
NUWA-Infinity: Autoregressive over Autoregressive
Generation for Infinite Visual Synthesis

Jian Liang1∗ Chenfei Wu2∗ Xiaowei Hu3 Zhe Gan3 Jianfeng Wang3
Lijuan Wang3 Zicheng Liu3 Yuejian Fang1† Nan Duan2†

1Peking University 2Microsoft Research Asia 3Microsoft Azure AI
{j.liang@stu,fangyj@ss}.pku.edu.cn

{chewu,xiaowei.hu,zhe.gan,jianfw,lijuanw,zliu,nanduan}@microsoft.com

Abstract

Infinite visual synthesis aims to generate high-resolution images, long-duration
videos, and even visual generation of infinite size. Some recent work tried to
solve this task by first dividing data into processable patches and then training the
models on them without considering the dependencies between patches. However,
since they fail to model global dependencies between patches, the quality and
consistency of the generation can be limited. To address this issue, we propose
NUWA-Infinity, a patch-level “render-and-optimize” strategy for infinite visual
synthesis. Given a large image or a long video, NUWA-Infinity first splits it into
non-overlapping patches and uses the ordered patch chain as a complete training
instance, a rendering model autoregressively predicts each patch based on its
contexts. Once a patch is predicted, it is optimized immediately and its hidden
states are saved as contexts for the next “render-and-optimize” process. This brings
two advantages: (i) The autoregressive rendering process with information transfer
between contexts provides an implicit global probabilistic distribution modeling;
(ii) The timely optimization process alleviates the optimization stress of the model
and helps convergence. Based on the above designs, NUWA-Infinity shows a
strong synthesis ability on high-resolution images and long-duration videos. The
homepage link is https://nuwa-infinity.microsoft.com.

1 Introduction

The field of deep visual synthesis has witnessed great advances in recent years, with a notable
trend of generating images from low to high resolutions. Specifically, many works have shifted from
generating images with resolution of 256×256 [25, 36, 10, 37] to 512×512 [7] and 1024×1024 [24],
or even infinite ones of 256 ×∞ [29] and 512 ×∞ [17, 2]. The same trend is witnessed in the
video field as well, as the number of supported frames is increased from 25 [35] and 48 [4] to even
infinity [18]. By increasing the spatial resolution and the number of temporal frames to infinity, these
models have shown great visual quality with both high fidelity and creativity.

To support “infinity”, most works follow the divide and conquer strategy to first divide a large image
into several processable patches and then train them in a separate way. GAN-based models [32, 29] at-
tempt to divide large images into several patches and optimize each of them from global or coordinate
latents separately. Since different regions have no explicit dependency, these models struggle to merge
different patches during inference and can easily lead to inconsistent results. To address this issue,
auto-regressive models [8, 2] incorporate a sliding window to make connections between different

∗Both authors contributed equally to this research.
†Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://nuwa-infinity.microsoft.com

Figure 1: The RiverSide of Qingming Festival painted by our proposed NUWA-Infinity model in a
resolution of 2048× 38912. Trained from scratch on the original painting.

patches during inference. However, since different patches are still trained separately, the sliding
window only relieves the inconsistency between patches, failing to model the global probability
distribution of a large image or video.

We propose NUWA-Infinity, a patch-level3 “render-and-optimize” strategy for infinite visual synthe-
sis. When training on a large image, a rendering model auto-repressively predicts each patch based
on its contexts. Once a patch is predicted, the loss is calculated and the parameters are optimized
immediately and its hidden states are saved as contexts for the next “render-and-optimize” process.
This brings two benefits: (i) The autoregressive rendering process with information transmission
between contexts provides an implicit global probabilistic distribution modeling of the whole image;
(ii) The timely optimization process alleviates the optimization stress of the model and helps conver-
gence. Further, an arbitrary direction modeling is proposed to help NUWA-Infinity auto-repressively
learn in arbitrary directions.

Based on the above designs, NUWA-Infinity shows a strong synthesis ability on even extreme
high-resolution images (see Fig. 1).

