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ABSTRACT

Early-exiting is an effective mechanism to improve computation efficiency. By
adding classifiers to intermediate layers of deep learning networks, early exit-
ing networks can terminate the inference early for easy samples, thus reducing
the average inference time. Gradient conflicts between different classifiers are a
key challenge in training early-exiting networks. However, current state-of-the-
art methods focus solely on the trade-off between gradients, without evaluating
whether these gradients are actually necessary. To mitigate this issue, we pro-
pose a novel adaptive damping training strategy that adaptively diminishes non-
important gradients during the training process based on data samples and classi-
fiers. By adding a damping neuron to the last fully connected layer of each clas-
sifier and using our proposed damping loss, our approach effectively reduces gra-
dients that are unlikely to be beneficial. Moreover, we propose power-sqrt loss to
concentrate the gradients of damping neurons on classifiers that exhibit relatively
better training performance. Experiments on CIFAR and ImageNet demonstrate
our proposed method gains significant accuracy improvement for all classifiers
with negligible computation increases.

1 INTRODUCTION

Although deep neural networks have achieved remarkable success across various tasks Krizhevsky
et al. (2012); Simonyan & Zisserman (2014); He et al. (2016); Huang et al. (2019), their high com-
putational costs limit their application on resource-constrained devices. Many efforts have been
made to improve the inference efficiency of deep neural networks such as network pruning LeCun
et al. (1989); Yang et al. (2021), weight quantization Hubara et al. (2016); Han et al. (2015), and
lightweight network architecture design Howard et al. (2017); Zhang et al. (2018); Sandler et al.
(2018). While these efficient models achieve competitive accuracy, many challenging data samples
still demand the use of larger networks Huang et al. (2017); Lin et al. (2017). By exploiting this
fact, dynamic networks Han et al. (2021), which perform a data-dependent inference procedure by
dynamically adjusting the network structure, have attracted considerable research interest. As a
typical dynamic network, early-exiting attaches multiple intermediate classifiers (early exits) to the
network. In the inference stage, early-exiting networks adaptively terminate inference when an early
exit satisfies the predefined exiting criterion such as the confidence score of softmax Huang et al.
(2017) or according to a learned policy Chen et al. (2020).

Unlike conventional deep neural networks, early-exiting networks have multiple exits that share
parameters. This shared structure causes interference among exits. Gradients from different exits
often conflict during training Sun et al. (2022). The current state-of-the-art methods of training early
exiting networks adopts a meta-learning approach, where a meta-network is used to learn the weights
of individual gradients during the training of early exiting networks Han et al. (2022); Sun et al.
(2022). This approach belongs to the category of linear scalarization Hu et al. (2024), a mainstream
method in multi-task learning. It addresses the trade-off between gradients from different tasks
during the training of early exiting networks, thereby mitigating the issue of gradient conflicts.

Despite the advances, current meta-learning methods Han et al. (2022); Sun et al. (2022) do not fully
consider whether the gradients from each classifier are actually necessary for its performance. We
observe that during training, samples with larger softmax values are more likely to produce
unnecessary gradients. Conventional overfitting mitigation methods cannot jointly account for the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multiple classifiers involved in training early-exiting networks. For example, in early stopping, each
classifier in an early-exiting network reaches its optimal stopping point at a different time. For label
smoothing, different classifiers in an early-exiting network require different smoothing strengths.
Thus, an important question arises when training early-exiting networks: How can we suppress
unnecessary gradients while jointly considering the training states of all classifiers?

…
Classifier 1 Classifier 2 Classifier k…
Cat
(20%)

Dog
(70%)

Dog
(99%)Conventional 

Training
Sum up the Cross-Entropy loss together

Cat
(20%)

Dog
(70%)

Dog
(99%)Our Adaptive           

Damping 
Training Damp the gradient when 

already trained well
Keep training when not 
yet adequately trained

Figure 1: Our adaptive damping training strat-
egy. During training, different classifiers evolve at
different rates. Instead of summing the cross-entropy
losses, our method applies adaptive gradient damp-
ing, reducing the influence of already well-trained
classifiers.

To address this issue, we propose a novel train-
ing strategy that adaptively diminishes gradi-
ents based on the classifier’s performance with
the current data sample. As illustrated in Fig-
ure 1, the classifier diminishes the gradient when
it already performs well on a given sample, as
indicated by a sufficiently high softmax score.
Specifically, when the classifier already achieves
a high softmax score on the current data sample,
our damping neuron gets assigned a higher gradi-
ent, effectively preventing unnecessary gradients.
Conversely, when the classifier’s performance is
suboptimal and the softmax score is low, we in-
troduce only a minimal gradient to the damping
neuron, limiting its influence at this stage. More-
over, we introduce the power-sqrt loss function,
which refines the distribution of gradients in damping neurons by concentrating them on the clas-
sifiers that exhibits superior performance relative to others. This strategy enables a more effective
damping mechanism by jointly considering the status of all classifiers, thereby further improving the
training process across the network. Additionally, we leverage the values of the damping neuron to
assign dynamic weights to different classifiers, demonstrating the compatibility of our method with
the linear scalarization approach. Our main contributions are summarized as follows:

1. We introduce a novel adaptive damping mechanism that dynamically reduces unnecessary
gradients during training, improving overall performance;

2. We further propose the power-sqrt loss, which jointly considers the training status of all
classifiers to more effectively determine the appropriate damping gradient magnitude;

3. We further demonstrate the compatibility of our method with the current linear scalarization
approaches;

4. We perform extensive experiments on CIFAR Krizhevsky et al. (2009) and ImageNet Deng
et al. (2009) datasets demonstrating the superiority of our method, which achieves a signif-
icant improvement in accuracy with negligible complexity increases.

