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Abstract
Clinical trials are essential for drug develop-001
ment but are extremely expensive and time-002
consuming to conduct. It is beneficial to study003
similar historical trials when designing a clin-004
ical trial. However, lengthy trial documents005
and lack of labeled data make trial similarity006
search difficult. We propose a zero-shot clini-007
cal trial retrieval method, called Trial2Vec,008
which learns through self-supervision without009
the need for annotating similar clinical trials.010
Specifically, the meta-structure of trial doc-011
uments (e.g., title, eligibility criteria, target012
disease) along with clinical knowledge (e.g.,013
UMLS knowledge base 1) are leveraged to au-014
tomatically generate contrastive samples. Be-015
sides, Trial2Vec encodes trial documents016
considering meta-structure thus producing com-017
pact embeddings aggregating multi-aspect in-018
formation from the whole document. We show019
that our method yields medically interpretable020
embeddings by visualization and it gets 15%021
average improvement over the best baselines022
on precision/recall for trial retrieval, which is023
evaluated on our labeled 1600 trial pairs. In024
addition, we prove the pretrained embeddings025
benefit the downstream trial outcome predic-026
tion task over 240k trials.027

1 Introduction028

Clinical trials are essential for developing new med-029

ical interventions (Friedman et al., 2015). Many030

considerations come into the design of a clinical031

trial, including study population, target disease, out-032

come, drug candidates, trial sites, and eligibility033

criteria, as in Table 1. It is often beneficial to learn034

from related clinical trials from the past to design035

an optimal trial protocol. However, accurate simi-036

larity search based on the lengthy trial documents037

is still in dire need.038

Self-supervision based pretraining has delivered039

promising performances for many NLP and CV040

1https://www.nlm.nih.gov/research/
umls/index.html

Table 1: An example of the meta-structure of clinical
trial document drawn from ClinicalTrials.gov.

Title Effects of Electroacupuncture With Different Fre-
quencies for Major Depressive Disorder

Description Two groups of subjects will be included 55 sub-
jects in electroacupuncture with 2Hz group...

Eligibility
Criteria

1. Inclusion Criteria:
1.1. Patients suffering from MDD in accordance
with the diagnostic criteria;
1.2. Hamilton Depression Scale score is between
21 and 35 (mild to moderate MDD);...
2. Exclusion Criteria:
2.1 Patients with bipolar disorder;
2.2 Patients with schizophrenia or other mental
disorders; ...

Outcome
Measures

1. Change in anxiety and depression severity
measure by Self-rating depression scale
2. Change in the severity of depression measure
by Hamilton depression scale ..

Disease Major Depressive Disorder
Intervention electroacupuncture
... ...

tasks with fine-tuning (Devlin et al., 2019; Liu 041

et al., 2019; He et al., 2021; Bao et al., 2021). 042

Nevertheless, we find there was few work on zero- 043

shot document retrieval as most address document 044

retrieval in a supervised fashion (Humeau et al., 045

2019; Khattab and Zaharia, 2020; Guu et al., 2020; 046

Karpukhin et al., 2020; Lin et al., 2020; Luan et al., 047

2021; Wang et al., 2021; Hofstätter et al., 2020; 048

Li et al., 2020; Zhan et al., 2021; Hofstätter et al., 049

2021b,a; Jiang et al., 2022) or improve document 050

pre-training for further supervision (Beltagy et al., 051

2020; Zaheer et al., 2020; Ainslie et al., 2020; 052

Zhang et al., 2021). 053

Recently, a burgeoning body of research (Gao 054

et al., 2021; Wu et al., 2021; Wang et al., 2022) pro- 055

poses to execute self-supervised learning to train 056

semantic-meaningful sentence embeddings free of 057

labels. However, there are still challenges to apply 058

them for document similarity search: 059

• Lengthy documents. These zero-shot BERT re- 060
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trieval methods all work on short sentences (usu-061

