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Summary
Curriculum learning has been a quiet, yet crucial component of many high-profile successes

of reinforcement learning. Despite this, it is still a niche topic that is not directly supported by
any of the major reinforcement learning libraries. These methods can improve the capabilities
and generalization of RL agents, but often require complex changes to training code, limiting
their impact on the field. We introduce Syllabus, a portable curriculum learning library, as a
solution to this problem. Syllabus provides a universal API for curriculum learning, modular
implementations of popular automatic curriculum learning methods, and infrastructure that
allows them to be easily integrated with asynchronous training code in nearly any RL library.
Syllabus provides a minimal API for core curriculum learning components, making it easier to
design new algorithms and adapt existing ones to new environments. We demonstrate this by
evaluating the algorithms in Syllabus on several new environments, each using agents written
in a different RL library. We present the first examples of automatic curriculum learning in
NetHack and Neural MMO, two of the most challenging RL benchmarks, and find evidence
that existing methods do not easily transfer to complex new environments.

Contribution(s)
1. This paper introduces Syllabus, a library of portable curriculum learning algorithms and

infrastructure for synchronizing curricula across reinforcement learning environments run-
ning in separate processes. Syllabus includes portable implementations of several popular
automatic curriculum learning algorithms and tools for manually designing curricula.
Context: There are open-source curriculum learning libraries (Jiang et al., 2022; 2023;
Dharna et al., 2022; Coward et al., 2024), but they build curriculum logic into the RL train-
ing code, making it difficult to extend methods and apply them to new environments. Syl-
labus is the first portable infrastructure for curriculum learning.

2. We evaluate tuned curriculum learning baselines in 4 environments including 2 which have
not previously been explored in the context of curriculum learning. These baselines provide
a solid foundation for future curriculum learning research.
Context: We implement baselines from Jiang et al. (2021b), Kanitscheider et al. (2021),
Zhang et al. (2023), and Rutherford et al. (2024) and apply all four algorithms to baseline
environments used in these works. Some of these evaluations are reproductions of the ex-
periments in those papers, but most are novel.

3. Our experiments demonstrate that popular curriculum learning methods are far less effec-
tive outside of the environments in which they were originally developed, and that more
advanced methods may be necessary in complex environments.
Context: Previous work successfully used automatic curricula over level seeds to train
agents in procedurally generated environments. We show that these curricula over level
seeds are ineffective in new or complex environments.
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Abstract

Curriculum learning has been a quiet, yet crucial component of many high-profile suc-1
cesses of reinforcement learning. Despite this, it is still a niche topic that is not di-2
rectly supported by any of the major reinforcement learning libraries. These methods3
can improve the capabilities and generalization of RL agents, but often require complex4
changes to training code. We introduce Syllabus, a portable curriculum learning library,5
as a solution to this problem. Syllabus provides a universal API for curriculum learn-6
ing, modular implementations of popular automatic curriculum learning methods, and7
infrastructure that allows them to be easily integrated with asynchronous training code8
in nearly any RL library. Syllabus provides a minimal API for core curriculum learning9
components, making it easier to design new algorithms and adapt existing ones to new10
environments. We demonstrate this by evaluating the algorithms in Syllabus on several11
new environments, each using agents written in a different RL library. We present the12
first examples of automatic curriculum learning in NetHack and Neural MMO, two of13
the most challenging RL benchmarks, and find evidence that existing methods do not14
directly transfer to complex new environments.15

1 Introduction16

Curricula have been a core component of many of the successes of reinforcement learning (RL). Al-17
phaGo (Silver et al., 2016) was trained with self-play, AlphaStar used a novel league training method18
to achieve grandmaster level play in Starcraft II (Vinyals et al., 2019), and GT Sophy (Wurman et al.,19
2022) was taught to outrace professionals in Gran Turismo with manually curated sections of race20
tracks. Curriculum learning is essential in environments with large task spaces where many tasks21
will be too challenging or too easy to provide a useful learning signal. In these settings Agents must22
prioritize tasks that develop transferable skills to accelerate learning in new tasks. This problem is23
further highlighted in open-ended environments with infinite or evolving task spaces, similar to the24
real world. Open-endedness research seeks to co-evolve agents and environments in order to create25
more complex tasks and incentivize more complex agent behavior (Wang et al., 2019; 2020). To ap-26
proximate infinite, evolving complexity, this field focuses on the most challenging RL benchmarks27
including Minecraft (Guss et al., 2019; Fan et al., 2022), NetHack (Küttler et al., 2020), and Neural28
MMO (Suarez et al., 2019; Rosseau et al., 2022; Suarez et al., 2024). Curriculum learning is an29
integral component of these open-ended processes, so they directly benefit from better curriculum30
learning methods.31

Curriculum learning (CL) methods fit naturally into the RL framework by modifying the data distri-32
bution that an agent experiences. According to Narvekar et al. (2020), curriculum learning explores33
how tasks or data samples can be sequenced to learn problems that can not be solved directly. Au-34
tomatic curriculum Learning (ACL) methods (Graves et al., 2017; Portelas et al., 2020b) focus on35
autonomously sequencing these tasks to maximize agent performance, and have been shown to out-36
perform random task ordering in robotics (Tobin et al., 2017; OpenAI et al., 2019; Mehta et al.,37
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2020), videogames (Salimans & Chen, 2018; Berner et al., 2019), and navigation (Florensa et al.,38
2018; Racaniere et al., 2019; Portelas et al., 2020a). Despite the near ubiquity of curricula in suc-39
cessful applications of reinforcement learning, there is little support for these methods in standard40
RL infrastructure. In theory, CL provides orthogonal benefits to policy optimization algorithms41
and they can be integrated with minimal restrictions. In practice however, CL methods are diverse,42
complex, and necessitate significant changes to training code. CL algorithms can modify the envi-43
ronment configuration (Dennis et al., 2020; Jiang et al., 2021b;a), introduce new neural networks to44
train (Ostrovski et al., 2017; Pathak et al., 2017a; Bellemare et al., 2016b; Henaff et al., 2022), or45
even query tasks from a large language models (Colas et al., 2023; Du et al., 2023b; Zhang et al.,46
2023; Faldor et al., 2024). Each method is different, so engineering time often scales linearly with47
the number of methods being evaluated.48

Most open-source implementations of CL algorithms integrate their code directly within the RL al-49
gorithm, intertwining CL and RL logic. We argue that this is typically done to accommodate existing50
multiprocessing implementations. ACL methods maintain a sampling distribution over tasks which51
they update using feedback from the environment. In an asynchronous RL setting, this requires addi-52
tional data exchanges between environments running on separate processes and the curriculum in the53
main process. The simplest solution is to add these extra messages to the existing message-passing54
infrastructure, usually in the infos dictionary. However, accessing this data requires direct changes55
to the training code that vary depending on the CL method, so CL algorithms are implemented as56
standalone libraries with custom training code. This entanglement of CL and RL code makes it diffi-57
cult to isolate algorithmic details and apply CL methods beyond their original codebases, ultimately58
limiting reproducibility and hindering future research.59

Syllabus addresses this problem by introducing a simple, portable approach to designing curriculum60
learning algorithms. We implement CL algorithms as modular additions to RL code, complementing61
their theoretical orthogonality to policy optimization. Syllabus makes minimal assumptions about62
the RL training code and establishes a separate synchronization pathway between the curriculum63
and asynchronous environments. This architecture best enables future research by integrating with64
existing RL infrastructure rather than attempting to replace it. We demonstrate the generality of65
Syllabus by implementing multiple ACL algorithms and evaluate them in several RL libraries in-66
cluding CleanRL (Huang et al., 2022), RLLib (Liang et al., 2018), Moolib (Mella et al., 2022), and67
PufferLib (Suarez, 2023). This allows us to present new baselines of several ACL algorithms on68
Procgen (Cobbe et al., 2020b), and Crafter (Hafner, 2021), and the first ACL results on NetHack69
(Küttler et al., 2020), and Neural MMO (Suarez et al., 2019; 2024).70

2 Background71

Curriculum Learning has been studied in the context of deep supervised learning for many years72
(Bengio et al., 2009; Elman, 1993). More recently, it has been used to improve the capabilities73
and generalization of deep reinforcement learning agents. Curriculum learning encompasses a wide74
range of methods that change the training data distribution. The goal is to increase the asymptotic75
performance or sample efficiency of RL agents on a single environment or range of tasks by sampling76
tasks that provide maximal learning value. These methods often make a distinction between the77
goal generating teacher and the student agent that plays the tasks assigned by the teacher. Narvekar78
et al. (2020) and Portelas et al. (2020b) present more thorough taxonomies and surveys of existing79
curriculum learning methods. It can also be viewed as an extension of transfer learning, which80
Taylor & Stone (2009) and Zhu et al. (2023) summarize in the context of RL.81