To sum up, the major contributions of this paper are:

• We propose NUWA-Infinity, a patch-level “render-and-optimize” strategy that models the
global probabilistic distribution of a large image or video with fast convergence.

• We propose an arbitrary direction relative position embedding, which enables the free-
direction extension of NUWA-Infinity.

• NUWA-Infinity shows surprisingly good performance on both image and video synthesis.
We also conduct detailed ablations to show the trade-offs between different rendering model.

2 Related Work

High-Resolution Visual Synthesis High-resolution visual synthesis is a hot topic recently. Most
models, such as Cogview [7] and DALLE-2 [24], firstly generate a small image, and then gradually
scale it up. However, these two separate steps will result in a transmission gap between the small
and the high-resolution images. Since a small image only contains a few limited objects, the super-
resolution model can only scale it up, but cannot generate new ones. This paper focuses on Infinite
Visual Synthesis, which aims to generate images or videos of arbitrary size without super resolution.

Infinite Visual Synthesis Existing GAN-based models mainly embed global latent vectors [32, 28,
9] or coordinates conditions [17, 30] into the latent space to model high-dimensional visual features,

3Since this paper focus on infinite visual synthesis, patch represents a large region, for example 256× 256.

2

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25Prompt:

Context:

Patch Contexts

The green mountain

reflects on the green lake.

Rendering
Model

AR

P-NAR

NAR

Optimize

Figure 2: The overview of NUWA-Infinity model. When training on a visual data, a rendering model
autoregressively predicts each patch based on its contexts. Once a patch is predicted, it is optimized
immediately and its hidden states are saved as contexts for the next “render-and-optimize” process.

and then high-resolution images can be fast sampled from target distribution, but it usually faces the
problem of complicated optimization, unstable training, and low diversity. Mask-Predict [3, 38, 2]
as progressive non-autoregressive generation models designing complex sampling strategies on
bidirectional masked language models, which generate several visual tokens in one step to speed
up inference time, yet it needs to feed entire sequence into the bidirectional model which makes it
impossible to scale up to a larger resolution. Auto-regressive models [8, 2] incorporate a sliding
window to make a connection between different patches during inference. However, since different
patches are still trained separately, the sliding window only relieves the inconsistency between
patches, yet still failing to model the global probability distribution of data. This paper is also based
on auto-regressive architectures, but aims to directly train a large image or video in an efficient way.

Long-Range Sequence Modeling To efficiently model long-range sequences, on the one hand,
the sparse computing is designed, like Axial Attention [14] and 3D Nearby Attention [36], they
can reduce a lot of computation while maintaining visual quality; on the other hand, linking long
sequences through memory information, memory-based models [6, 23, 5, 11] process the sequence
in several segments and keep the sequence integrity with auxiliary historical memory. This paper
proposes a “render-and-optmize” strategy and context pool to accelerate convergence and keep
long-term memory for sequence modeling.

Arbitrary Direction Extension Image out-painting and video prediction are considered as spatial
and temporal extension respectively, therefore auto-regressive model can follow the orientation
of different axes to extend images or videos naturally. However, since the direction of training
AR is fixed, it can only be limited to extension in a certain direction. To support the extension in
arbitrary directions, coordinate-based generative models [30, 17, 1, 27, 21] are proposed, They embed
coordinate codes into latent space to generate a complete image, but this easily leads to repetition.
Mask-Predict models [38, 2] benefit from a bidirectional language model, They iteratively mask
and predict new regions to expand in any direction, while the context it relies on is only within the
training window, resulting in a lack of the global consistency. Our approach is to change the training
strategy of the AR model, the autoregressive direction during training covers the directions that can
be extended, and this way allows us to use the AR model for arbitrary direction extension.

3 Method

Given an optional text prompt y, the infinite visual synthesis task aims to generate an arbitrary-size
visual target x (e.g., a large image or a long video), i.e., P(x|y). Since x could be extremely large,
current models [8] mainly try to split x into several patches {p1, p2, ..., pN} and assume they are i.i.d
during training, i.e.,

∏N
i=1 P(pi|y), where N is the number of patches, but this is a strong assumption.

