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ABSTRACT

Quantization offers a promising solution for deploying large-scale language mod-
els (LLMs) on resource-constrained devices. However, early quantization meth-
ods, developed for smaller networks like ResNet, rely on gradient-based optimiza-
tion, which becomes impractical for hyper-scale LLMs with billions of param-
eters. While recently proposed backpropagation-free post-training quantization
(PTQ) methods alleviate this issue, their performance is limited by a lack of inter-
layer dependency consideration. In this paper, we introduce a novel PTQ algo-
rithm that incorporates inter-layer dependencies without relying on backpropaga-
tion. The key innovation is the development of attention-aware Hessian matrices
that capture inter-layer interactions within the attention module. Extensive experi-
ments demonstrate that our approach significantly outperforms conventional PTQ
methods, particularly at low bit-widths.

1 INTRODUCTION

The explosive growth in complexity (parameters) of large-scale language models (LLMs) based on
Transformers (Touvron et al., [2023}; [Zhang et al., [2022) has resulted in a proportional increase in
computational costs, which has prompted an urgent need for efficient model processing and com-
pression strategies. Quantization has emerged as a pivotal solution in this context, and it serves
as an essential step in deploying Al models on resource-constrained devices that primarily support
fixed-point arithmetic. By reducing precision, the memory bandwidth requirements can be allevi-
ated, and the significant parallelism of quantized models can be SIMDified using highly efficient
vector processing units, such as neural processing units (NPUs).

Two main categories of quantization approaches have been proposed to preserve the performance
of original full-precision models: quantization-aware training (QAT) and post-training quantiza-
tion (PTQ). Although QAT can potentially outperform PTQ, its practicality diminishes considerably
when handling hyper-scale LLMs featuring billions of parameters. Consequently, recent quantiza-
tion efforts have been directed toward PTQ.

Although classic PTQ methods have successfully quantized small-scale models (Nagel et al., 2020;
Liet al.,[2021), they rely on time-consuming gradient-based optimization, so their efficacy decreases
when the complexity of LLMs increases. Accordingly, backpropagation-free PTQ methods have
been developed for LLMs (Frantar et al.,|2023} | Xiao et al.|, [2023} Jeon et al., [2023b); however, their
performance is somewhat limited owing to the lack of consideration of inter-layer dependencies.
Recent studies have attempted to consider inter-layer dependencies (Shao et al., [2023; [Ma et al.,
2024), but they still rely on time-consuming gradient-based optimizations.

In this paper, we propose a novel quantization algorithm that considers inter-layer dependencies
without relying on backpropagation. Our primary contributions can be summarized as follows:

* We propose a novel PTQ algorithm called BO To avoid time-consuming gradient-
based optimization, we adopt the Hessian-based strategy introduced by (Frantar & Alistarh,
2022). The primary contribution is to approximate the Hessian more accurately by exploit-
ing the attention reconstruction error, not the layer-wise reconstruction error, to capture
inter-layer dependencies within the attention module (Section [3.2).

'BoA: Backpropagation-free optimization for Attention-aware PTQ
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* While the proposed Hessian facilitates the consideration of inter-layer dependencies, it
requires a large amount of memory and high computational cost. Therefore, we incorpo-
rate several techniques to mitigate the computational overhead, including Hessian relax-
ation, efficient computation of inverse Hessians, and head-wise simultaneous quantization

(Section[3.3).

* We evaluate BOA via extensive experiments on publicly available LLMs. Our results
demonstrate that BOA outperforms conventional LLM PTQ methods by a significant mar-
gin, particularly for low-bit precision (e.g., INT2) (Section [d).

2 RELATED WORKS

When calibration data are available, PTQ primarily aims to minimize the increase in task loss in-
curred by quantization. Consider a neural network parameterized by weights W. Provided that the
network is trained to convergence, the problem of quantizing W to minimize task loss degradation
can be formulated as (LeCun et al., 1989)
min Aw” - H™ . Aw, (1)
Aw
where H(™) is the Hessian related to the flattened weight w and Aw is a weight perturbation caused
by the quantization. Owing to the infeasibility in computing and storing the exact Hessian H(W),
many studies have assumed independence between layers, which relaxes (1)) into the following layer-
wise reconstruction problem (Nagel et al., 2020):

2
min HAW(")X“_” H : 2)
AW(Z) F

where X~ is the input to the /-th layer parameterized by W(£),

To solve (2), early efforts aimed to optimize the weight-rounding mechanism (Nagel et al. [2020;
Hubara et al., 202 1;|Li et al.,2021;|Jeon et al., 2022} 2023a). Instead of allocating the nearest quanti-
zation bin, these studies attempted to assign quantized values that minimize the reconstruction error.
In (Nagel et al., [2020), a backpropagation-based optimization method, called AdaRound, has been
proposed. This algorithm has been extended to BRECQ where the block-wise reconstruction error
has been used instead of the layer-wise reconstruction error to consider the inter-layer dependencies
within a certain network block (e.g., Transformer block), which leads to an enhanced low-bit quan-
tization performance (Li et al.,[2021). Although AdaRound and BRECQ have successfully quantized
small-sized models such as ResNet (He et al.,[2016), they are heavily dependent on time-consuming
gradient-based optimizations. This renders their application to LLMs with billions of parameters
challenging. Consequently, recent efforts have shifted towards the development of cost-effective
quantization methods for LLMs.

These efforts can be classified into two orthogonal categories: 1) Hessian-based methods that opti-
mize a weight-rounding mechanism without relying on backpropagation (e.g., GPTQ (Frantar et al.,
2023))) and 2) equivalent transformation (ET)-based methods that transform a model to be robust
to quantization, thereby enhancing the performance of the naive rounding-to-nearest quantization
(e.g., SmoothQuant (Xiao et al.,2023), AWQ (Lin et al., 2024), Z-FoLD (Jeon et al., [2023b)), Out-
lier Suppression+ (OS+) (Wei et al., [2023)), OmniQuant (Shao et al.,[2023), AffineQuant (Ma et al.,
2024))). Among them, GPTQ has emerged as one of the most efficient quantization methods; GPTQ
is capable of quantizing models with over 30 billion parameters in just a few GPU hours, with negli-
gible performance degradation at INT4 precision. Moreover, GPTQ can be integrated with ET-based
methods to enhance their performance (Lin et al., [2024; Jeon et al., 2023b)E] Similar to GPTQ, we
optimize a weight-rounding mechanism based on Hessian without relying on backpropagation. The
primary difference is that we pursue the preservation of the attention output after the quantization
while GPTQ aims to preserve each layer output and thus cannot consider inter-layer dependencies
within the attention module.

Other algorithms exploiting different quantization strategies have also been proposed. For example,
SpQR (Dettmers et al., 2023)), SqueezeLLM (Kim et al.;,2023), and OAC (Edalati et al., 2024) tried

By transforming models with ET-based methods and then optimizing a weight-rounding mechanism with
GPTQ (instead of applying the rounding-to-nearest method), the quantization performance can be boosted.
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to preserve quantization-sensitive weights by assigning a large bit-width or retaining them in full-
precision. QuIP (Chee et al., 2023) introduced the idea of incoherent processing to suppress outliers
within weights. When compared to the standard uniform quantization, these algorithms require ad-
ditional processing and memory costs in the real inference stage and need some special hardware and
dedicated kernels without which accelerating the inference process may not be easyE] Furthermore,
unlike server-grade GPUs (e.g. NVIDIA A100), on-device NPUs (e.g. Qualcomm Hexagon) lack
support for the mixed precision format and such additional processing, and customizing kernels for
desired functionalities is very challenging on on-device NPUs. Thus, we exclude these algorithms
in our comparison and focus on the more universally supported uniform quantization format.

3 METHOD

3.1 OVERVIEW OF PROPOSED BOA

Similar to GPTQ, the proposed BOA algorithm quantizes weights by repeating the quantization and

weight-update steps; once BOA quantizes one weight, it updates the remaining (not-yet-quantized)

weights by exploiting the Hessian-based weight-update formula introduced by GPTQ, compensating

for the task loss degradation caused by the quantization. When the ¢-th weight w, is quantized, the

weight-update dw is mathematically expressed as

wq — Q(wy)
Ulyg

Here, H is the Hessian, Chol(-) denotes a Cholesky decomposition (i.e., U is an upper triangular
matrix satisfying H=! = UTU), and Q is a uniform quantization function defined as

Qx) =s (clamp ({g—‘ +2,0,2" — 1) — z) ,

where s, z, n are the scale, zero-point, and bit-width, respectively, and |-] represents the round-off.