Many diverse methods fall under the broad definition of curriculum learning. Some take inspira-82
tion from the Zone of Proximal Development (Vygotsky, 1978; Chaiklin, 2003) which suggests83
that tasks in the proximal zone – tasks that are neither too hard nor too easy – maximize learning84
progress (LP). Many curriculum learning papers therefore focus on developing measures of learn-85
ing progress. Portelas et al. (2020a) fit Gaussian Mixture Models (Rasmussen, 1999) to a dataset86
of continuous tasks and their corresponding learning progress measures, then treat the individual87
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Gaussians as arms in a bandit problem, allowing a teacher to bias training toward high-LP tasks.88
Kanitscheider et al. (2021); Tzannetos et al. (2023); Rutherford et al. (2024) evaluate the agent’s89
current progress on the full task space throughout training, and compute a learning progress metric90
from these success rates. Klink et al. (2022) introduce an optimal transport based curriculum and91
identify a link between interpolation based curricula and methods that use success rates, regret, or92
learning progress. Intrinsically motivated exploration bonuses like curiosity (Pathak et al., 2017b) or93
novelty (Bellemare et al., 2016a; Taiga et al., 2021; Henaff et al., 2022) modify the reward function94
to induce a curriculum by incentivizing the agent to explore unseen section of the state space.95

Self-play based methods (Samuel, 1959; Tesauro, 1995; Silver et al., 2017) create an implicit cur-96
riculum in competitive multiplayer games by training a policy against itself (Leibo et al., 2019). As97
the agent becomes more capable, so does the opponent, allowing it to continually improve. Training98
only against the current policy can lead to strategic cycles, but mixing in past policies helps prevent99
this (Brown, 1951; Heinrich et al., 2015b; Heinrich & Silver, 2016; Lanctot et al., 2017; Vinyals100
et al., 2019). Self-play has been extended to include multiple students (Sukhbaatar et al., 2018;101
OpenAI et al., 2021) and to train a teacher represented by a neural network (Du et al., 2023a; Dennis102
et al., 2020; Mediratta et al., 2023a). Zhang et al. (2024) provide an extensive survey of self-play103
methods in RL.104

Unsupervised Environment Design (UED) is another paradigm for curriculum learning proposed105
by Dennis et al. (2020). They differentiate UED as a framework in which environments have un-106
specified configuration parameters, thereby forming an Underspecified Partially Observable Markov107
Decision Process (UPOMDP). The parameters generate a distribution of solvable tasks, and the goal108
of a UED method is to train a policy that generalizes across all possible instantiations of those vari-109
ables. This approach has led to several algorithms for training agents in procedurally generated110
games (Dennis et al., 2020; Jiang et al., 2021b;a; Beukman et al., 2024; Mediratta et al., 2023b).111

The specific policy optimization algorithm used to train agents is largely independent from the112
choice of curriculum. For simplicity, most curriculum learning research and all of the experiments113
in this paper use Proximal Policy Optimization (Schulman et al., 2017). PPO is an on-policy, policy114
gradient algorithm that has been successfully applied to a wide range of challenging RL environ-115
ments. It uses a clipped objective to avoid large changes to the policy, which prevents collapses in116
performance and stabilizes learning (Schulman et al., 2015; 2017).117

3 Related Work118

Popular RL libraries do not include curriculum learning algorithms, but there are specialized li-119
braries for curriculum learning. The Dual Curriculum Design library (Jiang et al., 2021a) incorpo-120
rates multiple UED methods in a single repository including PLR (Jiang et al., 2021b), PAIRED121
(Dennis et al., 2020; Mediratta et al., 2023a), Robust PLR, REPAIRED (Jiang et al., 2021a), and122
ACCEL (Parker-Holder et al., 2022). Watts is another curriculum learning library focused on open-123
endedness with implementations of POET and PAIRED (Dharna et al., 2022). It atomizes com-124
ponents of the open-ended framework into modules to create novel methods by combining these125
components in new ways. Their work also compares these algorithms on a suite of common bench-126
marks. Yuan et al. (2024) introduce a library of instrinsic motivation algorithms called RLeXplore,127
and use their library to identify algorithmic components of PPO and SAC (Haarnoja et al., 2018)128
that impact the performance of popular exploration bonuses. TeachMyAgent (Romac et al., 2021) is129
a complete benchmarking library for CL, which includes two procedural Box2D (Brockman et al.,130
2016) environments, a collection of ACL methods, and several student algorithm implementations.131
Their work categorizes several challenges for ACL methods including task space feasibility, robust-132
ness to novel RL algorithms, and required expert knowledge. TeachMyAgent implements several133
older ACL methods which (Jiang et al., 2021a) showed underperform relative to UED baselines.134

Recently, JAX has become a popular choice for writing fast deep learning libraries that can be run135
end-to-end on hardware accelerators (Bradbury et al., 2018). Minimax (Jiang et al., 2023) provides136
JAX-based implementation of the UED algorithms in the DCD library, leading to significantly faster137
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training. JaxUED (Coward et al., 2024) refactors the UED algorithms in Minimax into single-file138
implementations for faster prototyping, inspired by CleanRL (Huang et al., 2022). Both of these139
libraries are intended to be used with JAX-based environments, which allow you to run the entire140
training loop on hardware accelerators. However, they provide only moderate performance benefits141
to the complex CPU-based games that motivate open-endedness research, at the cost of inconvenient142
code constraints. These libraries also suffer from the same lack of portability as previous curriculum143
learning systems – their algorithms can not be easily applied to RL code written in any other library.144

Syllabus distinguishes itself from previous works by making minimal assumptions on the training145
code, rather than providing its own training system that intermingles RL and CL. By defining a146
simple, uniform API for interfacing with a curriculum, Syllabus makes it possible to add these algo-147
rithms to nearly any RL system with minimal code changes. An additional benefit of this approach148
is that all of the algorithmic details are contained in a single place, rather than distributed across the149
codebase. Syllabus also provides the only general-purpose infrastructure for synchronizing curricula150
across CPU-based environments in multiple processes. Curriculum learning algorithms almost ex-151
clusively interact with environments rather than policy optimization, and Syllabus takes advantage152
of this through a unique paradigm of portable infrastructure.153

4 Design Philosophy154

Syllabus aims to simplify the process of developing curriculum learning methods, combining them155
with RL algorithms, and applying them to challenging domains. As such, it is built to be compatible156
with as many different RL libraries and multiprocessing methods as possible. These goals motivate157
the following key points of our design philosophy:158

1. Syllabus should be agnostic to the choice of reinforcement learning framework.159

2. Syllabus should have general APIs that support any form of curriculum learning.160

3. Integrating Syllabus into training infrastructure should require minimal code changes.161

4. Code complexity should scale with the complexity of the curriculum learning algorithm.162

5. Algorithm implementations should be contained in a single file.163

The first point motivates many of the implementation choices in Syllabus that may seem odd in164
isolation. To maintain compatibility with several libraries we must honor the Gymnasium and Pet-165
tingZoo environment APIs (Brockman et al., 2016; Towers et al., 2024; Terry et al., 2021) and write166
systems that work with many different multiprocessing solutions. For instance, Gymnasium, Sta-167
ble Baselines 3 (Raffin et al., 2021), and RLLib (Liang et al., 2018) all provide their own vector168
environment implementations.169

Syllabus’s utility is tied to its ability to integrate new forms of curriculum learning. The diversity170
of existing CL algorithms is highlighted in section 1 and subsection 5.1. Supporting all of these171
methods in a single API necessitates some complexity. When one method requires a new interface,172
we prefer to have a heterogeneous, modular API rather than complicate the interface for all methods.173
For example, we define a separate Curriculum and Agent API for task-based and opponent-based174
curricula respectively. These components are described in subsection 5.1 and can be used separately175
or combined to form joint curricula over tasks and opponents. In each case, we create the smallest176
possible API to minimize complexity for users.177

Our focus on single-file implementations is inspired by the success of CleanRL (Huang et al., 2022).178
CleanRL provides single-file implementations of popular RL algorithms to support fast iteration and179
transparency, making it easy for researchers to reliably report algorithmic details. Though end-to-180
end single-file training scripts are inherently non-portable, Syllabus encapsulates all CL logic for181
each algorithm in a single class to capture much of the same transparency and simplicity.182
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Figure 1: Syllabus with a standard asynchronous RL training setup.