2 RELATED WORK

Dynamic early exiting networks. Early exiting exemplifies a dynamic neural network architecture
that enables easy samples to be processed and output by intermediate classifiers. This technique
has attracted widespread attention across domains such as computer vision Huang et al. (2017);
Kouris et al. (2022); Yang et al. (2023); Yu et al. (2024); Niu et al. (2024); Jiang et al. (2024); Wang
et al. (2021); Yang et al. (2020), natural language processing Bajpai & Hanawal (2024); Zhou et al.
(2020); Elbayad et al. (2020); Xin et al. (2021); Mangrulkar et al. (2022); Schuster et al. (2022), and
multimodal tasks Tang et al. (2023); Fei et al. (2022); Yue et al. (2024).

Training dynamic early-exiting models presents unique challenges due to gradient conflicts among
different exits, which compete to update shared parameters Sun et al. (2022). DFS Gong et al.
(2024) mitigates gradient conflicts through feature partitioning. Meta-learning techniques Sun et al.
(2022); Han et al. (2022) have also been explored to dynamically weight gradients from different
exits, thereby reducing the gradients conflict. However, they did not consider whether the gradients
provided by different classifiers actually benefit the model. This paper focuses on identifying and
utilizing gradients that are truly beneficial to the model’s performance.

Multi-task learning. Compared to training early-exiting networks, multi-task learning has received
more attention. The primary challenge in multi-task learning is managing gradient conflicts between
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(a) Damping loss

Backbone Network

…

CE1+CE2+ … + CEk 𝑫𝟏
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𝟐+𝝀

(b) Power-sqrt loss

Figure 2: The damping neuron and power-sqrt loss. (a) We introduced an additional neuron (red
square) to the fully connected layer of the classifier, which does not correspond to any class. By
assigning a small gradient to this neuron, we enable adaptive damping of the gradients of the Cross-
Entropy part. (b) When jointly training classifiers, we aggregate the Cross-Entropy losses of all
classifiers. For the damping neurons, we first square their values, sum them, and then take the square
root (rounded rectangle in red). This approach concentrates the gradients of the damping neurons
more on classifiers that perform relatively better for the current data sample, thereby enhancing the
joint training of these classifiers.

different tasks Yu et al. (2020), a problem that is also prevalent in early-exiting networks. Techniques
from multi-task learning, such as knowledge distillation Xu et al. (2023); Ghiasi et al. (2021), feature
partitioning Ding et al. (2023) and gradient selection Liu et al. (2021), have also been applied to the
training of early-exiting models Li et al. (2019); Phuong & Lampert (2019); Sun et al. (2022); Han
et al. (2022); Gong et al. (2024); Addad et al. (2025). The state-of-the-art methods for training early-
exiting networks use meta-learning to adaptively weight the losses of different classifiers. These
approaches essentially follow the linear scalarization framework from multi-task learning Xin et al.
(2022); Hu et al. (2024), where all loss terms are combined using a weighted sum. In contrast to
previous methods that focus on resolving gradient conflicts, our work examines whether all gradients
are necessary in the first place. As such, our approach is complementary to conflict-resolution
techniques and can be integrated with them. Our approach can be integrated with linear scalarization,
but in contrast to meta-learning strategies, it offers a simpler alternative by directly deriving gradient
weights from damping neuron values, thereby avoiding the extra backpropagation steps and reducing
training overhead.

Overfitting. A key challenge in neural networks is inadequate generalization, particularly in adver-
sarial learning Kim et al. (2021) and generative models Loaiza-Ganem et al. (2022). Many studies
address overfitting using regularization techniques such as dropout Srivastava et al. (2014) and la-
bel smoothing Szegedy et al. (2015). Early stopping Prechelt (2002) is a widely used technique to
prevent overfitting, typically identifying the best epoch on the validation set and stopping training
before overfitting occurs. However, in dynamic early-exiting networks, traditional methods for mit-
igating overfitting are not directly applicable, as classifiers at different exits are trained to different
extents. Our work specifically targets early-exiting architectures, addressing unnecessary gradients
while jointly considering the distinct roles and training states of intermediate classifiers.

3 METHODOLOGY

In this section, we first present conventional early exiting networks and the current training method-
ologies. Then, we provide a detailed explanation of our proposed approach.

3.1 PRELIMINARIES

Early Exiting Networks. Contrasting with standard deep learning models, K-exit early exiting
networks integrate K − 1 classifiers at various layers within the original deep learning architecture
(see Fig. 1). The prediction for the i-th input by classifier f (k) is denoted as p(k)i = f (k)(xi, θ

(k)).
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where xi indicates input data sample and θ(k) the parameters of k-th classifier. Note that these
sub-networks share a portion of their parameters.

Early exiting networks enable dynamic inference. They use an exit mechanism based on a confi-
dence score. This score is typically the maximum output of the classifier’s softmax result Huang
et al. (2017); Yang et al. (2020). When a classifier’s score reaches a predefined threshold, the model
stops the inference process at this classifier, saving computational resources.

Training Strategies of Early Exiting Networks. The conventional training strategy for early exit-
ing networks aggregates the losses from all classifiers, with all classifiers trained simultaneously
from beginning to end Huang et al. (2017); Yang et al. (2020). The total loss is computed as
L = 1

S

∑K
k=1

∑S
i=1 L

(k)
i , where L(k)

i = CE(f (k)(xi, θ
(k)), yi) denotes the cross-entropy loss for

the k-th classifier on the i-th data sample. Here, K is the number of classifiers, S the number of
training samples, and yi the ground truth label.

Training early-exiting networks often encounters gradient conflicts among classifiers. Existing
methods focus on resolving these conflicts by balancing different gradients but overlook a criti-
cal question: Are all gradients necessary? Most approaches assume that every gradient should be
incorporated into the trade-off, without considering whether these gradients are necessary.