ally below 10 words) similarity search while trial062

documents are often above 1k words. Simply en-063

coding lengthy trials by truncating and averaging064

embeddings of all remaining tokens inevitable065

leads to poor retrieval quality.066

• Inefficient contrastive supervision. These un-067

supervised methods take simple instance discrim-068

inative contrastive learning (CL) within batch,069

e.g., SimCSE (Gao et al., 2021) takes one sen-070

tence into the encoder twice to get the positive071

pairs and all other sentences as the negative. This072

paradigm has low supervision efficiency to re-073

quire a large batch size, large data, and long074

training time, which is infeasible for learning075

from long trial documents.076

In this work, we propose Clinical Trial TO077

Vectors, Trial2Vec, a zero-shot trial document078

similarity search using self-supervision. We de-079

sign a trial encoding framework considering the080

meta-structure to rid the risk that semantic mean-081

ing vanishes due to the uniform average of token082

embeddings. Meanwhile, the meta-structure is uti-083

lized to generate contrastive samples for efficient084

supervision. Medical knowledge is introduced to085

further enhance the negative sampling for CL. Our086

main contributions are:087

• We are the first to study the trial-to-trial retrieval088

task by proposing a label-free SSL model which089

is able to encode long trials into semantic mean-090

ingful embeddings without labels.091

• We propose a data-efficient CL method on med-092

ical knowledge and trial meta-structure, which093

is promising to be extended to further zero-shot094

structured document retrieval.095

• We demonstrate the superiority of Trial2Vec096

on a trial relevance dataset of 1600 trials an-097

noated by domain experts. Also, we show098

Trial2Vec can assist better downstream trial099

outcome prediction on a dataset of 240k trials.100

2 Related works101

2.1 Text & document retrieval102

General texts. Early information retrieval meth-103

ods depend on manual engineering (Robertson and104

Zaragoza, 2009; Yang et al., 2017). By contrast,105

dense retrieval methods based on distributional106

word representations, e.g., Word2Vec (Mikolov107

et al., 2013), Glove (Pennington et al., 2014),108

Doc2Vec (Le and Mikolov, 2014), etc., become 109

popular crediting to their superior performance. 110

The advent of deep models, especially the contex- 111

ualized encoders like BERT (Devlin et al., 2019), 112

encourages an explosion of neural retrieval meth- 113

ods (Van Gysel et al., 2016; Zamani et al., 2018; 114

Guo et al., 2016; Dehghani et al., 2017; Onal et al., 115

2018; Reimers and Gurevych, 2019; Chang et al., 116

2019; Nogueira and Cho, 2019; Chen et al., 2021; 117

Lin et al., 2020; Xiong et al., 2020; Karpukhin 118

et al., 2020; Yates et al., 2021). However, most of 119

them are based on supervised training on sentence 120

pairs from general texts, e.g., SNLI (Bowman et al., 121

2015). When label is expensive to acquire, as in the 122

clinical trial case, we need zero-shot learning mod- 123

els. Although, there arose some works to perform 124

post-processing on pretrained BERT embeddings 125

to improve their retrieval quality (Li et al., 2020; 126

Su et al., 2021), their performances are far from 127

optimal without specific training. 128

Clinical trials. Traditional clinical trial query 129

search systems (Tasneem et al., 2012; Tsatsaro- 130

nis et al., 2012; Jiang and Weng, 2014; Park et al., 131

2020) are established on protocol databases. Con- 132

trast to dense retrieval, these methods rely on entity 133

matching with rules thus not flexible enough. Re- 134

cent works (Roy et al., 2019; Rybinski et al., 2020, 135

2021) propose supervised neural ranking for clini- 136

cal trial query search. However, all of them work 137

on matching trial titles or relevant segments with 138

an input user query. While Trial2Vec can also 139

assist query search, it is the first to encode complete 140

trial documents for the trial-level similarity search. 141

2.2 Text contrastive learning 142

Contrastive learning is a heated discussed topic 143

recently in NLP and CV (Chen et al., 2020a,b; 144

Chen and He, 2021; Carlsson et al., 2020; Zhang 145

et al., 2020; Wu et al., 2020; Yan et al., 2021; Gao 146

et al., 2021). CL is one main topic under the SSL 147

domain. It sheds light on reaching comparable 148

performance as supervised learning free of man- 149

ual annotations. While CL has been applied to 150

enhance downstream NLP applications like text 151

classification (Li et al., 2021; Zhang et al., 2022), 152

a few (Wang et al., 2020; Zhang et al., 2020; Yan 153

et al., 2021; Yang et al., 2021) are able to do zero- 154

shot retrieval. Nonetheless, all focus on enhancing 155

sentence embeddings by manipulating text only 156

therefore are suboptimal when facing lengthy doc- 157

uments. By contrast, Trial2Vec uses the doc- 158

2



Trial1

Trial3

Trial2

Dise1

Intv1

Dise2 Intv2

Title1 Title2

Title3

Inputs: unlabeled trials w/ meta-structure

Trial1 Title+

Trial2Dise1

Title-

InfoNCE

Trial1

Title1

entity1

entity2

…

Training: meta-structure guided