5 Syllabus APIs183

Syllabus designates responsibility for maintaining sampling distributions over the task space to a184
Curriculum class, and implements task swapping through a wrapper over the environment. This185
provides a uniform interface for setting the current task of an environment, which we explain fully186
in Supplementary A.3. Each environment also defines a TaskSpace that represents the full range187
of tasks that can be used to train agents. Each API is designed to be simple to use and to support188
future use cases.189

5.1 Curriculum API190

In Syllabus, a Curriculum is responsible for maintaining a distribution over the task space and191
implementing a sampling function for selecting tasks. Automatic curriculum learning methods use192
feedback from the RL training process to update their sampling distribution. The Curriculum API193
provides multiple options for incorporating information from the environments and policy, either194
manually or automatically through Syllabus’s synchronization infrastructure. The multiprocessing195
approach is explained more thoroughly in subsection 5.4. The curriculum can be updated after196
each step, episode, or completed task with the update_on_step, update_on_episode, or197
update_task_progress methods respectively. These update options allow us to implement a198
diverse range of curriculum learning algorithms under the same API, as we show in subsection 5.5.199

5.2 Agent API200

The Agent API is a subset of the Curriculum API that defines curricula over co-players in multiagent201
games. These algorithms store co-players and load them at a later time based on some sampling202
criteria. The currently implemented algorithms are forms of self-play (SP) (Samuel, 1959; Tesauro,203
1995) where the opponent is a previous copy of the online policy. These are intended for two-player204
competitive games, but the API supports many-agent general-sum games.205

1. Fictitious Self Play (FSP) - maintains a history of past copies of the agent as opponents (Heinrich206
et al., 2015a). FSP uniformly samples an opponent from history to prevent strategic cycles.207

2. Prioritized Fictitious Self Play (PFSP) - like FSP, PFSP maintains a history of past opponents208
to sample during training. PFSP selects the opponent with the highest win-rate against the current209
agent. This prevents the curriculum from spending a disproportionate amount of time training210
against opponents that the agent already performs well against.211

Syllabus supports the simultaneous use of opponent-based (e.g. FSP, PFSP) and task-based (e.g. DR,212
PLR) curricula through the DualCurriculumWrapper. This wrapper extends the Curriculum213
API, allowing the user to sample from a joint task space and update both curricula at once. This API214
allows users to experiment with different joint curricula without changing their training code.215
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1 curriculum = DomainRandomization(task_space)
2 curriculum = make_multiprocessing_curriculum(curriculum)
3

4 env = NetHackScore()
5 env = NetHackTaskWrapper(env)
6 env = GymnasiumSyncWrapper(env, curriculum.components)

Figure 2: Using Syllabus for curriculum learning with just a few lines of code.

5.3 Task Space API216

Defining a task space for training agents is a fundamental challenge in curriculum learning, similar217
to reward shaping for policy optimization. Task spaces are domain-specific and must be carefully218
designed for each environment to create an effective curricula. In most benchmark environments,219
tasks exist in a low-dimensional discrete or continuous space, while more complex environments220
may use a combination of discrete and continuous variables or intricate predicate systems, as seen in221
XLand (Team et al., 2023; Nikulin et al., 2023) and Neural MMO (Suarez et al., 2019). Curriculum222
learning implementations are often restricted to the task space representations from the environments223
that they were originally designed for, but Syllabus’s Task API removes these limitations, making it224
possible to explore new task spaces without modifying algorithm code.225

The Task Space API simplifies task space definition and curriculum compatibility by mapping tasks226
into a Gym Space (Brockman et al., 2016). This allows users to define tasks in a format suited227
to their environment while maintaining a simple representation within the curriculum code. For228
example, while Prioritized Level Replay originally used level seeds as tasks, our implementation229
supports any discrete task list. The PLR code handles tasks as integers for streamlined algorithm230
logic, while the environment interprets them as seeds, map encodings, reward functions, etc. This231
approach also reduces bandwidth for task transfer between processes and enables task indexing for232
defining separate training and validation sets.233

5.4 Multiprocessing Infrastructure234

The real practical challenges in curriculum learning come from synchronizing curricula using feed-235
back from environments running in multiple processes. Syllabus’s infrastructure is designed to sep-236
arate curriculum and multiprocessing logic to provide interoperability with many different forms of237
asynchronous RL infrastructure. It uses a bidirectional sender-receiver model in which the curricu-238
lum sends tasks and the environment sends feedback from playing the provided task. The curriculum239
synchronization wrapper adds multiprocessing functionality to a Curriculum and an environment240
synchronization wrapper adds the same functionality to the environment without changing the Gym241
interface. The environment synchronization wrapper automatically sends feedback to the curricu-242
lum after each step, episode, or completed task depending on the curriculum method. You can also243
update the curriculum with training metrics directly from the main learner process. Figure 1 shows a244
diagram of how these components interconnect. The curriculum does not need immediate feedback245
or block training, so all updates are batched to reduce multiprocessing overhead, and task sam-246
pling is can be buffered to prevent delays at the start of each episode. Crucially, adding Syllabus’s247
synchronization to existing RL training code requires only a few lines of code, shown in Figure 2.248

The user-facing curriculum and environment code follows our design goals stated in section 4, while249
the multiprocessing infrastructure is engineered to ensure stability and reduce the risk of bugs. To250
guarantee that researchers will not need to spend time reading or debugging this code, Syllabus251
includes thorough integration tests, smoke tests, regression tests, and optimization benchmarks for252
all multiprocessing code, tested with all of the implemented curriculum learning methods. More253
details and performance numbers can be found in Supplementary C and Supplementary B.254
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5.5 Automatic Curriculum Learning Implementations255

Syllabus includes portable implementations of several popular curriculum learning baselines. We256
prioritize modern methods which have been successfully applied to complex environments, and257
plan to add many more algorithms in future versions of Syllabus. We also provide utilities for258
manual curriculum learning or transfer learning. For example, we implement Simulated Annealing259
(Kirkpatrick et al., 1983), an expanding sampling range curriculum, and a sequential curriculum.260
The sequentual curricula trains agents on a list of individual tasks or entire curricula in stages that261
run until a predetermined number of steps or user-defined stopping conditions are met. Supporting262
all of these diverse methods helps to demonstrate the generality of Syllabus’s interfaces.263

Prioritized Level Replay (PLR) - a popular UED method which maintains a buffer of levels with264
high learning potential (Jiang et al., 2021b). PLR typically prioritizes tasks with a high value loss,265
though recent work explores other options (Jiang et al., 2021a; Jackson et al., 2024). It also tracks266
the staleness of each task’s value loss score, and assigns some probability to very stale tasks.267

We generalize this implementation to support arbitrary task spaces instead of only environment268
seeds, and implement an asynchronous version that can be updated with arbitrary batch sizes. We269
also implement Robust PLR (Jiang et al., 2021a) as an initialization option for PLR. PLR is a core270
component of several more recent UED methods (Parker-Holder et al., 2022; Samvelyan et al.,271
2022) and has been successfully applied to complex domains (Team et al., 2023). We sample tasks272
based on the L1 value loss as defined below, where λ and γ are the GAE and MDP discount factors273
respectively, and δt is the TD-error at timestep t:274

1

T

T∑
t=0

∣∣∣∣∣
T∑

k=t

(γλ)k−tδk

∣∣∣∣∣ (1)

Learning Progress (LP) - this method was developed by Kanitscheider et al. (2021) to train PPO275
agents in Minecraft. Using this algorithm and an exploration bonus, their agents were able to con-276
sistently acquire diamonds, drastically surpassing PPO alone. They define a set of pass/fail tasks for277
the agent to achieve, and prioritize tasks with a recent change in success rate, which they call learn-278
ing progress. This method tracks a fast and slow exponential moving average (EMA) of the agent’s279
success rate for each task, which is evaluated periodically throughout training. Learning progress280
is calculated by taking the absolute difference between these EMA values and performing several281
normalization steps. High learning progress indicates a task that the agent is beginning to learn or282
forget, so those tasks are prioritized during sampling.283

Open-endedness via Models of human Notions of Interestingness (OMNI) - this is an extension284
to the Learning Progress curriculum introduced by (Zhang et al., 2023) which asks an LLM to285
identify "interesting" tasks given the agent’s current success rates on each task. The LLM filters out286
tasks that are uninteresting given high proficiency at another task. Starting with the highest success287
rate, the LLM partitions tasks into interesting and uninteresting sets, and masks uninteresting tasks288
out of the sampling distribution generated by the LP curriculum. This approach has recently been289
extended to allow the LLM to generate new interesting tasks defined in code (Faldor et al., 2024).290

Sampling for Learnability (SFL) - this method is a hybrid of the approaches used by PLR and291
LP. It uses a simple metric for prioritizing tasks by sampling according to p(1 − p) where p is292
the task success rate, a metric called learnability that was originally described in (Tzannetos et al.,293
2023). The method as introduced by Rutherford et al. (2024) samples from a mixture of a uniform294
distribution over the top k most learnable tasks and a uniform distribution over all tasks. The mixing295
ratio of these distributions is controlled by a hyperparameter p. We additionally implement a version296
of this method that samples directly from the full distribution generated by p(1− p). We find that it297
sometimes outperforms SFL while removing two environment-dependent hyperparameters.298
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(a) (b)

(c)

(d)

Figure 3: (a) Mean normalized test returns for Syllabus’s implementation vs. the original implemen-
tation of Prioritized Level Replay from (Jiang et al., 2021b) on 10 Procgen environments. Domain
Randomization is also included for reference. (b) Mean task success rate for Syllabus’s Learning
Progress and OMNI implementations vs. the reference implementations from (Zhang et al., 2023)
on Crafter. (c) and (d) 95% Stratified bootstrap confidence intervals for Procgen and Crafter.