3.2 SHOULD ALL GRADIENTS BE CONSIDERED IN THE TRADE-OFF?

70 80 90 95 Baseline
Thresholds

75.2

75.4

75.6

75.8

76.0

76.2

76.4

76.6

76.8

Ac
cu

ra
cy

 (%
)

Accuracy

0.01

0.02

0.03

0.04

0.05

Lo
ss

Accuracy and Loss Comparison for Different Thresholds
Loss

Figure 3: The relationship between softmax values and
gradient necessity. As softmax increases, gradients are
more likely to be unnecessary or even harmful.

A recent study Wei et al. (2022) suggests that
cross-entropy loss drives the softmax value to
continue increasing even when it has already
reached a high value, which may not always
benefit model performance.

To investigate this effect, we conducted ex-
periments on the MSDNet architecture in CI-
FAR100 dataset, training only the deepest clas-
sifier to assess whether the gradients it receives
improve its own performance. We introduced
a threshold based on the softmax value corre-
sponding to the correct label during training.
Specifically, we discarded gradients when the
softmax value exceeded a given threshold. For
instance, a threshold of 90 means that only gradients where the correct label’s softmax value is below
90% are considered.

We recorded the final converged accuracy and loss under different thresholds. Our experimental
results show that as more gradients are included, the final converged loss decreases. Maintaining
a higher loss allows for more optimization flexibility, which provides additional capacity for other
classifiers in early-exiting architectures. Despite this, the performance does not continue to improve
significantly. Specifically, we observe that gradients corresponding to softmax values between 70%
and 80% significantly improve model performance, while those in the 80%–95% range contribute
little, and those in the 95%–100% range even degrade performance. We observe that as the softmax
confidence increases, the corresponding training gradients are increasingly likely to be unnecessary.

While including more gradients reduces the final loss, accuracy sometimes decreases instead, sug-
gesting an overfitting phenomenon. When softmax values are already high, cross-entropy loss con-
tinues to push them further, potentially leading the model to learn features that are less generalizable
and primarily beneficial to a small subset of data samples.

3.3 DAMPING LOSS

In order to tackle the aforementioned issues, we propose a dynamic damping mechanism to diminish
these non-beneficial gradients for training early-exiting.

We have modified the Cross-Entropy loss by adding our novel damping neuron, which does not
represent any specific class in the classification task as shown in Figure 2a. The Softmax function
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is jointly applied to the outputs from the original fully connected layer and our newly introduced
damping neuron:

Fθ(x)[j] =
exp (fθ(x)[j])∑N+1

n=1 exp (fθ(x)[n])
, (1)

where N is the number of classes in the classification task, fθ(x)[j] denotes the output of the neurons
from both the fully connected layer and our added damping neuron, and Fθ(x)[j] is the output of the
Softmax function. We add an additional neuron, increasing the total number of neurons to N + 1.
Unlike traditional Cross-Entropy loss, which solely focuses on increasing the neuron value of the
correct label, our damping loss additionally provides a small gradient to the N + 1 neuron, which
damps the gradient from the cross-entropy part:

min
θ

Et(x) [− logFθ(x)[y]] + λEt(x) [− logFθ(x)[N + 1]] , (2)

where t(x) denotes the training dataset, y presents the correct label, and λ is a hyperparameter,
typically assigned a small value to ensure that the majority of our loss remains focused on the
classification task. The first term of our loss function is the Cross-Entropy loss, while the second
term is designed to encourage an increase in the N +1-th neuron for any data sample. Additionally,
this gradient counteracts the effect of the gradient from the Cross-Entropy term, thereby dampening
its influence. Our method introduces only one additional neuron to the fully connected layer, thereby
rendering the extra computational demand negligible.

Our in-depth theoretical analysis demonstrates several advantages of our damping loss:

1. The damping component of our loss generates stronger inhibitory gradients as the softmax
value increases, effectively suppressing unnecessary gradients that are more likely to appear
at higher softmax values.

2. Unlike Cross-Entropy loss, our damping loss does not continuously encourage the softmax
value of the correct label to approach 1, preventing the generation of potentially unneces-
sary gradients.

3. Our damping loss does not perpetually promote the increase of the damping neuron’s soft-
max value, preventing adverse effects on the model’s performance.

We provide propositions with the proof sketch below, with the detailed proofs included in the Ap-
pendix B.1.

Proposition 1. The gradient of the damping component with respect to the neuron corresponding
to the correct label ∂−logFθ(x)[N+1]

∂fθ(x)[y]
is proportional to its softmax value Fθ(x)[y]. When the neuron

Fθ(x)[y] achieves 1
1+λ , the gradient from our damping loss g ≥ 0.

Proof sketch. We demonstrate our proposition by analyzing the gradients generated by our damping
loss for each neuron in the fully connected layer. Because our damping loss comprises two com-
ponents, each neuron in the fully connected layer is influenced by gradients from both the Cross-
Entropy component and the damping component.

For the neuron corresponding to the correct label, the gradient from the damping component of
our damping loss is λFθ(x)[y], which is positive and thus encourages a reduction in the neuron
value. This gradient is proportional to the softmax value of the neuron corresponding to the correct
label, meaning that for larger softmax values, where gradients are more likely to be unnecessary, it
generates a stronger opposing effect to suppress further increases.

Moreover, the gradient from the cross-entropy component of the loss is Fθ(x)[y] − 1. Thus, the
total gradient for the neuron corresponding to the correct label is (λ+1)Fθ(x)[y]− 1. Our damping
loss does not continuously encourage the softmax value of the correct label to grow. Once it reaches
1

1+λ , the overall gradient becomes positive, preventing further encouragement of its growth. □

5
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Proposition 2. Our damping loss does not encourage the continuous increase of the damping
neuron’s softmax value Fθ(x)[N + 1]. Once the damping neuron’s softmax Fθ(x)[N + 1] ≥ λ

1+λ ,
the gradient of our damping loss g ≥ 0.

