequential simplicial set in G. Furthermore, since M1,M2, · · · ,MK are
mutually disconnected, they can be ordered in any sequence, and they will still form a sequence of
sequential simplicial sets. Therefore, M is a sequential simplicial set in G.

For chordal graphs, by hereditary property, any subgraph of a chordal graph is also a chordal graph.
Proposition B.1 immediately implies Lemma 1 for chordal graph. It states that in a chordal graph, for
any connected subset, a sequential simplicial set is equivalent to a simplicial set. Therefore, for a
chordal graph model, being estimation-collapsible over M is equivalent to each connected subset of
M being a sequential simplicial set.

C Summary of Key Concepts

To facilitate comparison and reference, this appendix consolidates the key concepts related to
simplicial, c-removable, and c-simplicial vertices and sets across UG, DAG, and CPDAG graphical
models. The detailed definitions are presented in Table C.1.

Table C.1: Key Concepts in Graphical Models
Graph Type Concept Characterization

UG

Simplicial vertex A vertex v is called simplicial if its neighborhood
neG(v) forms a complete subgraph in G.

Simplicial set A set M , if neG(M) induces a complete subgraph,
then M is called a simplicial set in G.

DAG

c-removable vertex A vertex v is c-removable from DAG G⃗ if any
two vertices in MbG⃗(v) are adjacent, except when
both belong to paG⃗(v).

Sequentially c-removable set A set M is sequentially c-removable if its vertices
can be ordered such that each can be c-removed by
that ordering.

CPDAG

c-simplicial vertex A vertex v is c-simplicial in G∗ if chG∗(v) = ∅
and neG∗(v) is complete.

Sequential c-simplicial set A set M is sequential c-simplicial in G∗ if its ver-
tices can be successively removed as c-simplicial
vertices in some order.

The concept of a c-simplicial vertex in a CPDAG generalizes the notion of a leaf node (i.e., a
node with an empty set of children) in DAGs and a simplicial vertex (i.e., a node whose set of
neighbors is complete) [50] in undirected graphs. In particular, when G∗ is a DAG, v is a c-simplicial
vertex if and only if v is a leaf node. This is because when G∗ is a DAG, it naturally holds that
neG∗(v) = ∅, making the completeness of its neighbor trivially satisfied, and the only condition
required is chG∗(v) = ∅. Meanwhile, when G∗ is an undirected graph, v being a c-simplicial vertex
in the CPDAG is equivalent to v being a simplicial vertex in the undirected graph G∗. In this case,
chG∗(v) = ∅ always holds, and the sole requirement is that neG∗(v) forms a complete subgraph.

The notion of sequential c-simplicial set likewise generalizes sequential c-removable set for DAG.
When G∗ is a DAG and M is a sequential c-simplicial set, it directly follows from the previous

26

discussion that M is also sequentially c-removable. Furthermore, we can find the concept of
sequential c-simplicial set generalizes that of simplicial set for undirected graph. When G∗ contains
only undirected edges (i.e. G∗ is a chordal graph), recall a c-simplicial vertex reduces to a simplicial
vertex. This means that, for a sequential c-simplicial M , its vertices can be ordered such that each
vertex is a simplicial vertex at the time of its removal. Consequently, in a chordal graph G, we also
term a sequential c-simplicial set M as a sequential simplicial set. Lemma 1 indicates that sequential
simplicity (or sequential c-simplicity) is equivalent to simplicity for chordal graph.

D Technical Proofs of The Main Results

Proof of Lemma 2

Proof. Assume that chG∗(M) ̸= ∅, then ∃m ∈ M such that chG∗(m) \M ̸= ∅. In this case,
regardless of how the vertices in M are ordered and sequentially removed as c-simplicial vertices, m
can never be a c-simplicial vertex. Therefore, by Definition 5, M is not a sequential c-simplicial set
in G∗, which contradicts the known result.

Proof of Lemma 3

Proof. By Lemma 1, Statement (2′) is equivalent to:

(2∗) chG∗(M) = ∅, and M is a sequential simplicial set in G∗
τi .

We will now establish the equivalence between Statement (1) and Statement (2∗).

(1)⇒(2∗). Given that chG∗(M) = ∅ clearly holds, we now need to prove that M is a sequential
simplicial set in G∗

τi . Since M is contained within a single chain component, and under the condition
that chG∗(M) = ∅, we have

⋃
m∈M

chG∗(m) = ∅. Therefore, determining whether M is a sequential

simplicial set in G∗
τi is equivalent to determining whether M is a sequential c-simplicial set in G∗.