6 Reproduction Experiments299

In order to demonstrate the correctness of Syllabus’s infrastructure and algorithms, we reproduce300
the experiments for each automatic curriculum learning method from the paper in which they were301
introduced. We test PLR and DR on Procgen as in (Jiang et al., 2021b), and we test LP and OMNI on302
Crafter (Hafner, 2021) as in (Zhang et al., 2023). Syllabus makes it easy to test our implementations;303
we simply take any open-source reference codebase, disable the curriculum, and replace it with a few304
lines of Syllabus code. This lets us quickly evaluate new ACL implementations without recreating305
experiments in a new RL library, thereby minimizing methodological errors.306

Procgen is a collection of 16 procedurally generated games designed to test sample efficiency and307
generalization (Cobbe et al., 2020a). Procgen levels are generated from a seed, so we use a task308
space of 200 training seeds for all curricula. Our experiments focus on a subset of 10 Procgen envi-309
ronments, but otherwise use the same methodology as Jiang et al. (2021b) and Cobbe et al. (2020a).310
Like these works, we normalize test returns by dividing returns by the empirical return range in each311
Procgen environment. Our full methodology is explained more thoroughly in Supplementary D.1.312
Crafter is a procedurally generated, grid-world environment modeled after Minecraft (Guss et al.,313
2019; Hafner, 2021). Agents collect resources, craft tools, and fight monsters to survive. The en-314
vironment assigns tasks to the agent such as "collect 5 coal" or "make 1 iron pickaxe", which the315
agent receives 1 reward for completing. The curricula in Zhang et al. (2023) are therefore curricula316
over reward functions, based on the agent’s current competence on each task.317
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We show in Figure 3 that the normalized test returns for PLR and DR on Procgen over the course318
of training almost precisely match the reference implementations from Jiang et al. (2021b). Sim-319
ilarly in Crafter, we see that our implementations of LP and OMNI achieve the exact same task320
success rates throughout training as the reference implementations. As in (Zhang et al., 2023) the321
task space includes 15 main tasks such as "collect 1 coal", 90 repeat tasks such as "collect 8 coal",322
and 1024 impossible tasks that always have 0 success rate. We evaluate the success rates for each323
of the 105 possible tasks for 4 episodes each over the course of training. These experiments provide324
strong evidence that our multiprocessing infrastructure and algorithm implementations are correct.325
The full details of our methodology for these experiments can be found in Supplementary D.1 and326
Supplementary D.2. We also use the Open RL Benchmark tools (Huang et al., 2024) to plot strati-327
fied bootstrap confidence intervals for the mean, median, and interquartile mean of each method as328
recommended by Agarwal et al. (2021).329

Figure 3 shows that our implementations of PLR, LP, and OMNI match the performance of the330
reference implementations. Syllabus’s portable design means that we can apply these algorithms331
to new domains with the confidence that the curriculum learning portion of the code is completely332
correct. In section 7 we demonstrate this by applying ACL to 2 new domains which have not333
previously been studied with curriculum learning.334

7 New Baselines335

We demonstrate Syllabus’s versatility by applying ACL to two new complex domains, Neural MMO336
and NetHack, with baselines implemented in specialized RL libraries. We also present new baselines337
for each ACL method on Procgen and Crafter, trained using CleanRL (Huang et al., 2022) and338
TorchAC respectively. This is the first direct comparison using a shared benchmark of the learning339
progress methods LP and OMNI against UED methods like PLR and SFL.340

7.1 Neural MMO 2.0 in PufferLib341

Neural MMO 2.0 is a complex multi-agent simulation inspired by massively multiplayer online342
games (Suarez et al., 2019; 2024). Agents can collect resources, learn skills, trade goods, and fight343
non-player characters or other agents. It has a predicate task space which allows users to define344
objectives in Python code. The baseline for the 2023 Neural MMO competition was written in345
PufferLib because it supports complex action spaces and multiagent environments where agents346
can die mid-episode, which complicates learning code (Terry et al., 2021; Suarez et al., 2024). We347
show that Syllabus can be used in this environment with 128 agents and a massive task space.348

349

All of the automatic curriculum learning methods in Syllabus (excluding FSP and PFSP) were de-350
signed for single-agent environments. To apply single-agent curricula to a multi-agent environment,351
we update our curricula with feedback from all 128 agents controlled by our self-play policy. Each352
agent’s experience is treated as trajectories from separate single-agent environments. We do not test353
FSP or PFSP because Neural MMO is a mixed competitive-cooperative game, not purely zero-sum.354

7.2 NetHack in Moolib355

NetHack is a popular text-based dungeon-crawler released in 1987, and adapted into an RL envi-356
ronment by Küttler et al. (2020). It’s a complex, procedurally generated game in which winning or357
"ascending" can take more than 50,000 steps for human players. Ascending requires players to solve358
puzzles using common sense, knowledge of mythology, and game-specific tricks, all while collect-359
ing equipment, fighting monsters, and scavenging for food. NetHack remains one of the hardest360
benchmarks for online RL methods, which lag behind hand-crafted symbolic agents and behavior361
cloning baselines (Küttler et al., 2020; Tuyls et al., 2023; Piterbarg et al., 2024).362
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(a) Procgen (b) Crafter

(c) NetHack (d) Neural MMO

Figure 4: Automatic curriculum learning results on (a) Procgen, (b) Crafter, (c) NetHack, and (d)
Neural MMO. 95% Stratified bootstrap confidence intervals can be found in Supplementary D

Importantly, NetHack can be simulated extremely quickly, shifting the training bottleneck from data363
collection to policy optimization and inference. To address this, NetHack baselines use specialized364
training libraries like TorchBeast (Küttler et al., 2019), Sample Factory (Petrenko et al., 2020), and365
MooLib (Mella et al., 2022). SampleFactory and Moolib use asynchronous PPO (APPO), which366
creates separate copies of the policy for action inference and optimization. Moolib in particular367
spawns servers for policies and environments and communicates via remote procedure calls,368
allowing it to scale to many machines and GPUs. We demonstrate that Syllabus is easy to use with369
Moolib in a single GPU setting.370

371

7.3 Methodology372

LP and SFL rely on a task success metric to evaluate seeds, which is not a standard feature of373
RL environments. For Crafter, these are provided via binary pass/fail achievements. For all other374
environments, we define the success metric as the scaled, clipped, episodic return achieved by the375
agent. The exact scaling was manually selected based on the environment’s typical reward range and376
is described in Supplementary D. OMNI is only evaluated on Crafter because it is not possible to377
identify "interesting" level seeds or maps by number alone, and there is no obvious way to describe378
arbitrary environment instantiations to an LLM. We use a grid search to tune every curriculum’s379
hyperparameters in each environment, which we explain more thoroughly in Supplementary D.5.380

Each of the libraries used in this paper have different design philosophies, software architectures,381
and multiprocessing implementations. Despite this, Syllabus can easily work with all of them with a382
few lines of library-agnostic code. We have an additional example in Supplementary E.1 of training383
CartPole agents in RLLib (Liang et al., 2018) to demonstrate how Syllabus can be used with Ray384
multiprocessing. We also experiment with adding PLR to Phasic Policy Gradients (Cobbe et al.,385
2021), an extension to PPO, in Supplementary E.3 to show that Syllabus is not limited to augmenting386
PPO. More details for all of our experiments can be found in Supplementary D, and the code and387
data are publicly available on GitHub and Weights & Biases respectively.388

10



Syllabus: Portable Curricula for Reinforcement Learning Agents

8 Results389

We find that only PLR outperforms DR when applied to Procgen’s level seeds. In this setting, LP390
underperforms and SFL, matching the simpler and cheaper DR. Neither of these newly evaluated391
methods perform well on Procgen despite hyperparameter tuning. We plot individual training curves392
for each Procgen environment in Figure 9 and find that there are no environments where LP or SFL393
outperform PLR, but there are some environments where they outperform DR. Also of note, DR is394
the only method which achieves nonzero return on Dodgeball. On our Crafter environment where395
90% of tasks are impossible, the DR agent fails to learn a reasonable policy, barely outperforming396
and random policy. PLR is able to identify meaningful tasks and allows the agent to slowly improve397
its competence. Zhang et al. (2023) demonstrated the effectiveness of LP and OMNI on Crafter, but398
we find that SFL performs significantly better than LP. As a result, it seems natural to apply OMNI’s399
LLM-based interestingness filtering on top of SFL instead of LP, but we found that this does not400
work well in practice Supplementary E.5. These results may suggest that task success rates are a401
more effective prioritization metric than value predictions when available. In their absence, value402
predictions might be a better approximation of competence than our return-based success metric403
defined in subsection 7.3. We leave a thorough investigation of this inconsistency as future work.404

Crafter stands out as an effective testbed for CL research. Unlike other environments, it is easy to405
see which methods outperform others in Figure 4b. Crafter and Minecraft are designed such that406
proficiency on one task immediately makes the next task learnable, because the agent is guaranteed407
to have the knowledge and tools to acquire the next item. We suspect that this reward-based, linear408
task space highlights the strengths of CL algorithms. However, that nice structure is not easy to409
identify in most problems, so it is not a replacement for evaluating on complex environments.410