Training: medical knowledge guided

device

entity extract & link

entity1+

entity1-

diagn

osis

entity2+

entity2-

TrialBERT

TrialBERT

Trial2Vec Training

Inputs: external knowledge databases

Trial2Vec Applications

Trial4

Title4 Intv4 Dise4 Out4 Ctx4

TrialBERT TrialBERT

Trial2Vec Encoder

Local 

embeds

Global 

embed Trial4

Trial2Vec

encoder

Trial-Trial search

Trial topic 

visualization

Trial5

Trial5

Trial2Vec

encoder

Title4 TrialBERT

Query-Trial search

Predictor
Trial termination 

prediction

Trial2Vec

encoder

Figure 1: Overview of the proposed Trial2Vec framework. Top left: the training strategy that accounts for
unlabeled input trial documents with meta-structure along with an external medical knowledge database, e.g., UMLS.
Top right: The contrastive supervision splits into meta-structure and knowledge guided, respectively. Bottom left:
our method hierarchically encodes trials into local and global embeddings on the trial meta-structure. Bottom right:
The encoded trial-level embeddings can be used to trial search, query trial search and downstream tasks.

ument meta-structure with domain knowledge to159

obtain and facilitate document embeddings.160

3 Method161

In this section, we present the details of162

Trial2Vec. The main idea is to jointly learn163

the global and local representations from trial doc-164

uments considering their meta-structure. Specifi-165

cally, observed in Table 1, trial document consists166

of multiple sections while the key attributes (e.g.,167

title, disease, intervention, etc.) occupy a small por-168

tion of the whole document. This motivates us to169

design a hierarchical encoding and the correspond-170

ing contrastive learning framework. The overview171

is illustrated in Fig. 1. Our method generates lo-172

cal attribute embeddings using the TrialBERT173

backbone separately, then aggregating local embed-174

dings with a learnable attention module to obtain175

the global trial embeddings that emphasize sig-176

nificant attributes. We present the pretraining of177

backbone encoder in §3.1; then we describe the178

Table 2: List of text corpora used for continual pretrain-
ing of TrialBERT.

Corpus Number of words

ClinicalTrials.gov 240M
Medical Encyclopedia 3M
Wikipedia Articles 11M

hierarchical encoding process based on the back- 179

bone encoder in §3.2; the hierarchical constrastive 180

learning methods considering meta-structure and 181

medical knowledge are elucidated in §3.3; at last, 182

we elicit the applications of the proposed frame- 183

work in §3.4. 184

3.1 Backbone encoder: TrialBERT 185

We leverage the BERT architecture as the backbone 186

encoder in the framework. In detail, we use the 187

WordPiece tokenizer together with the BioBERT 188

(Lee et al., 2020) pretrained weights as the start 189
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point. We continue the pretraining with Masked190

Language Modeling (MLM) loss on three trial-191

related data sources: ClinicalTrial.gov 2, Medical192

Encyclopedia 3, and Wikipedia Articles 4, see Ta-193

ble 2, to get TrialBERT. ClinicalTrials.gov is a194

database that contains around 400k clinical trials195

conducted in 220 countries. Medical Encyclope-196

dia has 4K high-quality articles introducing termi-197

nologies in medicine. We also retrieve relevant198

Wikipedia articles corresponding to the 4k termi-199

nologies of Medical Encyclopedia.200

3.2 Global and local embeddings by201

Trial2Vec202

TrialBERT embeddings pretrained with MLM203

on clinical corpora still hold weak semantic mean-204

ing. Meanwhile, previous sentence embedding205

BERTs all take an average pooling over token206

embeddings, which causes the semantic meaning207

vanishing when applied to lengthy clinical trials.208

Therefore, we propose Trial2Vec architecture209

that exploits the global and local embeddings for210

trial based on its meta-structure.211

We split the attributes of a trial into two distinct212

sets: key attributes and contexts. The first com-213

ponent includes the trial title, intervention, condi-214

tion, and main measurement, which are sufficient215

to retrieve a pool of coarsely relevant trial candi-216

dates; the second includes descriptions, eligibility217

criteria, references, etc., which differentiate trials218

targeting similar diseases or interventions because219

they provide the multi-facet details regarding dis-220

ease phases, study designs, targeted populations,221

etc. According to this design, local embeddings222

{vatt}Ll=1 ∈ RL×D are produced separately on223

each key attribute. On the other hand, a context em-224

bedding is obtained by encoding the context texts225

vctx ∈ RD. Note that the above encoding is all226

conducted by the same encoder.227

We further refine the local embeddings by con-228

text embeddings and aggregate them to yield the229

global trial embedding vg ∈ RD. The refinement230

is performed by multi-head attention, as231

vg = MultiHeadAttn(vctx, {vl}Ll ,W), (1)232

which relocates the attention over key attributes to233

enhance discrminative power of the yielded global234

embedding.235

2https://clinicaltrials.gov/
3https://medlineplus.gov/encyclopedia.

