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Abstract. Medical image parsing presents a unique challenge due to
the diversity of imaging modalities and the wide range of diagnostic
tasks required in clinical workflows, including classification, detection,
and report generation. Traditional approaches often rely on task-specific
models, which limit both scalability and generalization. Recent advances
in vision-language models (VLMs) offer promising avenues for unifying
these tasks; however, many existing solutions suffer from high compu-
tational costs and limited adaptability. In this work, we propose ME-
VLIP, a modular and efficient framework built upon InternVL3-8B, fine-
tuned using quantized low-rank adaptation and guided by a zero-shot
task classification module. Our system demonstrates robust performance
across seven tasks, spanning eight imaging modalities. We evaluate our
approach on the FLARE 2025-Task 5 benchmark, showing substantial
performance gains over the base model, with the following task-specific
improvements: classification (0.74 balanced accuracy), multi-label clas-
sification (0.57 F1 score), detection (0.82 F1 score), cell counting (251.6
MAE), regression (11.84 MAE), and report generation (0.71 GREEN
score). Comparative analysis indicates that our method outperforms
other state-of-the-art VLMs, underscoring the effectiveness of parameter-
efficient domain adaptation for versatile medical image parsing.

Keywords: Medical image parsing - Parameter-efficient fine-tuning -
Vision-language model - Medical visual question answering.
1 Introduction

Medicine inherently involves understanding and reasoning across multiple modal-
ities, notably clinical images and structured or natural-language patient data.
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The fusion of image and text enables more nuanced clinical decision-making, par-
ticularly in medical visual question answering (MedVQA), where interpretable
responses grounded in imaging are essential for accurate diagnosis and treatment
guidance [14]. Beyond modality fusion, multi-task learning is crucial in clinical
AT: healthcare involves a diverse set of imaging types (e.g. X-ray, ultrasound,
CT, microscopy) and diagnostic objectives, from disease classification to lesion
detection and automated report generation. A unified multi-task model reduces
redundancy and encourages feature sharing across tasks, increasing generaliz-
ability across modalities and clinical abnormalities while reducing deployment
complexity [3].

Developing a model that is simultaneously 1) multimodal, 2) multi-task, 3)
efficient, and 4) generalizable can push the boundaries of Al in medical set-
tings, despite the multiple challenges involved. To this end, FLARE 2025-Task
5%, a MICCAI 2025 challenge, aims to advance the development of generalist
models for multimodal medical image parsing. The FLARE challenge provides
a large-scale benchmark with more than 58,000 image-question pairs that cover
diverse imaging modalities (e.g., X-ray, ultrasound, microscopy) and multiple
tasks, as illustrated in Figure 1, including classification, detection, cell counting,
regression, and report generation, enabling a rigorous evaluation of flexibility
and scalability in medical Al systems.

Contributions The main contributions are detailed as follows:

— We propose ME-VLIP, a Modular and Efficient Vision-Language Frame-
work for Generalizable Medical Image Parsing.

— We develop a memory- and compute-efficient fine-tuning strategy for InternVL3-

8B [20] using Quantized low-rank adaptation (QLoRA) [4]. This strategy
achieves domain adaptation under limited hardware while retaining diag-
nostic performance.

— We introduce a zero-shot task classification (TC) module that dynamically
routes image-question pairs to task-specific or multi-task QLoRA adapters
at inference time, thereby enhancing task specialization while preserving
generalization across modalities.

— We perform a comprehensive evaluation on FLARE 2025-Task 5 benchmark,
demonstrating consistent improvements over base models and competitive
state-of-the-art VLMs across all tasks and modalities.

Related Work Recent efforts have increasingly focused on vision—-language
models (VLMs) tailored to clinical domains. These models align visual represen-
tations of medical images with language through dedicated fusion modules and
pre-training objectives, enabling them to address diverse clinical tasks within a
unified multimodal architecture [13]. However, the high resource cost of large
models can be prohibitive in real-world clinical environments where latency,

4 https://www.codabench.org/competitions/7151/
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Fig.1: Overview of the seven clinical tasks in FLARE 2025-Task 5, showing
representative input images and associated prompts across different imaging
modalities.

