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Abstract
Inspired by the principle of deliberate prac-
tice in human learning, we propose Deliberate
Practice for Synthetic Data Generation (DP), a
novel framework that improves sample efficiency
through dynamic synthetic data generation. Prior
work has shown that scaling synthetic data is in-
herently challenging, as naively adding new data
leads to diminishing returns. To address this, prun-
ing has been identified as a key mechanism for
improving scaling, enabling models to focus on
the most informative synthetic samples. Rather
than generating a large dataset and pruning it after-
ward, DP efficiently approximates the direct gen-
eration of informative samples. We theoretically
show how training on challenging, informative
examples improves scaling laws and empirically
validate that DP achieves better scaling perfor-
mance with significantly fewer training samples
and iterations. On ImageNet-100, DP generates
3.4× fewer samples and requires six times fewer
iterations, while on ImageNet-1k, it generates 8×
fewer samples with a 30% reduction in iterations,
all while achieving superior performance com-
pared to prior work.

1. Introduction
A key principle underlying learning in human is deliberate
practice (DP)—progress is made not by repeating what is
already known but by continuously engaging with tasks that
stretch the limits of one’s abilities (Ericsson et al., 1993).
For example, when learning to play the guitar, simply prac-
ticing songs that one has mastered does little to improve
skill. Instead, targeted practice on challenging tasks and
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refining learning through feedback, leads to real progress.
This principle highlights that effective learning requires ex-
posure to informative and difficult examples rather than
passive repetition.

In contrast, most machine learning models are trained on pre-
collected data that remain static throughout training, limiting
their ability to dynamically adapt to their own weaknesses.
One promising source of data for visual recognition tasks
is large-scale pre-trained text-to-image models (Rombach
et al., 2022). They provide an essentially infinite source
of synthetic training data, presenting an alternative to real-
world datasets, which are often expensive or infeasible to
curate (Hemmat et al., 2023; Shin et al., 2023; Zhang et al.,
2024). With the great promise of text-to-image models, a
natural question arises: what is the potential of learning
using only synthetic data? Empirical studies show that
increasing the volume of synthetic training data often leads
to diminishing returns, with performance gains following a
power law stagnation (Fan et al., 2024; Tian et al., 2024a).
Instead, pruning to remove uninformative examples has
proven effective in improving the effectiveness of training
with real or synthetic data (Sorscher et al., 2022; Kolossov
et al., 2024; Feng et al., 2024).

Inspired by human learning principles and recent advances
in generative image models, we propose the Deliberate Prac-
tice (DP) for Synthetic Data Generation framework. Unlike
static approaches that generate all synthetic training data
upfront (Fan et al., 2024; Shin et al., 2023; Hemmat et al.,
2023), our framework incorporates a dynamic loop between
a diffusion model and a downstream learner throughout the
training. More concretely, rather than generating an entire
dataset at once and irrespective of the learner and then prun-
ing it to remove uninformative samples, we propose DP to
efficiently generate data directly from the pruned distribu-
tion of informative samples. By leveraging the learner’s
prediction entropy to guide the generation process, our ap-
proach generates only the most challenging and informative
training examples.

Our framework operates dynamically: we begin with an
initial set of synthetic data and train a learner until perfor-
mance on a real validation set plateaus. At this point, the
learner’s entropy is used to guide the diffusion model to gen-
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erate new challenging examples. These examples are added
to the training set, and the process repeats, ensuring that the
model is continually exposed to increasingly informative
data throughout training.

This approach aligns with broader goals in machine learning,
such as interactive learning environments, continual learn-
ing (Kirkpatrick et al., 2017), and active learning (Settles,
2009). By leveraging a dynamic loop, Deliberate Practice
reduces inefficiencies from redundant or already learned
data, thereby improving the scaling laws of training with
synthetic data.

Our contributions are summarized as:

• We introduce the Deliberate Practice for Synthetic
Data Generation framework, which dynamically adds
new data points when the learner’s validation accu-
racy plateaus [Section 3]. Our framework leverages
the learner’s prediction entropy to generate challeng-
ing synthetic data, improving the scaling behavior of
synthetic data (Figures 1 and 4).

