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Abstract
In this paper, we analyze the applicability of the Causal Identification algorithm to causal time series
graphs with latent confounders. Since these graphs extend over infinitely many time steps, deciding
whether causal effects across arbitrary time intervals are identifiable appears to require computation
on graph segments of unbounded size. Even for deciding the identifiability of intervention effects
on variables that are close in time, no bound is known on how many time steps in the past need
to be considered. We give a first bound of this kind that only depends on the number of variables
per time step and the maximum time lag of any direct or latent causal effect. More generally, we
show that applying the Causal Identification algorithm to a constant-size segment of the time series
graph is sufficient to decide identifiability of causal effects, even across unbounded time intervals.
Keywords: Causal Graphs, Time Series, Causal Identification

1. Introduction

Causal inference on time series data has many important applications across fields such as eco-
nomics, finance, earth and climate science (Runge et al., 2019a; Moraffah et al., 2021; Zhang et al.,
2014). In these domains, conducting large-scale experiments to determine causal effects is often
impractical or impossible, but large observational time-series data sets are frequently available.
Developing statistical methods that leverage these datasets to infer causal relationships is thus an
important problem. Causal time series graphs (also called Dynamic Bayesian Networks) provide a
well-studied model for this purpose (Assaad et al., 2022). The vertices of these graphs represent a
set of observable random variables recurring at each non-negative integer time, and the edges rep-
resent direct causal effects or latent confounding. The key assumption for these graphs is that the
causal structure is time-invariant, that is, edges are invariant under time shifts. However, the joint
distributions of sets of variables need not be time-invariant. Numerous methods have been explored
for causal discovery and causal feature selection in these graphs, both in the setting without latent
variables (Runge et al., 2019b; Pfister et al., 2019) and with latent variables (Malinsky and Spirtes,
2018; Mastakouri et al., 2021; Gerhardus and Runge, 2020).

In many cases, models without latent variables can be overly simplistic. Particularly for time
series data, latent confounding may not only result from unobserved covariates, but can also arise
when the time resolution of the observations is too coarse, even when all relevant variables are ob-
served (Peters et al., 2017; Runge, 2018). In this paper we focus on causal time series graphs with
latent variables. In this setting, even when a causal graph is discovered, the problem of causal iden-
tification remains. It is well-known that some causal effects in certain graphs may be unidentifiable
(Pearl, 2009). For finite graphs the question of causal identifiability is answered precisely by the
Causal ID algorithm (Tian and Pearl, 2002; Shpitser and Pearl, 2006; Huang and Valtorta, 2008;
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Shpitser and Pearl, 2008). However, in infinite periodic graphs representing a time series model,
causal identification is less well-studied. The only existing work on causal identifiability in these
graphs that we are aware of does not address the challenges described below (Blondel et al., 2016).
Other work on causal identifiability in time series settings is based on Granger causality (Eichler
and Didelez, 2007, 2009), which is known to have certain limitations due to violations of its as-
sumptions (Peters et al., 2017). One might argue that the direction of time allows the standard ID
algorithm to be applied even to infinite time series graphs. Indeed, one can show that identifying
the causal effect of a variable X on Y requires considering only the section of the graph up to the
time at which Y occurs, see Section 3. However, the following problems remain:

1. While the causal effect of X on Y is not affected by variables that lie in the future of Y, there
may be chains of confounding variables in the past that obstruct identifiability (see Section 3
for an example). Hence, computing the identifiability of P(Y|do X) would naively require
running the Causal ID algorithm on the entire past of the time series, from its initialization up
to the occurrence of Y. Consider, for instance, a causal time series graph modeling Earth’s
climate system. Using the ID algorithm to check the identifiability of the causal effect be-
tween two variables in the near-present, would require computation scaling with the length of
Earth’s history, which is clearly infeasible. For causal discovery in such settings, one often
just considers the past up to a maximum time interval τmax. However, τmax is typically cho-
sen empirically and this may distort causal effects (see Gerhardus and Runge (2020), Section
2.3). A priori, the effect of such a cut-off on causal identification is unclear.

2. Suppose we are interested in the causal effect between recurring variables X and Y but do not
know the time span over which this effect might occur. A causal time series graph employed
to investigate this effect should have the property that the causal effect of Xt on Yt+∆ is
identifiable for all time steps ∆ ≥ 0 in the future. However, the Causal ID algorithm cannot
decide in finite computing time whether a graph has this property. The only option seems to
be to restrict the question of identifiability up to a maximum time step ∆max, which would
still require increasing computing time in ∆max.