(2∗)⇒(1). Since chG∗(M) =
⋃

m∈M

chG∗(m) \M = ∅, and because M is contained within a single

chain component, we have
⋃

m∈M

chG∗(m) = ∅. In this case, M is a sequential simplicial set in G∗
τi

is clearly equivalent to M is a sequential c-simplicial set in G∗.

Proof of Theorem 2

Proof. By Lemma 1, Statement (2′) is equivalent to:

(2∗) chG∗(M) = ∅, where each Mi forms a sequential simplicial set in G∗
τi for all i ∈ [K].

We will now establish the equivalence between Statement (1) and Statement (2∗).

(1)⇒ (2∗). chG∗(M) = ∅ clearly holds. Next, we prove that for all i ∈ [K], Mi is a sequential
simplicial set in G∗

τi .
Without loss of generality, assume α(τ1) < α(τ2) < · · · < α(τK). Assume there exists a largest
j, where 1 ≤ j ≤ K, such that the non-empty Mj is not a sequential simplicial set in G∗

τj .
Since M is a sequential c-simplicial set in G∗, MK is also a sequential c-simplicial set in G∗.
Let G∗

1 ≜ G∗
V \MK

. Then, it is evident that MK−1 is a sequential c-simplicial set in G∗
1. Let

G∗
2 ≜ G∗

V \{MK ,MK−1}. Continuing this process, we deduce that Mj is a sequential c-simplicial set

in G∗
K−j ≜ G∗

V \{MK ,MK−1,··· ,Mj+1}. By Lemma 3, Mj must be a sequential simplicial set in G∗
τj ,

which contradicts our assumption.

(2∗) ⇒ (1). Without loss of generality, assume α(τ1) < α(τ2) < · · · < α(τK). Given that
chG∗(MK) = ∅ and MK is a sequential simplicial set in G∗

τK , by Lemma 3, MK is a sequential
c-simplicial set in G∗. Let G∗

1 ≜ G∗
V \MK

. Then, chG∗
1
(MK−1) = ∅ and MK−1 is a sequential

simplicial set in G∗
1,τK . By Lemma 3 again, MK−1 is a sequential c-simplicial set in G∗

1. Let
G∗

2 ≜ G∗
V \{MK ,MK−1}. Continuing this process, we find that MK ,MK−1, · · · ,M1 are sequential

27

c-simplicial sets. Therefore, the vertices in M can be ordered such that they are c-simplicial vertices
in G∗, meaning M is a sequential c-simplicial set in G∗.

Proof of Theorem 1

Proof. (1)⇒ (2). Assume (2) does not hold. That is, for all G⃗ ∈M(G∗), chG⃗(M) ̸= ∅. Since G∗ is
a CPDAG, this implies that chG∗(M) ̸= ∅ or there exists an undirected connected component C of
M such that neG∗(C) is not complete. By Theorem 2, M is not a sequential c-simplicial set in G∗,
which contradicts (1).

(2)⇒ (1). Let T = {τ1, τ2, . . . , τK} be the set of chain components of G∗. Partition M into each
chain component, i.e., M = M1 ∪M2 ∪ · · · ∪MK , where Mi ⊆ τi for each i ∈ [K]. Assume (1)
does not hold. By Theorem 2, there are two possible scenarios.

(i) chG∗(M) ̸= ∅. By the properties of CPDAGs, for all G⃗ ∈ M(G∗), chG⃗(M) ̸= ∅, which
contradicts (2).

(ii) There exists j, where 1 ≤ j ≤ K, such that Mj is not a sequential simplicial set in G∗
τj . Let

Mj = Mj,1 ∪Mj,2 ∪ · · · ∪Mj,l, where Mj,i (i ∈ [l]) are the connected components in G∗
τj . Since

Mj is not a sequential simplicial set in G∗
τj and G∗

τj is a chordal graph, by Lemma 1, there exists
i,where 1 ≤ i ≤ l, such that Mj,i is not a simplicial set in G∗. That is, there exist x, y ∈ neG∗

τj
(Mj,i)

such that x G∗

≁ y. In every DAG G⃗ ∈M(G∗), x and y cannot both be parents of Mj,i, otherwise a
v-structure would be formed. Therefore, chG⃗(Mj,i) ̸= ∅, implying chG⃗(M) ̸= ∅, which contradicts
(2).