html
4https://www.wikipedia.org/

3.3 Hierarchical contrastive learning 236

For data-efficient contrastive learning, we utilize 237

the meta-structure & medical knowledge for con- 238

trasting local and global embeddings hierarchically. 239

Global contrastive loss. The first objective is to 240

maximize the semantic in trial embeddings for sim- 241

ilarity search. Instead of doing in-batch instance- 242

wise contrastive loss like SimCSE, we propose to 243

sample informative negative pairs by exploiting the 244

trial meta-structure. As shown by Fig. 1, some 245

trials may be linked by a common attribute like 246

disease or intervention. Denote a trial consisting of 247

several attributes by 248

x = {xtitle, xintv, xdise, xout, xctx}, (2) 249

we can build an informative negative sample by 250

replacing its title with a trial which also targets for 251

disease xdise by 252

x− = {xtitle−, xintv, xdise, xout, xctx}. (3) 253

Meanwhile, we apply a random attribute dropout 254

towards x to formulate a positive sample as 255

x+ = {xtitle, xdise, xout, xctx}. (4) 256

InfoNCE loss is utilized in a batch of B trials as 257

Lg = −
B∑
i=1

log
exp(ψ(vgi,v

+
gi))∑

v−gi∈V
−
i
exp(ψ(vgi,v

−
gi))

, (5) 258

where the negative sample set V−
i = {v−

gi} ∪ 259

{vgj}j ̸=i; ψ(·, ·) measures the cosine similarity 260

between two vectors. The global contrastive loss 261

here encourages the model to capture the attribute 262

of interest by discriminating the subtle differences 263

of input trial attributes, which prevent the seman- 264

tic meanings from vanishing due to the average 265

pooling over all trial texts. 266

Local contrastive loss. In addition to the global 267

trial embeddings, we put supervision on local em- 268

beddings to inject medical knowledge into the 269

model. Unlike general texts, two medical texts can 270

be overlapped word-wise dramatically but still de- 271

scribe two distinct things5, which is challenging for 272

similarity computing. To strengthen TrialBERT 273

discriminative power for medical texts, we extract 274

key medical entities in each text as 6 275

E(xatt) = {e1, e2, e3, e4}, (6) 276

5For instance, replacing Olaparib in "A Phase I, Open-
Label, 2 Part Multicentre Study to Assess the Safety and Ef-
ficacy of Olaparib" with another intervention like Vitamin D
renders a total different study topic.

6Done by SciSpacy https://scispacy.apps.
allenai.org/.
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then a positive sample is built by mapping one277

entity e1 to its canonical name or a similar entity278

under the same parental conception ê1 defined by279

UMLS as280

E(xatt+) = {ê1, e2, e3, e4}. (7)281

Similarly, negative sample is built by deletion or282

replacing one entity with another dissimilar one.283

InfoNCE loss is therefore used by284

Ll = −
B∑
i=1

log
ψ(vli,v

+
li )∑

V−
li
exp(ψ(vli,v

−
li ))

. (8)285

We at last jointly optimize the global and con-286

trastive losses as287

L = Lg + Ll. (9)288

3.4 Application of global & local embeddings289

The hierarchical contrastive learning offers extraor-290

dinary flexibility of Trial2Vec for various down-291

stream tasks in zero-shot learning. At first, the292

global trial embeddings vg can be directly used293

for similarity search by comparing trial pair-wise294

cosine similarities. The computed trial embeddings295

can also help identify and discover research topics296

when we apply visualization techniques. On the297

other hand, we can also execute query search using298

partial attributes crediting to the contrastive learn-299

ing between local and global embeddings. When300

we need do trial-level predictive tasks, e.g., trial ter-301

mination prediction, a classifier can be attached to302

the pretrained global trial embeddings and learned;303

the backbone TrialBERT is also capable of of-304

fering short medical sentence retrieval because of305

local contrastive learning.306

4 Experiments307

In this section, we conduct five types of experi-308

ments to answer the following research questions:309

• Exp 1 & 2. How does Trial2Vec perform in310

complete and partial retrieval scenarios?311

• Exp 3. How do the proposed SSL tasks / embed-312

ding dimension contribute to the performance?313

• Exp 4. Is the trial embedding space interpretable314

and aligned with medical ontology?315

• Exp 5. How useful do well-trained Trial2Vec316

contribute to downstream tasks, e.g., trial out-317

come prediction, after fine-tuned?318

• Exp 6. Qualitative analysis of the retrieval results319

and what are the differences of Trial2Vec and320

baselines?321

Table 3: Statistics of trial status in ClinicalTrials.gov
database where we conclude Approved & Completed as
completion; Suspended, Terminated, and Withdrawn as
the termination for trial outcome prediction.

