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ABSTRACT

Quantization offers a promising solution for deploying large-scale language mod-
els (LLMs) on resource-constrained devices. However, early quantization meth-
ods, developed for smaller networks like ResNet, rely on gradient-based optimiza-
tion, which becomes impractical for hyper-scale LLMs with billions of param-
eters. While recently proposed backpropagation-free post-training quantization
(PTQ) methods alleviate this issue, their performance is limited by a lack of inter-
layer dependency consideration. In this paper, we introduce a novel PTQ algo-
rithm that incorporates inter-layer dependencies without relying on backpropaga-
tion. The key innovation is the development of attention-aware Hessian matrices
that capture inter-layer interactions within the attention module. Extensive experi-
ments demonstrate that our approach significantly outperforms conventional PTQ
methods, particularly at low bit-widths.

1 INTRODUCTION

The explosive growth in complexity (parameters) of large-scale language models (LLMs) based on
Transformers (Touvron et al., 2023; Zhang et al., 2022) has resulted in a proportional increase in
computational costs, which has prompted an urgent need for efficient model processing and com-
pression strategies. Quantization has emerged as a pivotal solution in this context, and it serves
as an essential step in deploying AI models on resource-constrained devices that primarily support
fixed-point arithmetic. By reducing precision, the memory bandwidth requirements can be allevi-
ated, and the significant parallelism of quantized models can be SIMDified using highly efficient
vector processing units, such as neural processing units (NPUs).

Two main categories of quantization approaches have been proposed to preserve the performance
of original full-precision models: quantization-aware training (QAT) and post-training quantiza-
tion (PTQ). Although QAT can potentially outperform PTQ, its practicality diminishes considerably
when handling hyper-scale LLMs featuring billions of parameters. Consequently, recent quantiza-
tion efforts have been directed toward PTQ.

Although classic PTQ methods have successfully quantized small-scale models (Nagel et al., 2020;
Li et al., 2021), they rely on time-consuming gradient-based optimization, so their efficacy decreases
when the complexity of LLMs increases. Accordingly, backpropagation-free PTQ methods have
been developed for LLMs (Frantar et al., 2023; Xiao et al., 2023; Jeon et al., 2023b); however, their
performance is somewhat limited owing to the lack of consideration of inter-layer dependencies.
Recent studies have attempted to consider inter-layer dependencies (Shao et al., 2023; Ma et al.,
2024), but they still rely on time-consuming gradient-based optimizations.

In this paper, we propose a novel quantization algorithm that considers inter-layer dependencies
without relying on backpropagation. Our primary contributions can be summarized as follows:

• We propose a novel PTQ algorithm called BOA1. To avoid time-consuming gradient-
based optimization, we adopt the Hessian-based strategy introduced by (Frantar & Alistarh,
2022). The primary contribution is to approximate the Hessian more accurately by exploit-
ing the attention reconstruction error, not the layer-wise reconstruction error, to capture
inter-layer dependencies within the attention module (Section 3.2).

1BOA: Backpropagation-free optimization for Attention-aware PTQ
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• While the proposed Hessian facilitates the consideration of inter-layer dependencies, it
requires a large amount of memory and high computational cost. Therefore, we incorpo-
rate several techniques to mitigate the computational overhead, including Hessian relax-
ation, efficient computation of inverse Hessians, and head-wise simultaneous quantization
(Section 3.3).

• We evaluate BOA via extensive experiments on publicly available LLMs. Our results
demonstrate that BOA outperforms conventional LLM PTQ methods by a significant mar-
gin, particularly for low-bit precision (e.g., INT2) (Section 4).

2 RELATED WORKS

When calibration data are available, PTQ primarily aims to minimize the increase in task loss in-
curred by quantization. Consider a neural network parameterized by weights W. Provided that the
network is trained to convergence, the problem of quantizing W to minimize task loss degradation
can be formulated as (LeCun et al., 1989)

min
∆w

∆wT ·H(w) ·∆w, (1)

where H(w) is the Hessian related to the flattened weight w and ∆w is a weight perturbation caused
by the quantization. Owing to the infeasibility in computing and storing the exact Hessian H(w),
many studies have assumed independence between layers, which relaxes (1) into the following layer-
wise reconstruction problem (Nagel et al., 2020):

min
∆W(ℓ)

∥∥∥∆W(ℓ)X(ℓ−1)
∥∥∥2
F
, (2)

where X(ℓ−1) is the input to the ℓ-th layer parameterized by W(ℓ).

To solve (2), early efforts aimed to optimize the weight-rounding mechanism (Nagel et al., 2020;
Hubara et al., 2021; Li et al., 2021; Jeon et al., 2022; 2023a). Instead of allocating the nearest quanti-
zation bin, these studies attempted to assign quantized values that minimize the reconstruction error.
In (Nagel et al., 2020), a backpropagation-based optimization method, called AdaRound, has been
proposed. This algorithm has been extended to BRECQ where the block-wise reconstruction error
has been used instead of the layer-wise reconstruction error to consider the inter-layer dependencies
within a certain network block (e.g., Transformer block), which leads to an enhanced low-bit quan-
tization performance (Li et al., 2021). Although AdaRound and BRECQ have successfully quantized
small-sized models such as ResNet (He et al., 2016), they are heavily dependent on time-consuming
gradient-based optimizations. This renders their application to LLMs with billions of parameters
challenging. Consequently, recent efforts have shifted towards the development of cost-effective
quantization methods for LLMs.

These efforts can be classified into two orthogonal categories: 1) Hessian-based methods that opti-
mize a weight-rounding mechanism without relying on backpropagation (e.g., GPTQ (Frantar et al.,
2023)) and 2) equivalent transformation (ET)-based methods that transform a model to be robust
to quantization, thereby enhancing the performance of the naive rounding-to-nearest quantization
(e.g., SmoothQuant (Xiao et al., 2023), AWQ (Lin et al., 2024), Z-FOLD (Jeon et al., 2023b), Out-
lier Suppression+ (OS+) (Wei et al., 2023), OmniQuant (Shao et al., 2023), AffineQuant (Ma et al.,
2024)). Among them, GPTQ has emerged as one of the most efficient quantization methods; GPTQ
is capable of quantizing models with over 30 billion parameters in just a few GPU hours, with negli-
gible performance degradation at INT4 precision. Moreover, GPTQ can be integrated with ET-based
methods to enhance their performance (Lin et al., 2024; Jeon et al., 2023b).2 Similar to GPTQ, we
optimize a weight-rounding mechanism based on Hessian without relying on backpropagation. The
primary difference is that we pursue the preservation of the attention output after the quantization
while GPTQ aims to preserve each layer output and thus cannot consider inter-layer dependencies
within the attention module.

Other algorithms exploiting different quantization strategies have also been proposed. For example,
SpQR (Dettmers et al., 2023), SqueezeLLM (Kim et al., 2023), and OAC (Edalati et al., 2024) tried

2By transforming models with ET-based methods and then optimizing a weight-rounding mechanism with
GPTQ (instead of applying the rounding-to-nearest method), the quantization performance can be boosted.
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to preserve quantization-sensitive weights by assigning a large bit-width or retaining them in full-
precision. QuIP (Chee et al., 2023) introduced the idea of incoherent processing to suppress outliers
within weights. When compared to the standard uniform quantization, these algorithms require ad-
ditional processing and memory costs in the real inference stage and need some special hardware and
dedicated kernels without which accelerating the inference process may not be easy.3 Furthermore,
unlike server-grade GPUs (e.g. NVIDIA A100), on-device NPUs (e.g. Qualcomm Hexagon) lack
support for the mixed precision format and such additional processing, and customizing kernels for
desired functionalities is very challenging on on-device NPUs. Thus, we exclude these algorithms
in our comparison and focus on the more universally supported uniform quantization format.

3 METHOD

3.1 OVERVIEW OF PROPOSED BOA

Similar to GPTQ, the proposed BOA algorithm quantizes weights by repeating the quantization and
weight-update steps; once BOA quantizes one weight, it updates the remaining (not-yet-quantized)
weights by exploiting the Hessian-based weight-update formula introduced by GPTQ, compensating
for the task loss degradation caused by the quantization. When the q-th weight wq is quantized, the
weight-update δw is mathematically expressed as

δw = −wq −Q(wq)

[U]q,q
[U]q,: where U = Chol(H−1)T . (3)

Here, H is the Hessian, Chol(·) denotes a Cholesky decomposition (i.e., U is an upper triangular
matrix satisfying H−1 = UTU), and Q is a uniform quantization function defined as

Q(x) = s
(

clamp
(⌊x

s

⌉
+ z, 0, 2n − 1

)
− z

)
,

where s, z, n are the scale, zero-point, and bit-width, respectively, and ⌊·⌉ represents the round-off.