In this paper, we provide solutions to both problems through the following result.

Theorem 1 Let G be a periodic causal graph and let X, Y ⊆ V(G) be disjoint subsets of variables.
Let tmin be the smallest time index of a variable in X and tmax the largest time index of a variable
in Y. Then, there exists a constant C such that the following holds:

1. Running the Causal ID algorithm on the segment of G with time indices between tmin − C
and tmax suffices to determine identifiability of the causal effect of X on Y.

2. If the causal effect of X on Y is unidentifiable, then there is a time shift ∆ such that the
time difference between X and Y−∆ is at most C and the causal effect of X on Y−∆ is also
unidentifiable.

See Section 2 for formal definitions of the notation used above. Our result implies that iden-
tifiability of the causal effect between any two sets of variables can be decided in computing time
that scales with C but not with the size of the time interval between these variables or the distance
to the initialization time of the causal model, see Figure 1. Here, C depends only on the number of
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variables per time step and the maximum time lag of any direct or latent causal effect. In Section 3
we show specific upper and lower bounds on the scaling of C. While our upper bound exhibits
exponential growth, it is only a first generic bound, applicable to any periodic graph structure. For
specific graphs, C could potentially be much smaller. In fact, we are only able to construct graphs
that require a linear scaling of C in the number of variables per time step, and we present this
construction together with the proofs of our results in Section 3.

. . .

X

Y−∆

. . .

Y

. . .

C layers C layers

Figure 1: A priori, deciding if the causal effect of X on Y is identifiable requires running the causal
ID algorithm on the entire part of the time series graph shown above - from its initial-
ization up to the layer containing Y. Our results show that instead computation on a
constant-size section around X (i.e. just the middle part) suffices, using a shifted version
Y−∆ of Y.

2. Preliminaries

First, we define notions related to the causal time series graphs that we consider and fix notation
that we use throughout this paper. To clearly distinguish sets of variables from singletons, we use
bold letters to denote sets. Graphs are denoted by calligraphic letters. All graphs in this paper are
acyclic directed mixed graphs (ADMGs), i.e. graphs with both directed edges representing direct
causal effects and bidirected edges representing confounding variables.

Definition 1 (periodic causal graph) A periodic causal graph of width w is an acyclic directed
mixed graph with vertices labeled by Xi,t for 0 ≤ i ≤ w − 1 and t ∈ N. We say, the vertex Xi,t is
in row i and column, or time, t and denote the set of vertices at time t by X∗,t.

The graph is periodic in that (Xi,t, Xi′,t′) is a directed (resp. bidirected) edge if and only if the
same is true of (Xi,t+1, Xi′,t′+1) and directed edges do not go backwards in time, i.e. each directed
edge (Xi,t, Xi′,t′) must have t ≤ t′ (allowing for contemporaneous edges).

Definition 2 (segments) We denote the segment of a periodic causal graph G that is induced by the
vertices Xi,t with 0 ≤ i ≤ w − 1 and T ≤ t ≤ T′, by G[T, T′].

Definition 3 (latency) A periodic causal graph is of latency L if for any directed or bidirected edge
(Xi,t, Xi′,t′), we have |t − t′| ≤ L.

Definition 4 (distance between sets) Let G be a periodic causal graph with vertex set V(G). For
a vertex V ∈ V(G), define layer(V) = t, if V = Xi,t. For a set X ⊆ V(G), we define its minimum
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Figure 2: Periodic graph of width 3 and latency 1. Directed edges are solid, bidirected dashed.

layer and maximum layer by

tmin(X) = min{layer(V)|V ∈ X}
tmax(X) = max{layer(V)|V ∈ X}.

Finally, the distance between two sets X, Y ⊆ V(G) is given by

dist(X, Y) = min{| layer(V1)− layer(V2)| | V1 ∈ X, V2 ∈ Y}.

Definition 5 (time shifts) Let G be a periodic causal graph and X ⊆ V(G) with tmin(X) ≥ ∆ for
some ∆ ∈ N. Then, we define the shifted sets

X+∆ = {Xi,t+∆|Xi,t ∈ X},
X−∆ = {Xi,t−∆|Xi,t ∈ X}.

See Figure 2 for an example of a periodic causal graph. A periodic causal graph G represents a
causal model, which is given by a set of equations

Xi,t = fi,t(Pa(Xi,t,G), ε i,t).