Proof sketch. Similar to the proof of Proposition 1, we analyze the gradients from the two com-
ponents of the damping loss. The damping neuron receives a gradient from the cross-entropy com-
ponent as Fθ(x)[N + 1] and from the damping component as λ(Fθ(x)[N + 1] − 1). Hence, the
total gradient is (1 + λ)Fθ(x)[N + 1]− λ. Once it reaches λ

1+λ , no further gradient encourages its
growth. □

3.4 POWER-SQRT LOSS

Equation 2 details our loss function for each classifier. In an early-exiting architecture, which incor-
porates multiple classifiers, the total loss function is presented as follows:

min
θ

K∑
k=1

Ep(x)

[
− logF

(k)
θ (x)[y]

]
+

K∑
k=1

λ(k)Ep(x)

[
− logF

(k)
θ (x)[N + 1]

]
(3)

where k presents the index of the classifier. Our damping loss requires different hyperparameters
for each classifier, as their optimal values vary, making fine-tuning a challenging task. We found
that uniformly setting the hyperparameters λ(k) for all classifiers does not yield good performance.
While some classifiers improved, others declined. Manually adjusting λ(k) for each classifier can
enhance performance, but the vast number of possible combinations complicates tuning.

We observed that the values of damping neurons, specifically the damping neuron post-Softmax, are
consistently higher in deeper classifiers. A detailed analysis is provided in the Experiment section.
This indicates that deeper classifiers are more likely to trigger the damping mechanism, thereby
freeing up resources for other classifiers. Additionally, we noted that a higher λ value correlates with
reduced accuracy in shallow classifiers. Hence, assigning the same λ value to shallow classifiers as
to deeper ones adversely affects their performance.

Moreover, the damping mechanism should consider all classifiers collectively. Specifically, when
some classifiers perform better than others, the damping mechanism should prioritize these, rather
than overly diminishing the gradients of underperforming classifiers. This strategy reallocates re-
sources to underperforming classifiers, optimizing overall performance. Thus, a joint-damping
mechanism is essential for training classifiers effectively.

Motivated by these findings, we introduce the power-sqrt loss, which dynamically adjusts the hyper-
parameter λ for each classifier, as shown in Figure 2b. We modify the second term of Equation 3 as
follows:

λEp(x)

√√√√ K∑
k=1

(− logF k
θ (x)[N + 1])2. (4)

We power the loss associated with the damping neuron of each classifier, sum these squared values,
and then extract the square root of the aggregate to form the final loss component.

The power operation intensifies the gradient, focusing it more on the larger values. Since our damp-
ing loss must balance the damping component with the cross-entropy component, we apply a square
root to the combined damping components across classifiers after performing the power operation.
This ensures that the overall damping component remains balanced with the cross-entropy compo-
nent.

As presented in Proposition 1, the gradient of our damping component generates a stronger in-
hibitory effect when the softmax value of the correct label is large. After applying the power-sqrt
modification, this inhibitory gradient becomes:

6
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− logF k
θ (x)[N + 1](F k

θ (x)[y])√∑K
k=1

(
− logF k

θ (x)[N + 1]− 1
)2

We present the derivation in the Appendix B.2.

Compared with damping loss, our power-sqrt loss introduces a weight − logFk
θ (x)[N+1]√∑K

k=1(− logFk
θ (x)[N+1]−1)

2

to modify the gradient. For different classifiers, denominator of the weight remains the same, while
the numerator assigns larger gradients to neurons with smaller damping neuron softmax values.

Since the softmax value of the damping neuron is computed alongside all other neurons that corre-
spond to class labels, a larger softmax value for the correct label is often accompanied by a smaller
softmax value for the damping neuron. As a result, our power-sqrt loss focuses the damping gradi-
ents more on well-performing classifiers, allowing more parameter space to be allocated to under-
performing classifiers.

3.5 SAMPLE WISE DYNAMIC TRAINING

The current approach to training early-exiting networks is linear scalarization, where weights are
applied to the gradients of different classifiers during training to manage the tradeoffs between them.
Our method, however, focuses on evaluating whether these gradients are necessary. After identifying
the essential gradients using our approach, linear scaling can still be applied to manage the tradeoff
among these necessary gradients.

In contrast to prior meta-learning methods Han et al. (2022); Sun et al. (2022) that learn a meta-net
during training to assign classifier weights, our approach derives the weights directly from damping-
neuron values, eliminating the meta-net and its training/hyperparameter burden.

Following Han et al. (2022), we normalize the damping-neuron outputs to weights w̃ ∈ [−α, α]
(with α = 0.8 on CIFAR and α = 0.3 on ImageNet) and set w = w̃ + 1. Specifically,
for a sample xi, we compute w̃i = − logFθ(xi)[N+1]. The classifier-training loss is then
L =

∑K
k=1

1
S

∑S
i=1 w

(k)
i L(k)

i , where K is the number of classifiers, S is the number of samples,
and L(k)

i denotes our power-sqrt loss.

We treat the damping neuron values as constant weights when calculating the gradient of the loss
function. This is because incorporating gradients of these weights into the loss gradient would alter
the relative importance of different classifiers during training. Specifically, deeper classifiers, which
tend to achieve better results, would experience reduced loss. Consequently, if these weights were
also differentiated during the gradient computation, instead of being treated as constants, it would
encourage increasing the weights applied to deeper networks, thus further reducing the overall loss.
However, this would encourage a decrease in the damping neuron values of deeper classifiers, con-
flicting with the design of our damping loss and degrading performance. Further detailed analyses
are provided in the ablation study section.