To consider the dependencies between patches, a simple idea is to model different patches in an
auto-regressive manner, i.e.,

∏N
i=1 P (pi|p<i, y), but this requires the model to fully consider all

the previous information. Hence the challenges turn to how to properly model p<i with affordable
computing resources.

3

To address the above issues, we propose NUWA-Infinity, a patch-level “render-and-optimize” strategy
that offers efficient training and inference whiling modeling p<i at the same time. We achieve this by
incorporating context c as a latent variable in Eq. 1:

P (x|y) =
N∏
i=1

P (pi, ci|p<i, y) =

N∏
i=1

P (pi|ci, y)P (ci|p<i) , (1)

where ci should encode the information of p<i. Eq. 1 consists of two components:

• Rendering Model. We define a plug-and-play rendering model that can be selected according to
the balance of performance and speed. A rendering model P (pi|ci, y) that receives a visual context
ci and an optional text prompt y, and then generates the current patch pi.

• Rendering Strategy. We define a patch-by-patch rendering strategy that repeatedly invoke the
rendering model. The patches rendered in the past p<i are used to generate a context ci, which can
be then used for the next rendering step.

Our approach uses a powerful visual rendering model P (pi|ci, y), though it can only generate a
fixed-size patch pi each time, it considers the context ci of surrounding patches to ensure visual
continuity and integrity. Through our designed patch-by-patch rendering approach, this rendering
model will be repeatedly called to generate each patch; therefore, the modeling of P (pi, ci|p<i, y)
allows us to synthesize images or videos of any desired size.

3.1 Rendering Strategy

3.1.1 Arbitrary Direction Modeling

We encode raw visual pixels into discrete tokens by VQGAN [8], which significantly reduces the
sequence length. Let x ∈ Rh×w×f be the visual tokens with height h, width w and f frames. Images
are considered special videos with one frame. Firstly, we split x into several non-overlapping patches
p ∈ Rhp×wp×fp

. Then we can get (H ×W ×F) patches, where H = h
hp ,W = w

wp , F = f
fp . There

are multiple ways to arrange these patches as an auto-regressive sequence. To enable the spatial
extension in arbitrary direction, we define the generation direction r, including Down-Right-Forward,
Down-Left-Forward, Right-Up-Forward and Right-Down-Forward. As shown in Fig 3 (b), we take
Down-Right-Forward direction as an example. This direction denotes the patches are flattened from
up to down as a first sort, from left to right as a second sort and from back to forward as the third sort.
We consider that the coordinates of all patches are fixed, and different directions only change the
time order of generation. Therefore, we define T to convert coordinate (i, j, k) into time order n with
a certain direction r, and T−1 can deduce coordinates from time order n and direction r.

Patch-level

1
st

2nd

Token-level

Pixel-level

(a) Token-level 3D representation (b) Patch-level 3D representation (c) Patch-level 3D relative position

Figure 3: 3D representation for visual data. (a) visual tokens obtained by using VQGAN. (b) Each
patch consists of several tokens, and the numbers on the patches indicate the time order of generation.
(c) Relative position is based on the patches.

To be able to extend infinitely, how to efficiently encode a position of infinite size is crucial. Absolute
position embedding [34] is unable to include all coordinates, while all coordinates can be represented
by using a fixed number of relative position codes [15, 20]. Assuming that each patch only focuses
on the information around it, we can define a receptive field expansion size as (eh, ew, ef) in Fig 3

4

(c), denoting the expansion size in the height, width and temporal axis respectively. Therefore we
only need to create a learnable relative bias B̂ ∈ R(2eh+1)(2ew+1)(2ef+1) , which can represent all
position relationships between patches to represent infinite positional embeddings.