Approved Completed Suspended Terminated Withdrawn
174 210,237 1,658 22,208 10,439
Available Enrolling Unavailable Not recruiting Recruiting
237 3,662 45,128 18,171 60,362

Completion Termination Summary Others
210,411 34,305 244,716 127,560

4.1 Dataset & Setup 322

Trial Similarity Search. We created a labeled trial 323

dataset to evaluate the retrieval performance where 324

paired trials are labeled as relevant or not. We keep 325

311,485 interventional trials from the total 399,046 326

trials. We uniformly sample 160 trials as the query 327

trials. To overcome the sparsity of relevance, we 328

take advantage of TF-IDF (Salton et al., 1983) to 329

retrieve ranked top-10 trials as the candidate to be 330

labeled, resulting in 1,600 labeled pairs of clini- 331

cal trials. Unlike general documents, the clinical 332

trial document contains many medical terms and 333

formulations. We recruited clinical informatics re- 334

searchers, and each is assigned 400 pairs to label 335

as relevant or not using label {1, 0}. To keep la- 336

beling processes in line, we specify the minimum 337

annotation guide for judging relevance: (1) same 338

disease; or (2) same intervention and similar dis- 339

eases (e.g., cancer on distinct body parts). We use 340

precision@k (prec@k) and recall@k (rec@k) to 341

evaluate and report retrieval performances, where 342

prec@k =
# of relevant trials in the top k results

k
,

(10)

343

rec@k =
# of relevant trials in the top k results

# of relevant trials in all candidate trials
.

(11)

344

Trial termination prediction. We can take the 345

pretrained Trial2Vec embeddings for predicting 346

the trial outcomes, i.e., if the trial will be terminated 347

or not. We add one additional fully-connected layer 348

on the tail of Trial2Vec. The targeted outcomes 349

are in the status section of clinical trials, described 350

by Table 3. We formulate the outcome prediction 351

as a binary classification problem to predict the 352

Completion or Termination of trials where we get 353

210,411 and 34,305 trials as positive and negative 354

labeled, respectively. We take 70% of all as the 355

training set and 20% as the test set; the remaining 356

10% is used as the validation set for tuning and 357
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Table 4: Precision/Recall of the retrieval models on the labeled test set. Values in parenthesis show 95% confidence
interval. Best values are in bold.

Method prec@1 prec@2 prec@5 rec@1 rec@2 rec@5
TF-IDF 0.5132(0.063) 0.4386(0.045) 0.3828(0.057) 0.1871(0.038) 0.3172(0.026) 0.6147(0.044)
Word2Vec 0.7492(0.071) 0.6476(0.044) 0.4712(0.033) 0.3008(0.054) 0.4929(0.042) 0.7939(0.041)
TrialBERT 0.7264(0.050) 0.6219(0.060) 0.4324(0.027) 0.3257(0.051) 0.4896(0.054) 0.7611(0.041)
BERT-Whitening 0.7476(0.094) 0.6630(0.045) 0.4525(0.029) 0.3672(0.045) 0.5832(0.042) 0.8355(0.021)
BERT-SimCSE 0.6788(0.039) 0.5995(0.035) 0.4714(0.021) 0.2824(0.034) 0.4566(0.035) 0.8098(0.025)
Trial2Vec 0.8740(0.026) 0.7524(0.049) 0.5027(0.055) 0.4053(0.066) 0.6449(0.060) 0.8769(0.030)