(2)⇔ (3)⇔ (4). By [28, Lemma 1] and Theorem 1, we have (2)⇔ (3)⇔ (4) is evident.

28

E Additional Experimental Results

For the DSCS and DCR algorithms applied to random graphs with n ∈ {500, 1000, 1500}, the
detailed average running times (in seconds) and the standard errors are presented in Table E.1. DSCS
clearly shows a significant advantage over DCR, and this advantage becomes more pronounced as n
and p increase. Furthermore, from Table E.1 and Figure 3, it can be observed that for a given n and
|M |, the average running time of DCR increases rapidly with increasing p, whereas DSCS exhibits
a slower and approximately linear growth. Additionally, the standard errors of DSCS’s average
running times are consistently smaller than those of the DCR Algorithm, indicating greater stability
in DSCS’s running times across various random graphs.

Due to the extremely long computational time of the DCR Algorithm for large graphs, for n ∈
{2000, 4000, 6000, 8000, 10000}, we only record the average running time of the DSCS Algorithm.
The results are shown in Table E.2 and in Figure E.1. It can be seen that even for high-dimensional
variables (e.g., n = 10000) and denser graphs (e.g., p = 0.1), the DSCS Algorithm can quickly
determine the estimation-collapsibility of the underlying DAG model. For example, when n = 10000,
p = 0.1, and |M | = 9000, the average running time of the algorithm is just over 150 seconds. For a
given n and p, the average running time increases approximately linearly with |M |.
Based on these observations, it can be concluded that the DSCS Algorithm is capable of efficiently
addressing the structure dimensionality reduction problem for high-dimensional Bayesian network
with complex structure. It should be noted that some of the standard errors are relatively large due to
the inherent randomness in the generation of the graphs and the random selection of the set M . For
certain node subsets M , after finding chG∗(M) ̸= ∅ during the initial check (as per Lines 1–2 in the
DSCS Algorithm), the DSCS algorithm can immediately stop, leading to a very fast determination of
collapsibility. On the other hand, for some node subsets M with chG∗(M) = ∅, further checks are
required (as per Lines 3–9 in the DSCS Algorithm), resulting in longer algorithm’s running times.

29

Table E.1: The comparison of our method (DSCS) and detecting sequential c-removability (DCR)
on n = {500, 1000, 1500} in terms of average running time (in seconds) is shown below. The best
result is bolded, and the values in parentheses represent the corresponding standard error of the mean.

n = 500 p = 0.1 p = 0.05 p = 0.01 p = 0.005

|M | DSCS DCR DSCS DCR DSCS DCR DSCS DCR

50 0.037 (0.002) 6.782 (0.368) 0.036 (0.002) 2.070 (0.108) 0.038 (0.002) 0.214 (0.017) 0.045 (0.003) 0.201 (0.017)

100 0.084 (0.012) 16.826 (0.591) 0.067 (0.003) 4.625 (0.219) 0.086 (0.003) 0.517 (0.023) 0.078 (0.003) 0.424 (0.015)

150 0.131 (0.013) 27.009 (0.918) 0.096 (0.003) 7.662 (0.331) 0.114 (0.005) 0.841 (0.028) 0.127 (0.005) 0.673 (0.019)

200 0.164 (0.016) 40.370 (1.724) 0.143 (0.005) 11.049 (0.491) 0.158 (0.006) 1.205 (0.031) 0.170 (0.005) 0.937 (0.023)

250 0.209 (0.018) 54.264 (2.449) 0.171 (0.006) 16.999 (0.608) 0.207 (0.011) 1.571 (0.045) 0.220 (0.009) 1.231 (0.033)

300 0.260 (0.015) 75.285 (3.780) 0.200 (0.007) 21.460 (0.834) 0.246 (0.008) 2.083 (0.042) 0.263 (0.008) 1.560 (0.043)

350 0.285 (0.025) 97.047 (4.818) 0.215 (0.007) 24.746 (0.787) 0.277 (0.009) 2.624 (0.050) 0.315 (0.011) 1.798 (0.041)

400 0.320 (0.019) 119.086 (5.475) 0.264 (0.008) 33.311 (1.150) 0.333 (0.008) 3.222 (0.063) 0.347 (0.016) 2.015 (0.058)