In NetHack, we see that PLR performs similarly to DR. This is unsurprising because a single seed411
of NetHack can diverge significantly in just a few steps, so value predictions have extremely high412
variance and level seeds have little control over the environment instance’s difficulty. However, we413
also see that LP and SFL accelerate learning at the start of training, but lead to lower asymptotic414
performance. As we saw in Crafter, success rates may be a more effective way of identifying learn-415
able seeds, but prioritizing these seeds is not a good long-term strategy for boosting performance in416
NetHack. No curriculum provides any asymptotic benefits over DR in NetHack.417

We also see in Figure 4d that none of our automatic curriculum learning methods for selecting maps418
in Neural MMO perform well compared to DR. In complex, many-agent environments the map419
may have minimal influence over the difficulty of the environment, suggesting that curricula over420
different dimensions could be more effective. Additional experiments using a manually designed421
curriculum of progressively harder reward functions can be found in Supplementary D, which we422
find outperforms the default survival reward on several metrics.423

Overall, we find that most curricula perform poorly outside of the environment in which they were424
originally tested. Agents in both Procgen and Crafter have been shown to benefit from CL using PLR425
and LP respectively (Jiang et al., 2021b; Zhang et al., 2023), yet neither of these methods perform426
well when applied to the opposite environment. SFL is one of the few successful evaluations scoring427
higher than LP on Crafter and at least matching DR on Procgen, despite being developed on simpler428
JAX-based environments. None of the methods provide any noticeable improvement over the DR429
baseline in Neural MMO or NetHack. These results suggest that curricula over initial environment430
conditions are not effective in complex, long-horizon games, and that we may need to develop more431
sophisticated methods for these environments.432

9 Discussion and Future Work433

Multi-domain research, focusing on challenging, long-horizon environments, is crucial to develop-434
ing generalizable and robust RL methods. Schaul et al. (2011), Bellemare et al. (2013), and Castro435
(2024) have argued that videogame environments are an ideal benchmark for AI agents because they436
are design for human players. This makes them inherently difficult yet learnable while being com-437
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pelling and interpretable. In practice, solving these complex problems often requires custom learn-438
ing infrastructure. NetHack agents are trained in libraries that can maximize hardware utilization,439
taking advantage of NetHack’s fast simulation speed. Neural MMO agents are built with PufferLib440
because it natively supports the complexities of multiagent environments. Syllabus is designed for441
this reality of training agents in complex environments. Isolating curriculum learning code from re-442
inforcement learning code allows us to apply curriculum learning to complex environments without443
developing new infrastructure for each environment. We hope this will improve the reproducibility444
of curriculum learning research and help to push the field away from toy environments and toward445
domains that challenge modern RL methods.446

Much of the recent infrastructure work in unsupervised environment design has been written in JAX.447
JAX allows environments and training code to be parallelized on hardware accelerators, producing448
experimental results hundreds of times faster than equivalent CPU-based environments. JAX is a449
powerful tool for conducting fast research, but it also enforces strict requirements on how code is450
written, slowing down development, and incentivizing simplistic environments. For this reason, it451
will be challenging for JAX-based simulations to reach the complexity of even CPU-based research452
environments, much less the professionally developed videogames that have historically been bench-453
marks for reinforcement learning. JAX has empowered curriculum learning research and led to new454
discoveries using simpler environments, and we hope that Syllabus will similarly accelerate curricu-455
lum learning research in complex domains.456

Our results suggest that although curriculum learning is effective in moderately challenging single-457
agent environments like Procgen and Crafter, standard approaches may not be sufficient for complex,458
long-horizon, and multi-agent environments like NetHack and Neural MMO. It is likely that these459
results could be improved by using curricula over more meaningful axes of the task space, such as460
reward functions or environment dynamics in NetHack and opponent strategies in Neural MMO.461
However, comparing values predictions or task success rates derived from rewards requires careful462
per-task reward normalization. Although Syllabus makes it possible to use these task spaces, suc-463
cessfully training on them may require new automatic curriculum learning techniques. One practical464
finding from our experiments on four separate environments is that SFL performs at least as well465
as LP in each case, and only scores lower than DR in NetHack. In addition, our full distribution466
variant of SFL performs comparable to the original top K sampling and requires no hyperparameter467
tuning. Therefore, we suggest the full distribution implementation of SFL as a strong first choice for468
exploring curriculum learning on new domains.469

Syllabus is under continuous development as we add more features, benchmark more methods, and470
provide support for more general approaches to curriculum learning. In the near future, we plan471
to add support for more UED algorithms including PAIRED and ACCEL and to continue using472
Syllabus to benchmark automatic curriculum learning algorithms on more challenging domains.473

12



Syllabus: Portable Curricula for Reinforcement Learning Agents

References474

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.475
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-476
tion Processing Systems, 2021.477

Christopher Bamford. Griddly: A platform for ai research in games. Software Impacts, 8:100066,478
2021.479

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements480
that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and481
Cybernetics, SMC-13(5):834–846, 1983. DOI: 10.1109/TSMC.1983.6313077.482

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.483
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-484
cessing systems, 29, 2016a.485

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-486
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:487
253–279, 2013.488

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi489
Munos. Unifying count-based exploration and intrinsic motivation. In Proceedings of the 30th490
International Conference on Neural Information Processing Systems, NIPS’16, pp. 1479–1487,491
Red Hook, NY, USA, 2016b. Curran Associates Inc. ISBN 9781510838819.492

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.493
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML494
’09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN495
9781605585161. DOI: 10.1145/1553374.1553380. URL https://doi.org/10.1145/496
1553374.1553380.497

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy498
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Supplementary Materials810

The following content was not necessarily subject to peer review.811
812

A API Reference813

A.1 Curriculum API814

1 class Curriculum:
2 """API for defining curricula to interface with Gym environments."""
3

4 def _sample_distribution(self) -> List[float]:
5 """ Returns a sample distribution over the task space.
6 Any curriculum that maintains a true probability distribution
7 should implement this method to retrieve the distribution. """
8

9 def sample(self, k: int = 1) -> List[Any]:
10 """ Sample k tasks from the curriculum. """
11

12 def update_task_progress(self, task: Any, progress: Tuple[float, bool])
13 """ Update the curriculum with a task and its progress.
14 Progress is defined by the environment's TaskWrapper. """
15

16 def update_on_step(self, obs: Any, rew: float, done: bool, info: dict):
17 """ Update the curriculum with the environment outputs
18 for the most recent step. """
19

20 def update_on_episode(self, return: float, length: int, task: Any, env_id: int = None):
21 """Update the curriculum with episode results from the environment."""
22

23 def update_on_demand(self, metrics: Dict):
24 """ Update the curriculum with arbitrary inputs.
25 Typically used to incorporate gradient or error-based
26 metrics from the training process. """
27

28 def get_opponent(self, opponent_id: int) -> Agent:
29 """ Load the agent corresponding to the given opponent_id. """
30

31 def update_agent(self, opponent: Agent):
32 """ Add opponent to agent store. """
33

34 def update_winrate(self, opponent_id: int, opponent_return: int):
35 """ Update the winrate for the given opponent_id based on environment returns. """

Figure 5: An abbreviated summary of the Curriculum interface. These represent the main methods
for updating and sampling from a curriculum in Syllabus. The get_opponent, update_agent, and
update_winrate methods are used for self-play.
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A.2 Task Space API815

1 class TaskSpace:
2 """ API for the range of tasks supported by an environment or
3 curriculum learning algorithm."""
4

5 def sample(self) -> Any:
6 """ Sample a task randomly from the space. """
7

8 def decode(self, encoding: Any) -> Any:
9 """ Decode the task encoding to a format that can be interpreted by

10 the environment. The task will be passed to the environment in this format."""
11

12 def encode(self, task: Any) -> Any:
13 """ Convert the task to an efficient encoding that can be interpreted by
14 the curriculum. All curriculum updates receive the task in this format."""
15

16 def seed(self, seed: int):
17 """ Seed the task space for deterministic sampling. """
18

19 @property
20 def tasks(self) -> List[Any]:
21 """ Returns a list of all tasks if task space is discrete """

Figure 6: Main features of the Task Space API.