The key difference over GPTQ lies in the approximation of the Hessian H. In GPTQ, the layer-wise
independence has been assumed to approximate H, which yields the following Hessian equation4:

H(w(ℓ)) ≈ 2X(ℓ−1)X(ℓ−1)T ⊗ I, (4)

where H(w(ℓ)) is the Hessian for the ℓ-th layer, ⊗ denotes the Kronecker product operation and I is
the identity matrix. As the approximated Hessian H(w(ℓ)) relies solely on the input, GPTQ is unable
to account for the influence of other layers when compensating for quantization error (see (3)). In
other words, GPTQ neglects inter-layer dependencies within the attention module, a crucial aspect
of Transformers (Vaswani et al., 2017), which results in somewhat constrained performance for low
precision (e.g., INT2) (Jeon et al., 2023b). To overcome this, we develop Hessians that incorporate
inter-layer dependencies within the attention module and then use them instead of the conventional
Hessian in (4).

3.2 PROPOSED ATTENTION-AWARE HESSIAN

To consider the inter-layer dependencies within the attention module, we exploit the attention re-
construction error rather than the layer-wise reconstruction error when approximating the Hessian.

For an input sequence X ∈ Rd×L, the output of the multi-head attention (MHA) is expressed as

MHA(X) =

H∑
h=1

Wout,h(AhVh)
T , Ah = σ

(
QhK

T
h√

dh

)
, (5)

3In QuIP, the weight W is multiplied by random orthogonal matrices U and V (i.e., W ← UWVT ).
While this incoherent processing can suppress outliers within weights, additional processing is needed to re-
cover quantized weights (i.e., Ŵ ← UTŴV; see Algorithm 2 in (Chee et al., 2023)). Such processing must
be done during the inference, incurring additional inference time and memory costs for storing U and V.

4For any M1 and M2, the second-order derivative of ∥M1∆WM2∥2F with respect to ∆w is 2M2M
T
2 ⊗

MT
1 M1 (see Appendix A for the proof).
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Algorithm 1 BOA

Input: weights W ∈ Rdrow×dcol and inputs X of the Transformer layer
1: def BOA(W, X)
2: Initialize quantized output: Q← 0H×drow/H×dcol

3: Initialize (row-wise) quantization errors: E← 0H×dcol

4: Compute attention-aware Hessians: Hh = Hcol,h ⊗Hrow,h ▷ See Table 1
5: Set step size (scale) S: minS tr

(
∆WHcol,h∆WT

)
6: Compute inverse Hessians H−1

col,h and H−1
row,h

7: Compute Ucol,h = Chol(H−1
col,h)

T and Urow,h = Chol(H−1
row,h)

T

8: for j = 0, . . . , drow/H − 1 do
9: Construct W(j) ∈ RH×dcol by stacking the j-th rows [Wh]j,:

10: Quantize W(j): (Q:,j,:,E)← GPTQ(W(j),Ucol,h,S) ▷ See Appendix D

11: Update remaining rows: [Wh]j:,: ← [Wh]j:,: −
[UT

row,h]j:,j ·Eh,:·Ucol,h

[Urow,h]j,j

12: end for
Output: quantized weights Q

where σ is the row-wise softmax function, H is the number of attention heads, dh is the embedding
dimension of the h-th attention head, [Qh|Kh|Vh] = XT [WT

Q,h|WT
K,h|WT

V,h], W{Q,K,V },h ∈
Rdh×d, and Wout,h ∈ Rd×dh .

Hessian for WQ,h When WQ,h is quantized, Wout,h and Vh in (5) remain unchanged, but the
attention weight Ah changes. Using the first-order Taylor polynomial, the perturbation in Ah can
be approximated as

∆Ah= σ

(
(Qh +∆Qh)K

T
h√

dh

)
− σ

(
QhK

T
h√

dh

)
≈ ∆QhK

T
h√

dh
JT
σ =

XT∆WT
Q,hK

T
hJ

T
σ√

dh
, (6)

where Jσ is the Jacobian matrix of the softmax function σ. Thus, the attention reconstruction error
is expressed as

∥∆MHA(X)∥2F = ∥Wout,h(∆AhVh)
T ∥2F =

∥∥∥∥Wout,hV
T
hJσKh√
dh

∆WQ,hX

∥∥∥∥2
F

. (7)

Combining this with Footnote 4 yields the following Hessian for WQ,h:

H(wQ,h) = 2XXT ⊗
KT

hJ
T
σVhW

T
out,hWout,hV

T
hJσKh

dh
. (8)

Hessian for WK,h When WK,h is quantized, the attention weight Ah changes as in the quanti-
zation of WQ,h. By following the steps for (6), Ah can be approximated as

∆Ah≈
Qh∆KT

h√
dh

JT
σ =

Qh∆WK,hXJT
σ√

dh
, (9)

and thus the attention reconstruction error can be expressed as

∥∆MHA(X)∥2F =
∥∥∆AhVhW

T
out,h

∥∥2
F
=

∥∥∥∥ Qh√
dh

∆WK,hXJT
σVhW

T
out,h

∥∥∥∥2
F

. (10)

Thus, we obtain the following Hessian for WK,h:

H(wK,h) = 2XJT
σVhW

T
out,hWout,hV

T
hJσX

T ⊗ QT
hQh

dh
. (11)

Hessian for WV,h When quantizing WV,h, only Vh changes. Thus, the attention reconstruction
error is expressed as

∥∆MHA(X)∥2F = ∥Wout,h(Ah∆Vh)
T ∥2F = ∥Wout,h∆WV,hXAT

h ∥2F ,
which yields the following Hessian for WV,h:

H(wV,h) = 2XAT
hAhX

T ⊗WT
out,hWout,h. (12)
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Table 1: Proposed attention-aware Hessians
Layer H

WQ,h 2XXT ⊗KT
hKh

WK,h 2XXT ⊗QT
hQh

WV,h 2XAT
hAhX

T ⊗WT
out,hWout,h

Wout,h 2Xout,hX
T
out,h ⊗ I

Wfc1 2Xfc1X
T
fc1 ⊗ I

Wfc2 2Xfc2X
T
fc2 ⊗ I

Hessian for Wout,h When Wout,h is quantized, the attention reconstruction error is expressed as

∥∆MHA(X)∥2F = ∥∆Wout,h(AhVh)
T ∥2F .

Thus, the corresponding Hessian is obtained as

H(wout,h) = 2VT
hA

T
hAhVh ⊗ I = 2XoutX

T
out ⊗ I, (13)

where Xout,h = (AhVh)
T is the input to the out-projection layer.

3.3 EFFICIENT IMPLEMENTATION OF BOA

While inter-layer dependencies within the attention module can be considered by exploiting the
proposed Hessians, they are significantly more complex than the conventional Hessian in (4), which
may incur high computational costs. For example, computing the proposed Hessians in (8) and (11)
would be more expensive than computing the conventional one in (4). In this subsection, we present
techniques for mitigating the computational overheads incurred by the proposed attention-aware
Hessians.

Hessian relaxation The largest overhead related to the computation of the proposed Hessians is
the Jacobian matrix Jσ in (8) and (11). For one input sequence, the shape of Jσ is H × L× L× L,
which requires a large amount of memory and high computational cost (more than 400 GB even for
the OPT-125M model when L = 2048).

To mitigate such computational overhead, we establish a relaxed Hessian that does not require the
computation of Jσ . To this end, we build an upper bound for the attention reconstruction error in (7),
which will be used as its surrogate:

∥∆MHA(X)∥2F ≤
∥∥∥∥Wout,hV

T
hJσ√

dh

∥∥∥∥2
F

· ∥Kh∆WQ,hX∥2F . (14)

Moreover, we note that the term ∥Wout,hV
T
hJσ∥2F in (14) is constant and does not affect quantiza-

tion.5 Thus, we do not need to consider this term when computing the Hessian. In short, we use
the term ∥Kh∆WQ,hX∥2F as a surrogate of the attention reconstruction error when deriving the
Hessian for WQ,h, which results in the following relaxed Hessian:

H(wQ,h) = 2XXT ⊗KT
hKh. (15)

Similarly, we can establish a relaxed Hessian for WK,h as follows:

H(wK,h) = 2XXT ⊗QT
hQh. (16)

In Table 1, we summarize the relaxed Hessians for each layer inside the Transformer block.