Here, Pa(Xi,t,G) denotes the parents of Xi,t in G and the ε i,t are random noise variables that may be
correlated for variables Xi,t that are connected by a bi-directed edge, and are independent otherwise.
Note that we do not require the functions fi,t to be the same for different time steps. For two sets
of variables X, Y ⊆ V(G), P(Y|do X = x) denotes the probability distribution of the variables
Y, when the causal model is generated using the above equations, but with the variables in X set
to values given by x. This distribution quantifies the causal effect of setting X = x on Y. In what
follows, we usually do not specify the assignment of values x. We say that P(Y|do X) is identifiable
if one can compute it, knowing only the causal graph G and the total probability distribution of the
variables V(G) but not the specific functions fi,t or noise terms ε i,t giving rise to the causal model.
For a more detailed introduction into graphical causal models and do-calculus, see Pearl (2009), and
see Blondel et al. (2016) for time series graphs specifically.

We will make use of the well-known characterization of identifiability for causal effects in finite
causal graphs, developed by Tian and Pearl (2002); Shpitser and Pearl (2006); Huang and Valtorta
(2008). The following definitions and results are according to Shpitser and Pearl (2008):
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Definition 6 (C-component) An ADMG G where any pair of vertices is connected by a path of
bidirected edges is called a C-component (confounded component).

Definition 7 (forest) An ADMG G in which each vertex has at most one child is called a forest. The
set of vertices R ⊆ V(G) that do not have any children is called the set of roots of G.

Definition 8 (C-forest) An ADMG G that is both a C-component and a forest is called a C-forest.

Now, for a vertex set X in an ADMG G, let GX be the graph that is obtained from G by deleting
all incoming directed edges to X. We say that a vertex V is an ancestor of vertex W if there is a
directed path from V to W (using only directed edges). The set of ancestors of W with respect to
the graph G is denoted An(W,G).

Definition 9 (hedge) Let G be an ADMG on a set of variables V(G). For two disjoint vertex sets
X, Y ⊆ V(G), a hedge for X, Y is given by two subgraphs F ,F ′ ⊆ G such that

(1) F ′ is a subgraph of F ;

(2) X only occurs in F , i.e. X ⊆ V(F \ F ′);

(3) F and F ′ are C-forests;

(4) F and F ′ have the same set R of roots, and R ⊆ An(Y,GX).

Lemma 1 (Causal ID algorithm (Shpitser and Pearl, 2008)) Given a causal graph G and dis-
joint vertex sets X, Y ⊆ V(G), then P(Y|do X) is unidentifiable if and only if there exists a hedge
for X, Y in G. Moreover, there is a polynomial-time algorithm, the Causal ID algorithm 1, that can
decide whether or not a hedge exists for a given pair of sets X, Y.

Algorithm 1 is a simplified version of the Causal ID algorithm, only giving a Boolean answer
in case that the causal effect is identifiable. Here, G[A] denotes the induced graph on a vertex set
A ⊆ V(G), and C(G) denotes the set of C-components of G.

Algorithm 1 Causal ID algorithm (adapted from Shpitser and Pearl (2008))

1 Input: ADMG G and disjoint sets X, Y ⊆ V(G).
2 Output: True if P(Y|do X) is identifiable, hedge (F ,F ′) otherwise.
3 if X = ∅, return True.
4 if V(G) \ An(Y) ̸= ∅, return ID(G[An(Y)], X ∩ An(Y), Y).
5 let W = V(G) \ (X ∪ An(Y,GX)); if W ̸= ∅, return ID(G, X ∪ W, Y).
6 if C(G \ X) = {S1, . . . ,Sk}, return

∧
i ID(V(G) \ V(Si), V(Si),G).

7 if C(G \ X) = {S}:
8 if C(G) = {G)}, return the hedge (G,G ∩ S).
9 if ∃S ⊆ S ′, such that S ′ ∈ C(G), return ID(G[V(S ′)], X ∩ S ′, Y).

10 if S ∈ C(G), return True.
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Figure 3: The effect P(X2,2|do X1,1) is unidentifiable because of the unique hedge (F ,F ′) with
V(F ) = {X0,0, X1,1, X2,1, X2,2} and V(F ′) = {X2,2}. Note that this unidentifiability
cannot be detected when only looking at the layers from X1,1 onward.