compute, and power are constrained. Thus, adopting efficient architectures, such
as parameter-efficient adapters or smaller fusion modules, is essential for scal-
able deployment while preserving diagnostic performance [16]. Both LoRA [0]
and QLoRA [4] exemplify the growing trend of parameter-efficient fine-tuning,
where large VLMs can be adapted to specialized clinical tasks without retrain-
ing the full model. These approaches have been successfully applied in recent
works. For example, Gautam et al. [5] fine-tuned Qwen2.5-VL-7B-Instruct using
LoRA to jointly perform detection, localization, and counting via instruction-
based prompts, simulating clinical reasoning workflows. Their unified approach
achieved significant performance gains across all tasks compared to the base
model, including improving mean average precision from 0.01 to 0.85 and point-
ing accuracy from 0.43 to 0.99. These results highlight the benefits of multitask,
multimodal fine-tuning for interoperability and generalization in clinical appli-
cations. Similarly, UMIT [18] presents a unified VLM tailored to a wide range
of medical imaging tasks, including VQA, disease classification, and report gen-
eration. UMIT employs a novel two-stage training strategy comprising a feature
alignment phase using domain-specific image—text pairs and an instruction fine-
tuning phase with medical task templates. This approach enables the model to
achieve state-of-the-art performance across benchmarks, including an accuracy
of 89. 2% on SLAKE and 95.4% on PathMNIST.

Beyond VQA, other works have focused on adapting foundation models for
segmentation and object-level tasks. SAC [10] introduces Segment Any Cell, a
framework designed to improve nuclei segmentation with SAM through auto-
mated prompt generation and LoRA-based attention adaptation. SAC signifi-
cantly improves Dice scores on the MoNuSeg dataset, outperforming both fine-
tuned SAM [7] and the Medical SAM Adapter. Based on the need for domain-
specific adaptation, [15] systematically evaluates large VLM (ChatGPT, Gemini,
and LLaVA) alongside SAM for microscopy image analysis. By tuning SAM’s
parameters for microscopy datasets, they demonstrate substantial improvements
in segmentation and counting performance. In particular, the count task R? im-
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Fig.2: Overview of ME-VLIP. An input question is first processed by the task
classifier to predict its task type. If the classifier’s confidence score meets or
exceeds a predefined threshold, the corresponding task-specific (TS) QLoRA
adapter is loaded and merged with the frozen base model. Otherwise, a generalist
multi-task (MT) QLoRA adapter is used. The visual and textual inputs are then
processed by the combined model to generate the final prediction.

proves from 0.02 to 0.98 on BBBC005, and the computational segmentation ap-
proach of ChatGPT achieves Dice scores between 0.96 and 0.99, outperforming
the baseline configuration of SAM.

2 Method

We introduce ME-VLIP, a dynamic, task-aware adaptation mechanism for medi-
cal image parsing. Our method leverages efficient QLoRA fine-tuning and a task
classification module to specialize model behavior for diverse MedVQA tasks.
The system dynamically routes inputs to specialized or generalist adapters based
on the predicted task type, optimizing both performance and efficiency, as de-
picted in Figure 2.

2.1 Efficient Fine-Tuning with QLoRA

We fine-tune InternVL3-8B by adopting QLoRA [4], which enables memory-
efficient fine-tuning [20]. QLoRA extends the LoRA approach by combining
parameter-efficient fine-tuning [9] with low-bit quantization, reducing memory
and compute costs while preserving accuracy.

As in LoRA [0], the pre-trained model weights are frozen, and lightweight
trainable adapter layers are inserted into transformer blocks. These adapter
weights are the only parameters updated during training, enabling task-specific
adaptation without modifying the full model.

QLoRA reduces memory usage by storing frozen model weights in 4-bit quan-
tization (NF4), while performing all computations in bfloat16 (BF16). At run-
time, NF4 weights are temporarily dequantized into BF16 for forward and back-
ward passes. Gradients are computed only for the adapter parameters, which
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remain in BF16. This dual representation balances compact storage with train-
ing stability and efficiency.
Formally, for a linear layer, the QLoRA forward pass is expressed as:

YBFIG — XBF16'doubleDequant(C§P32, Cl2€—bit’ WNF4)+XBF16.L?F16.LQBF16 (1)
Where:

— XBFI6 ig the input in bfloat16,
— WNF4 are the 4-bit quantized frozen weights,

ci'P32 ck-bit are quantization constants for reconstructing full-precision weights,

L]?Fw, LB¥16 are the LoRA adapter matrices.

— k-bit refers to the quantization precision (number of bits used to represent
each value). For example, k = 4 corresponds to 4-bit NormalFloat (NF4)
quantization, which is shown to preserve accuracy while reducing memory
footprint [4].

doubleDequant (cfp32 , cg'bit, Wk'bit) = dequant (dequant (cfp‘%, cg'bit) , Wk'bit)
_ WBF]G (2)

This allows accurate reconstruction of full-precision weights for computation
while retaining compact low-bit storage. Additionally, QLoRA employs paged
optimizers that manage optimizer states in a paged format, dynamically of-
floading them between GPU and CPU to avoid memory spikes and prevent
out-of-memory errors during training.