A.3 Task Interface API816

In unsupervised environment design, we study underspecified POMDPs (UPOMDPs), which have817
free configuration variables that need to be chosen to produce a fully specified POMDP (Dennis818
et al., 2020). In multi-task environments these free variables are the task, which can be a level seed,819
map specification, reward function, or even a new environment instance with different dynamics.820
Syllabus supports UPOMDPs by adding a new_task argument in the reset function of the standard821
Gym API. However, most environments do not support this behavior by default. We provide a822
TaskWrapper that accepts the new task, reconfigures the environment, then resets the environment823
for the next episode. This even allows us to add multi-task capabilities to single-task environments.824

The Task Interface can also define an environment-specific progress metric to support curricula825
that depend on task success rates, and encode the current task into the observation space for task-826
conditional policies. As a result of this API structure, Syllabus is by far the easiest curriculum827
learning library to incorporate with preexisting training code, needing only a few lines of code to828
use complex ACL algorithms. Swapping between different curricula often requires only a single line829
of code change. Users can integrate new environments with a simple wrapper that tells Syllabus how830
to interpret its task space. We encourage the reader to look at our Procgen training script to better831
understand what Syllabus code looks like in practice. The next section explains the infrastructure832
that allows us to maintain this simplicity with asynchronous RL training infrastructure.833

A.4 Sequential Curriculum834

Syllabus implements a Sequential curriculum, which can be though of as a meta-curriculum835
over individual Curriculum objects. The curriculum has multiple stages, each of which will run836
until user-defined stopping conditions are met, after which the curriculum will move on to the next837
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1 class TaskWrapper:
2 """ Interface that changes the task assigned to a
3 Gym or PettingZoo environment during reset."""
4

5 def reset(self, *args, new_task: Any = None, **kwargs):
6 """ Accepts a new task to be used in the next episode. """
7

8 def change_task(self, new_task: Any):
9 """ Modify the environment to use the new task. """

10

11 def _task_completion(self, obs, rew, term, trunc, info) -> float:
12 """ Implement this function to define a task progress metric. """
13

14 def _encode_goal(self) -> Any:
15 """ Encode the goal for the agent to observe. """
16

Figure 7: Main features of the Task Interface.

stage. The curriculum passes any updates that it receives to the current curriculum stage, so we can838
even use automatic curricula sequentially.839

It is initialized with a set of stages, which can be individual elements of the task space, lists of840
tasks, entire task spaces, or other Curriculum objects. Individual tasks will be converted into841
a Constant curriculum which always returns the same task. Lists of tasks or task spaces are842
converted to DomainRandomization curricula over the provided tasks.843

The stopping conditions can be predefined numbers of steps, tasks, or episodes, or they844
can be episodic return thresholds. We use a convenient text-based interface for defining845
stopping conditions which supports composite conditions. For example, the user can pass846
"return>=1.0&&episodes>=1000" as a valid composite conditions, which will stop the847
current stage once the agent has experiences 1000 episodes and achieves at least 1.0 return. The848
sequential curriculum receives updates from the environments to track agent progress automatically.849

For an example of this sequential curriculum in practice, see Supplementary E.6.850

B Optimization851

As a consequence of the choice to use a separate multiprocessing system from the RL training loop,852
Syllabus incurs some unavoidable computational costs. Specifically, receiving and sending informa-853
tion in the environments decreases the effective steps per second of each environment, while sam-854
pling and sending tasks in the actor process increases the computational load on the main process.855
We evaluate Syllabus with NetHack to demonstrate the effect on overall steps per second. We use856
a minimal curriculum that always returns the same task to isolate the impact of our multiprocessing857
infrastructure.858

The results are shown in Table 1 for 128 environments each running 64 episodes on a 2.20GHz859
32-core Intel i9-13950HX 1. We test Syllabus using both Python’s native multiprocessing package860
and Ray (Moritz et al., 2018). Syllabus skips per-step updates for curricula that do not require them,861
instead only sending episodic data and tasks at the end of each episode.862

1Syllabus is under continuous development, so these numbers may not reflect the performance of the most recent version
of the library. They are accurate as of the time of publication.
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Note that this is a worst case test for several reasons. Typically in asynchronous reinforcement learn-863
ing, environments are vectorized and stepped together, such that N environments step at the speed of864
the single slowest environment. Here we run each environment independently, so they are not bottle-865
necked by vectorization. The NLE is an extremely fast environment with large observations, which866
stresses the multiprocessing communication bandwidth. Finally, RL is usually bottle-necked by867
policy optimization rather than environment iteration time. We expect Syllabus’s impact on perfor-868
mance (as a percentage of total computation) to be much lower for more computationally intensive869
environments and when used in a real RL training context.870

Table 1: Syllabus Performance Costs

Multiprocessing Without Syllabus Episodic Updates Step Updates

Native Python 125s 131s (+4.8%) 150.0s (+20%)
Ray 135s 150s (+11.1%) 161s (+19.3%)

C Testing871

We use pytest to continuously test and benchmark the performance of new additions to Syllabus on872
several environments. The multiprocessing infrastructure is evaluated to ensure that every sampled873
task is received by the environments and every environment updated is processed by the curricula, as874
well as several other safeguards. We use unit tests for task spaces and core curriculum features. We875
compare the performance of our algorithm implementations against the original implementations or876
original paper results whenever possible.877
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D Experiments878

This section outlines the details of our experimental setup for each environment. All of the code879
for these experiments is also open-sourced on GitHub. Reinforcement learning research typically880
compares training returns to evaluate agents, but this is not valid when using curriculum learning.881
Curriculum learning modifies the training task distribution, meaning that higher returns may indicate882
that the curriculum prioritized easier tasks or tasks with larger return scales. In each experiment we883
separately evaluate agents on uniformly sampled tasks.884

The experiments in this paper were run on consumer GPUs, mainly the GTX 1080Ti, RTX 2080Ti,885
and GTX Titan X GPUs. Each experiment was run on a single GPU. An estimate of the total cost of886
experiments for each environment is listed in Table 3. Note that this is only the cost to reproduce the887
exact plots in the main paper, not including any supplementary materials, hyperparameter tuning, or888
development time, which would make these estimates many times larger.889

Table 2: Experiment Compute Resources

Per Experiment Total

CPU Hours GPU Hours CPU Hours GPU Hours

Procgen 110 14 33000 4200
Crafter 224 14 6720 420
Neural MMO 352 22 7040 440
NetHack 960 60 19200 1200
LaserTag 192 12 2880 180

Table 3: Approximate cost to reproduce experiments in main paper.

D.1 Procgen890

Our Procgen experiments use the same ResNet architecture and hyperparameters as previous work891
(Cobbe et al., 2020a; Jiang et al., 2021b). Procgen uses an action space of 15 discrete actions and892
produces e 64 × 64 × 3 RGB observations. We use the exact same ResBlock model architecture,893
PPO hyperparameters, and PLR options as Cobbe et al. (2020a) and Jiang et al. (2021b) to reproduce894
their results with Syllabus’s implementation of PLR. We experiment on a subset of 10 Procgen895
environments: Bigfish, Bossfight, Caveflyer, Chaser, Climber, Dodgeball, Fruitbot, Leaper, Ninja,896
and Plunder. We train 5 agents per environment on 200 seeds of the easy level distribution for 25M897
steps and evaluate them on the full distribution of seeds for 10 episodes every 16,384 environment898
steps. We compute normalized returns using the maximum and minimum return values for each899
environment listed in Cobbe et al. (2020a) according to the formula rN = r−rmin

rmax−rmin
. This allows900

us to weigh each environment equally while aggregating returns, such as in Figure 4a. For the LP,901
SFL, and OMNI curricula we compute the task reward as min(max(rN , 0.0), 1.0).902

Figure 8: 95% Stratified Boostrapped Confidence Intervals for the Mean, Median, Interquartile
Mean, and Optimality Gap of Normalized Test Returns of each ACL algorithm on Procgen.
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Figure 9: Normalized test returns for Domain Randomization, Prioritized Level Replay, Sampling
for Learnability, and Learning Progress evaluated on 10 Procgen environments.
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D.2 Crafter903

For our Crafter experiments, we add Syllabus to the open-source training code from Zhang et al.904
(2023), meaning we use the same model architecture, hyperparameters, and Learning Progress ar-905
guments. Crafter has 13 discrete actions and 64 x 64 x 3 RGB observations. The observations are906
passed through a 2-layer CNN with ReLU activations followed by a fully connected layer of size907
256. These visual embeddings are concatenated with a task encoding then passed into a 256 node908
LSTM layer. The actions and values are generated by separate 2-layer linear heads. We train agents909
for 10M steps and evaluate them every 25 updates (819,200 steps) on the full task space (excluding910
impossible tasks, which are assigned a success rate of 0).911

As in Zhang et al. (2023) we use a task space of 15 unique tasks {"collect_wood", "collect_stone",912
"collect_coal", "collect_iron", "collect_diamond", "collect_drink", "make_iron_pickaxe",913
"make_iron_sword", "make_stone_pickaxe", "make_stone_sword", "make_wood_pickaxe",914
"make_wood_sword", "place_furnace", "place_stone", "place_table"}, 90 repeat tasks, including915
10 repeat tasks for each "collect" task (e.g. "collect_9_coal"), and 5 repeat tasks each for "make"916
and "place" tasks, as well as 1024 impossible tasks. The impossible tasks have a fixed success rate917
of 0, and serve as distractions for the curriculum. This is a realistic representation of challenging918
tasks where most of the task space will be inaccessible to the agent until it learns advanced skills.919
Each ACL algorithm quickly learns to ignore these tasks while Domain Randomization samples920
them with the same frequency as the 105 real tasks. In this paper we report success rates including921
the impossible tasks, but the success rate over possible tasks can be recovered by multiplying our922
reported metrics by 10.75.923