3.1.2 Nearby Context Pool

To make connections across patches, we propose a nearby context pool q. It can store the hidden states
m<i of the previous patch p<i. Then these hidden states will form the context ci as the rendering
conditions of the patch pi. Sec 3.1.1 mentioned that each patch will pay attention to the surrounding
information within (eh, ew, ef), so the pool just needs to save the hidden states around each patch
that have not yet been rendered. Although the pool does not store all hidden states, each hidden states
is generated based on the previous hidden states, so this builds an information transfer chain to enable
patches to obtain long-range contexts. We define three operations on this pool:

• Select the contexts of a patch at position (i, j, k) from the pool q with direction r.

c(i,j,k) = q

{
m(i′,j′,k′)

∣∣∣∣|i− i′| ⩽ eh, |j − j′| ⩽ ew, |k − k′| ⩽ et, T (i′, j′, k′, r) < T (i, j, k, r)

}
(2)

• Add the hidden states of a patch at a position (i, j, k) into the pool q:

q := q ∪
{
m(i,j,k)

}
(3)

• Remove the expired hidden states from the pool q at position (i, j, k) with direction r.

q := q − q

{
m(i′,j′,k′)

∣∣∣∣T (min(i′ + eh, H),min(j′ + ew,W),min(k′ + ef , F), r) ⩽ T (i, j, k, r)

}
4

(4)

3.1.3 Training and Inference Strategy

We propose an infinite patch-by-patch rendering strategy, which is based on the nearby context pool,
the training and inference method are defined below.

Algorithm 1: Training Strategy
Data: images or videos x, optional text y
Result: optimized rendering model
initial context pool q ← ∅ ;
p[1..N]← split(x);
r ← sample training direction;
for all n from 1 to N do

i, j, k ← T−1(n, r);
c(i,j,k) ← q.Select(i, j, k);
L(i,j,k),m(i,j,k) ← Render(p(i,j,k), c(i,j,k), y);
q.Add(m(i,j,k));
q.Remove();
optimize L(i,j,k);

end

Algorithm 2: Inference Strategy
Input: optional text y, target size s
Output: generated images or videos
initial context pool q ← ∅ ;
initial generation g ← ∅ ;
initial n← 1;
while not reached target size s do

c(i,j,k) ← q.Select(n);
pn,mn ← Render(cn, y);
q ← q.Add(mn);
q ← q.Remove();
g ← g.Add(pn);
n← n+ 1;

end
Return merge(g);

As summarized in Algorithm 1. Given a visual data x and optional text y. Firstly, we split x into
several patches, and then we get (H ×W × F) patches, for each training batch we randomly sample
a direction r, Finally, sliding rendering window to use “render-and-optimize”, the rendering model
gets conditions and outputs loss of current patch, each loss of patch will be optimized separately, and
then the updated parameters are used immediately for the next rendering.

4This equation only denotes Down-Right-Forward direction as an example.

5

3.2 Rendering Model

The Rendering model P (pi|ci, y) is a conditional generative model, it receives a context ci selected
from the nearby context pool and a optional text prompt y, and then concentrate on generating the
current patch pi. We first provide the overall equation below:

zlself = SA(LN(q ← zl−1, k ← [zl−1, cl−1] + bl−1, v ← [zl−1, cl−1])) + zl−1 ,

zlcross = CA(LN(q ← zlself , k ← yl, v ← yl)) + zlself ,

zl = MLP (LN(zlcross)) + zlcross ,

(5)

where SA and CA are Self-Attention and Cross-Attention respectively, LN is LaryerNorm and MLP
is linear layer. In SA, zl−1 and cl−1 denote the output and nearby context in (l − 1) layer, bl−1

denotes the learnable relative position bias. we propose a pre-perceived relative position embedding
(Pre-RPE), different from post-perceived relative position embedding (Post-RPE) [19], we add bl−1

into the key. When producing attention-map, the location relationship between patches and contexts
can be perceived in advance with Pre-RPE, instead of adjusting the already generated attention-map
through Post-RPE. As a result, the SA outputs visual features with context. The CA produces
cross-modal features zlcross by interaction between visual outputs zlself and text features yl. The each
layer output z will be used as hidden states into the nearby context pool for next patch rendering.