Sw=— [U],,. where U = Chol(H™")"". ®)

The key difference over GPTQ lies in the approximation of the Hessian H. In GPTQ, the layer-wise
independence has been assumed to approximate H, which yields the following Hessian equatio

H®@) ~ ox (DX D" o1 4)

where H®") is the Hessian for the /-th layer, ® denotes the Kronecker product operation and I is

the identity matrix. As the approximated Hessian H®@") relies solely on the input, GPTQ is unable
to account for the influence of other layers when compensating for quantization error (see (3)). In
other words, GPTQ neglects inter-layer dependencies within the attention module, a crucial aspect
of Transformers (Vaswani et al.,|2017)), which results in somewhat constrained performance for low
precision (e.g., INT2) (Jeon et al.l 2023b). To overcome this, we develop Hessians that incorporate
inter-layer dependencies within the attention module and then use them instead of the conventional
Hessian in (@).

3.2 PROPOSED ATTENTION-AWARE HESSIAN

To consider the inter-layer dependencies within the attention module, we exploit the attention re-
construction error rather than the layer-wise reconstruction error when approximating the Hessian.

For an input sequence X € R*L, the output of the multi-head attention (MHA) is expressed as

QhKZ>
NG

3In QuIP, the weight W is multiplied by random orthogonal matrices U and V (i.e., W + UWVT).
While this incoherent processing can suppress outliers within weights, additional processing is needed to re-
cover quantized weights (i.e., W UTV/\\/'V; see Algorithm 2 in (Chee et al., 2023)). Such processing must
be done during the inference, incurring additional inference time and memory costs for storing U and V.

*For any M; and M, the second-order derivative of | M; AWMy ||% with respect to Aw is 2M2M3 @
MTM, (see Appendix @ for the proof).

H
MHA(X) = ZWOugh(Ath)T, Ay, =0 ( (5)

h=1
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Algorithm 1 BOA

Input: weights W € R%ovXde and inputs X of the Transformer layer
1: def BOA(W, X)

2: Initialize quantized output: Q < Of7 x4, /H xdey

3: Initialize (row-wise) quantization errors: E <= Og 4.,

4: Compute attention-aware Hessians: Hj, = Heop, © Hyow,n > See TableE]
5: Set step size (scale) S: ming tr(AWHcol hAWT)

6: Compute inverse Hessians HCol ,, and HrOW h

7: Compute Ueo,n = Chol(H{ ;)" and Uiy 5 = Chol(H,, )7

8: for]—O,...,mW/H—ldo

9: Construct W) € RH*dwi by stacking the j-th rows [W,];..

10: Quantize W): (Q. .., E) + GPTQ(W ), Ucy 1, S) > See Appendix@
11: Update remaining rows: [Wp,];.. < [Wp];.. — [Ugv{’h[]li,i']j];;y;’.Uml,h

12: end for
Output: quantized weights Q

where o is the row-wise softmax function, H is the number of attention heads, d;, is the embedding
dimension of the h-th attention head, [Q,|Kx|V}] = XT[W57h|W£)h|W‘T/7h], Wio.kvin €

R9n%d and W oy j, € R,

Hessian for W ;, When W, 3, is quantized, Wy, 5, and 'V, in remain unchanged, but the
attention weight A, changes. Using the first-order Taylor polynomial, the perturbation in Ay can
be approximated as

AA, = o (WQMK%) ., (QhK2> _AQK] ., XTAWS K[
Nz NZ N N

where J, is the Jacobian matrix of the softmax function o. Thus, the attention reconstruction error
is expressed as

(6)

2

Wourn VEI, K
IAMHAGO [ = [ Woun (AT [ = | S22t AW X @
h F
Combining this with Footnote ] yields the following Hessian for W p:
T T T T
H(WQ,h) —oxx7T ® Kh JU Vhwout,hWOUt7th J- Ky ' (8)

dp,

Hessian for W ;, When W ;, is quantized, the attention weight Aj, changes as in the quanti-
zation of W j,. By following the steps for (6], Aj, can be approximated as

AKT A xJr
AA, ~ Qn nyT QrAWgk Jg’ ©)
Vdp, Vdp,
and thus the attention reconstruction error can be expressed as
2
IAMHAX)(% = |AA VLWL L = Q iAW AXITV, WL (10)
F Vd F
Thus, we obtain the following Hessian for W g 5,
T
HW<n) = 2XITV, W Woun VEI. X ® Q. Q. (11)
h

Hessian for Wy, ;, When quantizing Wy 3, only V, changes. Thus, the attention reconstruction
error is expressed as

IAMHAX)|% = [Woun (ArAVH) [ = [|Wou s AWy, XAT |3,
which yields the following Hessian for Wy 3,

HOv) = 9XATALXT @ W, , Woun. 2)

out,h
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Table 1: Proposed attention-aware Hessians

Layer H

Won 2XXT @ KI'K,,
WKyh 2xXx”T ® Q’;{Qh

Wy, 2XATAXT @ WL Woun
Wou, 2Xout,h X, @1

Wit 2Xa XL 91

Wi 2 X2 X, @ 1

Hessian for W, ;, When W, j, is quantized, the attention reconstruction error is expressed as
IAMHAX)[7 = | AWoun (An V)" |3
Thus, the corresponding Hessian is obtained as
HWourr) = oVIAT A, V), @1 = 2X 0 X%, @1, (13)

where Xou , = (A V)T is the input to the out-projection layer.

3.3 EFFICIENT IMPLEMENTATION OF BOA

While inter-layer dependencies within the attention module can be considered by exploiting the
proposed Hessians, they are significantly more complex than the conventional Hessian in (4)), which
may incur high computational costs. For example, computing the proposed Hessians in (8 and
would be more expensive than computing the conventional one in (). In this subsection, we present
techniques for mitigating the computational overheads incurred by the proposed attention-aware
Hessians.

Hessian relaxation The largest overhead related to the computation of the proposed Hessians is
the Jacobian matrix J, in and . For one input sequence, the shape of J, is H x L x L X L,
which requires a large amount of memory and high computational cost (more than 400 GB even for
the OPT-125M model when L = 2048).

To mitigate such computational overhead, we establish a relaxed Hessian that does not require the
computation of J,. To this end, we build an upper bound for the attention reconstruction error in (7),
which will be used as its surrogate:

2

1A MHA(X)]|%

W, \/'TJ(7
< Homhdh IKnAW g 1 X7, (14)

ven

Moreover, we note that the term [|[Woy , VI J,||% in is constant and does not affect quantiza-
tion Thus, we do not need to consider this term when computing the Hessian. In short, we use
the term || K,AWg ,X||% as a surrogate of the attention reconstruction error when deriving the
Hessian for W j,, which results in the following relaxed Hessian:

F

HWer) = oXX” @ KTK,. (15)
Similarly, we can establish a relaxed Hessian for W g j, as follows:

HWxn = 2XX" ® QF Q. (16)
In Table |1} we summarize the relaxed Hessians for each layer inside the Transformer block.
Efficient computation of inverse Hessians Owing to the size of the proposed attention-aware
Hessians being ddj, x dd, the complexity of the computation of the inverse Hessian (see (&) would
be O(d3d}) in our approach. This is considerably more expensive than the complexity O(d?) in

GPTQ, where the inverse of only the column-wise Hessian XXT e R¥*d (in @])) is needed (Frantar
et al., 2023)).