450 0.318 (0.011) 170.611 (10.245) 0.336 (0.015) 47.666 (1.794) 0.376 (0.010) 3.631 (0.098) 0.414 (0.010) 2.274 (0.057)

n = 1000 p = 0.1 p = 0.05 p = 0.01 p = 0.005

|M | DSCS DCR DSCS DCR DSCS DCR DSCS DCR

100 0.072 (0.003) 73.394 (4.399) 0.077 (0.005) 33.503 (1.043) 0.068 (0.003) 0.795 (0.040) 0.083 (0.011) 0.444 (0.021)

200 0.162 (0.022) 155.271 (8.417) 0.154 (0.008) 71.075 (2.613) 0.163 (0.006) 1.862 (0.089) 0.162 (0.009) 1.026 (0.031)

300 0.239 (0.015) 288.592 (13.691) 0.231 (0.011) 124.544 (4.822) 0.247 (0.010) 3.099 (0.075) 0.252 (0.009) 1.803 (0.052)

400 0.317 (0.029) 407.435 (18.389) 0.327 (0.020) 211.905 (5.278) 0.297 (0.010) 4.915 (0.174) 0.307 (0.009) 2.499 (0.062)

500 0.411 (0.036) 536.017 (25.026) 0.397 (0.011) 264.091 (6.637) 0.425 (0.017) 6.534 (0.175) 0.412 (0.014) 3.533 (0.095)

600 0.506 (0.042) 680.526 (24.354) 0.448 (0.013) 311.422 (10.226) 0.500 (0.015) 8.765 (0.259) 0.472 (0.011) 4.504 (0.117)

700 0.556 (0.034) 850.131 (34.481) 0.520 (0.010) 398.958 (12.231) 0.589 (0.010) 10.998 (0.280) 0.595 (0.015) 5.639 (0.121)

800 0.680 (0.040) 1117.812 (46.555) 0.618 (0.019) 532.457 (13.992) 0.633 (0.016) 13.038 (0.384) 0.675 (0.017) 6.856 (0.200)

900 0.957 (0.043) 2261.976 (110.833) 0.684 (0.022) 690.801 (23.449) 0.711 (0.018) 16.399 (0.317) 0.760 (0.019) 8.240 (0.222)

n = 1500 p = 0.1 p = 0.05 p = 0.01 p = 0.005

|M | DSCS DCR DSCS DCR DSCS DCR DSCS DCR

150 0.133 (0.008) 236.812 (13.180) 0.118 (0.005) 150.433 (6.096) 0.157 (0.018) 3.304 (0.122) 0.125 (0.005) 1.010 (0.042)

300 0.324 (0.048) 568.481 (29.277) 0.249 (0.010) 367.563 (11.262) 0.244 (0.009) 7.675 (0.212) 0.250 (0.011) 2.284 (0.072)

450 0.440 (0.036) 954.506 (48.465) 0.350 (0.012) 574.021 (25.087) 0.416 (0.020) 12.767 (0.295) 0.399 (0.014) 3.717 (0.074)

600 0.520 (0.033) 1332.058 (71.645) 0.483 (0.013) 812.180 (32.477) 0.587 (0.030) 17.383 (0.454) 0.517 (0.011) 5.968 (0.178)

750 0.762 (0.025) 2238.503 (152.182) 0.619 (0.025) 1133.943 (39.954) 0.648 (0.015) 24.295 (0.741) 0.650 (0.014) 8.123 (0.211)

900 1.133 (0.064) 3520.613 (180.584) 0.748 (0.019) 1523.037 (62.566) 0.755 (0.022) 32.174 (0.836) 0.786 (0.019) 10.265 (0.166)

1050 1.215 (0.044) 4341.776 (286.208) 1.179 (0.024) 2729.115 (106.079) 0.897 (0.021) 38.334 (1.004) 0.907 (0.024) 12.746 (0.241)

1200 1.656 (0.096) 5134.046 (283.055) 1.286 (0.024) 3417.224 (144.841) 1.012 (0.023) 49.865 (1.158) 1.066 (0.029) 15.470 (0.290)

1350 2.015 (0.104) 8190.708 (432.034) 1.441 (0.050) 4533.135 (251.822) 1.143 (0.023) 62.412 (1.634) 1.211 (0.025) 20.240 (0.439)

30

Table E.2: The average running time (in seconds) of the DSCS Algorithm for n =
{2000, 4000, 6000, 8000, 10000} is shown below. The values in parentheses represent the corre-
sponding standard error of the mean.