Efficient computation of inverse Hessians Owing to the size of the proposed attention-aware
Hessians being ddh×ddh, the complexity of the computation of the inverse Hessian (see (3)) would
be O(d3d3h) in our approach. This is considerably more expensive than the complexity O(d3) in
GPTQ, where the inverse of only the column-wise Hessian XXT ∈ Rd×d (in (4)) is needed (Frantar
et al., 2023).

5The weight-update δw in (3) is not affected by the constant multiple of H because [cU]q,:/[cU]q,q =
[U]q,:/[U]q,q for any constant c.

5
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(a) Hessians in the conventional GPTQ (left) and the proposed BoA (right)
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(b) Quantization procedure in BoA
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Figure 1: Illustration of the proposed BOA for the query projection WQ.

For the efficient computation of the inverse Hessians, we exploit the useful properties of the Kro-
necker product (see (17a)-(17c) in Appendix A). For simplicity, let H = Hcol ⊗ Hrow where
Hcol ∈ Rd×d and Hrow ∈ Rdh×dh , then we obtain

H−1 = (Hcol ⊗Hrow)
−1 = H−1

col ⊗H−1
row.

This implies that the inverse Hessian H−1 can be computed by computing H−1
col and H−1

row (line 6
in Algorithm 1) whose complexity is O(d3) + O(d3h) (= O(d3)), not O(d3d3h). Similarly, we can
efficiently compute the Cholesky decomposition with the same order of complexity as in GPTQ.
Specifically, if L1 = Chol(H−1

col ) and L2 = Chol(H−1
row), H

−1 can be expressed as

H−1=L1L
T
1 ⊗ L2L

T
2 =(L1 ⊗ L2)(L1 ⊗ L2)

T .

Subsequently, noting that the Kronecker product of lower triangular matrices is also lower triangular,
we obtain

Chol(H−1) = L1 ⊗ L2 = Chol(H−1
col )⊗ Chol(H−1

row).

Thus, we can obtain Chol(H−1) by computing Chol(H−1
col ) and Chol(H−1

row) (line 7 in Algorithm 1).
Consequently, the computational complexity of the Choleksy decomposition would be O(d3), not
O(d3d3h).

Simultaneous quantization of different heads The conventional Hessian in (4) implies the inde-
pendence of different rows (see Hrow = I). Whereas, the proposed attention-aware Hessians model
the dependency between different rows (e.g., Hrow = KT

hKh for the query projection), using which
we can compensate for the quantization error of a certain row by updating the other rows. However,
in this case, the rows must be quantized sequentially (not simultaneously). For example, the second
row can be quantized after being updated to compensate for the quantization error of the first row.
This is in contrast to GPTQ where all the rows are quantized simultaneously.

To accelerate the quantization process, we assume independence between different attention heads
(see Fig. 1(a)), under which rows related to different heads are independent and can thus be quan-
tized together. For a better understanding, we consider the query projection WQ as an example (see
Fig. 1(b)). In the quantization step, we stack the j-th rows [WQ,h]j,: of all different heads, construct-
ing the sub-weight matrix W

(j)
Q ∈ RH×d (line 9 in Algorithm 1). Because the rows of W(j)

Q are

mutually independent, all the rows of W(j)
Q can be quantized simultaneously as in GPTQ (line 10 in

Algorithm 1). Following the quantization of j-th rows, we compensate for the quantization error by
updating the remaining rows. In this update step, we use the refined weight-update formula (line 11
in Algorithm 1); the detailed derivation for this is provided in Appendix B.

6
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To evaluate how much the quantization process can be accelerated by the head-wise simultaneous
quantization, we measure the processing times of the proposed method with and without simultane-
ous quantization. From Table 2, we observe that BOA requires a significantly long processing time
without the simultaneous quantization (more than one day for the 2.7B model). This is because all
rows need to be quantized sequentially (e.g., 2560 rows are quantized sequentially for OPT-2.7b)
and thus the massive compute capabilities of modern GPUs cannot be utilized properly. As evident
from Table 2, by applying the head-wise simultaneous quantization, we can achieve a significant
reduction in the processing time.

Table 2: Processing time of BOA with and without head-wise simultaneous quantization

Head-wise
Simultaneous Quantization

Model Size (OPT)
125M 350M 1.3B 2.7B

X 49.22 min 181.7 min 712.7 min 24.48 hr

O 5.099 min 13.93 min 31.64 min 1.101 hr

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

To evaluate the performance of the proposed BOA, we quantize publicly available language models
including OPT (Zhang et al., 2022), BLOOM (Scao et al., 2022), and LLaMA (Touvron et al.,
2023)). As in (Frantar et al., 2023; Jeon et al., 2023b; Chee et al., 2023), we quantize only weights
and retain activations with full precision because activations do not pose a significant bottleneck
for the inference of LLMs (Frantar et al., 2023; Kim et al., 2023). As a calibration dataset, we use
128 random 2048 token segments from the C4 dataset (Raffel et al., 2020). Thus, we do not use
any task-specific data for quantization. We evaluate the performance of the quantized models using
benchmark datasets (e.g., WikiText-2 (Merity et al., 2016), C4 (Raffel et al., 2020), and PTB (Marcus
et al., 1993)) and zero-shot tasks. All experiments were conducted using a single NVIDIA A100
GPU (80 GB).

When determining a quantization order in BOA, the heuristic introduced by GPTQ can be employed;
the column/row corresponding to the largest diag(Hcol)/diag(Hrow) (i.e., the most quantization-
sensitive column/row) is first quantized for better compensation. Empirically, we observed that this
heuristic could occasionally enhance the performance, yet at other times, it may result in inferior
performance. We conduct experiments with and without this heuristic and report the better results.

4.2 COMPARISON WITH GPTQ

We compare the proposed BOA with GPTQ (Frantar et al., 2023), which is our primary baseline.
For both algorithms, we set per-channel quantization parameters (i.e., scale and zero-point) to min-
imize the layer-wise reconstruction error (line 5 in Algorithm 1). We note that in GPTQ, the Min-
Max-based quantization parameters have been used (Frantar et al., 2023); however, this results in
significantly worse quantization performance (Jeon et al., 2023b). While both algorithms aim to op-
timize the weight-rounding mechanism and can be combined with existing ET-based methods such
as SmoothQuant (Xiao et al., 2023), AWQ (Lin et al., 2024), and Z-FOLD (Jeon et al., 2023b), we
do not perform an equivalent transform in this experiment to solely compare the weight-rounding
optimization performance. The results of integration with ET-based methods are presented in Sec-
tion 4.3.

First, we compare the perplexity (PPL) performances of BOA and GPTQ (see Table 3 and Tables 7
and 8 in Appendix C.1). The performance of the rounding-to-nearest (RTN) method (which naively
assigns the nearest quantized value) is also included for comparison, as in (Frantar et al., 2023).
While RTN collapses for low bit-widths, BOA and GPTQ exhibit reasonable PPL, even for INT2
quantization. This is because BOA and GPTQ aim to minimize the task loss degradation, not the
weight quantization error ∆W. Evidently, the proposed BOA outperforms GPTQ for all models. In
particular, the performance gap is significant for low bit-width (i.e., INT2) and small-sized models
suited for resource-limited devices (e.g., mobile devices).
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Table 3: INT2 quantization performance (PPL ↓) of the proposed BOA and the conventional GPTQ.
(a) OPT

Dataset Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

WikiText-2
RTN 5.5e3 2.8e4 1.1e5 9.5e3 2.8e4 1.9e5 1.7e5
GPTQ 232.8 98.65 66.76 37.44 24.74 18.97 13.12
BOA 141.6 57.40 48.71 26.20 22.71 18.76 12.15

PTB
RTN 4.3e3 2.8e4 1.1e4 6.8e3 1.8e4 1.2e5 1.7e5
GPTQ 384.8 135.9 112.0 64.59 42.36 26.95 20.25
BOA 199.2 90.87 78.73 40.76 33.77 25.34 18.52

C4
RTN 3.7e3 1.6e4 7.7e3 7.7e3 1.4e4 9.7e4 5.8e4
GPTQ 178.6 71.89 64.11 33.94 24.86 20.08 14.45
BOA 118.1 54.07 48.92 26.57 23.03 19.22 13.84

(b) BLOOM and LLaMA

Dataset Method BLOOM LLaMA
560M 1.1B 1.7B 3B 7.1B 13B 30B

WikiText-2
RTN 7.8e5 9.8e5 3.5e5 1.4e5 2.1e5 5.7e4 2.7e4
GPTQ 59.23 43.93 36.48 29.25 20.20 12.67 8.844
BOA 52.09 38.16 30.76 24.25 17.54 11.56 7.993

PTB
RTN 7.4e5 1.1e6 2.5e5 1.2e5 2.2e5 8.1e4 3.3e4
GPTQ 142.6 176.4 95.32 67.48 43.73 20.55 14.64
BOA 113.0 139.1 69.98 53.10 35.97 18.49 13.24

C4
RTN 1.4e6 2.1e6 2.7e5 9.2e4 1.3e5 5.9e4 2.8e4
GPTQ 57.31 43.48 38.69 30.97 23.52 14.24 11.78
BOA 52.12 39.03 33.71 27.26 21.22 13.34 10.53

* INT3/INT4 quantization results are provided in Appendix C.1 due to the page limitation.