• We provide a theoretical analysis of the scaling behav-
ior of a simple model trained on selected examples
(Section 4). Using random matrix theory, we charac-
terize the test error as a function of data size and the
example selection function, showing improved scaling
when prioritizing hard and informative examples.

• We show that entropy-guided sampling approximates
generating from an entropy-pruned distribution (Sec-
tion 2). We empirically validate that DP can improve
the validation accuracy compared to direct pruning
while being remarkably cheaper in compute up to 5×
(Figure 5).

• We demonstrate that DP outperforms prior work on
both ImageNet-100 and ImageNet-1k while requiring
significantly less data and fewer training iterations.
On ImageNet-100, our approach generated 3.4× less
samples and completed training in only one-sixth of
the iterations used in prior work, yet still achieved
superior performance. Similarly, on ImageNet-1k, we
generated 8× less samples and reduced the number
of iterations by 30%, while outperforming previous
results (Table 1).

• Furthermore, DP exhibits strong performance on out-
of-distribution (OOD) datasets, even outperforming
models trained with real data on ImageNet-R and
ImageNet-Sketch, with improvements of up to 15%
(Table 1).

2. Problem Formulation
Problem Setup. Standard supervised learning relies on a
large real labeled training set. Here, however, we assume no
real training data is available, and instead, we must rely on

a generative model to synthesize training examples.

Formally, let Y denote the set of class labels. Our goal is to
train a classifier fϕ : X → Y , parameterized by ϕ, which
maps inputs x ∈ X (e.g., images) to labels y ∈ Y . We are
given a predefined label set Y , a fixed (small) validation set
Dval = {(xi, yi)}ni=1 consisting of real data for evaluation,
and a generative model gθ capable of sampling synthetic
data conditioned on a label, i.e., x ∼ gθ(y). However, no
real training data is available, i.e., Dtr = ∅. The objective
is to train fϕ using as few generated examples as possible
while maximizing generalization to real data as measured
by performance on Dval. The key challenge is to generate
minimal yet effective training data, requiring a principled
mechanism to select/generate informative examples.

The Need for Informative Examples. Not all synthetic
samples contribute equally to learning. Prior work shows
that simply increasing the synthetic dataset size leads to di-
minishing returns, as many generated samples are redundant
or too easy (Fan et al., 2024). Instead, training should focus
on examples that maximize learning efficiency.

Given a measure of informativeness for a synthetic sample
x, one approach is to generate a large dataset and prune un-
informative examples. Formally, let Dpool = {(xi, yi)}Ni=1

be a large set of N generated samples. We define a pruned
dataset as D′ := {(xi, yi) | i ∈ [N ], qi = 1}, where
qi ∈ {0, 1} is a selection variable determining whether a
data point (xi, yi) ∈ Dpool is retained. The subset size is
constrained by m =

∑N
i=1 qi. The quantity N/m is referred

to as the over-sampling ratio.

Let P and Q denote the distributions of the original and
pruned datasets, respectively. The pruning process operates
as an importance sampling scheme:

dQ = π dP, (1)

where π is a normalized weighting function that retains the
informative samples. The generate-then-prune approach
ensures that only informative examples are kept, it is com-
putationally inefficient, as many generated samples are
discarded. This motivates the need to devise mechanisms to
directly sample the informative examples.

Approximate Sampling of Informative Examples. Sup-
pose that Dpool is generated using a diffusion model with
induced probability P . The generative process is governed
by a reverse SDE (Song & Ermon, 2019):

dx =
[
v(x, t)− g(t)2∇ log pt(x)

]
dt+ g(t) dW (t),

(2)
where W (t) is a Wiener process, modeling stochastic noise,
v(x, t) is a drift term, g(t) is a coefficient controlling the
noise level at time t, and ∇ log pt(x) is the score function.
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Figure 1: (Top): Conventional approaches generate (or collect) a massive static dataset and then select challenging examples
in a one-time filtering step based on the learner’s selection criterion. This is inefficient, as most generated data is discarded.
(Bottom): DP continuously generates only the most challenging examples based on continuous feedback from the learner,
eliminating the need for large-scale data pruning. This iterative process ensures that training focuses on progressively
informative examples, improving efficiency and performance. (Right): Top-1 validation accuracy on ImageNet-1k with
models trained solely on synthetic data. DP (orange) achieves higher accuracy than the 13M synthetic data setup (blue)
while using 10× fewer samples, significantly outperforming the 1.3M baseline (gray).