As in Kanitscheider et al. (2021) and Zhang et al. (2023) we train agent on the Simon Says task924
where the agent has 25 minutes (1500 steps) to complete as many tasks as possible in an episode.925
The agent has at most 5 minutes (300 steps) to complete any one task. If the agent succeeds, it926
is given a reward of 1 and assigned a new task. If it fails to complete the task in the time limit, it927
receives a reward of -1 and is assigned a new task. This Simon Says task in particular requires special928
consideration because we need to sample new tasks mid-episode, not just during the environment929
reset. Syllabus supports this behavior through it’s synchronization wrappers.930

Figure 10: 95% Stratified Boostrapped Confidence Intervals for the Mean, Median, Interquartile
Mean, and Optimality Gap of Normalized Test Returns of each ACL algorithm on Crafter.
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D.3 Neural MMO931

Our Neural MMO agents use the exact architecture and hyperparameters provided in the starter kit932
for the 2023 Neural MMO Competition Suarez et al. (2024). Neural MMO has complex dictionary933
action and observation spaces, so it uses separate CNN encoders for grid-based observations and934
fully connected encodings for vector observations, both with ReLU activations, as well as individual935
fully-connected heads for each action component. These agents are trained with self-play, with a936
single policy producing batched actions for 128 agents. For the LP, SFL, and OMNI curricula we937
compute the task reward as min(max(maxa(R)/10.0, 0.0), 1.0), where a is an agent identifier and938
R is the mapping of agent identifiers to individual agents’ mean episodic return because individual939
agents get close to but do not exceed 10.0 mean episodic return. We choose to prioritize tasks based940
on the most successful agent in the environment, but we did not explore other options. It is not clear941
what the best measure of a successful map is in Neural MMO and so we leave this investigation as942
future work.943

Figure 11: 95% Stratified Bootstrapped Confidence Intervals for the Mean, Median, Interquartile
Mean, and Optimality Gap of Normalized Test Returns of each ACL algorithm on Neural MMO.

D.4 NetHack944

Our NetHack agents are trained using the open source Moolib code from Hambro et al. (2022b).945
Moolib implements a version of Asynchronous Proximal Policy Optimization (APPO) (Schulman946
et al., 2017; Petrenko et al., 2020). We use the standard ChaoticDwarfGPT5 baseline from the947
NetHack Challenge (Hambro et al., 2022a), where the tty character observations are rendered to948
pixels and passed to the model in addition to text-based information. The model has a CNN with 4949
layers and ELU (Clevert et al., 2015) activations for the image observation and linear encoders with950
ELU activations for the text components. We use the same training setttings as the NetHackChal-951
lenge environment, but we enable seeding to support curriculum learning. Notably, in this environ-952
ment the episode terminates if the in-game timer does not progress for 150 agent steps, meaning953
the agent is taking meaningless actions or stuck interacting with menus. For the LP, SFL, and954
OMNI curricula we compute the task reward as min(max(R/1000, 0.0), 1.0), where R is the mean955
episodic return because our agents get close to but do not exceed 1000 mean episodic return.956

Figure 12: 95% Stratified Bootstrapped Confidence Intervals for the Mean, Median, Interquartile
Mean, and Optimality Gap of Normalized Test Returns of each ACL algorithm on NetHack.
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D.5 Hyperparameters957

For each baseline in this paper, we use the tuned PPO hyperparameters from the work that introduced958
the code base. For each environment and curriculum learning method, we perform a separate grid959
search over the most important hyperparameters (as indicated by their respective papers). For PLR960
we search for the temperature parameter β in 0.1, 0.3, 0.5 and the staleness coefficient ρ in 0.1, 0.3,961
0.5. For LP we search over 0.01, 0.1, 0.2, 0.3, 0.5 for the EMA alpha parameter and over 0.01,962
0.1, 0.3 for pθ. For SFL we try sampling from the full distribution p ∗ (1 − p) and using the SFL963
method proposed in (Rutherford et al., 2024) which samples from the top K most learnable tasks964
with probability ρ and from the full task space with probability 1 − ρ. We search for K in 10, 25,965
50 and ρ in 0.5, 0.75, 1.0. Below is the table of all hyperparameters used in this paper.966

Table 4: Learning Hyperparameters.

Parameter Procgen Crafter NetHack Neural MMO LaserTag

PPO
γ 0.999 0.99 0.999 0.99 0.995
λGAE 0.95 0.95 0.95 0.95 0.95
PPO rollout length 256 1024 32 128 256
PPO epochs 3 4 1 3 5
PPO mini-batches per epoch 8 16 1 32 4
PPO clip range 0.2 0.2 0.1 0.1 0.2
PPO number of workers 64 32 256 8 32
Adam learning rate 5e-4 1e-4 1e-4 1.5e-4 1e-4
Adam ϵ 1e-5 1e-5 1e-7 1e-6 1e-5
PPO max gradient norm 0.5 0.5 0.5 0.5 0.5
PPO value clipping yes yes yes yes no
Return normalization yes no yes yes yes
Value loss coefficient 0.5 0.5 0.5 0.5 0.5
Entropy coefficient 0.01 0.01 0.001 0.01 0.0

PLR
Buffer size, K 200 200 200 128 -
Scoring function VL1 VL1 VL1 VL1 -
Prioritization rank rank rank rank -
Temperature, β 0.1 0.5 0.3 0.3 -
Staleness coefficient, ρ 0.1 0.1 0.1 0.3 -

LP
EMA α 0.3 0.1 0.2 0.3 -
Reweighting pθ 0.1 0.1 0.2 0.3 -
Update period, T 25 25 1000 50 -

SFL
Batch size, N 200 200 200 128 -
Update period, T 25 25 1000 50 -
Sample method Dist Top K Dist Top K -
Buffer size, K - 10 - 25 -
Sample Ratio, ρ - 1.0 - 0.5 -

FSP
Agent checkpoint interval - - - - 800

PFSP
fhard entropy coef - - - - 2
smoothing constant - - - - 0.01
Win rate episodic memory - - - - 128
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E Additional Experiments967

E.1 RLLib with Syllabus968

Cart Pole is a toy environment mainly used to debug RL implementations (Barto et al., 1983). It969
initializes a cart to a random starting point along a 2D track and tasks the agent with balancing a970
pole for as long as possible. It is not a multitask environment, so we use Syllabus’s task wrapper to971
make the cart’s initialization range a configurable option. This experiment demonstrates how Syl-972
labus’s Task Interface can add multitask functionality to singleton environments, and how Syllabus973
integrates easily with RLLib’s Ray-based multiprocessing (Moritz et al., 2018; Liang et al., 2018).974

Our Cart Pole experiments use a simple curriculum that increases the initialization range of the cart975
over the course of training. This causes the cart to begin in more precarious positions. We compare976
this to an agent trained only with the maximum initialization range. The curriculum learning agent977
initially learns a strong policy, but converges to a weaker policy than the agent trained solely on the978
maximum range, as we see in Figure 13a. Since the single-task agent easily converges to a strong979
policy, there is little reason to use curriculum learning.980

(a) Training Cart Pole agents in RLLib, with curricula over the range of possible initial cart positions. We
compare a simple curriculum of expanding the range throughout training vs. training with the fixed maximum
initialization range.
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E.2 Self-Play on LaserTag981

We test our self-play algorithms (Self-Play, Fictitious Self-Play, and Prioritized Fictitious Self-Play)982
on the LaserTag environment introduced by Lanctot et al. (2017) and implemented by Samvelyan983
et al. (2022) in Griddly (Bamford, 2021). We use the same model architecture and hyperparameters984
as Samvelyan et al. (2022) and train our agents for 4000 updates or 65,536,000 environment steps,985
and add a copy of the current policy to the opponent buffer after every 800 updates. SP always plays986
against the current agent (agent 0), FSP uniformly samples from all past agents, and PFSP samples987
from all past agents based on the current agent’s winrate against them. We see in Figure 14a that988
our methods properly update their sampling distributions after each agent is added to the opponent989
buffer. However, we do not see any difference between the methods against a fixed random agent in990
Figure 14b. We may need to train for longer to see any benefits to sampling historic agents.991

(a) (b)

Figure 14: (a) Probability of sampling the first agent for each algorithm. Self-play only has one
agent, so it always samples the current policy as it’s opponent. (b) The winrate of each method
against a fixed random policy. (c) Stratified bootstrapped confidence intervals of the winrates.
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E.3 Phasic Policy Gradients992

Phasic Policy Gradients (PPG) (Cobbe et al., 2021) is an extension of PPO that trains a separate993
value and policy network, while distilling features from the value network into the actor. They do994
this by adding an auxiliary value head to the policy, and periodically using behavior cloning from995
the value network into the auxiliary value head, allowing the actor to learn features used critic.996
Cobbe et al. (2021) showed that this approach outperforms PPO on Procgen. We use Syllabus study997
whether Prioritized Level Replay can provide an additional level of improvement over PPG as it does998
for PPO. PPG updates the policy and value with a separate number of epochs, but by default uses999
1 value epoch and 1 policy epoch. We see in Figure 15 that applying PLR to PPG with the default1000
hyperparameters performs worse than DR, despite its close similarity to PPO. We hypothesize that1001
this is may be due to the lack of value updates. If the value predictions are less accurate, then PLR’s1002
score will also be inaccurate. We further investigate increasing the number of value epochs, and find1003
that by increasing the number of value epochs to 3, the same as PPO, PLR matches but does not1004
exceed DR.1005