The weight-update dw in (3) is not affected by the constant multiple of H because [cU],,./[cUlq,q =
[Ulq,:/[U]q,q for any constant c.
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H(‘()I = ZXXT H(‘o/ = ZXXT
b [ ]
| L ]
Wo1 <, Wo,1
X 5 -
— o
o @
H; -?:D $‘
= &z
[ ] @
x| | ] 5 @
WQ.H :i: WQ,H
7]
A
(a) Hessians in the conventional GPTQ (left) and the proposed BoA (right)
2xx” . 2XX"
[l [ U I | T |
- H;ow B
— : —> update — K, KT — - : —
— — R
1) =2 2)
Wo Wo
quantize stack of 1st rows update other rows quantize stack of 2nd rows

(b) Quantization procedure in BoA

Figure 1: Illustration of the proposed BOA for the query projection Wy,.

For the efficient computation of the inverse Hessians, we exploit the useful properties of the Kro-
necker product (see @)- in Appendix [A). For simplicity, let H = Hcy ® H,oy where
H., € R4*4 and H,,,, € R X% then we obtain

H_l = (Hcol & Hrow)_1 = H_l X H_l

col TOW *

This implies that the inverse Hessian H~! can be computed by computing H;ﬂl and H,;! (line 6
in Algorithm whose complexity is O(d*) + O(d}) (= O(d?)), not O(d®d3). Similarly, we can
efficiently compute the Cholesky decomposition with the same order of complexity as in GPTQ.
Specifically, if L; = Chol(H_,) and Ly = Chol(H_}), H™! can be expressed as

H'=L,LT @ L,LY = (L; ® Ly)(L; ® Ly)™.

Subsequently, noting that the Kronecker product of lower triangular matrices is also lower triangular,
we obtain

Chol(H™!) = L; ® Ly = Chol(H_]) ® Chol(H,,,

col row) .

Thus, we can obtain Chol(H™!) by computing Chol(H_; ) and Chol(H}) (line 7 in Algorithm.
Consequently, the computational complexity of the Choleksy decomposition would be O(d?), not

O(d3d3).

Simultaneous quantization of different heads The conventional Hessian in (4) implies the inde-
pendence of different rows (see H,,, = I). Whereas, the proposed attention-aware Hessians model
the dependency between different rows (e.g., Hyow = K} Kj, for the query projection), using which
we can compensate for the quantization error of a certain row by updating the other rows. However,
in this case, the rows must be quantized sequentially (not simultaneously). For example, the second
row can be quantized after being updated to compensate for the quantization error of the first row.
This is in contrast to GPTQ where all the rows are quantized simultaneously.

To accelerate the quantization process, we assume independence between different attention heads
(see Fig. [I(a)), under which rows related to different heads are independent and can thus be quan-
tized together. For a better understanding, we consider the query projection W ¢ as an example (see
Fig. b)). In the quantization step, we stack the j-th rows [W g ]; . of all different heads, construct-
ing the sub-weight matrix Wg ) € R¥*4 (line 9 in Algorithm . Because the rows of Wg ) are
mutually independent, all the rows of Wg ) can be quantized simultaneously as in GPTQ (line 10 in
Algorithm|[T). Following the quantization of j-th rows, we compensate for the quantization error by
updating the remaining rows. In this update step, we use the refined weight-update formula (line 11
in Algorithm [I)); the detailed derivation for this is provided in Appendix
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To evaluate how much the quantization process can be accelerated by the head-wise simultaneous
quantization, we measure the processing times of the proposed method with and without simultane-
ous quantization. From Table 2] we observe that BOA requires a significantly long processing time
without the simultaneous quantization (more than one day for the 2.7B model). This is because all
rows need to be quantized sequentially (e.g., 2560 rows are quantized sequentially for OPT-2.7b)
and thus the massive compute capabilities of modern GPUs cannot be utilized properly. As evident
from Table [2] by applying the head-wise simultaneous quantization, we can achieve a significant
reduction in the processing time.

Table 2: Processing time of BOA with and without head-wise simultaneous quantization

Head-wise Model Size (OPT)
Simultaneous Quantization 125M 350M 1.3B 2.7B
X 4922 min  181.7min  712.7 min  24.48 hr
(6] 5.099 min 1393 min  31.64 min  1.101 hr

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate the performance of the proposed BOA, we quantize publicly available language models
including OPT (Zhang et al., 2022), BLOOM (Scao et al.| 2022), and LLaMA (Touvron et al.,
2023)). As in (Frantar et al., [2023} Jeon et al., [2023b; |Chee et al., [2023)), we quantize only weights
and retain activations with full precision because activations do not pose a significant bottleneck
for the inference of LLMs (Frantar et al.l [2023}; [Kim et al., 2023). As a calibration dataset, we use
128 random 2048 token segments from the C4 dataset (Raffel et al., 2020). Thus, we do not use
any task-specific data for quantization. We evaluate the performance of the quantized models using
benchmark datasets (e.g., WikiText-2 (Merity et al.,[2016), C4 (Raffel et al.|[2020), and PTB (Marcus
et al., |1993)) and zero-shot tasks. All experiments were conducted using a single NVIDIA A100
GPU (80 GB).

When determining a quantization order in BOA, the heuristic introduced by GPTQ can be employed;
the column/row corresponding to the largest diag(H,,)/diag(H,oy) (i.e., the most quantization-
sensitive column/row) is first quantized for better compensation. Empirically, we observed that this
heuristic could occasionally enhance the performance, yet at other times, it may result in inferior
performance. We conduct experiments with and without this heuristic and report the better results.

4.2 COMPARISON WITH GPTQ

We compare the proposed BOA with GPTQ (Frantar et al., 2023), which is our primary baseline.
For both algorithms, we set per-channel quantization parameters (i.e., scale and zero-point) to min-
imize the layer-wise reconstruction error (line 5 in Algorithm[I). We note that in GPTQ, the Min-
Max-based quantization parameters have been used (Frantar et al., [2023); however, this results in
significantly worse quantization performance (Jeon et al.}|2023b). While both algorithms aim to op-
timize the weight-rounding mechanism and can be combined with existing ET-based methods such
as SmoothQuant (Xiao et al., 2023), AWQ (Lin et al.| [2024), and Z-FOLD (Jeon et al., 2023b), we
do not perform an equivalent transform in this experiment to solely compare the weight-rounding
optimization performance. The results of integration with ET-based methods are presented in Sec-
tion 4.3

First, we compare the perplexity (PPL) performances of BOA and GPTQ (see Table 3] and Tables
and[8]in Appendix [C.I). The performance of the rounding-to-nearest (RTN) method (which naively
assigns the nearest quantized value) is also included for comparison, as in (Frantar et al., [2023).
While RTN collapses for low bit-widths, BOA and GPTQ exhibit reasonable PPL, even for INT2
quantization. This is because BOA and GPTQ aim to minimize the task loss degradation, not the
weight quantization error AW. Evidently, the proposed BOA outperforms GPTQ for all models. In
particular, the performance gap is significant for low bit-width (i.e., INT2) and small-sized models
suited for resource-limited devices (e.g., mobile devices).
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Table 3: INT2 quantization performance (PPL |) of the proposed BOA and the conventional GPTQ.
(a) OPT

Dataset Method 125M  350M 1.3B 2.7B 6.7B 13B 30B

RTN 55e3 284 1l.1e5 9.5e3 2.8e4 1.9e5 1.7e5
WikiText-2 ~ GPTQ 232.8 98.65 66.76 3744 2474 1897 13.12
BoA 141.6 5740 48.71 2620 22.71 18.76 12.15

RTN 43e3  28e4 1.le4 6.8¢e3 1.8e4 1.2e5 1.7e5

PTB GPTQ 3848 1359 1120 6459 4236 2695 2025
BoA 199.2  90.87 78.73 40.76 33.77 2534 18.52

RTN 3.7¢3 1.6e4 7.7¢3 7.7e3 1l.4e4 9.7e4  5.8e4

C4 GPTQ 1786  71.89  64.11 3394 2486 20.08 1445

BoA 118.1  54.07 48.92 26,57 23.03 19.22 13.84

(b) BLOOM and LLaMA

BLOOM LLaMA

Dataset  Method 560M 1.0B 1B 3B 7.1B 38 30B
RTN 785 98¢5 35¢5 14e5 215 57c4 274

WikiText-2  GPTQ 5023 4393 3648 2925 2020 1267 8.844
BOA 5209 3816 3076 2425 17.54 11.56  7.993

RTN 74e5 116 25¢5 12e5 2.2¢5 8.led  33ed

PTB GPTQ 1426 1764 9532 6748 4373 20.55  14.64
BOA 1130  139.1 6998 53.10 3597 1849 1324

RTN 1.4e6 2.1e6  2.7e5 9.2¢e4 1.3e5 59e4  2.8e4

c4 GPTQ 5731 4348 3869 3097 2352 1424 1178
BOA 5212 3903 3371 2726 2122 1334 1053

* INT3/INT4 quantization results are provided in Appendixdue to the page limitation.