4 EXPERIMENTS

In this section, we evaluate our method through extensive experiments conducted on the CIFAR
Krizhevsky et al. (2009) and ImageNet Deng et al. (2009) datasets. Our training strategy is im-
plemented on MSDNet Huang et al. (2017) and RANet Yang et al. (2020), which are representa-
tive early-exiting architectures commonly used as backbones to evaluate the performance of related
methods Han et al. (2022); Meronen et al. (2024); Gong et al. (2024).

We compare our method with the meta-learning training approach WPN Han et al. (2022) and the
feature partitioning method DFS Gong et al. (2024). Furthermore, our method can be integrated
with linear scalarization techniques to further enhance performance.

Datasets. CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009) both contain 50,000 training images
and 10,000 test images. The size of the image is 32×32. CIFAR-10 has 10 classes, and CIFAR-100
has 100 classes for the classification task. ImageNet Deng et al. (2009) has 1.2 million 224 × 224

7
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Table 1: Anytime prediction results of a 7-exit MSDNet on CIFAR100.

Exit 1 2 3 4 5 6 7 Avg

Params (×106) 0.30 0.65 1.11 1.73 2.38 3.05 4.00 –
FLOPs (×106) 6.86 14.35 27.29 48.45 76.43 108.90 137.30 –

MSDNet 61.826 ± 0.675 64.922 ± 0.620 67.998 ± 0.505 71.212 ± 0.320 73.600 ± 0.595 75.316 ± 0.425 75.874 ± 0.545 70.107 ± 0.144
WPN 62.344 ± 0.315 65.172 ± 0.730 68.246 ± 0.570 71.232 ± 0.710 73.284 ± 0.340 74.702 ± 0.390 74.934 ± 0.860 69.988 ± 0.254

Damping 61.650 ± 0.495 64.908 ± 0.330 68.022 ± 0.480 71.160 ± 0.510 73.592 ± 0.480 75.164 ± 0.630 75.840 ± 0.395 70.048 ± 0.196
+ Power-sqrt 62.094 ± 0.295 65.226 ± 0.420 68.448 ± 0.405 71.654 ± 0.460 73.828 ± 0.295 75.494 ± 0.375 76.012 ± 0.470 70.394 ± 0.215
+ Dynamic 63.402 ± 0.330 66.276 ± 0.345 70.192 ± 0.395 72.498 ± 0.300 74.654 ± 0.490 75.720 ± 0.385 76.050 ± 0.475 71.256 ± 0.149

images for training, 50,000 images for validation and 1000 classes for the classification task. For
the sake of fair comparison, we followed Han et al. (2022) setting data augmentations which contain
data normalization, random crop, and random flip.

Backbone architecture and implementation. Our method can be easily applied to any early exit
network. We conduct experiments on two representative early exit architectures, MSDNet Huang
et al. (2017) and RANet Yang et al. (2020).

We follow Han et al. (2022) in selecting MSDNet and RANet as backbone architectures. For the
CIFAR-100 and CIFAR-10 datasets, we train for 300 epochs with a batch size of 64, using SGD
optimizer with a momentum of 0.9 and an initial learning rate of 0.1 decaying with a cosine shape.
For the ImageNet dataset, we train for 100 epochs with a batch size of 256, using the same SGD
optimizer configuration.

4.1 PERFORMANCE EVALUATION

Results on CIFAR dataset. We evaluate our training strategy on MSDNet with seven exits, for
both the CIFAR-10/100 datasets. We set the hyperparameter λ to 0.005 for CIFAR-100 and to 0.075
for CIFAR-10. Initially, we present the ‘Anytime Prediction’ setting on a 7-exit MSDNet, which
details the accuracy of each classifier alongside the corresponding FLOPs (floating point operations,
a common metric for assessing the computational budget of the model) as shown in Table 1.

Compared to the MSDNet baseline, our method achieves notable improvements across nearly all
classifiers. Additionally, it outperforms the current state-of-the-art meta-learning approach, demon-
strating its effectiveness in early-exiting networks.

We show that using the same hyperparameters for all classifiers with our damping loss method led to
performance improvements in some classifiers while causing declines in others. However, when in-
corporating our power-sqrt gradient adjustment, the results showed significant overall improvement.
Furthermore, our method is also compatible with existing linear scalarization approaches. When
combined with our proposed simplified Dynamic training, it achieves further performance gains.

We also provide the results on the CIFAR-10 dataset in Appendix C.1, demonstrating that our
method achieves excellent performance on this dataset as well.

Results on RANet. We also conduct experiments on RANet, where our method achieves similarly
strong performance. The results and corresponding analysis are provided in Appendix C.3.

Comparison with label smoothing. We also compare our method with conventional label smooth-
ing, demonstrating its advantages on early-exiting architectures. Further details are provided in the
Appendix C.5.

Table 2: Anytime prediction results of a 5-exit MSDNet
on ImageNet.

Exit 1 2 3 4 5 ∆

Params (×106) 4.24 8.77 13.07 16.75 23.96 /
FLOPs (×109) 0.34 0.69 1.01 1.25 1.36 /

MSDNet 59.03 66.49 70.56 72.39 74.20 –
WPN 59.54 67.22 71.03 72.33 73.93 ↑ 1.39
DFS 61.80 68.03 70.75 71.79 72.88 ↑ 2.58

Power-sqrt 59.43 67.12 71.21 72.91 74.45 ↑ 2.46
+ Dynamic 59.58 67.46 71.33 73.19 74.74 ↑ 3.63

Results on ImageNet. To further demon-
strate the effectiveness of our method, we
conducted experiments on the large-scale
ImageNet dataset. We use MSDNet with
five exits as the backbone architecture. For
the ImageNet dataset, we set the hyperpa-
rameter λ to 0.01. Results presented in Table
2 show that our method continues to achieve
significant improvements on the large-scale
ImageNet dataset.
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Dynamic inference results. In the Dynamic Inference experimental setting, we evaluate a 5-exit
MSDNet on the ImageNet dataset, where early-exiting networks dynamically select classifiers based
on the computation budget to process incoming data. The anytime prediction results are presented in
Table 2. As shown in Fig. 4, deeper classifiers have a greater impact on overall performance in this
setting. For instance, the meta-learning approach significantly outperforms the MSDNet baseline in
the first three classifiers. However, MSDNet achieves better performance in its deepest classifier. As
a result, the performance gap between MSDNet and the meta-learning approach is relatively small
under Dynamic Inference.