Table 4: INT2 zero-shot task performance (accuracy ↑) of the proposed BOA and GPTQ.

Model Size Method ARC-c ARC-e HellaSwag MMLU Average

OPT

1.3B GPTQ 22.53 35.61 34.03 22.93 28.78
BOA 22.53 38.72 36.00 23.12 30.09

2.7B GPTQ 24.40 38.47 37.87 23.04 30.95
BOA 25.51 42.89 43.68 23.14 33.81

6.7B GPTQ 25.60 42.85 43.29 24.09 33.96
BOA 26.62 44.91 44.52 24.33 35.10

13B GPTQ 26.62 44.15 50.09 24.59 36.36
BOA 27.47 47.39 54.42 25.21 38.62

30B GPTQ 31.57 52.99 60.55 25.27 42.60
BOA 31.48 53.24 62.58 26.41 43.43

LLaMA

13B GPTQ 32.17 58.71 57.48 23.53 42.97
BOA 33.79 59.01 59.73 23.90 44.11

30B GPTQ 37.12 62.84 65.09 31.16 49.05
BOA 37.88 63.47 66.31 33.11 50.19

Next, we compare the zero-shot performances of BOA and GPTQ (see Table 4). To this end, we
measure the accuracy of quantized models for several tasks and then average the results. We note
that the zero-shot setting is maintained in our experiments because we do not use task-specific data
for quantization. As evident, the proposed BOA outperforms GPTQ for all models. The key factor
leading to such an outstanding performance is that we consider inter-layer dependencies within the
attention module by targeting attention-wise reconstruction. This is in contrast to GPTQ, where
layers are assumed to be independent.
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Table 5: INT2 performance (PPL ↓) of BOA integrated with existing ET-based methods.

Equivalent
Transformation

Dataset Method Model Size (OPT)
125M 350M 1.3B 2.7B 6.7B 13B 30B

SmoothQuant

WikiText-2 GPTQ 229.4 N/A 39.88 27.31 20.03 15.32 13.55
BOA 151.2 N/A 31.62 24.45 18.55 14.29 12.49

PTB GPTQ 292.3 N/A 64.17 44.75 32.01 22.03 19.26
BOA 223.9 N/A 58.17 38.87 27.85 19.79 17.97

C4 GPTQ 151.4 N/A 38.13 26.80 21.22 16.19 14.42
BOA 130.4 N/A 34.20 24.95 20.92 15.33 13.90

Z-FOLD

WikiText-2 GPTQ 156.0 102.5 33.97 27.10 18.07 16.29 13.24
BOA 107.9 54.72 29.38 23.96 17.18 15.14 12.41

PTB GPTQ 206.9 130.7 53.80 46.08 26.79 23.73 19.27
BOA 166.1 82.27 49.18 39.45 24.94 22.86 18.11

C4 GPTQ 108.8 71.37 31.67 25.98 19.79 17.21 14.13
BOA 86.07 49.39 28.65 24.19 19.01 16.17 13.67

* SmoothQuant does not support OPT-350M where the post-LayerNorm architecture has been used.

4.3 INTEGRATION WITH EQUIVALENT TRANSFORM-BASED METHODS

As mentioned, the performance of the proposed BOA can be enhanced by combining BOA with
existing ET-based methods (i.e., transforming models with ET-based methods first and then applying
BOA for optimizing the weight-rounding mechanism). To verify this, we evaluate the performance
of BOA integrated with ET-based methods. Among various algorithms, we use SmoothQuant (Xiao
et al., 2023) and Z-FOLD (Jeon et al., 2023b) in our integration because they efficiently find out an
equivalent transform without time-consuming gradient-based optimization.6

Table 5 and Table 9 (see Appendix C.2) summarize the PPL performances of the proposed BOA
combined with SmoothQuant and Z-FOLD. For comparison, we also summarize the integration
results for the conventional GPTQ. Overall, the performance of BOA indeed improves when com-
bined with ET-based methods. We emphasize that the performance gap between the proposed BOA
and GPTQ still remains significant for INT2 quantization. A similar behavior can be observed in the
zero-shot results (see Table 10 in Appendix C.2); the performance is boosted by applying ET-based
methods, and BOA outperforms GPTQ for all models regardless of the ET-based method.

4.4 COMPARISON WITH PRIOR ARTS

We compare the proposed BOA with OmniQuant (Shao et al., 2023) and AffineQuant (Ma et al.,
2024), recently proposed algorithms that learn an attention-aware equivalent transform via back-
propagation (see Table 6 and Table 11 in Appendix C.3 for PPL results and see Table 12 in Ap-
pendix C.3 for zero-shot results). In our comparison, we do not include AWQ (Lin et al., 2024)
and OS+ (Wei et al., 2023) because they perform worse than OmniQuant and AffineQuant (Shao
et al., 2023; Ma et al., 2024). Mixed quantization algorithms (e.g., SpQR (Dettmers et al., 2023),
SqueezeLLM (Kim et al., 2023), and OAC (Edalati et al., 2024)) and algorithms that require addi-
tional processing in the real inference stage (e.g., QuIP (Chee et al., 2023)) are also not included
because they require some dedicated kernels for acceleration which may not be supported by on-
device NPUs such as Qualcomm Hexagon.

As evident, BOA itself outperforms existing algorithms in almost all cases, even though BOA does
not rely on time-consuming gradient-based optimization and thus facilitates fast quantization (see
Table 13 in Appendix C.4). Furthermore, when combined with SmoothQuant or Z-FOLD, the per-
formance gap between BOA and OmniQuant/AffineQuant is significant, which demonstrates the
efficacy of the proposed BOA. We observe that OmniQuant and AffineQuant sometimes diverge or
collapse (i.e., PPL is larger than 103) for INT2 quantization. In fact, to supplement the INT2 quanti-
zation performance, group-wise quantization parameters have been additionally used in OmniQuant

6While SmoothQuant has been proposed in the context of weight-activation quantization, the smoothing
factor (sj = max(|Xj |)α/max(|Wj)

1−α) used for the equivalent transformation can also be used for weight-
only quantization by setting α = 0.

9
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Table 6: INT2 performance (PPL ↓) of BOA and existing approaches.

Dataset Method 125M 1.3B 2.7B 6.7B 13B 30B

WikiText-2

OmniQuant NaN NaN NaN 2.3e4 4.5e5 3.8e5
AffineQuant 174.5 NaN 42.26 26.25 38.89 5.6e5

BOA 141.6 48.71 26.20 22.71 18.76 12.15
BOA + SmoothQuant 151.2 31.62 24.45 18.55 14.29 12.49
BOA + Z-FOLD 107.9 29.38 23.96 17.18 15.14 12.41

PTB

OmniQuant NaN NaN NaN 5.0e4 3.7e5 2.9e5
AffineQuant 254.2 NaN 55.58 37.36 50.10 3.1e5

BOA 199.2 78.73 40.76 33.77 25.34 18.52
BOA + SmoothQuant 223.9 58.17 38.87 27.85 19.79 17.97
BOA + Z-FOLD 166.1 49.18 39.45 24.94 22.86 18.11

C4

OmniQuant NaN NaN NaN 3.0e4 2.0e5 2.1e5
AffineQuant 107.0 NaN 34.45 25.11 31.50 3.3e5

BOA 118.1 48.92 26.57 23.03 19.22 13.84
BOA + SmoothQuant 130.4 34.20 24.95 20.92 15.33 13.90
BOA + Z-FOLD 86.07 28.65 24.19 19.01 16.17 13.67

* ‘NaN’ means that loss diverges in the quantization process.

and AffineQuant, but group-wise parameters result in additional memory costs and processing time
in the real inference step (Shen et al., 2023).