To support dynamic routing during inference, we develop two types of QLoRA
adapters:

— Task-specific (TS): The TS-QLoRA adapters are fine-tuned using only the
subset of the MedVQA dataset corresponding to a particular task type (e.g.,

classification or detection), enabling specialized model behavior.
— Multi-task (MT): The MT-QLoRA adapter are trained on the full dataset,
enabling generalist performance across tasks.

2.2 Task Classification Module

We introduce the TC module to dynamically identify the underlying task type
associated with each medical question. This module is trained on the MedVQA
dataset, which contains diverse question-task pairs. We fine-tune a text encoder,
using a prompt-based architecture that embeds both the question and the candi-
date task labels. Special tokens («LABEL» and «SEP») are added to the tokenizer’s
vocabulary to structure the input. A typical input sequence is formatted as:
[CLS] «LABEL» {Task_Type} «SEP» {Medical_Question} [SEP]. The model
processes this sequence and employs a scoring function (e.g., a simple dot prod-
uct or cosine similarity) to compute a compatibility score between the encoded
question and each candidate label. This score determines the likelihood that the
question belongs to a specific task type.
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2.3 Dynamic Inference

The ME-VLIP inference pipeline integrates the QLoRA foundation and the TC
module. For a given input (image-question pair), the process is:

1. The medical question is passed to the TC module, which predicts its task
type and returns a confidence score.
2. Based on the confidence score:
— If the score > a predefined threshold, the system loads the corresponding
TS-QLoRA adapter.
— Otherwise (indicating uncertainty or a novel task type), the system de-
faults to the MT-QLoRA adapter.
3. The weights of the selected adapter are merged with the frozen base weights
of InternVL3-8B.
4. The full model processes the image-question input and generates the final
output prediction.

This design ensures computational efficiency by leveraging lightweight adapters
and enables flexible adaptation to both known and unforeseen task types, en-
hancing the model’s robustness and applicability in diverse medical scenarios.

3 Experiments

3.1 Dataset and Evaluation measures

Dataset The FLARE 2025-Task 5 [2] dataset contains eight imaging modali-
ties: clinical, dermatology, endoscopy, mammography, microscopy, retinography,
ultrasound, and X-rays. It includes 45,887 questions in the training set, 5,577
in the public validation set, and 1,959 in the hidden validation set (i.e., ground
truth answers are not released). The modality distribution across splits is shown
in Figure 3. The most represented modality in the dataset is X-ray, followed by
ultrasound, mammography, and microscopy.

The dataset covers seven task types: classification, cell counting, detection,
multi-label classification, regression, and report generation. The modality dis-
tribution within each task is illustrated in Figure 4. Notably, classification is
the most represented task across all splits and includes the most diverse set
of modalities. In contrast, report generation and multi-label classification are
limited to X-ray. Detection is restricted to ultrasound, and regression appears
primarily with X-ray and a small portion with ultrasound.

Evaluation Each task is assessed using a specific metric depending on its objec-
tive. For classification, the evaluation relies on Balanced Accuracy, which com-
pensates for the class imbalance by averaging recall between all classes. Multi-
label classification is measured using the Micro-averaged F1 Score, which com-
bines true positives, false positives, and false negatives in all classes to calcu-
late overall precision, recall, and F1. Detection tasks are evaluated using the
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Fig.4: Distribution of imaging modalities per task type across dataset splits.
Each bar shows the number of questions per task, stacked by modality.

F1 Score, where predictions are matched to ground truth annotations using an
Intersection-over-Union (IoU) threshold of 0.5. Both cell counting and regres-
sion tasks use the Mean Absolute Error (MAE), which quantifies the average
magnitude of error between predicted and true values. For the report generation
task, the evaluation is conducted using GREEN score, a domain-specific metric
that assesses both the factual correctness and clinical relevance of the generated
radiology reports by taking into account lexical overlap, semantic consistency,
and clinical accuracy [11].

3.2 Implementation Details

Environment Settings The development environments and requirements are
presented in Table 1.