3. Results

A priori, the Causal ID algorithm only works for causal graphs of finite size. However, note that
in a periodic causal graph G corresponding to a time series, directed edges are only going forward
in time. First of all, this implies that the causal effect from Xi,t on Xi′,t′ is trivially identifiable for
t > t′ (as we have P(Xi′,t′ |do Xi,t) = P(Xi′,t′)). Moreover, it is possible to compute identifiability
of P(Xi′,t′ |do Xi,t) for t ≤ t′, by running the Causal ID algorithm on the segment of the graph G
that includes all vertices up to time t′. To see this, note that any hedge for Xi,t, Xi′,t′ can only consist
of ancestors of Xi′,t′ . However, it is possible that there exists a hedge for Xi,t, Xi′,t′ intersecting time
layers strictly smaller than t, see Figure 3. This implies that even just identifying the causal effect
between two single variables in the same layer t a priori requires running the Causal ID algorithm
on G[0, t], which takes computing time that grows polynomially in wt. Moreover, using the Causal
ID algorithm, one cannot answer the following question: Is the causal effect P(Xi′,t′ |do Xi,t) iden-
tifiable for all t′ > t?

Our results resolve both these problems. The following two statements are refinements of The-
orem 1 that we stated in the introduction.

Proposition 1 Let G be a periodic causal graph with width w and latency L and let C = L · 2Lw ·
(Lw + 1)2Lw+2. For subsets X, Y ⊆ V(G), we have that P(Y|do X) is unidentifiable if and only if
there exists a hedge for X, Y in G[max(tmin(X)− C, 0), tmax(Y)].

Proposition 2 Let G be a periodic causal graph with width w and latency L and let C = L · 2Lw ·
(Lw + 1)2Lw+2. Consider subsets X, Y ⊆ V(G) such that tmax(X) ≤ tmin(Y). If P(Y|do X) is
unidentifiable, then there exists a time shift ∆ > dist(X, Y)− C, such that P(Y−∆|do X) is also
unidentifiable.

Note that part 1 of Theorem 1 follows from Proposition 1 and part 2 of Theorem 1 follows from
repeatedly applying Proposition 2. In particular, these statements imply that whenever there are
unidentifiable effects P(Y|do X) in the causal graph G, then they can be found by examining only
a constant number of layers of G, independent of the time distance between X and Y or the size of
the past of the time series. Indeed, consider the following algorithm:
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Algorithm 2 Decides identifiability of P(Y+∆|do X) for all ∆ ≥ 0.

1 Input: Periodic causal graph G of width w and latency L, and disjoint sets X, Y ⊆ V(G)
such that tmax(X) = tmin(Y).

2 Output: True if P(Y+∆|do X) is identifiable for all ∆ ≥ 0, hedge (F ,F ′) for some Y+∆, X
otherwise.

3 Let C = L · 2Lw · (Lw + 1)2Lw+2.
4 For ∆ = 0, . . . , C − 1:
5 Let B = ID(G[tmin(X)− C, tmax(Y+∆)], X, Y+∆), if B ̸= True, return B.
6 return True.

Corollary 1 Let G be a periodic causal graph and X, Y ⊆ V(G) such that tmax(X) = tmin(Y).
Then, Algorithm 2 correctly computes whether P(Y+∆|do X) is identifiable for all ∆ ∈ N.

Corollary 1 follows directly from part 2 of Theorem 1. The value we are using for C in Algo-
rithm 2 grows exponentially in the width w and the latency L of the causal graph. It would be of
great interest to improve this dependence. The following statement shows that for some graphs, C
has to grow at least linearly in w.

Theorem 2 For infinitely many w, there exist periodic causal graphs Gw with width w and latency
1, such that P(Y|do X) is unidentifiable for some singletons X, Y ∈ V(G) but the causal effects
P(Z|do X) are identifiable for all Z ∈ V(G) satisfying dist(X, Z) ≤ w

3 − 1.