Table 4: INT2 zero-shot task performance (accuracy 1) of the proposed BOA and GPTQ.
Model Size Method ARC-c  ARC-e HellaSwag MMLU  Average

13B GPTQ 22.53 35.61 34.03 22.93 28.78

’ BoA 22.53 38.72 36.00 23.12 30.09

278 GPTQ 24.40 38.47 37.87 23.04 30.95

’ BoA 25.51 42.89 43.68 23.14 33.81

GPTQ 25.60 42.85 43.29 24.09 33.96

OPT 6.78 BoA 26.62 4491 44.52 24.33 35.10
13B GPTQ 26.62 44.15 50.09 24.59 36.36

BoA 27.47 47.39 54.42 25.21 38.62

30B GPTQ 31.57 52.99 60.55 25.27 42.60

BoA 31.48 53.24 62.58 26.41 4343

13B GPTQ 32.17 58.71 57.48 23.53 42.97

) BoA 33.79 59.01 59.73 23.90 44.11

LLaMA 30B GPTQ 37.12 62.84 65.09 31.16 49.05
BoA 37.88 63.47 66.31 33.11 50.19

Next, we compare the zero-shot performances of BOA and GPTQ (see Table ). To this end, we
measure the accuracy of quantized models for several tasks and then average the results. We note
that the zero-shot setting is maintained in our experiments because we do not use task-specific data
for quantization. As evident, the proposed BOA outperforms GPTQ for all models. The key factor
leading to such an outstanding performance is that we consider inter-layer dependencies within the
attention module by targeting attention-wise reconstruction. This is in contrast to GPTQ, where
layers are assumed to be independent.
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Table 5: INT2 performance (PPL |) of BOA integrated with existing ET-based methods.

Equivalent Dataset Method Model Size (OPT)
Transformation 125M  350M 1.3B 2.7B 6.7B 13B 30B

GPTQ 229.4 N/A 39.88 27.31 20.03 1532 13.55

WikiText-2 g o 1512 N/A 3162 2445 1855 1429 1249

( GPTQ 2923 N/A 6417 4475 3201 2203 19.26
SmoothQuant PTB BOA 2239 N/A 5817 3887 27.85 1979 1797
ca GPTQ 1514 N/A 3813 2680 2122 1619 1442

BoA 1304  N/A 3420 2495 2092 1533  13.90

o GPTQ 1560 1025 3397 27.10 1807 1629 1324

WikiText-2 oo 1079 5472 2938 2396 1718 1514 1241

GPTQ 2069 1307 5380 4608 2679 2373 1927

Z-FoLp PTB BOA 166.1 8227 4918 3945 2494 2286 18.11
ca GPTQ 1088 7137 3167 2598 1979 1721 14.13

BoA 86.07 4939 28.65 2419 19.01 16.17 13.67

* SmoothQuant does not support OPT-350M where the post-LayerNorm architecture has been used.
4.3 INTEGRATION WITH EQUIVALENT TRANSFORM-BASED METHODS

As mentioned, the performance of the proposed BOA can be enhanced by combining BOA with
existing ET-based methods (i.e., transforming models with ET-based methods first and then applying
BOA for optimizing the weight-rounding mechanism). To verify this, we evaluate the performance
of BOA integrated with ET-based methods. Among various algorithms, we use SmoothQuant (Xiao
et al.,2023)) and Z-FoLD (Jeon et al.,[2023b) in our integration because they efficiently find out an
equivalent transform without time-consuming gradient-based optimizationff,

Table [5] and Table [9] (see Appendix summarize the PPL performances of the proposed BOA
combined with SmoothQuant and Z-FOLD. For comparison, we also summarize the integration
results for the conventional GPTQ. Overall, the performance of BOA indeed improves when com-
bined with ET-based methods. We emphasize that the performance gap between the proposed BOA
and GPTQ still remains significant for INT2 quantization. A similar behavior can be observed in the
zero-shot results (see Table [I0]in Appendix [C.2)); the performance is boosted by applying ET-based
methods, and BOA outperforms GPTQ for all models regardless of the ET-based method.

4.4 COMPARISON WITH PRIOR ARTS

We compare the proposed BOA with OmniQuant (Shao et al.| [2023) and AffineQuant (Ma et al.|
2024), recently proposed algorithms that learn an attention-aware equivalent transform via back-
propagation (see Table [6] and Table [IT] in Appendix for PPL results and see Table [12]in Ap-
pendix @] for zero-shot results). In our comparison, we do not include AWQ (Lin et al., [2024)
and OS+ (Wei et al., 2023)) because they perform worse than OmniQuant and AffineQuant (Shao
et al., [2023; [Ma et al., 2024). Mixed quantization algorithms (e.g., SpQR (Dettmers et al., |2023)),
SqueezeLLM (Kim et al.l [2023)), and OAC (Edalati et al.| 2024))) and algorithms that require addi-
tional processing in the real inference stage (e.g., QulP (Chee et al, 2023))) are also not included
because they require some dedicated kernels for acceleration which may not be supported by on-
device NPUs such as Qualcomm Hexagon.

As evident, BOA itself outperforms existing algorithms in almost all cases, even though BOA does
not rely on time-consuming gradient-based optimization and thus facilitates fast quantization (see
Table [T3]in Appendix [C.4). Furthermore, when combined with SmoothQuant or Z-FOLD, the per-
formance gap between BOA and OmniQuant/AffineQuant is significant, which demonstrates the
efficacy of the proposed BOA. We observe that OmniQuant and AffineQuant sometimes diverge or
collapse (i.e., PPL is larger than 10%) for INT2 quantization. In fact, to supplement the INT2 quanti-
zation performance, group-wise quantization parameters have been additionally used in OmniQuant

SWhile SmoothQuant has been proposed in the context of weight-activation quantization, the smoothing
factor (s; = max(]X;|)*/ max(|W ;) ™) used for the equivalent transformation can also be used for weight-
only quantization by setting o = 0.
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Table 6: INT2 performance (PPL |) of BOA and existing approaches.

Dataset Method 125M 1.3B 2.7B 6.7B 13B 30B
OmniQuant NaN NaN NaN 2.3e4 4.5e5 3.8e5
AffineQuant 174.5 NaN 4226 26.25 38.89 5.6e5

WikiText-2  BOA 141.6 4871 2620 2271 1876 12.15
BOA + SmoothQuant  151.2  31.62 2445 1855 14.29 1249

BOA + Z-FoLD 1079 2938 2396 17.18 15.14 1241
OmniQuant NaN NaN NaN 5.0e4 3.7e5 2.9e5
AffineQuant 2542 NaN 5558 37.36 50.10 3.1e5

PTB BOA 199.2 7873 40.76  33.77 2534 18.52
BOA + SmoothQuant 2239  58.17 3887 27.85 19.79 17.97

BOA + Z-FoLD 166.1 49.18 3945 2494 2286 18.11
OmniQuant NaN NaN NaN 3.0e4 2.0e5 2.1e5
AffineQuant 107.0 NaN 3445 2511 3150 3.3e5

C4 BOA 118.1 4892 2657 23.03 1922 13.84
BOA + SmoothQuant  130.4 3420 2495 2092 1533 13.90

BOA + Z-FoLD 86.07 28.65 24.19 19.01 16.17 13.67

* “NaN’ means that loss diverges in the quantization process.

and AffineQuant, but group-wise parameters result in additional memory costs and processing time
in the real inference step (Shen et al., 2023).