We explore three rendering models:

Autoregressive (AR): AR is a serial generation P(sit|si<t, ci, y), where each discrete token sit will be
predicted autoregressively. The input of first layer in the AR model is a sequence, which includes
a BOS token and discrete visual tokens by VQGAN, we use the learnable axial absolute position
encoding for this visual sequences. Tokens are predicted sequentially based on previous tokens:

Lar
patch = −Et∈[1,hpwpfp] [log Pθ(st|s<t, c, y)] (6)

Non-Autoregressive (NAR) : The tokens in NAR are independent of each other, and they only
depend on the input context ci and text prompt y. Therefore, P (pi|ci, y) where patch pi can be
generated directly in parallel. There are no serial dependencies between tokens in NAR, the sequence
will be generated in parallel, and this greatly accelerates sampling speed. The first layer input of NAR
is only an initialization sequence with position encoding, and do not require the BOS. In addition,
since the visual input during training is position embeddings without the target tokens, we need to
run NAR twice, the first time is used to optimize the model by Lnar

patch 7 , the second running is to get
the each layer output, which will be saved as cache into nearby context pool.

Lnar
patch = −Et∈[1,hpwpfp] [log Pθ(st|, c, y)] (7)

Progressive Non-Autoregressive (P-NAR) : To improve the generation performance of NAR. In
P-NAR P (pi|pi, ci, y) the previously generated sequence pi will be iteratively optimized. P-NAR
can be considered a Mask-Predict [38, 3, 2], it predicts all target tokens when given a fully-masked
sequence at the first iteration, and then iteratively re-mask and re-predict a subset of tokens with low
probability scores for a constant number of iterations. Follwing MaskGIT [2], We use the cosine mask
scheduling function γ ∼ Cosine(U(0, 1)), then masked tokens sm sampling fromD ∈ γ · (hpwpfp).
Eventually, through the non-masked tokens sm, it predicts the masked tokens:

Lp-nar
patch = −Em∈D [log Pθ(sm|sm, c, y)] (8)

4 Experiments

4.1 Experiment Setup

Datasets. For image synthesis, we trained unconditional generation model on the LHQ [30], which
consists of 90k high-resolution (⩾ 10242) nature landsacapes. In addition to support text prompt, we
added a caption for each image of LHQ to create a new dataset called LHQC, where 85k as training
data and 5k as test data. For video synthesis, we downloaded 120k high-resolution videos from pexels
website and ran a pretrained Mask R-CNN [12] to remove the videos that likely contain objects on
them. As a result we keeped 40k high-quality videos called LHQ-V.

Metrics. For image synthesis, we use Inception Score (IS) [26] and CLIP Similarity Score (CLIP-
SIM) [22] to evaluate the sample diversity and semantic consistency between images and text. In

6

a field of yellow flowers with
a mountain in the background a lake with a mountain in the background

N
U

W
A

-I
n

fi
n

it
y(

O
u

rs
)

Ta
m

in
g

M
as

kG
IT

Figure 4: High Resolution text-to-image, the left is 1024×1024, the right is 1024×4096.

addition, we propose a Block-FID, which splits the large image into blocks to calculate Fréchet
Inception Distance [13], it can avoid the downsampling caused by resizing images and work for
infinite-size synthesis. Since rendering windows and blocks (256×256 in our experiments) maybe
overlap, when measuring our model we will generate larger images, and move half of the block size.
For video metrics, because the resize operation has little effect on the motion of the video, we use
Fréchet Video Distance (FVD) [33] directly to evaluate the quality of the generated videos.

Implementation Details. During training, images are cropped into 1024×1024 and videos are cut
into 1024×1024×5 with 5fps, then, they will be encoded into discrete tokens using the VQGAN
model with a compression rate of 16 and a codebook of 16384. In Sec. 3.2, the rendering size of the
three models is 256×256. In Sec. 3.1, based on the nearby sparsity, we set (eh, ew, ef) = (2, 2, 0) for
images and (eh, ew, ef) = (1, 1, 3) for videos. We train the model using an Adam optimizer [16]
with learning rate of 1e-4, a batch size of 256, and warm-up 5% of total 50 epochs.