4. Proofs

4.1. Cutting hedges to show Propositions 1, 2

The proof of Proposition 1 relies on the following idea: By Lemma 1 and time-directionality, we
know that P(Y|do X) is unidentifiable if and only if there is a hedge for X, Y in G[0, tmax(Y)]. Now
if this hedge exits the section G[tmin(X)− C, tmax(Y)] for a very large C, then it must be extremely
stretched out. By periodicity of G, there must then be two columns of G where the structure of the
hedge is basically the same. We will show that cutting out the section of the graph between these
two columns will result in a new hedge of smaller size. After doing this repeatedly, one eventually
gets a hedge that is contained in G[tmin(X) − C, tmax(Y)]. Proposition 2 follows from the same
idea, except that we are cutting out sections of the graph between X and Y as long as X and Y are
too far away from each other. To formalize what we mean by the structure of the hedge in a given
column, consider the following two definitions:

Definition 10 Let F ⊆ G be a subgraph of a periodic causal graph G. We say that vertices Xi,t
and Xi′,t are left-connected in F if there exists a path of bidirected edges between them that goes
only through vertices of F that are of the form Xj,t′ , t′ ≤ t.

Definition 11 For two sets of vertices X, Y ⊆ G, let (F ,F ′) be a hedge for X, Y. Let αF (t) be the
ordered partition of {0, . . . , w − 1} into w + 1 blocks (some possibly empty), defined as follows:
the first contains the row-indices of all vertices in X∗,t \ V(F ), while the subsequent blocks are the
sets of row indices of the left-connected components of X∗,t ∩ V(F ). If there are fewer than w such
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t1 t2

Figure 4: Two levels t1 and t2 with the same left-connected structure. Assuming that indices range
from 0 to 6 from top to bottom, and all vertices and paths are in F , we get αF (t1) =
αF (t2) = (∅, {1, 2, 3}, {4, 6}, {5}, {7}).

blocks, then the final blocks of αF (t) are empty. The blocks which correspond to left-connected
components are sorted by the smallest index i they contain. Likewise define αF ′(t). Finally, define
β(t) = X∗,t ∩ An(Y,GX).

See Figure 4 for an illustration of Definition 11. Next, we formalize what we mean by cutting
out a segment of the graph.

Definition 12 We define the map Φb,∆ : G \ G[b + 1, b + ∆] → G to be the map that acts as the
identity on G[0, b] and translates G[b + ∆ + 1, ∞) by −∆ layers. That is,

Φb,∆(Xi,t) =

{
Xi,t if t ≤ b
Xi,t−∆ if t > b + ∆.

The map Φ can be thought of as an operation that cuts the part G[b + 1, b + ∆] out of the graph
G and then rewires the loose ends at layers b and b + ∆ + 1 together according to the periodic
graph structure of G. The key property of Φ is the following: due to the periodic structure of G,
whenever (V, W) is a directed (resp. bidirected) edge for V, W ∈ V(G \ G[b + 1, b + ∆]), then
(Φ(V), Φ(W)) is also a directed (resp. bidirected) edge in G (and the converse almost holds, except
if V ∈ X∗,b and W ∈ X∗,b+∆+1). Here, we are assuming that G is of latency 1, and we will cover
graphs with higher latency later. Our main technical result states that cutting at two layers on which
the values of αF , αF ′ , and β align for a hedge (F ,F ′) creates a new (and smaller) hedge:

Lemma 2 Let G be a periodic causal graph of latency L = 1, and let (F ,F ′) be a hedge for the
vertex sets X, Y ⊆ G. Assume G[b + 1, b + ∆] ∩ (X ∪ Y) = ∅, and we have αF (b) = αF (b +
∆), αF ′(b) = αF ′(b + ∆), and β(b) = β(b + ∆). Then, (Φb,∆(F \ G[b + 1, b + ∆]), Φb,∆(F ′ \
G[b + 1, b + ∆])) is a hedge for Φb,∆(X), Φb,∆(Y).
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Proof Fix b and ∆ satisfying the hypotheses of Lemma 2. To simplify notation, let

Φ = Φb,∆,

F̃ = Φ(F \ G[b + 1, b + ∆]),

F̃ ′ = Φ(F ′ \ G[b + 1, b + ∆]).

Following Definition 9, it suffices to prove that the following statements hold:

(a) F̃ ′ ⊆ F̃ ;

(b) Φ(X) ⊆ V(F̃ \ F̃ ′);

(c) F̃ and F̃ ′ are C-connected.

(d) Every vertex in F̃ has at most one child.

(e) F̃ and F̃ ′ have the same set R̃ of roots, and R̃ ⊆ An(Φ(Y),GΦ(X )).