early stopping. We utilize three metrics for eval-358

uation: accuracy (ACC), area under the Receiver359

Operating Characteristic (ROC-AUC), and area un-360

der Precision-Recall curve (PR-AUC).361

4.2 Baselines & Implementations362

We take the following baselines for retrieval: TF-363

IDF (Salton et al., 1983; Salton and Buckley, 1988),364

Word2Vec (Mikolov et al., 2013), BERT-Whitening365

(Huang et al., 2021; Su et al., 2021), and BERT-366

SimCSE (Gao et al., 2021). Details of these meth-367

ods can be seen in Appendix A.368

We keep all methods’ embedding dimensions at369

768. We start from a BERT-base model to continue370

pre-training on clinical domain corpora, yielding371

our TrialBERT, which supports as the backbone372

for BERT-Whitening and BERT-SimCSE for fair373

comparison. We take 5 epochs with batch size374

100 and the learning rate 5e-5. In the second SSL375

training phase, AdamW optimizer with a learning376

rate of 2e-5, batch size of 50, and weight decay of377

1e-4 is used. Experiments were done with 6 RTX378

2080 Ti GPUs.379

4.3 Exp 1. Complete Trial Similarity Search380

Since labels are unavailable in the training phase,381

we only chose unsupervised/self-supervised base-382

lines. Results are shown by Table 4. Trial2Vec383

outperforms all baselines with a great margin. It384

has around 15% improvement on each metrics than385

the best baselines on average. For baselines, all ex-386

cept for TF-IDF have similar performance. When387

k is small, the precision gap between Trial2Vec388

and baselines is large; when k is large, all methods389

encounter precision reduction. That is because the390

pool of candidate trials are 10 but the number of391

positive pairs for each are often less than 5, which392

limits the maximum of the numerator of prec@k393

in Eq. (10). Likewise, Trial2Vec also shows394

stronger performance in rec@k because it is dis-395

counted by the maximum number of positive pairs.396

title title
+kw

title
+intv

title
+dz

all
w/o ctx

all
w/ ctx

0.5

0.6

0.7

0.8

0.9

pr
ec

is
io

n

p@1
p@2

title title
+kw

title
+intv

title
+dz

all
w/o ctx

all
w/ ctx

0.2

0.4

0.6

re
ca

ll

r@1
r@2

Figure 2: Performance of Trial2Vec on the partial
retrieval scenarios. We use a different part of the trial
as queries to retrieve similar trials, including keyword
kw, intervention intv, disease dz, context ctx. Error bars
indicate the 95% confidence interval of results.

Interestingly, the state-of-the-art sentence 397

BERTs, e.g., BERT-whitening and BERT-simCSE, 398

have limited improvement over original BERT and 399

even Word2Vec. Unlike general documents, clin- 400

ical trials may be overlapped in much content but 401

still be irrelevant if the key entities are different. 402

This special characteristic causes the assumption 403

of a document with similar passage is relevant 404

(Craswell et al., 2020) used in general document 405

retrieval but invalidated in clinical trial retrieval. 406

Without well-designed SSL, it is hard for these 407

methods to learn these subtle differences. More- 408

over, clinical trial documents are often much longer 409

than the general documents in those open datasets. 410

There are 622.4 words per trial on average, while 411

the general STS benchmark has below 15 words 412

per sample, e.g., STS-12: 10.8, STS-13: 8.8, STS- 413

14: 9.1, etc (Cer et al., 2017). We also observed 414

the simple negative sampling strategy of SimCSE 415
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Figure 3: Ablation study on the contribution of each
Task to the final result. att, mc, ctx are short for attribute,
matching, context, respectively. all indicate the full
Trial2Vec that all tasks are used.
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Figure 4: Analysis of the influence of embedding dimen-
sions on retrieval quality by Trial2Vec: embedding
dim in 128, 256, 512, 768. Error bars show the 95%
confidence interval.
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Figure 5: 2D visualization of the trial-level embeddings obtained by Trial2Vec (dimension reduced by t-SNE). It
can be seen trials are automatically classified into clusters by topic (diseases) in the embedding space. For example,
a series of tumor-related trials (e.g., Breast and Pancreatic Cancers) are on the bottom of the embedding space.

is insufficient to learn effective long document em-416

beddings. In comparison, Trial2Vec leverages417

the meta-structure of clinical trials to focus on the418

most informative attributes, with additional context-419

based refinement, producing embeddings superior420

in semantic representation.421

4.4 Exp 2. Partial Query Trial Retrieval422

We further investigate the partial trial retrieval sce-423

nario where users intend to find similar trials with424

short and incomplete descriptions, e.g., partial at-425

tributes. Results are illustrated by Fig 2. We start426

by measuring how well Trial2Vec only utilizes427

the title for trial retrieval. It is witnessed that us-428

ing title is sufficient to yield comparable perfor-429

mance as the best baseline for complete retrieval430

Table 5: Trial outcome prediction performances of base-
lines and Trial2Vec, after fine-tuned.

Method ACC ROC-AUC PR-AUC
TF-IDF 0.8571(0.002) 0.7194(0.004) 0.2960(0.008)
Word2Vec 0.8574(0.002) 0.7189(0.005) 0.2906(0.007)
TrialBERT 0.8559(0.002) 0.7277(0.006) 0.3109(0.006)
Trial2Vec 0.8622(0.002) 0.7332(0.004) 0.3137(0.007)

shown in Table 4. Nonetheless, we identify that 431

concatenating keywords or intervention with the 432

title reduces performance. Combining title and 433

disease yields similar performance as involving 434

all attributes. This phenomenon signifies that the 435

disease plays a vital role in trial similarity and is 436

always recommended to be involved in query trial 437

retrieval. 438
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Table 6: Case studies comparing the retrieval performance of the Trial2Vec with baseline models. Due to the
space limits, only title and NCT ID of trials are given.