4.2 Evaluation on Visual Synthesis

High Resolution Text-to-Image We evaluate NUWA-Infinity on high resolution text-to-image task
with LHQC dataset in Tab. 1. Under the 1024×1024 resolution same as the size of the training dataset,
our model exceeds other methods with Block-FID of 9.71, as well as better text-image semantic
consistency of 0.2807 and more diversity of 4.98. When generating larger images such as 1024×4096
(×4) resolution, the performance of MaskGIT [2] decreases rapidly due to limited Window, but our
model can still maintain higher visual quality with Block-FID of 15.65.

Method Block-FID↓ Block-FID(×4)↓ IS↑ CLIP-SIM↑

Taming [8] 38.89 46.37 4.58 0.2662
MaskGIT [2] 24.33 45.76 4.61 0.2754
Our (AR) 9.71 15.65 4.98 0.2807

Table 1: High resolution text-to-image synthesis on LHQC, the size of sample is 1024×1024 by
default, ×4 means 1024×4096.

7

t=10 t=20 t=30 t=40 t=50 t=60

t=10 t=20 t=30 t=40 t=50 t=60

NAR

P-NAR

t=10 t=20 t=30 t=40 t=50 t=60

AR

Figure 5: Long-duration video prediction, generating 60 frames from 1 frame.

High Resolution Image-to-Video Since our framework generates patches autoregressively, and it
can easily expand from image synthesis to video synthesis. We compare the performance of three
different rendering models for video prediction in Tab. 2 and Fig. 5.

Method FVD↓

StyleGAN-V[31] 143.76
Our (NAR) 368.16
Our (P-NAR) 165.39
Our (AR) 62.57

Table 2: Video prediction on LHQ-V, the size of sample is 1024×1024×8.

Method Block-FID↓

Right Extend⇒ Left Extend⇐ Down Extend ⇓ Up Extend ⇑
Taming [8] 22.53 N/A 26.38 N/A
MaskGIT [2] 14.68 14.81 25.57 25.38
InfinityGAN [17] w/o text 17.93 19.76 24.62 23.59
Our (AR) w/o text 6.43 6.71 11.47 8.03
Our (AR) w/ text 6.45 6.72 9.84 7.43

Table 3: Arbitrary image extension on LHQC, calculating Block-FID between the extended area and
the same area in the test set, not using full images. Taming and MaskGIT use text prompt by default.

Arbitrary Image Extension Tab. 3 and Fig. 6 demonstrates that our proposed approach achieves
state-of-the-art performance on arbitrary image extension task. Traditional AR models like Taming
[8] only generate samples along a certain order and can not achieve image outpainting in arbitrary
direction. MaskGIT benefits from a bidirectional masked language model, which can add a new
mask area in any direction and predict it to extend images. However, since MaskGIT is inconsistent
between the mask area of training images and extending images, and this damage its performance. In
addition, we found that the text prompt does not help when extending the image left or right, while
the text prompt brings performance improvements when extending up or down. We think it is because
upper or lower half of the image contains less information, while the left or right half has more visual
semantic hints.

8

N
U

W
A

-I
n

fi
n

it
y(

O
u

rs
)

M
as

kG
IT

Ta
m

in
g

In
p

u
t

a fenced area with a
cloudy sky above it

a large rock formation in the
desert with a cloudy sky

a road that is going
down a hill

a tree is reflected in
the water of a river

Figure 6: Arbitrary direction image extension, the input is 1024×512.

4.3 Ablation Studies

Rendering model Tab. 4a shows that the AR rendering model has the best performance but
sacrificed the generation speed. P-NAR optimizes the results of NAR multiple times and achieve
good performance at a not bad speed. Scaling up the model in Tab. 4b and using Pre-RPE in Tab. 4c
can improve the model performance. We noticed in Fig. 7a that the rendering size has a great impact
on visual quality and smaller rendering size will lead to worse performance, especially for 1024×4096
(x4) resolution generation. It is because of too small patches as low-level visual features, and it is
not conducive to model learning the global consistency. When rendering size is equal to 256, this
phenomenon will disappear, but if size continues to expand, it easily leads to out of memory.