Statements (a) and (b) follow straight from the definitions and the fact that Φ is injective. To
show Statement (c), we first prove that any two vertices Xi,b, Xj,b ∈ V(F̃ ) on layer b are C-
connected in F̃ . Since αF (b) = αF (b + ∆), we know that Xi,b+∆, Xj,b+∆ ∈ V(F ), so there must
be a path of bidirected edges in G that connects these two vertices and only goes through vertices
of F . Suppose this path hits layer b + ∆ exactly m times at the vertices Xk1,b+∆, . . . , Xkm,b+∆ in
this order, where Xk1,b+∆ = Xi,b+∆ and Xkm,b+∆ = Xj,b+∆. We claim that then there is a path
of bidirectional edges connecting Xk1,b, . . . , Xkm,b in F̃ . Observe that, since G has latency 1, for
any ℓ ∈ {1, . . . , m − 1} the path from Xkℓ,b+∆ to Xkℓ+1,b+∆ in F is either completely contained
in G[0, b + ∆] or in G[b + ∆, ∞). In the first case, Xkℓ,b+∆ and Xkℓ+1,b+∆ are left-connected in
F . Hence, Xkℓ,b and Xkℓ+1,b are also left-connected in F , but to the left of layer b, we have F ∩
G[0, b] = F̃ ∩ G[0, b], so both vertices are also left-connected in F̃ . In the second case, if the path
from Xkℓ,b+∆ to Xkℓ+1,b+∆ in F stays to the right of layer b + ∆, then we can just translate it by
−∆ layers to get a path from Xkℓ,b to Xkℓ+1,b in F̃ . Hence, Xi,b and Xj,b are C-connected in F̃ .
Now we show that any two vertices Ã, B̃ ∈ V(F̃ ) are C-connected in F̃ . Consider the path π of
bidirectional edges between A = Φ−1(Ã) and B = Φ−1(B̃) that goes through F . If the path π
never hits layer b or b + ∆, then Φ(π) is a path between Ã and B̃ (it either stays the same or it gets
translated as a whole). Otherwise, let A′ and B′ be the first vertices that are on layer b or b + ∆ and
get hit by the path π when starting from A or B respectively. Let π1 denote the path from A to A′

and π2 denote the path from B to B′. Then Φ(π1) is a path from Ã to Φ(A′) in F̃ and Φ(π2) is
a path from B̃ to Φ(B′) in F̃ . Both, Φ(A′), Φ(B′) ∈ V(F̃ ) are in layer b, so they must also be
C-connected in F̃ . Hence, Ã and B̃ are C-connected in F̃ . This shows F̃ is C-connected and the
same statement follows for F̃ ′ analogously.

To show Statement (d), assume that Ã ∈ V(F̃ ) has at least two children B̃, C̃ in F̃ . Let
A = Φ−1(Ã), B = Φ−1(B̃), and C = Φ−1(C̃). We know that A, B, C ∈ V(F ). Moreover,
if A, B, C are fully contained in G[0, b] or A, B, C are fully contained in G[b + ∆ + 1, ∞), then
B, C are children of A, which is a contradiction to F being part of a hedge. Hence, we must have
A ∈ X∗,b and B, C ∈ X∗,b+∆+1. Let A+∆ ∈ Xb+∆ be the vertex A shifted ∆ layers to the right.
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Then, B and C are children of A+∆ but since αF (b) = αcF(b + ∆), we have A+∆ ∈ V(F ). This
is again a contradiction to F being part of a valid hedge and shows the statement.

To prove Statement (e), observe first that one can show F̃ and F̃ ′ have the same set R̃ of roots
using the same logic as the proof of Statement (d): Whenever there is a vertex R̃, which is a root of
F̃ but not of F̃ ′ or vice-versa, one can map it back (and potentially switch from layer b to b + ∆) to
find a vertex R, which is a root of F but not of F ′ or vice-versa, leading to a contradiction. Hence,
it only remains to show that R̃ ⊆ An(Φ(Y),GΦ(X)). Consider a vertex R̃ ∈ R̃ and its preimage

R = Φ−1(R̃) ∈ R, where R is the set of roots of F ,F ′. We know that there is a directed path π in
GX from R to some vertex Y ∈ Y. If π does not hit layer b, then it cannot hit the region G[b, b + ∆]
either, so Φ(π) is a directed path in GΦ(X) from R̃ to Φ(Y) ∈ Φ(Y). Otherwise, let Xi,b be the
first vertex that π hits in layer b. Since Xi,b is an ancestor of Y in GX and β(b) = β(b + ∆), we
know that there is a directed path τ in GX from the vertex Xi,b+∆ to some vertex Y′ in Y. Hence,
following the path Φ(π) from R̃ to Xi,b and the path Φ(τ) from Xi,b to Φ(Y′) results in a path from
R̃ to Φ(Y) in GΦ(X). This completes the proof of Lemma 2.