Query Trial TF-IDF TrialBERT Trial2Vec

[NCT02972294] HiFIT Study :
Hip Fracture: Iron and Tranex-
amic Acid (HiFIT)

[NCT01221389] Study Using
Plasma for Patients Requiring
Emergency Surgery (SUPPRES)

[NCT04744181] Patient Blood
Management In CARdiac sUrgi-
cal patientS (ICARUS)

[NCT01535781] Study of the
Effect of Tranexamic Acid Ad-
ministered to Patients With Hip
Fractures. Can Blood Loss be
Reduced?

[NCT01590342] Diclofenac for
Submassive PE (AINEP-1)

[NCT04006145] A Phase 2
Study of Elobixibat in Adults
With NAFLD or NASH

[NCT04156854] Intravas-
cular Volume Expansion to
Neuroendocrine-Renal Function
Profiles in Chronic Heart Failure

[NCT00247052] Non Steroidal
Anti Inflammatory Treatment for
Post Operative Pericardial Effu-
sion

4.5 Exp 3. Ablation Studies439

We conducted ablation studies to measure how SSL440

tasks and embedding dimensions contribute to fi-441

nal results. Results are shown by Fig. 3, where442

we remove one Task for each setting and reeval-443

uate. Here, att mc and ctx mc corresponds to the444

global contrastive loss by negative sampling on445

key attributes and contexts, respectively; semantic446

mc indicates the local contrastive loss. We ob-447

serve that ctx mc is very important. Without it,448

only attributes of trials are included in the train-449

ing and inference of Trial2Vec, thus resulting450

in a significant performance drop. However, even451

only using a small segment of trials (the attributes),452

Trial2Vec still reaches similar performance as453

BERT-SimCSE that receives the whole trial docu-454

ment as inputs. This demonstrates the importance455

of picking high-quality negative samples during the456

CL process. Similarly, we observe other two tasks457

also improve the retrieval quality.458

Fig. 4 illustrates the retrieval performance on459

different embedding dimensions. We identify that460

reducing embedding dimension does not affect the461

performance of Trial2Vec much, i.e., one can462

choose a small embedding dimension (e.g., 128)463

without suffering much performance degradation464

while saving lots of storage and computational re-465

sources.466

4.6 Exp 4. Embedding Space Visualization467

Fig. 5 plots the 2D visualization of the embed-468

ding space of Trial2Vec using t-SNE (Van der469

Maaten and Hinton, 2008) where around 2k trials470

uniformly sampled from 300k trials. The tag texts471

illustrate the target diseases of trials with different472

colors. We observe that these trials embeddings473

show interpretable clusters corresponding to target474

disease categories. More discussions about this475

visualization can be referred to Appendix B.476

4.7 Exp 5. Trial Termination Prediction 477

Results are illustrated by Table 5. Compared with 478

the shallow models, BERT-based methods gain bet- 479

ter performance, which credits the deep architec- 480

ture of transformers with stronger learning capa- 481

bility. Trial2Vec takes a hierarchical encoding 482

for trial documents on meta-structure thus better 483

revealing the trial characteristics, which plays a 484

central role in predicting its potention outcomes. 485

4.8 Exp 6. Case Study 486

We perform a qualitataive analysis of similarity 487

search results and two baselines. Results are shown 488

in Table 6. These two case studies show that TF- 489

IDF and BERT models all tend to put attention on 490

frequent words in query trials, e.g., blood and iron 491

in case study 1; and heart failure in case study 2. 492

This bias comes from the average pooing taken 493

onto all token embeddings. The top-1 relevant clin- 494

ical trial retrieved by Trial2Vec, on the other 495

hand, provides a more similar trial thanks to the 496

hierarchical encoding and specific local and global 497

contrastive learning. We add more explanations 498

regarding these cases in Appendix C. 499

4.9 Conclusion 500

This paper investigated utilizing BERT with self- 501

supervision for encoding trial into dense embed- 502

dings for similarity search. Experiments show our 503

method can succeed in zero-shot trial search un- 504

der various settings. The embeddings are also 505

useful for trial downstream predictive tasks. The 506

qualitative analysis, including embedding space vi- 507

sualization and case studies, further verifies that 508

Trial2Vec gets a medically meaningful under- 509

standing of clinical trials. 510
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A Baselines for clinical trial similarity839