Training way Tab. 4e shows that our synthesis-and-optimize training strategy can accelerate
convergence from 70 epochs to 50 epochs. If the model accumulates the gradient of the full images
to optimize, it is not conducive to sharing the parameters between each patch, so that the rendering
model is too concerned about the global layout without focusing connection between each patch. In
addition, if each patch is optimized by itself and this can provide more data distribution. The success
of synthesis-and-optimize strategy also benefits from the long-term connections between patches by
context transfer. Tab. 4d proves that context transfer will bring huge improvements, where no transfer
means the cache generated by each patch only contains its own information.

Nearby extension Although implicit context transfer can make the cross-patch connection distance
farther, explicitly increasing expansion size in nearby context pool will bring more stable connections.
Fig. 7b shows the impact of spatial expansion size on image generation, as eh and ew increase,
performance will quickly improve until size is equal to 2, but FLOPs will continue to grow. Fig. 7c
presents the impact of temporal expansion size on video prediction. Without considering context
transfer, when ef is equal to 1, the model can obtain the previous one static frame. When ef is equal
to 2, the model can obtain the action between the two static frames, but when ef reaches 3, the model

9

Render model Block-FID↓ Block-FID(× 4)↓ CLIP-SIM↑ Inference Speed↑
NAR 92.34 98.67 0.2451 95×
P-NAR 19.86 38.59 0.2726 15×
AR 10.05 17.78 0.2753 1×

(a) Render model.

Parameters Depth Dim Block-FID↓
202M (Base) 16 768 10.05
809M (Large) 24 1280 9.71

(b) Model size.

RPE Block-FID↓ Block-FID(×4) ↓
Pre 10.05 17.78
Post 10.47 18.89

(c) Relative position embedding.

Context Block-FID↓ Block-FID(×4) ↓
w/o transfer 15.8 38.32
w/ transfer 10.21 23.62

(d) Context transfer.

Loss Block-FID↓ Convergence epoch↓
Patch 10.05 50
Full 11.62 70

(e) Loss region.

Table 4: Ablation experiments with text-to-image on LHQC, the experiments use base model with
layers of 16 and dim of 768 except (b). Default setting are marked in gray.

can obtain the movement between two dynamic visual features. So starts from ef = 3, the growth of
the performance is not obvious.

11.83
10.91

10.05 10.12

24.21
23.46

17.78 17.69

0

5

10

15

20

25

30

64 128 256 512

Sc
o

re

Block-FID Block-FID (×4)

Render size and

(a) Rendering size.

0

5

10

15

20

25

30

35

40

45

0 1 2 3

Sc
o

re

Block-FID Block-FID (×4)

 FLOPs FLOPs (x4)

Spatial extension size and in nearby context

36.61

3.1×2.1×

1×

4.2×

1×

4.1×

6.7× 10.3×
10.21 10.05 10.13

38.80

23.62

17.78 16.97

(b) Spatial extension.

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4

Sc
o

re

FVD FLOPs

Temporal extension size in nearby context

783.15

73.66 71.62 69.91 69.86

1×

1.63×
2.16× 2.61× 3.05×

…

(c) Temporal extension.

Figure 7: Ablation results on rendering size and nearby expansion size, (a) and (b) are based on
text-to-image synthesis, (c) is based on video prediction with 8 frames. Note that they all use the
base model with layers of 16 and dim of 768.

5 Conclusion

In this work, we propose NUWA-Infinity, a patch-level “render-and-optimize” strategy for infinite
visual synthesis. In training stage, visual data are spitied into non-overlapping patches with different
time order, then a rendering model autorepressively predicts each patch based on its contexts, the
patch is optimized at each time step, and the optimized parameters are immediately used in the next
rendering. This strategy allows us to 1) generate images and videos of infinite size 2) visual extension
in any direction 3) information transfer brings long-term memory 4) accelerate model convergence.

6 Acknowledgements

The paper is supported by the National Key Research and Development Project (Grant
No.2020AAA0106600).

10

References
[1] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan:

Periodic implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 5799–5809,
2021.

[2] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. MaskGIT: Masked
Generative Image Transformer. MaskGIT.