4.5 COMPARISON OF TIME AND MEMORY COSTS

We compare the processing time and memory costs of BOA and conventional algorithms (see Ta-
ble[13]in Appendix[C.4). We observe that the processing time of BOA is shorter than those required
by existing attention-aware algorithms (i.e., OmniQuant and AffineQuant), yet BOA achieves sig-
nificantly better performance (see Tables[6and[TT), which demonstrates the efficacy of the proposed
method. We also observe that BOA requires longer processing time and larger memory than those
required by GPTQ. This is because GPTQ quantizes all the rows of the weight matrix simultaneously
using only layer input. In contrast, BOA sequentially quantizes sub-weight matrices using outputs
of other layers as well as layer input (see Fig.[I{b)) to consider the inter-layer dependencies within
the attention module, which eventually leads to the better quantization performance than GPTQ.

Clearly, there is a trade-off between quantization speed / memory cost and accuracy. In real situa-
tions, when one needs to preserve the performance of the original model by considering inter-layer
dependencies within the attention module, the proposed BOA would be an intriguing solution. Even
when the memory resource is limited, BOA can be used with some relaxation. Specifically, we note
that the large memory cost of BOA for hyper-scale LLMs (e.g., 13B and 30B) is attributable to the
row-wise Hessian for the value projection (XA A, XT in (12)) whose shape is H x d x d. In
memory-limited cases, we can mitigate the memory cost of BOA by considering inter-layer depen-
dencies only for query and key projections and applying the standard Hessian (XX in (4)) for the
value projection. Indeed, when applying the proposed Hessians only for query and key projections,
BOA requires almost same amount of memory as GPTQ, yet still exhibiting better performance (see
Table [T4]in Appendix [C.4). For more discussion on time and memory costs of the proposed BOA,

see Appendix [C.4]

5 CONCLUSION

In this paper, we proposed a novel PTQ algorithm called BOA. To consider the inter-layer dependen-
cies within the attention module while circumventing time-consuming gradient-based optimization,
we approximated the Hessian matrices by exploiting the attention reconstruction error. Furthermore,
to mitigate the computational overhead incurred by the proposed attention-aware Hessians, we in-
corporated several techniques, such as Hessian relaxation, efficient computation of inverse Hessians,
and head-wise simultaneous quantization. Finally, through extensive experiments, we demonstrated
the efficacy of the proposed BOA algorithm.

10
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A PROOF OF FOOTNOTE ]

In our proof, we use the following useful properties of the Kronecker product:

vec (M1 MoM3) = (M? ® Ml) vec(My), (17a)
(M; @ My)" =MT @ M7, (17b)
(M]_ 39 MQ) (M3 3 M4> = M1M3 ® ].\/.[21\/.[47 (170)

where vec(-) denotes the vectorization operation.
Using (I74), we have
VL AWM, 3 = [|(MF & M) Aw| = Aw” (MF & My)" (MF @ My) Aw,
where Aw = vec(AW). In addition, by and (17¢)), we have
AwT (MF @ My)" (MF @ My) Aw = Aw” (M, @ MT) (MZ @ M;) Aw
=Aw" (M;Mj ® M{M;) Aw.

Finally, by exploiting the fact that 22 A% — A 4 AT we obtain

0% M AWM,|%
OAW?2

= M,M} @ MTM, + (MoM} @ MTM,)"

(@) T T T T T
Y M,ME @ MIM, + (MoME) ® (MPM;)
= 2M,M3 @ M{ M,

where (a) follows from (I7b). This completes the proof.

13



Under review as a conference paper at ICLR 2025

B REFINED WEIGHT-UPDATE FORMULA

We recall that the Hessian-based weight-update formula is given by (Frantar & Alistarh|, 2022} [Fran-
1[2023)

wg — Q(wg)
[Ula.q

For the proposed attention-aware Hessians in Table[I} we have

Uh = Ucol,h & Urow Jho

where Ug, = Chol(H LT and Upgy s = Chol(HmvlV »)T (see Section . Therefore, the
weight-update formula can be recast as

wy — Q(wg)

ow = — [U],.. where U = Chol(H™ ).

dwy, = — [Ucol,ih ® Usow,h]g,:-
[Ucol,h & Urow,h]q,q o o
Quant. of Update of
1st row 2nd row
Ucul,h /
Urow,h
® a b aUcol h bUcol h
CUcol h
Quant. of
2nd row

Figure 2: Illustration of the Hessian information when d;ow = 2 and d.o = 3

For simplicity, suppose we quantize the first (0-th) row. When the weight [W ] ;(= [W];, ;) in
the j-th column is quantized, the weight-update of the i-th row is simplified as (see Fig. [2] for the
ease of understanding)

(Whilo; — Q([Whlo )
’ 91U 10, [Ucol il
[Urow’h]OsO[UCol,h]jJ [ 7h]07 [ l,h]],
- _ [(Who,j — Q[ Whlo,;)  [Urow,nlo,i[Ucol,nlj:
[UCOI,h]jvj [UI’OW,h]O,O

Thus, after the quantization of all weights in the first row, the total amount of the weight-update for
the ¢-th row can be expressed as

~ Zl [Whlo ,j Q(Wiloy)  [Urowsnlo.i[Ucotnl;

[OWy];. = —

W
[OW, tota] i Ucon, i [Urow,1]0,0
dco -
_ [Urow,n]o,i 'ZI [Whlo,; — Q([Whlo,;) [Ucornlj.:-
[Urow7h]0,0 j=0 [U0017h]j,j o

Furthermore, by noting that (see line 8 in Algorithm 2)
[(Whlo.j = Q(Whlo,;)

E h,j — )
[ GPTQ] 7 [Ucol,h]j,j
we obtain
[Urow,h]O,i Gt [Urow,h]O,i
[OW iotal]i,; = — =+ [Ecprroln,j - [Ucol,hlj: = —1———=—[Ecproln,: Ucolh-
[Urow,h}O,O =0 [Urow,h]O,O

14
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As a result, the weight-update matrix to compensate for the quantization error of the first row is
given by

[U%w 1lo:-0[Ecproln.:Ucolh

W, == 18
[ },,tolal]O.,. [Umw,h]o’o ( )
By taking similar steps as above, we can easily generalize (I8) for the j-th row as follows:
(UL, 1l Ecpraln,: Ucoln
[OWtall = == : (19)

[Urow,h]j,j
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C ADDITIONAL EXPERIMENTAL RESULTS
In this appendix, we provide experimental results omitted in the main text due to the page limitation.

C.1 COMPARISON WITH GPTQ

Table [7] and Table [§ summarize the INT3/INT4 quantization performances (perplexity) of the pro-
posed BOA and the conventional GPTQ on various sizes of OPT, BLOOM, and LLaMA models. As
evident from Table[3] Table[7] and Table[8] BOA uniformly outperforms GPTQ, and the performance
gap is significant for low bit-width (i.e., INT2) and small-sized models suited for resource-limited
devices (e.g., mobile devices).

Table 7: Quantization performance (PPL |) of the proposed BOA and GPTQ on OPT.

(a) WikiText-2

Precision ~ Method 125M 350M 13B 2.7B 6.7B 13B 30B
FP16 Baseline 27.65 22.00 14.63 1247 1086 10.13 9.56

RTN 37.28 2594 4820 1692 1210 1132 1098
INT4  GPTQ 3024 2350 1484 1253 11.09 1026 9.608
BoA 2893 2290 1472 1244 1088 10.16 9.571
RTN 13e3 6457 13e4 1.6e4 5.8e3 3.4e3  1.6e3
INT3  GPTQ 3874 2631 1670 1401 1191 1085 9911
BOA 33.68 24.69 1593 1343 11.53 10.58 9.826

(b) PTB

Precision  Method 125M  350M 1.3B 2.7B 6.7B 13B 30B
FP16 Baseline 3899 31.08 20.29 1797 1577 1452 14.04

RTN 53.88 36.79 7537 3241 1886 1641 1544
INT4 GPTQ 4431 3341 2123 1870 16.09 14.69 14.18
BoA 41.50 3258 21.02 1842 1590 14.63 14.18
RTN 1.4e3 8721 1.5e4 1.4e4 53e3 22e3 1.5e3
INT3 GPTQ 57.62 3935 2477 2153 1756 15.68 14.56
BoA 48.50 36.83 23.53 2033 16.86 1521 14.50

(c)C4

Precision  Method 125M  350M 1.3B 2.7B 6.7B 13B 30B
FP16 Baseline 26.56 22.59 16.07 1434 1271 1206 11.44

RTN 33.88 2621 27.50 18.83 1437 1332 13.55
INT4 GPTQ 28.53 2373 1651 1472 1288 12.16 11.50
BoA 27.56 2320 16.39 14.61 12.84 1216 11.51
RTN 8344 5515 6.6e3 1.2e4 5.0e3 2.8e3 1.8e3

INT3 GPTQ 3390 2668 18.18 16.10 13.60 12.62 11.76
BoA 3112 2539 17.74 1583 1334 1252 1175
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Table 8: Quantization performance (PPL |) of BOA and GPTQ on BLOOM and LLaMA.