4.5 COMPARISON OF TIME AND MEMORY COSTS

We compare the processing time and memory costs of BOA and conventional algorithms (see Ta-
ble 13 in Appendix C.4). We observe that the processing time of BOA is shorter than those required
by existing attention-aware algorithms (i.e., OmniQuant and AffineQuant), yet BOA achieves sig-
nificantly better performance (see Tables 6 and 11), which demonstrates the efficacy of the proposed
method. We also observe that BOA requires longer processing time and larger memory than those
required by GPTQ. This is because GPTQ quantizes all the rows of the weight matrix simultaneously
using only layer input. In contrast, BOA sequentially quantizes sub-weight matrices using outputs
of other layers as well as layer input (see Fig. 1(b)) to consider the inter-layer dependencies within
the attention module, which eventually leads to the better quantization performance than GPTQ.

Clearly, there is a trade-off between quantization speed / memory cost and accuracy. In real situa-
tions, when one needs to preserve the performance of the original model by considering inter-layer
dependencies within the attention module, the proposed BOA would be an intriguing solution. Even
when the memory resource is limited, BOA can be used with some relaxation. Specifically, we note
that the large memory cost of BOA for hyper-scale LLMs (e.g., 13B and 30B) is attributable to the
row-wise Hessian for the value projection (XAT

hAhX
T in (12)) whose shape is H × d × d. In

memory-limited cases, we can mitigate the memory cost of BOA by considering inter-layer depen-
dencies only for query and key projections and applying the standard Hessian (XXT in (4)) for the
value projection. Indeed, when applying the proposed Hessians only for query and key projections,
BOA requires almost same amount of memory as GPTQ, yet still exhibiting better performance (see
Table 14 in Appendix C.4). For more discussion on time and memory costs of the proposed BOA,
see Appendix C.4.

5 CONCLUSION

In this paper, we proposed a novel PTQ algorithm called BOA. To consider the inter-layer dependen-
cies within the attention module while circumventing time-consuming gradient-based optimization,
we approximated the Hessian matrices by exploiting the attention reconstruction error. Furthermore,
to mitigate the computational overhead incurred by the proposed attention-aware Hessians, we in-
corporated several techniques, such as Hessian relaxation, efficient computation of inverse Hessians,
and head-wise simultaneous quantization. Finally, through extensive experiments, we demonstrated
the efficacy of the proposed BOA algorithm.
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A PROOF OF FOOTNOTE 4

In our proof, we use the following useful properties of the Kronecker product:

vec (M1M2M3) =
(
MT

3 ⊗M1

)
vec(M2), (17a)

(M1 ⊗M2)
T
= MT

1 ⊗MT
2 , (17b)

(M1 ⊗M2) (M3 ⊗M4) = M1M3 ⊗M2M4, (17c)

where vec(·) denotes the vectorization operation.

Using (17a), we have

∥M1∆WM2∥2F =
∥∥(MT

2 ⊗M1

)
∆w

∥∥2
2
= ∆wT

(
MT

2 ⊗M1

)T (
MT

2 ⊗M1

)
∆w,

where ∆w = vec(∆W). In addition, by (17b) and (17c), we have

∆wT
(
MT

2 ⊗M1

)T (
MT

2 ⊗M1

)
∆w = ∆wT

(
M2 ⊗MT

1

) (
MT

2 ⊗M1

)
∆w

= ∆wT
(
M2M

T
2 ⊗MT

1 M1

)
∆w.

Finally, by exploiting the fact that ∂2xTAx
∂x2 = A+AT , we obtain

∂2 ∥M1∆WM2∥2F
∂∆w2

= M2M
T
2 ⊗MT

1 M1 +
(
M2M

T
2 ⊗MT

1 M1

)T
(a)
= M2M

T
2 ⊗MT

1 M1 +
(
M2M

T
2

)T ⊗ (
MT

1 M1

)T
= 2M2M

T
2 ⊗MT

1 M1,

where (a) follows from (17b). This completes the proof.
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B REFINED WEIGHT-UPDATE FORMULA

We recall that the Hessian-based weight-update formula is given by (Frantar & Alistarh, 2022; Fran-
tar et al., 2023)

δw = −wq −Q(wq)

[U]q,q
[U]q,: where U = Chol(H−1)T .

For the proposed attention-aware Hessians in Table 1, we have

Uh = Ucol,h ⊗Urow,h,

where Ucol,h = Chol(H−1
col,h)

T and Urow,h = Chol(H−1
row,h)

T (see Section 3.3). Therefore, the
weight-update formula can be recast as

δwh = − wq −Q(wq)

[Ucol,h ⊗Urow,h]q,q
[Ucol,h ⊗Urow,h]q,:.

col ,ℎ
row ,ℎ

=
col ,ℎ col ,ℎ

col ,ℎ

Quant. of
1st row

Quant. of
2nd row

Update of
2nd row

Figure 2: Illustration of the Hessian information when drow = 2 and dcol = 3

For simplicity, suppose we quantize the first (0-th) row. When the weight [Wh]0,j(= [W(0)]h,j) in
the j-th column is quantized, the weight-update of the i-th row is simplified as (see Fig. 2 for the
ease of understanding)

[δWh]i,: = −
[Wh]0,j −Q([Wh]0,j)

[Urow,h]0,0[Ucol,h]j,j
[Urow,h]0,i[Ucol,h]j,:

= − [Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
· [Urow,h]0,i[Ucol,h]j,:

[Urow,h]0,0

Thus, after the quantization of all weights in the first row, the total amount of the weight-update for
the i-th row can be expressed as

[δWh,total]i,: = −
dcol−1∑
j=0

[Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
· [Urow,h]0,i[Ucol,h]j,:

[Urow,h]0,0

= − [Urow,h]0,i
[Urow,h]0,0

dcol−1∑
j=0

[Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
· [Ucol,h]j,:.

Furthermore, by noting that (see line 8 in Algorithm 2)

[EGPTQ]h,j =
[Wh]0,j −Q([Wh]0,j)

[Ucol,h]j,j
,

we obtain

[δWh,total]i,: = −
[Urow,h]0,i
[Urow,h]0,0

dcol−1∑
j=0

[EGPTQ]h,j · [Ucol,h]j,: = −
[Urow,h]0,i
[Urow,h]0,0

[EGPTQ]h,:Ucol,h.
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As a result, the weight-update matrix to compensate for the quantization error of the first row is
given by

[δWh,total]0:,: = −
[UT

row,h]0:,0[EGPTQ]h,:Ucol,h

[Urow,h]0,0
. (18)

By taking similar steps as above, we can easily generalize (18) for the j-th row as follows:

[δWh,total]j:,: = −
[UT

row,h]j:,j [EGPTQ]h,:Ucol,h

[Urow,h]j,j
. (19)
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C ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we provide experimental results omitted in the main text due to the page limitation.

C.1 COMPARISON WITH GPTQ

Table 7 and Table 8 summarize the INT3/INT4 quantization performances (perplexity) of the pro-
posed BOA and the conventional GPTQ on various sizes of OPT, BLOOM, and LLaMA models. As
evident from Table 3, Table 7, and Table 8, BOA uniformly outperforms GPTQ, and the performance
gap is significant for low bit-width (i.e., INT2) and small-sized models suited for resource-limited
devices (e.g., mobile devices).

Table 7: Quantization performance (PPL ↓) of the proposed BOA and GPTQ on OPT.

(a) WikiText-2

Precision Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

FP16 Baseline 27.65 22.00 14.63 12.47 10.86 10.13 9.56

INT4
RTN 37.28 25.94 48.20 16.92 12.10 11.32 10.98
GPTQ 30.24 23.50 14.84 12.53 11.09 10.26 9.608
BOA 28.93 22.90 14.72 12.44 10.88 10.16 9.571

INT3
RTN 1.3e3 64.57 1.3e4 1.6e4 5.8e3 3.4e3 1.6e3
GPTQ 38.74 26.31 16.70 14.01 11.91 10.85 9.911
BOA 33.68 24.69 15.93 13.43 11.53 10.58 9.826

(b) PTB

Precision Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

FP16 Baseline 38.99 31.08 20.29 17.97 15.77 14.52 14.04

INT4
RTN 53.88 36.79 75.37 32.41 18.86 16.41 15.44
GPTQ 44.31 33.41 21.23 18.70 16.09 14.69 14.18
BOA 41.50 32.58 21.02 18.42 15.90 14.63 14.18

INT3
RTN 1.4e3 87.21 1.5e4 1.4e4 5.3e3 2.2e3 1.5e3
GPTQ 57.62 39.35 24.77 21.53 17.56 15.68 14.56
BOA 48.50 36.83 23.53 20.33 16.86 15.21 14.50

(c) C4

Precision Method 125M 350M 1.3B 2.7B 6.7B 13B 30B

FP16 Baseline 26.56 22.59 16.07 14.34 12.71 12.06 11.44

INT4
RTN 33.88 26.21 27.50 18.83 14.37 13.32 13.55
GPTQ 28.53 23.73 16.51 14.72 12.88 12.16 11.50
BOA 27.56 23.20 16.39 14.61 12.84 12.16 11.51

INT3
RTN 834.4 55.15 6.6e3 1.2e4 5.0e3 2.8e3 1.8e3
GPTQ 33.90 26.68 18.18 16.10 13.60 12.62 11.76
BOA 31.12 25.39 17.74 15.83 13.34 12.52 11.75
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Table 8: Quantization performance (PPL ↓) of BOA and GPTQ on BLOOM and LLaMA.