This is because, in the Dynamic Inference setting, when shallow classifiers misclassify samples, the
model has the flexibility to defer the decision to deeper classifiers. Since the performance of the
deepest classifier often represents the upper bound of the model’s capacity, this setting inherently
mitigates the limitations of weaker classifiers. Our method, by filtering out unnecessary gradients,
provides the model with greater learning capacity, leading to improved performance in deeper clas-
sifiers. Consequently, it achieves competitive results in the Dynamic Inference setting.

4.2 ABLATION STUDY
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Figure 4: Dynamic inference results on ImageNet.

We conduct ablation studies on the 7-exit MSDNet
which is used in our CIFAR experiments.

Adaptive Damping Criterion. We modify MSD-
Net by removing all intermediate classifiers, keep-
ing only the final one to evaluate the effectiveness
of our damping loss in a standard setting. In this
setup, our method dynamically applies damping to
a single classifier based on different training data,
without managing multiple classifiers.

The results in Table 3 demonstrate the effectiveness
of our approach. MSDNet last only represents the
performance with only the last classifier retained in
MSDNet, while Damping loss last only applies our
damping loss in this setting. We also compare our method with Threshold last only, which incor-
porates a threshold-based gradient selection mechanism into MSDNet with a single classifier.

Table 3: Ablation results on the 7-exit MS-
DNet (CIFAR100).

Accuracy
MSDNet last only 75.98
Threshold last only 76.41

Damping loss last only 76.63

The results of this experiment confirm that our damp-
ing gradients do not degrade classifier performance. Fur-
thermore, as the training states of different data samples
vary, our dynamic damping strategy effectively adapts to
these variations. Notably, the MSDNet last only results
presented here are based on the best-performing epoch,
following the conventional early stopping method. This
highlights that our dynamic damping approach outper-
forms both Threshold last only and early stopping, demonstrating its superior adaptability in single-
classifier training. Moreover, the power-sqrt loss builds on the original damping loss by further
utilizing the damping neuron to encode the relative convergence of each classifier, thereby enabling
more fine-grained gradient control.

Sensitivity analysis. We present the sensitivity analysis of the hyperparameter λ in Appendix C.4

Table 4, demonstrating that while our damping loss is relatively sensitive to the choice of λ, the
power-sqrt loss significantly reduces this sensitivity. With the power-sqrt loss, small λ values achieve
similarly effective results.

Damping neuron. We provide a detailed analysis of the damping neuron and its role in dynamic
training in Appendix C.2.

9
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5 REPRODUCIBILITY STATEMENT

All code, data preprocessing scripts, and training/evaluation pipelines are provided as anonymized
supplementary material.

We run experiments on an Nvidia RTX4090 GPU, 12 cores Xeon(R) Platinum 8352V and 90GB
RAM. For CIFAR100 experiments, our methods (both damping loss and power-sqrt loss) need ap-
proximately 14 hours for total 300 epochs. For ImageNet, our methods need approximately 40 hours
for total 100 epochs.
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A CONCLUSION

In this paper, we present an adaptive damping mechanism specifically for training early exiting
networks. Each classifier’s fully connected layer is augmented with a damping neuron, receiving
a small gradient to enable adaptive damping when sufficiently trained. Our power-sqrt loss fur-
ther incorporates a joint consideration of the damping mechanisms across different classifiers. This
adaptive damping mechanism significantly enhances the training effectiveness of early exiting net-
works. By freeing up parameter space that would typically be wasted on overfitting in traditional
training methods, the performance of early exiting networks significantly outperforms the current
methods. Furthermore, our approach is compatible with state-of-the-art linear scalarization training
methodologies.

B APPENDIX FOR THEORY

B.1 PROOF OF PROPOSITION 1 AND PROPOSITION 2

We present a detailed proof of the gradients received by each neuron in the fully connected layer
from our damping loss.

Our damping loss’s gradient has two components: the cross-entropy part ▽− logFθ(x)[y] and the
gradient of our damping neuron ▽− logFθ(x)[N + 1]. We demonstrate the gradients transmitted
from the loss of the damping neuron part to each neuron as follows:

∂ − logFθ(x)[N + 1]

∂fθ(x)[i]
(5)

According to the chain rule:

= − 1

Fθ(x)[N + 1]
× ∂Fθ(x)[N + 1]

∂fθ(x)[i]
(6)

= − 1

Fθ(x)[N + 1]
×

∂ exp(fθ(x)[N+1])∑N+1
j=1 exp(fθ(x)[j])

∂fθ(x)[i]
(7)

According to the quotient rule:

= − 1

Fθ(x)[N + 1]
× (

∂ exp (fθ(x)[N + 1])

∂fθ(x)[i]
× 1∑N+1

j=1 exp (fθ(x)[j])
(8)

− exp (fθ(x)[N + 1])×
∂
∑N+1

j=1 exp (fθ(x)[j])

∂fθ(x)[i]
× 1(∑N+1

j=1 exp (fθ(x)[j])
)2 )

= − 1

Fθ(x)[N + 1]
× (

∂ exp (fθ(x)[N + 1])

∂fθ(x)[i]
× 1∑N+1

j=1 exp (fθ(x)[j])
(9)