Training Protocols We fine-tuned InternVL3-8B [20] using the LLaMA-Factory
framework [19], employing QLoRA (4-bit quantization) with rank of 8 applied to
all linear projection layers (q_ proj, k_proj,v_proj,o_proj, up proj, gate proj,
and down_proj). Training followed a Supervised Fine-Tuning (SFT) approach
with sequences truncated to 2048 tokens, run for 3 epochs on a single NVIDIA
A100-SXM4-40GB GPU (64 CPU cores, 40GB VRAM), using a per-device batch
size of 2, gradient accumulation over 4 steps, AdamW optimizer, BF16 precision,
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Table 1: Environment and system settings.

Component Setting

System Ubuntu 22.04.4 LTS

Programming language Python 3.10

Dependencies torch 2.3.1, torchvision 0.18.1, transformers 4.52.dev0

GPU 1x NVIDIA A100-SXM4

VRAM 40GB

CPU 64 cores

Code https://github.com/BioMedIA-MBZUAI/FLARE2025-Task5-2D-biomedia

Table 2: Training protocols and hyperparameters for QLoRA fine-tuning.

Component Setting

QLoRA fine-tuning

Base model InternVL3 [20]

Number of parameters 8B

Framework LLaMA-Factory [19]
Method QLoRA (4-bit quantization)
LoRA rank 8

LoRA target modules q_ proj, k proj, v_proj, o_proj, up_proj, gate_proj, down proj
Fine-tuning approach SF'T

Epochs 3

Batch size (per device) 2

Gradient accumulation 4 steps

Effective batch size 8

Sequence length 2048 tokens
Optimizer AdamW
Precision BF16

Learning rate schedule Linear
Initial learning rate 2e-4

Warm-up ratio 3%

Training time ~60 hours
Inference VRAM ~9GB

TC configurations

Model GLiClass [3]
Encoder DeBERTa-v3-small
Label model BGE-small

Epochs 3

Optimizer AdamW

Loss Focal Loss (o« =1, v =1)
Learning rate le-5

Precision FP16 (mixed)
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a linear learning rate schedule with an initial rate of 2e-4, and a 3% warm-up
ratio. In our experiments, we applied the same set of training hyperparameters
when fine-tuning both the MedGemma-4B [12] and Qwen2.5-VL-7B [1] models.

We implemented our TC module using GLiClass [3] with a DeBERTa-v3-
small encoder and BGE-small label model. The model is trained for 3 epochs
using AdamW with focal loss (a = 1,7 = 1), a learning rate of le-5, and mixed
precision FP16.

The training hyperparameters are presented in Table 2.

4 Results and Discussion

4.1 Results on the Validation Set

The fine-tuned InternVL3-8B model exhibits significant performance gains com-
pared to its base counterpart on MedVQA tasks, as depicted in Figure 5. In
classification and detection, where the base model fails entirely (scoring 0.0),
the fine-tuned version achieves 0.613 and 0.596, respectively, demonstrating the
acquired capability to recognize and localize medical abnormalities. Multi-label
classification shows the most dramatic improvement, increasing from 0.026 to
0.510, indicating enhanced ability to handle complex diagnostic labels. Regres-
sion and cell counting errors decrease by approximately 40% and 33%, reflecting
better precision in quantitative medical assessments. Even report generation,
where the base model was moderately competent, fine-tuning yields a 7% im-
provement.

Classification Multi-label Classification Detection (F1-Score
(Balanced Accuracy) (F1-Sco T (10U>0.5))

0.7 " 0.6 +1838.5 0.7
6 0.61 0s 0.51 0.6 060
05 04 05
04 03 04

03 N 03

0.1 0.1

0.0 0.0
Base Fine-tuned Base Fine-tuned Base Fine-tuned

Counting Regression Report Generation
(MAE) (MAE) (GREEN Score (mean))
500 35 w7l
45093 31.04 08 0.75

30 0.70
400 06

301.43 -39.8 04
20 18.67

10 0.0

Base Fine-tuned Base Fine-tuned Base Fine-tuned

Fig.5: Performance comparison between the base model and the fine-tuned
model. Scores are averaged on public and hidden validation sets.
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Table 3: Model performance comparison on validation sets (Public | Hidden
scores).
Task & Metric Qwen2.5-VL-7B MedGemma-4B InternVL3-8B InternVL3-8B (w/ TC)

Classification
Balanced Accuracy 0.36 | 0.51 0.56 | 0.68 0.52 ] 0.71 0.53 | 0.74

Multi-label Classification
F1 Score 1 0.36 | 0.53 0.55 | 0.56 0.46 | 0.56 0.46 | 0.57