(a) WikiText-2

Precision Method
BLOOM LLaMA

560M 1.1B 1.7B 3B 7.1B 13B 30B

FP16 Baseline 22.42 17.69 15.39 13.48 11.37 5.091 4.101

INT4
RTN 25.82 19.98 16.96 14.75 12.09 5.525 4.536
GPTQ 23.44 18.54 15.90 13.90 11.63 5.262 4.285
BOA 23.28 18.32 15.81 13.84 11.58 5.243 4.262

INT3
RTN 56.74 49.85 63.37 39.07 17.35 11.78 14.87
GPTQ 26.63 20.80 17.71 15.39 12.42 5.721 4.848
BOA 25.90 20.28 17.12 14.91 12.19 5.676 4.725

(b) PTB

Precision Method
BLOOM LLaMA

560M 1.1B 1.7B 3B 7.1B 13B 30B

FP16 Baseline 43.69 57.96 30.00 25.34 20.83 9.081 8.159

INT4
RTN 50.96 66.79 33.52 27.65 22.40 9.775 8.653
GPTQ 45.33 61.94 31.37 26.39 21.40 9.306 8.344
BOA 44.92 61.40 30.67 26.23 21.34 9.255 8.304

INT3
RTN 124.8 184.0 105.5 66.24 34.94 28.94 28.79
GPTQ 52.39 70.68 35.06 28.99 23.46 9.928 8.925
BOA 50.71 67.77 33.92 28.67 22.86 9.857 8.737

(c) C4

Precision Method
BLOOM LLaMA

560M 1.1B 1.7B 3B 7.1B 13B 30B

FP16 Baseline 26.60 22.05 19.49 17.49 15.20 6.798 6.131

INT4
RTN 29.80 24.42 21.24 18.75 16.05 7.232 6.537
GPTQ 27.39 22.69 20.03 17.89 15.44 6.973 6.294
BOA 27.23 22.54 19.90 17.82 15.42 6.958 6.267

INT3
RTN 66.99 60.41 113.6 79.84 22.54 14.46 30.04
GPTQ 29.89 24.48 21.44 19.07 16.24 7.504 6.840
BOA 29.39 24.17 21.02 18.74 16.09 7.454 6.718
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C.2 INTEGRATION WITH EQUIVALENT TRANSFORM-BASED METHODS

In this appendix, we verify that the performance of the proposed BOA can be enhanced by combin-
ing BOA with existing ET-based methods. Among various algorithms, we use SmoothQuant (Xiao
et al., 2023) and Z-FOLD (Jeon et al., 2023b) in our integration because they efficiently find out
an equivalent transform without time-consuming gradient-based optimization. We note that while
SmoothQuant has been proposed in the context of weight-activation quantization, the smoothing
factor (sj = max(|Xj |)α/max(|Wj)

1−α) used for the equivalent transformation can also be used
for weight-only quantization by setting α = 0.

Tables 5 and 9 summarize the integration results. Overall, the performances of BOA and GPTQ
indeed improve when combined with ET-based methods. We emphasize that the performance gap
between the proposed BOA and GPTQ still remains significant, especially for INT2 quantization. A
similar behavior can be observed in the zero-shot results (see Table 10); the performance is boosted
by applying ET-based methods, and BOA outperforms GPTQ regardless of the ET-based method.

Table 9: INT3 performance (PPL ↓) of BOA integrated with existing ET-based methods.
Equivalent

Transformation Dataset Method
Model Size (OPT)

125M 350M 1.3B 2.7B 6.7B 13B 30B

SmoothQuant

Wiki2
GPTQ 39.56 N/A 16.32 13.55 11.90 10.68 9.857
BOA 34.58 N/A 15.83 13.33 11.58 10.38 9.846

PTB
GPTQ 58.00 N/A 24.00 20.36 17.18 15.45 14.46
BOA 51.44 N/A 22.78 19.83 16.74 15.18 14.40

C4
GPTQ 34.98 N/A 17.78 15.68 13.50 12.55 11.74
BOA 31.52 N/A 17.43 15.48 13.35 12.48 11.73

Z-FOLD

Wiki2
GPTQ 39.59 25.97 16.10 13.54 11.65 10.64 9.887
BOA 33.31 24.22 15.91 13.33 11.28 10.53 9.814

PTB
GPTQ 53.08 39.23 22.73 20.18 16.64 15.22 14.57
BOA 46.59 36.80 22.29 19.54 16.44 15.16 14.53

C4
GPTQ 33.67 26.45 17.33 15.50 13.28 12.46 11.73
BOA 30.00 25.04 17.13 15.32 13.20 12.41 11.71

* SmoothQuant does not support OPT-350M where the post-LayerNorm architecture has been used.

Table 10: INT2 zero-shot performance (accuracy ↑) of BOA integrated with ET-based methods.
Equivalent

Transformation
Model Size

(OPT) Method
Tasks

AverageARC-c ARC-e HellaSwag MMLU

SmoothQuant

1.3B
GPTQ 23.38 40.15 37.47 23.00 31.00
BOA 22.18 42.00 37.48 23.10 31.19

2.7B
GPTQ 25.85 42.72 42.46 23.10 33.53
BOA 27.73 44.70 44.24 22.95 34.91

6.7B
GPTQ 25.68 46.25 45.24 23.40 35.14
BOA 27.56 48.15 46.20 23.90 36.45

13B
GPTQ 29.52 52.53 56.63 24.90 40.90
BOA 31.57 53.66 58.69 25.35 42.32

30B
GPTQ 29.18 54.46 60.04 24.54 42.06
BOA 31.57 55.93 62.18 25.54 43.81

Z-FOLD

1.3B
GPTQ 23.89 42.05 40.45 23.07 32.37
BOA 24.74 43.98 40.31 23.45 33.12

2.7B
GPTQ 25.00 41.46 43.13 23.16 33.19
BOA 26.37 43.06 45.18 23.50 34.53

6.7B
GPTQ 30.46 48.78 52.46 25.64 39.34
BOA 28.58 49.75 55.45 26.67 40.11

13B
GPTQ 28.58 48.78 55.38 24.75 39.37
BOA 28.84 49.87 58.32 24.60 40.41

30B
GPTQ 31.83 53.70 61.34 24.96 42.96
BOA 30.12 57.53 63.63 24.85 44.03
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C.3 COMPARISON WITH PRIOR ARTS

We compare the proposed BOA with OmniQuant (Shao et al., 2023) and AffineQuant (Ma et al.,
2024), recently proposed algorithms that learn an attention-aware equivalent transform via back-
propagation (see Tables 6 and 11 for PPL results and see Table 12 for zero-shot results).

As evident, BOA itself outperforms existing algorithms in almost all cases, even though BOA
does not rely on time-consuming gradient-based optimization. Furthermore, when combined with
SmoothQuant or Z-FOLD, the performance gap between BOA and OmniQuant/AffineQuant is sig-
nificant, which demonstrates the efficacy of BOA. We note that OmniQuant and AffineQuant some-
times diverge or collapse (i.e., PPL is larger than 103) for INT2 quantization. In fact, to supplement
the INT2 quantization performance, group-wise quantization parameters have been additionally used
in OmniQuant and AffineQuant, but group-wise parameters result in additional memory costs and
processing time for the inference (Shen et al., 2023).

Table 11: INT3 performance (PPL ↓) of BOA and existing attention-aware approaches.