(a) WikiText-2

.. BLOOM LLaMA
Precision  Method
560M 1.1B 1.7B 3B 7.1B 13B 30B
FP16 Baseline 2242 17.69 1539 1348 11.37 5.091 4.101
RTN 2582 1998 1696 1475 12.09 5.525 4.536
INT4 GPTQ 2344 1854 1590 1390 11.63 5.262 4.285
BOA 23.28 1832 1581 13.84 11.58 5.243 4.262
RTN 56.74 49.85 63.37 39.07 17.35 11.78 14.87
INT3 GPTQ 26.63 20.80 17.71 1539 1242 5.721 4.848
BOA 2590 20.28 17.12 1491 12.19 5.676 4.725
(b) PTB
Precision  Method BLOOM LLaMA
560M 1.1B 1.7B 3B 7.1B 13B 30B
FP16 Baseline 43.69 57.96 30.00 2534 20.83 9.081 8.159
RTN 5096 66.79 33.52 27.65 2240 9.775 8.653
INT4 GPTQ 4533 6194 31.37 2639 21.40 9.306 8.344
BOA 4492 6140 30.67 26.23 21.34 9.255 8.304
RTN 1248 184.0 1055 66.24 3494 28.94 28.79
INT3 GPTQ 5239 70.68 35.06 28.99 23.46 9.928 8.925
BOA 50.71 67.77 33.92 28.67 22.86 9.857 8.737
(c)C4
Precision  Method BLOOM LLaMA
560M 1.1B 1.7B 3B 7.1B 13B 30B
FP16 Baseline 26.60 22.05 1949 1749 15.20 6.798 6.131
RTN 20.80 2442 2124 18.75 16.05 7.232  6.537
INT4 GPTQ 2739 2269 20.03 17.89 1544 6.973 6.294
BOA 27.23 2254 1990 17.82 15.42 6.958 6.267
RTN 66.99 6041 113.6 79.84 2254 14.46 30.04
INT3 GPTQ 29.89 2448 2144 19.07 16.24 7.504 6.840
BOA 2939 2417 21.02 18.74 16.09 7.454 6.718
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C.2 INTEGRATION WITH EQUIVALENT TRANSFORM-BASED METHODS

In this appendix, we verify that the performance of the proposed BOA can be enhanced by combin-
ing BOA with existing ET-based methods. Among various algorithms, we use SmoothQuant (Xiao
et al., 2023) and Z-FOLD (Jeon et al.| |2023b) in our integration because they efficiently find out
an equivalent transform without time-consuming gradient-based optimization. We note that while
SmoothQuant has been proposed in the context of weight-activation quantization, the smoothing
factor (s; = max(|X;])*/ max(|W;)'~%) used for the equivalent transformation can also be used
for weight-only quantization by setting o = 0.

Tables [5| and [0] summarize the integration results. Overall, the performances of BOA and GPTQ
indeed improve when combined with ET-based methods. We emphasize that the performance gap
between the proposed BOA and GPTQ still remains significant, especially for INT2 quantization. A
similar behavior can be observed in the zero-shot results (see Table @D; the performance is boosted
by applying ET-based methods, and BOA outperforms GPTQ regardless of the ET-based method.

Table 9: INT3 performance (PPL |) of BOA integrated with existing ET-based methods.

Equivalent . Model Size (OPT)
Transformation ~ 2@t Method — e —138 278 678 138 30B

GPTQ 39.56 N/A 1632 1355 1190 10.68  9.857
BoA 34.58 N/A 1583 1333 1158 1038 9.846

GPTQ 58.00 N/A 2400 2036 17.18 1545 1446
BoA 51.44 N/A 2278 1983 16.74 1518 14.40

GPTQ 34.98 N/A 1778  15.68 13.50 1255 11.74

Wiki2

SmoothQuant PTB

€4 BoA 3152 N/A 1743 1548 1335 1248 1173

Wiy OPTQ 3950 2507 1610 1354 1165 1064 9887

BoA 3331 2422 1591 1333 1128 1053 9814

GPTQ 5308 3923 2273 20.18 1664 1522 1457

Z-FoLp PTB  goa 4659 3680 2229 1954 1644 15.16 14.53
ey GPTQ 3367 2645 1733 1550 1328 1246 1173

BoA 30.00 25.04 1713 1532 1320 1241 1171

" SmoothQuant does not support OPT-350M where the post-LayerNorm architecture has been used.

Table 10: INT2 zero-shot performance (accuracy 1) of BOA integrated with ET-based methods.

Equivalent Model Size Method Tasks Average
Transformation (OPT) ARC-c ARC-e  HellaSwag MMLU &
|38 GPTQ 2338  40.15 37.47 2300  31.00
: BOA 218 42.00 37.48 2310  3L19
> 78 GPTQ 2585 4272 42.46 2310  33.53
: BOA 2773 4470 44.24 2295 3491
GPTQ 2568 4625 4524 2340 3514
SmoothQuant 6.78 BOA 2756 48.15 46.20 2390 3645
3B GPTQ 2952  52.53 56.63 2490  40.90
BOA 3157 53.66 58.69 2535 42.32
208 GPTQ  29.18 5446 60.04 2454 4206
BOA 3157 5593 62.18 2554 43.81
. GPTQ 2389  42.05 40.45 2307 3237
: BOA 2474 4398 4031 2345 3312
- GPTQ 2500  41.46 43.13 2316  33.19
: BOA 2637 43.06 45.18 2350  34.53
GPTQ 3046 4878 52.46 2564 3934
Z-F
oLp 6.78 BOA 2858 4975 55.45 2667  40.11
3B GPTQ 2858 4878 5538 2475 3937
BOA 2884  49.87 5832 2460 4041
208 GPTQ 3183  53.70 61.34 2496 4296
BOA 3012 57.53 63.63 2485  44.03
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C.3 COMPARISON WITH PRIOR ARTS

We compare the proposed BOA with OmniQuant (Shao et al., [2023) and AffineQuant (Ma et al.,
2024), recently proposed algorithms that learn an attention-aware equivalent transform via back-
propagation (see Tables [ and [TT] for PPL results and see Table[I2]for zero-shot results).

As evident, BOA itself outperforms existing algorithms in almost all cases, even though BOA
does not rely on time-consuming gradient-based optimization. Furthermore, when combined with
SmoothQuant or Z-FOLD, the performance gap between BOA and OmniQuant/AffineQuant is sig-
nificant, which demonstrates the efficacy of BOA. We note that OmniQuant and AffineQuant some-
times diverge or collapse (i.e., PPL is larger than 10%) for INT2 quantization. In fact, to supplement
the INT2 quantization performance, group-wise quantization parameters have been additionally used
in OmniQuant and AffineQuant, but group-wise parameters result in additional memory costs and
processing time for the inference (Shen et al., 2023)).

Table 11: INT3 performance (PPL ) of BOA and existing attention-aware approaches.