n = 2000 |M |

p 300 500 700 900 1100 1300 1500 1700 1900

0.1 0.224 (0.007) 0.467 (0.047) 0.711 (0.074) 0.941 (0.065) 1.254 (0.079) 1.476 (0.043) 1.878 (0.111) 2.286 (0.088) 2.605 (0.086)

0.05 0.212 (0.008) 0.427 (0.045) 0.604 (0.038) 0.761 (0.038) 0.985 (0.044) 1.197 (0.047) 1.486 (0.073) 1.652 (0.051) 1.884 (0.055)

0.01 0.198 (0.008) 0.333 (0.017) 0.483 (0.008) 0.627 (0.025) 0.804 (0.013) 0.907 (0.031) 1.235 (0.034) 1.342 (0.022) 1.542 (0.066)

0.005 0.193 (0.003) 0.299 (0.012) 0.488 (0.008) 0.598 (0.028) 0.884 (0.023) 0.968 (0.015) 1.144 (0.049) 1.335 (0.033) 1.526 (0.036)

n = 4000 |M |

p 600 1000 1400 1800 2200 2600 3000 3400 3800

0.1 2.067 (0.277) 3.649 (0.276) 9.452 (1.365) 9.545 (0.423) 11.170 (1.028) 12.221 (0.468) 13.542 (0.558) 18.441 (0.611) 18.644 (0.639)

0.05 1.188 (0.069) 2.445 (0.178) 3.673 (0.198) 5.992 (0.369) 7.914 (0.369) 8.525 (0.341) 9.571 (0.300) 10.378 (0.352) 13.106 (0.419)

0.01 0.785 (0.02) 1.388 (0.037) 1.940 (0.048) 2.521 (0.047) 3.167 (0.055) 3.722 (0.055) 4.515 (0.075) 5.020 (0.070) 5.185 (0.075)

0.005 0.713 (0.013) 1.118 (0.018) 1.585 (0.019) 2.110 (0.028) 2.591 (0.038) 3.172 (0.040) 3.677 (0.046) 3.983 (0.045) 4.312 (0.033)

n = 6000 |M |

p 700 1300 1900 2500 3100 3700 4300 4900 5500

0.1 5.113 (0.719) 13.039 (5.657) 18.291 (1.918) 16.860 (0.794) 24.530 (1.671) 28.101 (3.856) 36.581 (1.203) 33.083 (0.936) 41.539 (0.768)

0.05 3.833 (0.579) 11.335 (0.769) 6.426 (0.503) 12.089 (1.115) 11.453 (0.601) 19.033 (1.839) 21.954 (1.167) 26.738 (1.708) 33.046 (2.450)

0.01 1.237 (0.051) 2.665 (0.093) 4.335 (0.235) 5.629 (0.191) 6.432 (0.275) 10.354 (0.280) 8.922 (0.254) 10.107 (0.352) 12.461 (0.491)

0.005 1.093 (0.034) 2.188 (0.060) 3.133 (0.081) 3.847 (0.063) 4.351 (0.107) 5.235 (0.096) 5.993 (0.109) 6.894 (0.106) 7.912 (0.125)

n = 8000 |M |

p 1200 2000 2800 3600 4400 5200 6000 6800 7600

0.1 15.135 (1.681) 35.980 (6.579) 68.231 (2.654) 51.077 (4.126) 64.551 (14.213) 62.069 (8.846) 89.584 (27.189) 145.404 (16.038) 179.517 (13.521)

0.05 10.916 (1.363) 14.425 (1.165) 38.392 (10.641) 34.438 (1.347) 36.200 (1.150) 62.324 (10.026) 67.810 (5.679) 84.859 (10.766) 87.497 (3.082)

0.01 3.725 (0.276) 6.715 (0.318) 8.771 (0.501) 12.433 (0.990) 15.978 (0.893) 20.836 (0.968) 29.116 (1.401) 30.605 (2.686) 38.041 (5.092)

0.005 3.077 (0.255) 5.765 (0.272) 4.979 (0.091) 6.670 (0.097) 9.418 (0.747) 11.517 (0.908) 15.398 (2.049) 13.895 (0.370) 15.198 (0.179)

n = 10000 |M |

p 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.1 8.344 (1.881) 48.183 (24.965) 47.575 (12.945) 48.310 (6.958) 79.901 (21.997) 168.653 (60.873) 177.600 (58.726) 143.666 (18.392) 157.696 (14.677)