Dataset Method
Model Size (OPT)

125M 1.3B 2.7B 6.7B 13B 30B

Wiki2

OmniQuant 41.59 18.23 15.11 12.86 12.49 11.26
AffineQuant 37.75 17.12 14.32 12.42 11.93 10.72

BOA 33.68 15.93 13.43 11.53 10.58 9.826
BOA + SmoothQuant 34.58 15.83 13.33 11.58 10.38 9.846
BOA + Z-FOLD 33.31 15.91 13.33 11.28 10.53 9.814

PTB

OmniQuant 59.51 26.08 22.68 18.31 17.76 16.02
AffineQuant 53.02 24.47 21.18 17.27 17.27 15.31

BOA 48.50 23.53 20.33 16.86 15.21 14.50
BOA + SmoothQuant 51.44 22.78 19.83 16.74 15.18 14.40
BOA + Z-FOLD 46.59 22.29 19.54 16.44 15.16 14.53

C4

OmniQuant 35.73 19.10 16.80 14.40 13.48 12.44
AffineQuant 33.37 18.56 16.15 13.91 13.31 12.14

BOA 31.12 17.74 15.83 13.34 12.52 11.75
BOA + SmoothQuant 31.52 17.43 15.48 13.35 12.48 11.73
BOA + Z-FOLD 30.00 17.13 15.32 13.20 12.41 11.71

Table 12: Zero-shot task performance (accuracy↑) of BOA and existing attention-aware methods
Model Size

(OPT) Method
Tasks

AverageARC-c ARC-e HellaSwag MMLU

1.3B

OmniQuant NaN NaN NaN NaN NaN
AffineQuant NaN NaN NaN NaN NaN

BOA + SmoothQuant 22.18 42.00 37.48 23.10 31.19
BOA + Z-FOLD 24.74 43.98 40.31 23.45 33.12

2.7B

OmniQuant NaN NaN NaN NaN NaN
AffineQuant 25.09 40.66 39.35 22.90 32.00

BOA + SmoothQuant 27.73 44.70 44.24 22.95 34.91
BOA + Z-FOLD 26.37 43.06 45.18 23.50 34.53

6.7B

OmniQuant 23.55 28.87 25.60 22.95 25.24
AffineQuant 26.62 48.23 47.18 23.57 36.40

BOA + SmoothQuant 27.56 48.15 46.20 23.90 36.45
BOA + Z-FOLD 28.58 49.75 55.45 26.67 40.11

13B

OmniQuant 26.11 26.35 25.54 22.95 25.24
AffineQuant 24.15 43.48 45.62 22.89 34.04

BOA + SmoothQuant 31.57 53.66 58.69 25.35 42.32
BOA + Z-FOLD 28.84 49.87 58.32 24.60 40.41

30B

OmniQuant 26.11 26.73 25.83 22.95 25.41
AffineQuant 25.26 26.47 25.65 22.95 25.08

BOA + SmoothQuant 31.57 55.93 62.18 25.54 43.81
BOA + Z-FOLD 30.12 57.53 63.63 24.85 44.03

* ‘NaN’ means that loss diverges in the quantization process.
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C.4 COMPARISON OF TIME AND MEMORY COSTS

In this appendix, we compare the processing time and memory costs of BOA and conventional
algorithms.

Table 13: Time and memory costs of the proposed BOA and existing methods

(a) INT2 quantization processing time

Method
Reconstruction

Target
Model Size (OPT)

125M 1.3B 2.7B 6.7B 13B 30B

GPTQ Layer output 0.752 min 6.284 min 0.214 hr 0.603 hr 1.293 hr 3.689 hr
OmniQuant Transformer block output 16.20 min 61.20 min 1.627 hr 2.933 hr 5.309 hr 11.57 hr
AffineQuant Transformer block output 28.33 min 154.2 min 4.597 hr 9.854 hr 18.41 hr 44.25 hr

BOA Attention output 5.099 min 31.64 min 1.101 hr 2.830 hr 4.964 hr 10.55 hr

(b) Memory cost (GB)

Method
Reconstruction

Target
Model Size (OPT)

125M 1.3B 2.7B 6.7B 13B 30B

GPTQ Layer output 1.391 3.970 4.863 9.011 12.57 21.25
OmniQuant Transformer block output 1.941 5.869 7.095 11.68 16.15 26.94
AffineQuant Transformer block output 3.473 9.963 12.25 20.08 26.78 42.21

BOA Attention output 1.676 5.471 6.837 12.26 19.06 39.74

Discussion on BOA The main reason why the processing time of the proposed BOA increases
with the size of LLMs is that the embedding dimension of attention heads increases with the model
size. Specifically, to compensate for the error incurred by the quantization of certain rows, BOA
needs to sequentially quantize sub-weight matrix dh times where dh is the head dimension (see
Fig. 1(b)). Because dh increases with model size, the number of sequential quantizations also in-
creases, which leads to long processing time.

Comparison with OmniQuant/AffineQuant The processing time of the proposed BOA is shorter
than those required by existing attention-aware algorithms that rely on gradient-based optimization,
yet achieving significantly better performance (see Tables 6 and 11). We note that OmniQuant does
not take too much time for quantizing large LLMs even though it performs gradient-based optimiza-
tion. This is because OmniQuant reduces the number of learnable parameters greatly to accelerate
gradient-based optimization. Specifically, instead of learning a weight-rounding policy which re-
quires to learn a large number of parameters, OmniQuant learns only a small number of quantiza-
tion parameters and some parameters related to the equivalent transform (Shao et al., 2023). While
this strategy accelerates the quantization process greatly, OmniQuant suffers from unstable quanti-
zation process or collapses for low-bit quantization (see Tables 6 and 11). AffineQuant improves
OmniQuant by introducing additional learnable parameters (Ma et al., 2024), but such additional
parameters result in huge processing time (4 times longer processing time; see Table 13(a)), which
demonstrates the inefficiency of gradient-based optimization over the proposed method.

Comparison with GPTQ The proposed BOA requires longer processing time and larger memory
than those required by GPTQ. This is because GPTQ quantizes all the rows of the weight matrix
simultaneously using only layer input. In contrast, BOA sequentially quantizes sub-weight matri-
ces using outputs of other layers as well as layer input (see Fig. 1(b)) to consider the inter-layer
dependencies within the attention module, which eventually leads to the better quantization per-
formance than GPTQ. Clearly, there is a trade-off between quantization speed / memory cost and
accuracy. In real situations, when one needs to preserve the performance of the original model by
considering inter-layer dependencies within the attention module, the proposed BOA would be an
intriguing solution. Even when the memory resource is limited, BOA can be used with some relax-
ation. Specifically, we note that the large memory cost of BOA for hyper-scale LLMs (e.g., 13B and
30B) is attributable to the row-wise Hessian for the value projection (XAT

hAhX
T in (12)) whose

shape is H × d × d (H is the number of attention heads and d is the embedding dimension). In
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memory-limited cases, we can mitigate the memory cost of BOA by considering inter-layer depen-
dencies only for query and key projections and applying the standard Hessian (XXT in (4)) for the
value projection. Indeed, when considering only query and key projections, BOA requires almost
same amount of memory as GPTQ, yet still exhibiting better performance (see Table 14).

Table 14: Performance and memory costs of the proposed BOA with and without considering inter-
layer dependencies for the value projection

(a) INT2 performance (PPL ↓) on C4

Method
Consideration of

Inter-layer Dependencies
Model Size (OPT)

125M 1.3B 2.7B 6.7B 13B 30B

GPTQ - 178.6 64.11 33.94 24.86 20.08 14.45
OmniQuant query, key, value, out, fcs NaN NaN NaN 3.0e4 2.0e5 2.1e5
AffineQuant query, key, value, out, fcs 107.0 NaN 34.45 25.11 31.50 3.3e5

BOA query, key 130.8 52.84 27.81 23.95 19.98 14.11
BOA query, key, value 118.1 48.92 26.57 23.03 19.22 13.84

(b) Memory cost (GB)

Method
Consideration of

Inter-layer Dependencies
Model Size (OPT)

125M 1.3B 2.7B 6.7B 13B 30B

GPTQ - 1.391 3.970 4.863 9.011 12.57 21.25
OmniQuant query, key, value, out, fcs 1.941 5.869 7.095 11.68 16.15 26.94
AffineQuant query, key, value, out, fcs 3.473 9.963 12.25 20.08 26.78 42.21

BOA query, key 1.391 3.971 4.864 9.015 12.57 21.25
BOA query, key, value 1.676 5.471 6.837 12.26 19.06 39.74
* The additional memory required for the query and key projections, i.e., memory needed to save
KT

hKh and QT
hQh (see (15) and (16)), is negligible (e.g., 0.003 GB for 30B).
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C.5 RESULTS FOR DIFFERENT CALIBRATION DATASETS

When constructing a calibration dataset, we randomly sample 128 sequences from the C4 dataset
(see Section 4.1). By changing the seed for the sampling, we can obtain different calibration datasets,
which leads to different quantization results.7 In this appendix, we report the corresponding results
and overall statistics. Due to the limited computational resources, we conducted this experiment
only for our main comparison (i.e., the performances of the proposed BOA and the conventional
GPTQ).