− exp (fθ(x)[N + 1])× ∂ exp (fθ(x)[i])

∂fθ(x)[i]
× 1(∑N+1

j=1 exp (fθ(x)[j])
)2 )

= − 1

Fθ(x)[N + 1]
× (

∂ exp (fθ(x)[N + 1])

∂fθ(x)[i]
× 1∑N+1

j=1 exp (fθ(x)[j])
(10)

− exp (fθ(x)[N + 1])× exp (fθ(x)[i])×
1(∑N+1

j=1 exp (fθ(x)[j])
)2 )
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= − 1

Fθ(x)[N + 1]
× (

∂ exp (fθ(x)[N + 1])

∂fθ(x)[i]
× 1∑N+1

j=1 exp (fθ(x)[j])
(11)

− Fθ(x)[N + 1]× Fθ(x)[i])

when i ̸= N + 1, ∂ exp(fθ(x)[N+1])
∂fθ(x)[i]

= 0,

eq.(7) = − 1

Fθ(x)[N + 1]
×−Fθ(x)[N + 1]× Fθ(x)[i]

= Fθ(x)[i]

when i = N + 1, ∂ exp(fθ(x)[N+1])
∂fθ(x)[i]

= exp (fθ(x)[N + 1]),

eq.(7) = − 1

Fθ(x)[N + 1]
× (Fθ(x)[N + 1]− (Fθ(x)[N + 1])2)

= Fθ(x)[N + 1]− 1

Thus, for the damping neuron, where i = N+1, the gradient from damping component is Fθ(x)[N+
1]− 1. For all other neurons, the gradient is Fθ(x)[i].

The same derivation applies to the gradient of the cross-entropy component as well.

The gradients from the cross-entropy component are Fθ(x)[y] − 1 for the neuron corresponding to
the correct label, and Fθ(x)[i] for the other neurons.

B.2 DERIVATION

The damping component gradient for the neuron corresponding the correct label from power-sqrt
loss is:
∂
√∑K

k=1(− logFk
θ (x)[N+1])2

fθ(x)[y]
.

Same with the Proof above, the k−th classifier’s gradient from damping component for the neuron
corresponding the correct label is: F k

θ (x)[y]).

According to the chain rule, we get final gradient: − logFk
θ (x)[N+1](Fk

θ (x)[y])√∑K
k=1(− logFk

θ (x)[N+1]−1)
2

C APPENDIX FOR EXPERIMENT

C.1 RESULT ON CIFAR10

We also present results on the CIFAR10 dataset in Table 1, where our method continues to achieve
stable improvements. Notably, the enhancements on CIFAR10 are less pronounced compared to
those on CIFAR100. This discrepancy arises because we employ the same MSDNet model architec-
ture for both CIFAR100 and CIFAR10, and the parameter space provided by the model is more than
sufficient for CIFAR10, thus reducing the impact of overfitting. This comparison further illustrates
the effectiveness of our method in unlocking the potential of the parameter space.

C.2 DAMPING NEURON.

In this section, we conduct a detailed analysis of the values generated by the damping neuron and
their effects, as well as their gradients in dynamic training. We keep the hyperparameter λ to 0.005
for damping loss, power-sqrt, and dynamic training.
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Table 4: Anytime prediction results of a 7-exit MSDNet on CIFAR10

Exit index 1 2 3 4 5 6 7

Params(×106) 0.30 0.65 1.11 1.73 2.38 3.05 4.00
FLOPs(×106) 6.86 14.35 27.29 48.45 76.43 108.90 137.30

MSDNet 88.51 90.38 92.15 93.21 93.89 94.22 94.54
Meta-learning Early Exiting 88.54 90.19 91.61 92.55 93.28 93.40 93.67

+ Power-sqrt 88.38 90.33 92.06 93.71 94.23 94.45 94.49
+ Dynamic training 88.42 90.21 92.01 93.58 94.27 94.50 94.55

Table 5 provides a detailed presentation of the average values of the damping neuron for each clas-
sifier across different methods on the test set. In Table 5, the numbers on the left represent accuracy,
while the bolded values in parentheses indicate the average values of the damping neuron. We ob-
serve that the values of the damping neuron are consistently higher in deeper classifiers compared
to shallower ones. This suggests that deeper classifiers are more likely to achieve superior training
performance, thereby more frequently activating the damping mechanism. We observe that while
deeper classifiers tend to have higher damping neuron values, these values are smaller in the power-
sqrt version of the damping neuron. This occurs because the power-sqrt approach takes into account
the training conditions of different classifiers collectively.

We delve deeper into the analysis of weight gradients in dynamic training. As seen from Table 5,
when these weights possess gradients during training, they tend to assign larger weights to deeper
classifiers since they exhibit lower losses, thereby aiming for an overall reduction in total loss.
However, this conflicts with the design of our damping loss. It is observed that, when retaining the
gradients of weights, deeper networks paradoxically exhibit smaller damping neuron values, con-
trary to the previously observed pattern. This conflict can lead to a decline in training performance.
When we use the values of the damping neurons as weights without propagating gradients, the out-
comes are generally consistent with our earlier observations of our power-sqrt version and yield
better performance.

Table 5: Ablation study of damping neuron. The bolded values in parentheses present the average
values of damping neurons

Exit index 1 2 3 4 5 6 7

Params(×106) 0.30 0.65 1.11 1.73 2.38 3.05 4.00
FLOPs(×106) 6.86 14.35 27.29 48.45 76.43 108.90 137.30

Damping loss 61.53(0.006) 64.71(0.008) 68.22(0.015) 71.27(0.028) 73.76(0.050) 75.27(0.070) 75.76(0.071)
+ Power-sqrt 62.07(0.002) 65.44(0.003) 69.32(0.006) 71.61(0.012) 73.88(0.024) 75.89(0.036) 76.45(0.037)

+ Dynamic training 62.74(0.004) 65.69(0.006) 69.76(0.010) 71.77(0.019) 74.61(0.031) 75.96(0.049) 76.63(0.044)
Dynamic training with gradient 62.66(0.041) 66.19(0.029) 70.19(0.020) 72.13(0.010) 74.28(0.001) 75.64(0.004) 76.07(0.006)

C.3 RESULTS ON RANET.