[3] Jaemin Cho, Jiasen Lu, Dustin Schwenk, Hannaneh Hajishirzi, and Aniruddha Kembhavi.
X-lxmert: Paint, caption and answer questions with multi-modal transformers. arXiv preprint
arXiv:2009.11278, 2020.

[4] Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial Video Generation on Complex
Datasets. 48.

[5] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. Meshed-memory
transformer for image captioning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10578–10587, 2020.

[6] Zihang Dai, Zhilin Yang, Yiming Yang, William W. Cohen, Jaime Carbonell, Quoc V. Le,
and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length
context. Transformer-XL.

[7] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin,
Xu Zou, Zhou Shao, Hongxia Yang, and Jie Tang. CogView: Mastering Text-to-Image Genera-
tion via Transformers. CogView.

[8] Patrick Esser, Robin Rombach, and Björn Ommer. Taming Transformers for High-Resolution
Image Synthesis. Comment: Changelog can be found in the supplementary.

[9] Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. Tilegan: synthesis of large-scale
non-homogeneous textures. ACM Transactions on Graphics (ToG), 38(4):1–11, 2019.

[10] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. arXiv preprint
arXiv:2111.14822, 2021.

[11] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang.
Star-transformer. arXiv preprint arXiv:1902.09113, 2019.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[14] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

[15] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Improve transformer models with
better relative position embeddings. arXiv preprint arXiv:2009.13658, 2020.

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[17] Chieh Hubert Lin, Hsin-Ying Lee, Yen-Chi Cheng, Sergey Tulyakov, and Ming-Hsuan Yang.
Infinitygan: Towards infinite-resolution image synthesis. arXiv e-prints, pages arXiv–2104,
2021.

[18] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo
Kanazawa. Infinite nature: Perpetual view generation of natural scenes from a single image.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14458–
14467. Infinite Nature.

11

[19] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 10012–10022, 2021.

[20] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer. arXiv preprint arXiv:2106.13230, 2021.

[21] Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
tive neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11453–11464, 2021.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[23] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

[24] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
Text-Conditional Image Generation with CLIP Latents.

[25] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation. DALL-E
DALLE.

[26] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

[27] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance
fields for 3d-aware image synthesis. Advances in Neural Information Processing Systems,
33:20154–20166, 2020.

[28] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model
from a single natural image. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4570–4580, 2019.

[29] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. Aligning latent and image
spaces to connect the unconnectable. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14144–14153. ARIS.

[30] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. Aligning latent and image
spaces to connect the unconnectable. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14144–14153, 2021.

[31] Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video
generator with the price, image quality and perks of stylegan2. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 3626–3636, 2022.

[32] \ Lukasz Struski, Szymon Knop, Jacek Tabor, Wiktor Daniec, and Przemys\ law Spurek.
LocoGAN–Locally Convolutional GAN. LocoGAN.

[33] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
\ Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, pages 5998–6008. fixed
Transformer.

[35] Ruben Villegas, Arkanath Pathak, Harini Kannan, Dumitru Erhan, Quoc V. Le, and Honglak
Lee. High fidelity video prediction with large stochastic recurrent neural networks. 32. 25.

12

[36] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Daxin Jiang, and Nan Duan. N\"UWA:
Visual Synthesis Pre-training for Neural visUal World creAtion.

[37] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku,
Yuanzhong Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with
improved vqgan. arXiv preprint arXiv:2110.04627, 2021.

[38] Zhu Zhang, Jianxin Ma, Chang Zhou, Rui Men, Zhikang Li, Ming Ding, Jie Tang, Jingren Zhou,
and Hongxia Yang. M6-ufc: Unifying multi-modal controls for conditional image synthesis.
arXiv preprint arXiv:2105.14211, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Supplementary material
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 4.1
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Supplementary material
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Method
	Rendering Strategy
	Arbitrary Direction Modeling
	Nearby Context Pool
	Training and Inference Strategy

	Rendering Model

	Experiments
	Experiment Setup
	Evaluation on Visual Synthesis
	Ablation Studies

	Conclusion
	Acknowledgements