Now we show how Lemma 2 implies Proposition 1.
Proof (of Proposition 1). Let G be a periodic causal graph of width w and latency L, and X, Y ⊆
V(G). Wlog we may assume that tmin(X) ≤ tmin(Y). By Lemma 1, it suffices to show that
if there exists a hedge for X, Y, then there is also a hedge for X, Y in G[tmin(X) − C, tmax(Y)].
Note that, by time-directionality, any hedge for X, Y is contained in G[0, tmax(Y)]. Now, to be
able to apply Lemma 2, we transform G into a periodic causal graph H of width Lw and latency
1, by simply relabeling the vertices of G such that layer t of H contains the vertices of the layers
Lt, Lt+ 1, . . . , Lt+ t− 1 of G (that is, we aggregate each L consecutive time steps of G). Let X′, Y′

be the sets in V(H) corresponding to X, Y. Since the graphs G and H are isomorphic, if there exists
a hedge for X, Y in G, then there exists a hedge for X′, Y′ in H. Let (F ,F ′) such a hedge with
maximal tmin(F ). We claim that tmin(X′)− tmin(V(F )) ≤ C/L = 2Lw(Lw + 1)2Lw+2.

Suppose not, and consider the functions αF (t), αF ′(t) and β(t). Since H has width Lw, both
the partitions αF (t) and αF ′(t) can attain at most (Lw + 1)Lw+1 values, while the function β(t)
can attain at most 2Lw values. Hence, by the pigeonhole principle, there must exist some layers b
and b + ∆, such that tmin(F ) ≤ b < b + ∆ < tmin(X′) and αF (b) = αF (b + ∆), αF ′(b) =
αF ′(b + ∆), and β(b) = β(b + ∆). Now, by Lemma 2, there exists a hedge (F̃ , F̃ ′) for X′

−∆, Y′
−∆

that has tmin(F̃ ) = tmin(F ). After shifting this hedge by ∆ layers to the right, we get another hedge
for X′, Y′ with strictly larger minimum layer than tmin(F ). This is a contradiction to our minimal-
ity assumption, and hence (F ,F ′) must have been contained in H[tmin(X′) − C/L, tmax(Y′)].
After reversing the aggregation of layers, we find a corresponding hedge for X, Y contained in
G[tmin(X)− C, tmax(Y)], which completes the proof.

The proof of Proposition 2 is analogous, except that we are using the pidgeonhole principle on
the layers between tmax(X) and tmin(Y) to apply Lemma 2.

4.2. Constructing examples to show Theorem 2

The goal of this section is to construct periodic causal models Gw that satisfy the statement of
Theorem 2. For this, it is enough to define an appropriate acyclic graph Aw on X∗,0 ∪ X∗,1. We
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can extend Aw to a periodic, latency 1 graph Gw by including a directed (resp. bidirected) edge
(Xi,t, Xi′,t′) in Gw if (Xi,0, Xi′,t′−t) is in Aw.

Specifically, let w = 3k + 1 and define Gw to have (see Figure 5):

• Directed edges from every Xi,t to Xi,t+1 and to Xi+3,t+1.

• Bidirected edges from every Xi,t to Xi+1,t+1 and to Xi+2,t+1.

• In both cases the index i ranges from 0 to w − 1 and we use addition modulo w.

usetikzlibraryarrows.meta

X0,0 X0,1

X1,0 X1,1

X2,0 X2,1

X3,0 X3,1

X4,0 X4,1

X5,0 X5,1

X6,0 X6,1

Figure 5: The graph A7.