We extended our experiments to include RANet, another representative early exiting architecture, to
demonstrate the generality of our method. The anytime prediction results for the six exit RANet are
displayed in Table 6. The improvements observed with our method on RANet are more significant
than those on MSDNet.

This difference can be attributed to RANet’s hierarchical processing of data resolutions, where shal-
low classifiers operate on low-resolution data, while deeper classifiers are exclusively fed high-
resolution features. This design increases the disparity between features processed at different classi-
fier depths, making the negative impact of classifier overfitting on others more severe. Consequently,
the reduction of unnecessary gradients and the optimized parameter space utilization provided by
our method become even more crucial in mitigating this effect.
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Table 6: Anytime prediction results of a 6-exit RANet on CIFAR100

Exit index 1 2 3 4 5 6

Params(×106) 0.36 0.90 1.30 1.80 2.19 2.62
FLOPs(×106) 8.37 21.79 32.88 41.57 53.28 58.99

RANet 65.28 68.16 70.52 70.64 72.39 72.75
WPN 65.33 68.69 70.36 70.80 72.57 72.45
Ours 65.63 68.96 71.49 71.65 73.19 73.69

+ Dynamic training 65.67 69.38 71.88 71.92 74.19 74.26

Table 7: Ablation study of hyperparameter λ (values are mean ± std)
Method C1 C2 C3 C4 C5 C6 C7 Avg

damping 0.005 61.650 ± 0.495 64.908 ± 0.330 68.022 ± 0.480 71.160 ± 0.510 73.592 ± 0.480 75.164 ± 0.630 75.840 ± 0.395 70.048 ± 0.196
damping 0.025 61.360 ± 0.440 64.802 ± 0.395 67.792 ± 0.555 70.782 ± 0.255 73.746 ± 0.710 75.640 ± 0.800 76.238 ± 0.630 70.051 ± 0.212
damping 0.05 61.096 ± 0.545 64.136 ± 0.825 67.872 ± 0.610 70.652 ± 0.325 73.492 ± 0.385 75.510 ± 0.350 75.750 ± 0.470 69.787 ± 0.248
damping 0.075 61.408 ± 0.735 64.378 ± 0.315 68.036 ± 0.745 70.756 ± 0.235 73.566 ± 0.145 75.344 ± 0.190 75.818 ± 0.360 69.901 ± 0.129

power-sqrt 0.005 62.094 ± 0.295 65.226 ± 0.420 68.448 ± 0.405 71.654 ± 0.460 73.828 ± 0.295 75.494 ± 0.375 76.012 ± 0.470 70.394 ± 0.215
power-sqrt 0.025 61.884 ± 0.480 65.432 ± 0.525 68.578 ± 0.425 71.788 ± 0.670 74.152 ± 0.160 75.638 ± 0.135 76.116 ± 0.400 70.513 ± 0.139
power-sqrt 0.05 62.010 ± 0.405 65.046 ± 0.305 68.594 ± 0.470 71.560 ± 0.565 74.028 ± 0.320 75.860 ± 0.395 76.238 ± 0.535 70.477 ± 0.086
power-sqrt 0.075 61.806 ± 0.360 65.028 ± 0.450 68.520 ± 0.940 71.708 ± 0.335 74.192 ± 0.535 75.996 ± 0.195 76.220 ± 0.255 70.496 ± 0.221

Table 8: Comparison with label smoothing on 7-exits MSDNet on CIFAR100.

Exit 1 2 3 4 5 6 7

MSDNet 60.78 64.54 68.51 71.41 73.68 75.61 76.31
Label smoothing 61.33 64.80 68.32 70.88 73.10 74.75 75.68
Power-sqrt 62.07 65.44 69.32 71.61 73.88 75.89 76.45

C.4 SENSITIVITY ANALYSIS.

The objective of training early-exiting models is to jointly optimize the performance of all classifiers.
To evaluate the stability of our method under different hyperparameters, we conduct five runs with
different random seeds for each value of the damping weight λ. We report the accuracy of each
classifier as well as the overall average performance. Results are shown in Table 4

C.5 COMPARISON WITH LABEL SMOOTHING

While our method may appear superficially similar to confidence-based regularization techniques
such as label smoothing, its design and purpose are fundamentally different. Label smoothing ap-
plies a uniform confidence penalty to each classifier independently. By contrast, our method is
specifically tailored for early-exiting architectures, where all classifiers must be trained jointly.

To achieve this, we introduce a damping neuron whose output acts as a learned coordination signal.
This signal drives two key components of our approach:

• Dynamic training, where it adaptively controls the weight assigned to each classifier’s
gradient;

• Power-sqrt loss, where it regulates the degree of gradient damping across classifiers.

The critical distinction is that our method explicitly coordinates the optimization of all classifiers
through a shared and interpretable mechanism, rather than regularizing them in isolation.

To further highlight this difference, we compared our approach with label smoothing in early-exiting
experiments (Table 7). These experiments are conducted on well-established image classification
benchmarks (e.g., MSDNet backbones), which already incorporate mature overfitting-prevention
techniques. In this setting, label smoothing fails to provide additional benefits. In contrast, our
method directly addresses the unique challenge of early-exiting training—jointly optimizing multiple
classifiers under potential gradient conflicts—and thus yields consistent improvements.
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