0.05 19.787 (2.858) 31.385 (8.300) 44.263 (3.244) 61.835 (2.463) 75.421 (3.410) 99.957 (8.690) 158.791 (23.000) 169.996 (18.396) 100.834 (2.665)

0.01 4.197 (0.346) 7.108 (0.263) 9.011 (0.411) 12.373 (1.468) 14.324 (0.948) 21.176 (2.523) 22.330 (1.223) 29.326 (2.701) 30.720 (1.408)

0.005 3.229 (0.253) 3.569 (0.065) 7.257 (0.141) 11.486 (0.161) 12.277 (0.309) 14.850 (0.237) 19.788 (0.349) 24.472 (0.270) 30.169 (1.331)

To further highlight the advantages of the DSCS algorithm, we selected three real-world Bayesian
networks from the R-package bnlearn—WIN95PTS (76 nodes, 112 edges), LINK (724 nodes,
1125 edges), and MUNIN (1041 nodes, 1397 edges). A detailed description of the three Bayesian
networks can be found at https://www.bnlearn.com/bnrepository/. For each network, we
randomly sampled a vertex subset M of size |M |, then applied DCR (on the DAGs) or DSCS (on the
corresponding CPDAGs) to test estimate-collapsibility over M . For every combination of network

31

https://www.bnlearn.com/bnrepository/

300 500 700 900 1100 1300 1500 1700 1900

0.5

1

1.5

2

0

2.7

1000 1400 1800 2200 2600 3000 3400 3800

4

8

12

16

0

21

700 1300 1900 2500 3100 3700 4300 4900 5500

10

20

30

0

43

1200 2000 2800 3600 4400 5200 6000 6800 7600

40

80

120

160

0

200

1000 2000 3000 4000 5000 6000 7000 8000 9000

50

100

150

200

0

240

n=4000
Av

er
ag

e
ru

nn
in

g
tim

e

|M|

 p=0.1 p=0.05 p=0.01 p=0.005

|M| |M|

|M||M|

Av
er

ag
e

ru
nn

in
g

tim
e

n=6000

n=8000

n=2000

n=10000

Figure E.1: The average running time of the DSCS Algorithm for different n and p as a function of
|M |.

and |M |, we ran 30 simulations and recorded the average running time (in seconds), as reported in
the Table E.3.

Table E.3: Comparison of average running time (seconds) between DSCS and DCR methods on three
real-world Bayesian networks (the best result is bolded).

WIN95PTS: |V | = 76, |E⃗| = 112

|M | 5 13 21 29 37 45 53 61 69

DSCS 0.003 0.007 0.012 0.019 0.023 0.026 0.031 0.035 0.047
DCR 0.020 0.040 0.067 0.104 0.144 0.189 0.255 0.289 0.333

LINK: |V | = 724, |E⃗| = 1125

|M | 50 130 210 290 370 450 530 610 690

DSCS 0.027 0.072 0.114 0.168 0.238 0.343 0.442 0.596 0.660
DCR 0.141 0.449 0.830 1.359 2.199 3.253 4.425 6.147 7.024

MUNIN: |V | = 1041, |E⃗| = 1397

|M | 100 200 300 400 500 600 700 800 900

DSCS 0.058 0.108 0.182 0.260 0.383 0.511 0.710 0.742 0.983
DCR 0.333 0.771 1.588 2.822 4.168 6.762 9.260 11.954 15.420

Table E.3 demonstrates the decisive superiority of the proposed DSCS method over the DCR baseline
in computational efficiency. Across all three real-world Bayesian networks, DSCS consistently
achieves significantly lower running times for every tested size of the query set |M |. The performance
gap is particularly evident on the largest network (MUNIN), where at |M | = 900, DSCS completed
in under a second while DCR required over 15 seconds. These results robustly confirm that DSCS
is a more efficient and scalable solution for determining estimation-collapsibility, making it highly
suitable for application on high-dimensional Bayesian networks.

32

	Introduction
	Preliminaries and Related Works
	Graphical terminologies
	Bayesian network and estimation-collapsibility
	Existing criteria for checking estimation-collapsibility

	Fast CPDAG-Based Verification of Estimation-Collapsibility
	Sequential c -simplicial set
	DSCS: fast CPDAG-based verification of estimation-collapsibility

	Simulation
	Conclusion
	Graph terminology
	Estimation-collapsibility for UG models
	Summary of Key Concepts
	Technical Proofs of The Main Results
	Additional Experimental Results