First, we claim that in Gw, the causal effect P(Xw−1,w−2| do X0,0) is unidentifiable. To show
this, we construct a hedge for X0,0, Xw−1,w−2. Our hedge consists of the following sets of vertices
(see Figure 6)

F = {X0,0, X0,1, X1,1, Xw−3,0, Xw−2,0, Xw−1,0, Xw−1,1}
F ′ = {X0,1, X1,1, Xw−3,0, Xw−2,0, Xw−1,0, Xw−1,1}

Both F and F ′ have the same set of roots R = {X0,1, X1,1, Xw−1,1}. We now claim that there
are directed paths from each of these roots to our effect vertex Xw−1,w−2. Clearly, since we have
directed edges from Xi,j to Xi,j+1, there is a (“horizontal”) directed path from Xw−1,1 to Xw−1,w−2.
Additionally, since w is of the form 3k + 1, X0,1 has a directed (“diagonal”) path to the directed
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X0,0 X0,1

X1,1

Xw−3,0

Xw−2,0

Xw−1,0

Xw−1,1 Xw−1,1+2(w−1)/3

Figure 6: Hedge for w = 7

chain of vertices in row w − 1 (meeting it at the vertex Xw−1,(w−1)/3+1), and therefore, it has a
directed path to Xw−1,w−2. Finally, from X1,1 there is a diagonal path of length 2(w − 1)/3 which
wraps around (vertically) until it reaches the vertex Xw−1,2(w−1)/3+1, from which a path continues
horizontally to Xw−1,w−2. (This last wrap-around path is key to the construction of the hedge.
Indeed, if the graph were constructed with the same edge types but without vertical coordinates
being taken modulo w, Pr(Xj,t| do X0,0) would be identifiable for all Xj,t.) Finally, it is easy to
verify that the bidirected edges make both F and F ′ C-connected; this is illustrated for w = 7 in
Figure 6.

Due to the existence of this hedge, Pr(Xw−1,w−2| do X0,0) is not identifiable. We now prove
that for every t ≤ w

3 − 1 and every j, P(Xj,t| do X0,0) is identifiable.
First, assume j is not divisible by 3. In this case, there is no directed path from X0,0 to Xj,t. This

can be seen as all directed edges vertically descend by either 0 rows or 3 rows, so all descendants
of X0,0 have a first index that is divisible by 3 up to time w−1

3 . We deduce that the causal effect
P(Xj,t|do X0,0) is trivial, and hence identifiable.

It remains to consider the vertices Xj,t with 3|j. The hedge for such a vertex must consist
solely of ancestors of Xj,t, which are vertices of the form Xj′,t′ with t′ ≤ t, and j′ satisfying either
0 ≤ j′ ≤ j, or else w + j − 3(t − t′) ≤ j′ ≤ w − 1.

As a consequence, there are two rows, namely the rows indexed j + 1 and j + 2, which cannot
contain the vertices of a hedge for Xj,t. Therefore (after re-indexing the rows to start from j + 1 and
end at j), we can consider all directed and bidirected edges among hedge vertices to occur within a
vertical segment, all directed edges skipping 0 or 3 rows, and all bidirected edges skipping 1 or 2
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rows. The bidirected edges therefore can never connect two hedge vertices. The larger part of the
hedge, F , must contain more than one vertex. It therefore cannot be C-connected. Consequently,
there is no hedge, so P(Xj,t|do X0,0) is identifiable. This proves Theorem 2.

5. Discussion

There remains an exponential gap between our upper and lower bounds on the number C of layers
that are necessary to consider when deciding identifiability of a causal effect in a time series graph.
We suspect that the lower bound is closer to the truth, but further work is needed to confirm this
suspicion. If this can be done, it will make the result much more attractive computationally. Note
that our upper bound on C is for graphs of generic periodic structure. It would be an interesting
question of whether the bound can be improved given certain structural conditions on the periodic
causal graph.

Our setting is also generic in that we do not impose time-invariance on the functional depen-
dencies of the underlying causal system. This is why our results focus on deciding whether causal
effects are identifiable rather than identifying them, as we do not expect a non-trivial speed-up for
the latter (at least not in the sense of part 2 of Theorem 1). Efficient identification in time series
graphs, potentially under the additional assumption of time-invariant dynamics, is therefore still a
subject for further research.

A separate topic of interest is the condition number of the Causal ID mapping in periodic graphs
(see Schulman and Srivastava (2016) for a definition). When one tries to translate an in-principle
“perfect statistics” result into an actual application with empirical data, the sample size scales
roughly proportionally to this condition number. It is known that, in general, the condition number
can vary widely between different graphs: it can be exponential in the size of the graph (Schulman
and Srivastava, 2016), but on the other hand is also known to scale only as exp(c log c) if the C-
components of the graph are of size bounded by c (Gordon et al., 2021). It seems quite likely that
the periodic structure should impose further constraints that will help to upper bound the condition
number, but this is at present an entirely open question.
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