Model Size (OPT)

Dataset Method 5M 138 278 678 138 308
OmniQuant 4159 1823 1511 1286 1249 1126
AffineQuant 3775 17.012 1432 1242 1193 1072

Wiki2  BoOA 3368 1593 1343 1153 1058 9.826
BOA + SmoothQuant 3458 1583 1333 1158 1038  9.846
BOA + Z-FOLD 3331 1591 1333 1128 1053 9814
OmniQuant 5051 2608 2268 1831 1776  16.02
AffineQuant 5300 2447 2118 1727 1727 1531

PTB  BOA 4850 2353 2033 1686 1521 1450
BOA + SmoothQuant 5144 2278 1983 1674 15.18  14.40
BOA + Z-FOLD 4659 2229 1954 1644 15.16 1453
OmniQuant 3573 19.10 1680 1440 1348 1244
AffineQuant 3337 1856 1615 1391 1331 1214
C4  BoA 312 1774 1583 1334 1252 1175
BOA + SmoothQuant 3152 1743 1548 1335 1248 1173
BOA + Z-FOLD 3000 1713 1532 1320 1241 1171

Table 12: Zero-shot task performance (accuracy?) of BOA and existing attention-aware methods

Model Size Method Tasks Average

(OPT) ARC-c ARC-e  HellaSwag MMLU g
OmniQuant NaN NaN NaN NaN NaN
AffineQuant NaN NaN NaN NaN NaN

1.3B
BOA + SmoothQuant 22.18 42.00 37.48 23.10 31.19
BOA + Z-FoLD 24.74 43.98 40.31 23.45 33.12
OmniQuant NaN NaN NaN NaN NaN
AffineQuant 25.09 40.66 39.35 22.90 32.00

2.7B
BOA + SmoothQuant 27.73 44.70 44.24 22.95 34.91
BOA +Z-FoLD 26.37 43.06 45.18 23.50 34.53
OmniQuant 23.55 28.87 25.60 22.95 25.24
AffineQuant 26.62 48.23 47.18 23.57 36.40

6.7B
BOA + SmoothQuant 27.56 48.15 46.20 23.90 36.45
BOA +Z-FoLD 28.58 49.75 55.45 26.67 40.11
OmniQuant 26.11 26.35 25.54 22.95 25.24
AffineQuant 24.15 43.48 45.62 22.89 34.04

13B
BOA + SmoothQuant 31.57 53.66 58.69 25.35 42.32
BOA + Z-FoLD 28.84 49.87 58.32 24.60 40.41
OmniQuant 26.11 26.73 25.83 22.95 25.41
AffineQuant 25.26 26.47 25.65 22.95 25.08

30B
BOA + SmoothQuant 31.57 55.93 62.18 25.54 43.81
BOA + Z-FoLD 30.12 57.53 63.63 24.85 44.03

" “NaN’ means that loss diverges in the quantization process.
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C.4 COMPARISON OF TIME AND MEMORY COSTS

In this appendix, we compare the processing time and memory costs of BOA and conventional
algorithms.

Table 13: Time and memory costs of the proposed BOA and existing methods

(a) INT2 quantization processing time

Method Reconstruction Model Size (OPT)
Target 125M 1.3B 2.7B 6.7B 13B 30B
GPTQ Layer output 0.752min 6284 min  0.214hr 0.603hr  1.293hr  3.689 hr
OmniQuant Transformer block output 1620 min ~ 61.20 min ~ 1.627hr 2933 hr  5309hr  11.57 hr
AffineQuant  Transformer block output ~ 28.33 min ~ 154.2min  4.597hr 9.854hr 1841 hr 44.25hr
BoA Attention output 5.09 min  31.64min  1.10lhr 2.830hr 4.964hr  10.55hr
(b) Memory cost (GB)
Reconstruction Model Size (OPT)
Method Target 125M 13B  27B  6JB  13B _ 30B
GPTQ Layer output 1.391 3970 4.863 9.011 1257 21.25

OmniQuant Transformer block output ~ 1.941 5.869  7.095 11.68 16.15 26.94
AffineQuant  Transformer block output ~ 3.473 9963  12.25 20.08 26.78 42.21

BoA Attention output 1.676 5471 6.837 1226 19.06 39.74

Discussion on BOA The main reason why the processing time of the proposed BOA increases
with the size of LLMs is that the embedding dimension of attention heads increases with the model
size. Specifically, to compensate for the error incurred by the quantization of certain rows, BOA
needs to sequentially quantize sub-weight matrix d;, times where dj, is the head dimension (see
Fig.[I[b)). Because dj, increases with model size, the number of sequential quantizations also in-
creases, which leads to long processing time.

Comparison with OmniQuant/AffineQuant The processing time of the proposed BOA is shorter
than those required by existing attention-aware algorithms that rely on gradient-based optimization,
yet achieving significantly better performance (see Tables [6]and [IT). We note that OmniQuant does
not take too much time for quantizing large LLMs even though it performs gradient-based optimiza-
tion. This is because OmniQuant reduces the number of learnable parameters greatly to accelerate
gradient-based optimization. Specifically, instead of learning a weight-rounding policy which re-
quires to learn a large number of parameters, OmniQuant learns only a small number of quantiza-
tion parameters and some parameters related to the equivalent transform (Shao et al., [2023)). While
this strategy accelerates the quantization process greatly, OmniQuant suffers from unstable quanti-
zation process or collapses for low-bit quantization (see Tables [6] and [TT). AffineQuant improves
OmniQuant by introducing additional learnable parameters (Ma et al.| 2024)), but such additional
parameters result in huge processing time (4 times longer processing time; see Table [I3{a)), which
demonstrates the inefficiency of gradient-based optimization over the proposed method.

Comparison with GPTQ The proposed BOA requires longer processing time and larger memory
than those required by GPTQ. This is because GPTQ quantizes all the rows of the weight matrix
simultaneously using only layer input. In contrast, BOA sequentially quantizes sub-weight matri-
ces using outputs of other layers as well as layer input (see Fig. [[[b)) to consider the inter-layer
dependencies within the attention module, which eventually leads to the better quantization per-
formance than GPTQ. Clearly, there is a trade-off between quantization speed / memory cost and
accuracy. In real situations, when one needs to preserve the performance of the original model by
considering inter-layer dependencies within the attention module, the proposed BOA would be an
intriguing solution. Even when the memory resource is limited, BOA can be used with some relax-
ation. Specifically, we note that the large memory cost of BOA for hyper-scale LLMs (e.g., 13B and
30B) is attributable to the row-wise Hessian for the value projection (XA%A;LXT in ) whose
shape is H x d x d (H is the number of attention heads and d is the embedding dimension). In
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memory-limited cases, we can mitigate the memory cost of BOA by considering inter-layer depen-
dencies only for query and key projections and applying the standard Hessian (XX in (4)) for the
value projection. Indeed, when considering only query and key projections, BOA requires almost
same amount of memory as GPTQ, yet still exhibiting better performance (see Table [I4).

Table 14: Performance and memory costs of the proposed BOA with and without considering inter-
layer dependencies for the value projection

(a) INT2 performance (PPL |) on C4

Method Consideration of Model Size (OPT)
Inter-layer Dependencies 125M 1.3B 2.7B 6.7B 13B 30B
GPTQ 1786  64.11 3394 2486 20.08 1445

OmniQuant query, key, value, out, fcs NaN NaN NaN 3.0e4 2.0e5 2.1e5
AffineQuant  query, key, value, out, fcs ~ 107.0 NaN 3445 25.11 3150 3.3e5

BOA query, key 130.8 52.84 27.81 2395 1998 14.11
BoA query, key, value 118.1 48.92 26.57 23.03 19.22 13.84
(b) Memory cost (GB)

Method Consideration of Model Size (OPT)

Inter-layer Dependencies ~ 125M 1.3B 2.7B 6.7B 13B 30B

GPTQ - 1.391 3970 4863 9.011 12.57  21.25
OmniQuant query, key, value, out, fcs 1.941 5.869  7.095 11.68 16.15 26.94
AffineQuant query, key, value, out, fcs 3.473 9.963 12.25 20.08 26.78 42.21

BoA query, key 1.391 3971 4864 9.015 1257 21.25
BoA query, key, value 1.676 5471 6.837 1226 19.06 39.74

" The additional memory required for the query and key projections, i.e., memory needed to save
KT K, and Q7 Qy, (see (15) and (L6)), is negligible (e.g., 0.003 GB for 30B).