Detection
F1 Score 1 0.64 | 0.71 0.12 ] 0.73 0.37 1 0.82 0.26 | 0.82

Instance Detection
F1 Score 1 -10.00 -] 0.00 -1 0.00 -10.00

Cell Counting
MAE | 243.6 | - 265.7 | - 301.4 | - 251.6 | -

Regression
MAE | -] 15.70 -115.35 - | 18.67 -] 11.84

Report Generation
GREEN Score 1 0.76 | - 0.74 | - 0.75 | - 0.71 | -

Table 3 compares the performance of three fine-tuned VLMs (Qwen2.5-VL-
7B, MedGemma-4B, and InternVL3-8B) across multiple tasks, with InternVL3-
8B evaluated both with and without TC. Overall, MedGemma-4B and InternVL3-
8B (especially the TC variant) outperform Qwen2.5-VL-7B in most tasks. For
classification, InternVL3-8B achieves the highest balanced accuracy (0.71 on hid-
den validation data), while its TC-enhanced version slightly improves this score
to 0.74. In multi-label classification, MedGemma-4B performs consistently well
on both public and hidden validation sets, whereas InternVL3-8B excels only on
the hidden set. This discrepancy likely stems from MedGemma’s pre-training on
large-scale medical datasets, contrasting with InternVL’s generic pre-training,
though the performance gains are marginal (F1 scores of 0.56-0.57). Detec-
tion tasks reveal a stark contrast: Qwen2.5-VL-7B performs well on public data
(F1=0.64), but InternVL3-8B with TC dominates on hidden data (F1=0.82),
suggesting superior generalization. Notably, all models fail completely in in-
stance detection (F1=0.00), highlighting a critical limitation in fine-grained lo-
calization. In regression tasks, InternVL3-8B with TC achieves the lowest MAE
(11.84), significantly outperforming the others and underscoring the benefits
of task-specific adaptation. For cell counting, Qwen2.5-VL-7B performs best
(MAE=243.6), though the high errors across all models indicate this task re-
mains challenging. Report generation, measured by GREEN [11] score, shows
minimal differences, with Qwen2.5-VL-7B slightly ahead (0.76).

Ablation Study An ablation study comparing the fine-tuned InternVL3-8B
with and without TC in Table 3 demonstrates that task-specific adaptations
often yield superior performance. These improvements underscore the necessity
of domain adaptation for VLMs in medical applications. While the pre-trained
model possesses general capabilities, its lack of medical-specific knowledge limits
diagnostic utility. Hence, properly adapted models could serve as valuable assis-
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tants in medical imaging analysis, though their effectiveness depends critically
on the quality and breadth of training data.

4.2 Results on the Final Testing Set

This is a placeholder. We will present the testing results during MICCALI

4.3 Limitation and Future Work

The persistent challenges in instance detection and cell counting highlight areas
where current methods and our proposed method still fall short, pointing to a
need for improved architectural designs or training strategies for fine-grained
visual understanding and numerical reasoning.

Future work will focus on optimizing the fine-tuning protocol for these chal-
lenging tasks, exploring advanced adapter architectures, and validating the model’s
robustness across an even broader spectrum of medical modalities and clinical
scenarios. This work serves as a step towards scalable and versatile Al assistants
that can be effectively integrated into heterogeneous clinical workflows.

5 Conclusion

This study presented a unified, efficient vision-language framework for multi-
modal medical image parsing, addressing the challenges of task diversity, modal-
ity integration, and scalability. By leveraging QLoRA for memory-efficient fine-
tuning and a zero-shot task classifier for dynamic adapter routing, our system
adapts flexibly to varied clinical tasks while maintaining computational feasibil-
ity.

Experimental results on the FLARE 2025-Task 5 benchmark demonstrate
significant performance gains across classification, detection, cell counting, re-
gression, and report generation tasks. Notably, our InternVL3-8B-based model
with task-aware QLoRA adapters achieves state-of-the-art results, underscoring
the value of modular adaptation strategies.
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Table 4: Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (<6) 6
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes

Introduction includes at least three parts:

background, related work, and motivation Yes

A pipeline/network figure is provided Figure number: 2
Pre-processing N/A

Strategies to use the partial label N/A

Strategies to use the unlabeled images. N/A

Strategies to improve model inference Page number: 4-6
Post-processing N/A

The dataset and evaluation metric section are presented Page number: 6
Environment setting table is provided Table number: 1
Training protocol table is provided Table number: 2
Ablation study Page number: 10
Efficiency evaluation results are provided Table number: 3
Visualized segmentation example is provided N/A

Limitation and future work are presented Yes

Reference format is consistent. Yes