Figure 15: Normalized Test Returns of PPO and PPG with 1 or 3 value epochs when trained with
DR or PLR on 10 Procgen environments with 5 seeds each.
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E.4 Stale Value Predictions1006

We continue the investigation from Supplementary E.3 and further explore the importance of value1007
prediction quality by training on delayed tasks with PLR. This is equivalent to sampling from a dis-1008
tribution calculated from stale value predictions. We can use Syllabus’s asynchronous sampling code1009
to artificially increase the delay. We find in Figure 16 that as the delay increases, the performance1010
of PLR drops until it is nearly equivalent to domain randomization.1011

Figure 16: Training Procgen agents with PLR using stale value predictions. 1 buffer is equivalent to
1 episode of delay per environment.
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E.5 Sampling for Learnability with OMNI1012

Sampling for Learnability and Learning Progress are very similar methods in terms of implementa-1013
tion. Both periodically evaluate the agent over the entire task space to generate task success rates,1014
then generate a sampling distribution from those rates. OMNI adds an additional component to the1015
LP curriculum by using an LLM to filter non-interesting tasks out of the distribution. In Figure 4b1016
we found that SFL outperforms Learnability on Crafter, so we chose to investigate whether OMNI’s1017
filtering step could also improve the performance of SFL. Unfortunately we find that neither the full1018
distribution nor top K implementations of SFL benefit from OMNI’s filtering, as seen in Figure 17.1019

Figure 17: Mean task success rates for the Full Distribution and Top K implementations of SFL with
OMNI’s interestingess filter. LP and OMNI are shown for reference.
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E.6 Neural MMO Task-Based Curriculum1020

We rely on events and achievements that are not zero-sum to determine how proficient each agent is1021
in the environment, but these metrics are not completely independent from the quality of opponents.1022
For example, the frequency of dying to starvation may decrease because agents are becoming better1023
at scavenging for food, or because they are becoming more proficient at fighting, increasing their1024
chance of dying to combat rather than starvation.1025

The sequential curriculum consists of 5 stages, each of which uses domain randomization over a1026
subset of the task space. The curriculum progresses to the next stage whenever the agent achieves a1027
mean episodic return of 0.75 averaged over the past 1000 episodes. Each agent successfully made it1028
to the final curriculum stage by the end of training.1029

For each individual task, we assign a threshold. The agent is gets a reward of 1.0 for completing1030
the task, which is distributed as the agent makes progress on the task. For example, if we task the1031
agent with surviving for 100 timesteps, after 50 timesteps it will have a cumulative reward of 0.5.1032
After surviving for 150 timesteps, the agent will have a cumulative reward of 1.0 because we stop1033
assigning reward after the threshodl is reached. The tasks and thresholds for each stage are listed in1034
Table 51035

Table 5: Neural MMO Sequential Curriculum Task Thresholds

Task Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Survive (steps) 50 150 250 350 500
Eat Food (count) 5 15 25 35 50
Drink Water (count) 5 15 25 35 50
Harvest Item (count) 3 9 15 21 30
Go Far (distance) 3 9 15 21 30
Level Up (count) 2 6 10 14 20
Equip Item (count) 1 3 5 7 10
Consume Item (count) 1 3 5 7 10
Buy Item (count) 1 3 5 7 10
Player Kill (count) 1 3 5 7 10

We see in Figure 18 that the sequential curriculum seems to create more aggressive before as these1036
agents harvest and equip more weapons and ammo, and die to attacks more frequently. On the other1037
hand, agents trained with domain randomization utilize the weapon and item system at similar rates1038
to the other agents, but fail to learn some game systems like earning gold and killing NPCs.1039
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Figure 18: Various events and achievements in Neural MMO for Domain randomization and a
manually designed sequential curriculum over the course of training.
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F Code Examples1040

F.1 RLLib1041

Figure 19: Adding curriculum learning with Syllabus to RLLib training code with just a few lines
of code.

1 import gym
2 from ray.tune.registry import register_env
3 from ray import tune
4 from gym.spaces import Box
5 from .task_wrappers import CartPoleTaskWrapper
6

7 + from syllabus.core import RaySyncWrapper, make_ray_curriculum
8 + from syllabus.curricula import SimpleBoxCurriculum
9 + from syllabus.task_space import BoxTaskSpace

10

11 if __name__ == "__main__":
12 + # Define a task space
13 + task_space = BoxTaskSpace(Box(-0.3, 0.3, shape=(2,)))
14

15 def env_creator(config):
16 env = gym.make("CartPole-v1")
17 + # Wrap the environment to change tasks on reset()
18 + env = CartPoleTaskWrapper(env)
19 + # Add environment sync wrapper
20 + env = RaySyncWrapper(env, task_space=task_space)
21 return env
22

23 register_env("task_cartpole", env_creator)
24

25 + # Create the curriculum
26 + curriculum = SimpleBoxCurriculum(task_space)
27 + # Add the curriculum sync wrapper
28 + curriculum = make_ray_curriculum(curriculum)
29

30 config = {
31 "env": "task_cartpole",
32 "num_gpus": 1,
33 "num_workers": 8,
34 "framework": "torch",
35 }
36

37 tuner = tune.Tuner("APEX", param_space=config)
38 results = tuner.fit()
39
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F.2 Stable Baselines 31042

1 import gym
2 import procgen # noqa: F401
3 from stable_baselines3 import PPO
4 + from syllabus.core import make_multiprocessing_curriculum
5 + from syllabus.curricula import DomainRandomization
6 + from syllabus.examples.task_wrappers import ProcgenWrapper
7 + from syllabus.task_space import TaskSpace
8

9 if __name__ = "__main__":
10 def make_env(curriculum, task_space):
11 def thunk():
12 env = gym.make("procgen-bigfish-v0")
13 + # Wrap the environment to change tasks on reset()
14 + env = ProcgenWrapper(env)
15 + # Add environment sync wrapper
16 + env = MultiProcessingSyncWrapper(
17 + env,
18 + curriculum.components,
19 + task_space=task_space,
20 + )
21 return env
22 return thunk
23

24 + # Define a task space
25 + task_space = DiscreteTaskSpace(200)
26 + # Create the curriculum
27 + curriculum = DomainRandomization(task_space)
28 + curriculum = make_multiprocessing_curriculum(curriculum)
29

30 venv = DummyVecEnv(
31 [
32 make_env(curriculum, task_space)
33 for i in range(64)
34 ]
35 )
36

37 model = PPO("CnnPolicy", venv)
38 model.learn(25000000)
39
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G Documentation1043

Syllabus is documented both in code and with a dedicated documentation website. This includes1044
details on each curriculum algorithm and warnings about common pitfalls that users might run into1045
when configuring them. A sample of the documentation website is shown in Figure 20.1046

Figure 20: Quickstart page of Syllabus’s documentation website.
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H Limitations1047

Syllabus defines a completely separate multiprocessing pathway to send data to the curriculum.1048
When curricula require observations, rewards, dones, or infos from the environment, this will send1049
the same information as the RL training multiprocessing, potentially leading to bandwidth or pro-1050
cessing bottlenecks. We demonstrate in Supplementary B that this does not significantly impact1051
performance in the cases we’ve tested, but there may be systems where this limitation becomes no-1052
ticeable. Syllabus has not been tested on multi-node infrastructure, though the Ray backend should1053
allow it to function in any Ray distributed training loop. It is also possible to explicitly support1054
multi-node systems by implementing new versions of the synchronization wrappers that use RPC1055
calls. Syllabus algorithms can not be run entirely on hardware accelerators, meaning that JAX-based1056
environments and RL code can not be fully parallelized while using Syllabus.1057

Syllabus also does not currently implement any exploration bonuses, or advanced multiagent algo-1058
rithms beyond self-play. Exploration bonuses typically train additional neural network to predict1059
some measure of novelty (Bellemare et al., 2016a; Pathak et al., 2017b; Henaff et al., 2022) and1060
use them to compute additional reward components. Likewise multiagent methods using a protag-1061
onist and antagonist typically train another agent to make proposing tasks into a competitive game1062
(Dennis et al., 2020; Sukhbaatar et al., 2018; OpenAI et al., 2021). Currently, Syllabus does not1063
include methods that train additional networks or methods that use global synchronization to create1064
new reward components. We plan to implement PAIRED (Dennis et al., 2020) and curiosity-driven1065
exploration (Pathak et al., 2017b) but it is not yet clear how difficult it would be to integrate those1066
methods into Syllabus. However, because Syllabus makes minimal modifications to the training1067
code, we expect that using those methods alongside Syllabus will be no harder than using them1068
alone.1069
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