21



Under review as a conference paper at ICLR 2025

C.5 RESULTS FOR DIFFERENT CALIBRATION DATASETS

When constructing a calibration dataset, we randomly sample 128 sequences from the C4 dataset
(see Section[d.T)). By changing the seed for the sampling, we can obtain different calibration datasets,
which leads to different quantization results In this appendix, we report the corresponding results
and overall statistics. Due to the limited computational resources, we conducted this experiment
only for our main comparison (i.e., the performances of the proposed BOA and the conventional
GPTQ).

Table 15: Performance (perplexity ) of the proposed BOA and GPTQ for different seeds.

(a) INT2 Quantization
Dataset Seed Method 125M 1.3B 2.7B 6.7B 13B 30B
0 GPTQ 232.8 66.76 37.44 24.74 18.97 13.12
BOA 141.6 48.71 26.20 22.71 18.76 12.15
10 GPTQ 276.2 66.30 36.74 24.64 20.05 13.34
BoA 1474 47.23 25.95 23.11 18.52 12.17
20 GPTQ 243.9 65.09 36.33 24.94 19.78 13.17
BOA 139.4 45.11 27.00 24.06 17.82 12.33
Wiki2

50 GPTQ 269.9 64.88 33.84 24.54 19.47 13.41
BOA 160.7 44.13 26.75 23.09 18.70 12.15
100 GPTQ 228.3 71.51 36.72 25.55 19.39 13.18
BoA 147.8 47.43 26.85 23.61 18.49 12.17

Mean GPTQ 250.2422 66.9142.7 36.21+1.4 24.88+0.40 19.534+0.41 13.2440.12

+Stdev.  BOA 1474483  46.52+19  26.55+0.45 23.32+0.53 18.46+0.38 12.19+0.077
0 GPTQ 384.8 112.0 64.59 42.36 26.95 20.25
BOA 199.2 78.73 40.76 33.77 25.34 18.52
10 GPTQ 324.1 112.7 62.42 38.91 27.92 19.80
BOA 185.4 76.02 39.73 33.79 23.55 18.08
20 GPTQ 350.4 111.6 62.64 39.84 27.80 20.57
BoA 188.7 79.31 41.69 34.89 24.59 18.06

PTB

50 GPTQ 433.8 122.1 59.46 43.05 27.64 2043
BOA 206.8 87.29 41.91 36.36 24.56 18.27
100 GPTQ 479.2 125.8 59.49 38.26 27.56 20.02
BOA 164.8 77.32 41.67 35.19 24.56 17.98

Mean GPTQ 394.5463 116.8+6.6 61.7242.2 40.484+2.1 27.5740.38 20.2140.31

+Stdev.  BOA 189.0+16 79.73+44  41.154+091 34.80+1.1 24.521+0.64 18.18+0.22
0 GPTQ 178.6 64.11 33.94 24.86 20.08 14.45
BoA 118.1 48.92 26.57 23.03 19.22 13.84
10 GPTQ 189.7 64.19 33.27 24.40 20.40 14.44
BOA 115.8 49.76 27.00 24.04 18.58 13.83
20 GPTQ 163.1 64.19 32.83 24.66 20.37 14.41
BOA 111.1 48.81 26.96 23.31 19.15 13.80

c4

50 GPTQ 190.8 64.99 32.69 24.55 20.13 14.48
BoA 119.2 46.68 27.11 23.73 18.96 13.80
100 GPTQ 168.5 67.54 33.65 25.25 20.23 14.51
BoA 116.7 48.49 27.17 24.09 19.63 13.91

Mean GPTQ 1782+12  65.00£1.5  33.28£0.53  24.75+£033  20.24+0.14  14.4640.039
+Stdev.  BOA 116.2+£3.1  48.53+1.1  26.96+0.24  23.64+0.46  19.11+0.38  13.83+£0.045

"Tables [3|to|11|present the results for seed 0.
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(b) INT3 Quantization

Dataset Seed Method 125M 1.3B 2.7B 6.7B 13B 30B
0 GPTQ 38.74 16.70 14.01 11.91 10.85 9.911
BoA 33.68 15.93 13.43 11.53 10.58 9.826
10 GPTQ 40.72 16.99 13.97 11.89 10.84 9.881
BoA 34.30 16.15 13.43 11.43 10.59 9.756
20 GPTQ 38.72 17.17 13.89 11.98 10.94 9.941
BoA 34.24 16.02 13.32 11.66 10.51 9.791
Wiki2

50 GPTQ 37.72 16.93 14.08 11.86 10.92 9.769
BoA 34.73 16.19 13.44 11.44 10.54 9.768
100 GPTQ 38.37 16.97 14.27 11.89 10.88 9.840
BoA 34.51 16.14 13.72 11.49 10.52 9.847

Mean GPTQ 38.85+1.1 16.95+0.17 14.041+0.14 11.91+0.044  10.89+0.045 9.868+0.067

+Stdev.  BOA 34.29+0.39 16.09+0.11 13.47+0.15 11.51£0.094  10.55+0.036 9.798+0.038
0 GPTQ 57.62 24.77 21.53 17.56 15.68 14.56
BoA 48.50 23.53 20.33 16.86 15.21 14.50
10 GPTQ 55.56 25.19 21.60 17.19 15.66 14.66
BoA 48.37 23.35 20.27 16.71 15.13 14.50
20 GPTQ 56.22 25.47 21.42 17.24 15.67 14.60
BoA 47.01 23.31 20.22 16.68 15.16 14.54

PTB

50 GPTQ 56.68 24.94 21.44 17.36 15.74 14.52
BoA 51.05 23.69 20.19 16.76 15.22 14.46
100 GPTQ 52.15 25.13 21.32 17.44 15.79 14.53
BoA 48.66 23.50 19.93 16.77 15.21 14.46

Mean GPTQ 55.65+2.1 25.10+0.26 21.46+0.11 17.36£0.15 15.71£0.057 14.57+0.058

+Stdev.  BOA 48.72+1.5 23.48+0.15 20.19+0.16 16.751+0.068  15.1940.038 14.4910.035
0 GPTQ 33.90 18.18 16.10 13.60 12.62 11.76
BOA 31.12 17.74 15.83 13.34 12.52 11.75
10 GPTQ 34.16 18.19 16.07 13.60 12.63 11.76
BoA 31.72 17.72 15.70 13.34 12.52 11.74
20 GPTQ 34.07 18.19 16.07 13.58 12.62 11.75
BoA 31.29 17.72 15.73 13.33 12.53 11.74

C4

50 GPTQ 33.68 18.16 16.06 13.60 12.67 11.76
BoA 3111 17.73 15.73 13.37 12.54 11.74
100 GPTQ 33.80 18.20 16.12 13.61 12.66 11.76
BoA 31.38 17.75 15.70 13.36 12.55 11.75

Mean GPTQ 33.92+0.20 18.18+0.015  16.08+0.026  13.60+0.014  12.6440.023  11.7640.0045

+Stdev  BOA 31.32+0.25  17.73+0.013  15.74+0.053  13.35+0.016  12.53+0.012  11.7540.0053
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D PSEUDOCODE FOR GPTQ

In this appendix, we provide the pseudocode of the conventional GPTQ (Frantar et al.,|2023)), which
is omitted in the main manuscript due to the page limitation.

Algorithm 2 GPTQ

Input: weights W, Hessian information U, pre-determined step size S, and blocksize B
1: def GPTQ(W, U, S, B = 128)

12:
13:

Initialize quantized output: Q < 04, xd.,
Initialize total quantization errors: Eoal < O4,,, x e
Initialize block quantization errors: Epjock < 04, x B
fori=0,B,2B,...do
forj=14,---,i+ B—1do
Quantize the j-th column: Q. ; < quant(W. ;, S)
Estimate quantization error: [Epjock]: j—i <= (W.; — Q. ;)/[Ucoll;,;
Update weights in block: W:,j:i+B — W;J;iJrB — [Eblock}:,jfi . [Ucol]j,j:(i+B)
end for
Update all remaining weights: W. ;1 p. <~ W_ i1 p. — Eplock * [Ucolliz(i+B),(i+B):
Save block quantization errors: [Eioai]: ii+B < Eblock
end for

QOutput: quantized weights Q, quantization error Ey,
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