Table 15: Performance (perplexity ↓) of the proposed BOA and GPTQ for different seeds.

(a) INT2 Quantization

Dataset Seed Method 125M 1.3B 2.7B 6.7B 13B 30B

Wiki2

0 GPTQ 232.8 66.76 37.44 24.74 18.97 13.12
BOA 141.6 48.71 26.20 22.71 18.76 12.15

10 GPTQ 276.2 66.30 36.74 24.64 20.05 13.34
BOA 147.4 47.23 25.95 23.11 18.52 12.17

20 GPTQ 243.9 65.09 36.33 24.94 19.78 13.17
BOA 139.4 45.11 27.00 24.06 17.82 12.33

50 GPTQ 269.9 64.88 33.84 24.54 19.47 13.41
BOA 160.7 44.13 26.75 23.09 18.70 12.15

100 GPTQ 228.3 71.51 36.72 25.55 19.39 13.18
BOA 147.8 47.43 26.85 23.61 18.49 12.17

Mean
±Stdev

GPTQ 250.2±22 66.91±2.7 36.21±1.4 24.88±0.40 19.53±0.41 13.24±0.12
BOA 147.4±8.3 46.52±1.9 26.55±0.45 23.32±0.53 18.46±0.38 12.19±0.077

PTB

0 GPTQ 384.8 112.0 64.59 42.36 26.95 20.25
BOA 199.2 78.73 40.76 33.77 25.34 18.52

10 GPTQ 324.1 112.7 62.42 38.91 27.92 19.80
BOA 185.4 76.02 39.73 33.79 23.55 18.08

20 GPTQ 350.4 111.6 62.64 39.84 27.80 20.57
BOA 188.7 79.31 41.69 34.89 24.59 18.06

50 GPTQ 433.8 122.1 59.46 43.05 27.64 20.43
BOA 206.8 87.29 41.91 36.36 24.56 18.27

100 GPTQ 479.2 125.8 59.49 38.26 27.56 20.02
BOA 164.8 77.32 41.67 35.19 24.56 17.98

Mean
±Stdev

GPTQ 394.5±63 116.8±6.6 61.72±2.2 40.48±2.1 27.57±0.38 20.21±0.31
BOA 189.0±16 79.73±4.4 41.15±0.91 34.80±1.1 24.52±0.64 18.18±0.22

C4

0 GPTQ 178.6 64.11 33.94 24.86 20.08 14.45
BOA 118.1 48.92 26.57 23.03 19.22 13.84

10 GPTQ 189.7 64.19 33.27 24.40 20.40 14.44
BOA 115.8 49.76 27.00 24.04 18.58 13.83

20 GPTQ 163.1 64.19 32.83 24.66 20.37 14.41
BOA 111.1 48.81 26.96 23.31 19.15 13.80

50 GPTQ 190.8 64.99 32.69 24.55 20.13 14.48
BOA 119.2 46.68 27.11 23.73 18.96 13.80

100 GPTQ 168.5 67.54 33.65 25.25 20.23 14.51
BOA 116.7 48.49 27.17 24.09 19.63 13.91

Mean
±Stdev

GPTQ 178.2±12 65.00±1.5 33.28±0.53 24.75±0.33 20.24±0.14 14.46±0.039
BOA 116.2±3.1 48.53±1.1 26.96±0.24 23.64±0.46 19.11±0.38 13.83±0.045

7Tables 3 to 11 present the results for seed 0.
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(b) INT3 Quantization

Dataset Seed Method 125M 1.3B 2.7B 6.7B 13B 30B

Wiki2

0 GPTQ 38.74 16.70 14.01 11.91 10.85 9.911
BOA 33.68 15.93 13.43 11.53 10.58 9.826

10 GPTQ 40.72 16.99 13.97 11.89 10.84 9.881
BOA 34.30 16.15 13.43 11.43 10.59 9.756

20 GPTQ 38.72 17.17 13.89 11.98 10.94 9.941
BOA 34.24 16.02 13.32 11.66 10.51 9.791

50 GPTQ 37.72 16.93 14.08 11.86 10.92 9.769
BOA 34.73 16.19 13.44 11.44 10.54 9.768

100 GPTQ 38.37 16.97 14.27 11.89 10.88 9.840
BOA 34.51 16.14 13.72 11.49 10.52 9.847

Mean
±Stdev

GPTQ 38.85±1.1 16.95±0.17 14.04±0.14 11.91±0.044 10.89±0.045 9.868±0.067
BOA 34.29±0.39 16.09±0.11 13.47±0.15 11.51±0.094 10.55±0.036 9.798±0.038

PTB

0 GPTQ 57.62 24.77 21.53 17.56 15.68 14.56
BOA 48.50 23.53 20.33 16.86 15.21 14.50

10 GPTQ 55.56 25.19 21.60 17.19 15.66 14.66
BOA 48.37 23.35 20.27 16.71 15.13 14.50

20 GPTQ 56.22 25.47 21.42 17.24 15.67 14.60
BOA 47.01 23.31 20.22 16.68 15.16 14.54

50 GPTQ 56.68 24.94 21.44 17.36 15.74 14.52
BOA 51.05 23.69 20.19 16.76 15.22 14.46

100 GPTQ 52.15 25.13 21.32 17.44 15.79 14.53
BOA 48.66 23.50 19.93 16.77 15.21 14.46

Mean
±Stdev

GPTQ 55.65±2.1 25.10±0.26 21.46±0.11 17.36±0.15 15.71±0.057 14.57±0.058
BOA 48.72±1.5 23.48±0.15 20.19±0.16 16.75±0.068 15.19±0.038 14.49±0.035

C4

0 GPTQ 33.90 18.18 16.10 13.60 12.62 11.76
BOA 31.12 17.74 15.83 13.34 12.52 11.75

10 GPTQ 34.16 18.19 16.07 13.60 12.63 11.76
BOA 31.72 17.72 15.70 13.34 12.52 11.74

20 GPTQ 34.07 18.19 16.07 13.58 12.62 11.75
BOA 31.29 17.72 15.73 13.33 12.53 11.74

50 GPTQ 33.68 18.16 16.06 13.60 12.67 11.76
BOA 31.11 17.73 15.73 13.37 12.54 11.74

100 GPTQ 33.80 18.20 16.12 13.61 12.66 11.76
BOA 31.38 17.75 15.70 13.36 12.55 11.75

Mean
±Stdev

GPTQ 33.92±0.20 18.18±0.015 16.08±0.026 13.60±0.014 12.64±0.023 11.76±0.0045
BOA 31.32±0.25 17.73±0.013 15.74±0.053 13.35±0.016 12.53±0.012 11.75±0.0053
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D PSEUDOCODE FOR GPTQ

In this appendix, we provide the pseudocode of the conventional GPTQ (Frantar et al., 2023), which
is omitted in the main manuscript due to the page limitation.

Algorithm 2 GPTQ

Input: weights W, Hessian information Ucol, pre-determined step size S, and blocksize B
1: def GPTQ(W, Ucol, S, B = 128)
2: Initialize quantized output: Q← 0drow×dcol

3: Initialize total quantization errors: Etotal ← 0drow×dcol

4: Initialize block quantization errors: Eblock ← 0drow×B

5: for i = 0, B, 2B, . . . do
6: for j = i, · · · , i+B − 1 do
7: Quantize the j-th column: Q:,j ← quant(W:,j ,S)
8: Estimate quantization error: [Eblock]:,j−i ← (W:,j −Q:,j)/[Ucol]j,j
9: Update weights in block: W:,j:i+B ←W:,j:i+B − [Eblock]:,j−i · [Ucol]j,j:(i+B)

10: end for
11: Update all remaining weights: W:,i+B: ←W:,i+B: −Eblock · [Ucol]i:(i+B),(i+B):

12: Save block quantization errors: [Etotal]:,i:i+B ← Eblock

13: end for
Output: quantized weights Q, quantization error Etotal
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