search840

• TF-IDF (Salton et al., 1983; Salton and841

Buckley, 1988). It is short for term fre-842

quency–inverse document frequency that has843

been widely used for information retrieval sys-844

tems for decades. One can use TF-IDF for845

document retrieval by concatenating scores of846

all words in this document then computing847

cosine distance between document vectors.848

• Word2Vec (Mikolov et al., 2013). It is849

a classic dense retrieval method by build-850

ing distributed word representations by self-851

supervised learning methods (CBOW). We852

take an average pooling of word representa-853

tions in a document for retrieval by cosine854

distance.855

• TrialBERT. We take an average pooling856

over all token embeddings at the last layer857

of it for similarity computation.858

• BERT-Whitening (Huang et al., 2021; Su859

et al., 2021). This is an unsupervised860

post-processing method that uses anisotropic861

BERT embeddings (Ethayarajh, 2019; Li862

et al., 2020) to improve semantic search. We863

take the average of last and first layer of its864

BERT embeddings following Su et al. (2021).865

• BERT-SimCSE (Gao et al., 2021). It is a866

contrastive sentence representation learning867

method stemming from InfoNCE loss. It sim-868

ply takes other samples in batch as negative869

samples.870

B Embedding space visualization871

From Fig. 5, trial embeddings are clearly clustered872

into topics with self-supervised learning, which873

provides a great help for topic mining and discovery874

for the existing clinical trials. For instance, we can875

find that cancers that happen on different body parts876

are near to each other on the bottom of the embed-877

ding space (Prostate Cancer, Breast Cancer, Pan-878

creatic Cancer, Colorectal Cancer, etc.). Also, the879

diseases which are related to brain function, e.g.,880

Alzheimer’s Disease, Parkinson’s Disease, Major881

Depressive Disorder, etc. Other examples include882

Covid19, Influenza, Pulmonary Disease, etc.883

The reason is that we explicitly utilize the knowl-884

edge from attributes of trials for negative sample885

building, which endows the embedding space the 886

ability to discriminate trials’ similarity. These 887

similar trials can also have similar characteris- 888

tics like having similar recruiting criteria or tar- 889

geting similar outcome measures, which are cap- 890

tured by Trial2Vec by refining the embeddings 891

of attributes by detailed descriptions. Based on 892

this observation, we can infer that such medically 893

meaningful trial embeddings would be beneficial 894

to downstream tasks on clinical trials, e.g., trial 895

outcome prediction. 896

C Case Study 897

For the first case, the query trial is [NCT02972294], 898

which studies using Tranexamic acid and Iron Iso- 899

maltoside to reduce the occurrence of Anemia 900

and blood transfusion in hip fracture cases. We 901

show the top-1 retrieved by three methods on the 902

right. Trial found by TF-IDF studies the efficiency 903

of plasma in patients with Hemorrhagic shock; 904

BioBERT finds a trial about patients undergoing 905

heart surgery who have Anaemia to test if a correc- 906

tion of iron reduces red blood cell transfusion re- 907

quirements. Trial2Vec finds a trial that studies 908

Tranexamic acid effect in blood loss in hip fracture 909

operations. Trial2Vec result is highly relevant 910

to the query trial as it has the identical drug on 911

blood loss of the same type of operation. 912

In the second example, the query trial tries 913

to investigate the benefits of Diclofenac for Nor- 914

motensive patients with acute symptomatic Pul- 915

monary Embolism and Right Ventricular Dysfunc- 916

tion. TF-IDF finds an irrelevant study on the ef- 917

ficacy and safety of Elobixibat for adults with 918

NAFLD or NASH. TrialBERT also retrieves 919

an irrelevant study on Intravascular Volume Ex- 920

pansion to Neuroendocrine-Renal Function Pro- 921

files in Chronic Heart Failure. On the other hand, 922

Trial2Vec digs out a trial that studies the same 923

type of drug with a similar purpose as the target’s: 924

evaluating the efficiency of NSAID (Diclofenac) 925

to the evolution of postoperative (cardiac surgery) 926

pericardial effusion. 927

D Potential limitations & risks of this 928

work 929

The empirical evaluation of this method is mainly 930

done on the clinical trial documents drawn from 931

ClinicalTrials.gov which were fully written in En- 932

glish. It might be the best fit when this method is 933

applied to documents in other languages. Although 934

12



we have tried our best to collect trial relevance935

datasets, it is still possible that the datasets used for936

evaluation are not able to cover all cases.937

The proposed framework encodes trial docu-938

ments into compact embeddings for search. It en-939

counters failure cases some time as wrong trials are940

retrieved. It should be used with discretion when941

applied to clinical trial research or by individual942

volunteers who intend to look for trials research.943

Retrieved results in practice should be used under944

the supervision with professional clinicians.945
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