Instead of sampling from P , we aim to sample directly from
Q as in Eq. (1). By Girsanov’s theorem (Oksendal, 2013),
modifying the probability measure from P to Q introduces
a correction term in the reverse SDE:

dx =
[
v(x, t)− g(t)2(∇ log pt(x) +∇ log π(x, t))

]
dt

+ g(t) dW (t).
(3)

The term ∇ log π(x, t) effectively modifies the score func-
tion and biases the sampling distribution according to the
weighting function π(x, t). This modification allows ap-
proximating direct sampling from the pruned distribution
Q, eliminating the need to first sample uniformly from P
and later prune the data.

2.1. Efficient Entropy-Guided Sampling with DDIM.

We leverage denoising diffusion implicit models
(DDIMs) (Song et al., 2020) for efficient sampling.
At each step t, the reverse update for generating a
conditional sample is:

xt−1 =
√

ξt−1x̂0,t +
√

1− ξt−1 − σ2
t · ϵ(t)θ (xt, y)︸ ︷︷ ︸

direction pointing to xt

+ σtϵt︸︷︷︸
random noise

,

where ϵt is random noise and σt and ξt−1 are time-
dependent coefficients. The term x̂0,t approximates the
final denoised sample:

x̂0,t =
xt −

√
1− ξtϵ

(t)
θ (xt, y)√

ξt
, (4)

in which ϵ
(t)
θ (xt, y) approximates the conditional score func-

tion using a pretrained denoising network (Ho & Salimans,
2022):

ϵθ(xt, y) ≈ (1 + λ)ϵ̃θ(x, y)− λϵ̃θ(x) (5)

where λ is called the classifier-free guidance coefficient
which controls the strength of conditional sampling on the
label.

An efficient way of sampling from a modified diffusion
mode as described in Eq. 3 was proposed by Hemmat et al.
(2023), where the weighting function is derived from the
entropy of the downstream learner, such that,

log π ∝ H(fϕ(x0)) = −
∑
y∈Y

fϕ(y | x0) log fϕ(y | x0).

(6)
To compute the entropy as in Eq. 6, we need the denoised
sample x0. The term x̂0,t can be used to cheaply approxi-
mate entropy mid-generation. This allows direct sampling
of high-entropy examples by modifying the score function:

ϵ̃
(t)
θ (xt, y) = ϵ

(t)
θ (xt, y) + ω∇xt

H(fϕ(x̂0,t)), (7)

where ω controls the contribution of the entropy-guidance.

In (Hemmat et al., 2023), real data is used to pre-train the
learner, enabling an accurate estimation of∇xt

H(fϕ(x̂0,t)).
However, when real data is unavailable, alternative ap-
proaches are needed to assess sample informativeness. In
the next section, we propose to leverage the learner itself
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Algorithm 1 Deliberate Practice for Synthetic Data Genera-
tion

1: Input: Class labels Y , Generative model gθ, Valida-
tion set Dval, Initial dataset size N , New data size P ,
Patience Tmax, Evaluation interval τ .

2: Output: Trained classifier fϕ
3: Initialize: Generate Dtr

0 with N examples from gθ.
Start training fϕ with learning-rate warm-up.

4: Set patience counter T ← 0.
5: while training do
6: Update fϕ on a mini-batch drawn uniformly from

Dtr
k .

7: if (every τ iterations) then
8: Evaluate validation accuracy A(fϕ,Dval).
9: Reset T ← 0 if accuracy improves; else increment

T ← T + 1.
10: end if
11: if T ≥ Tmax then
12: Generate P new examples Dnew with feedback:
13: ∇zt log p(xt | y) = ∇zt log pθ(zt) +

ω∇ztH(fϕ(x̂0,t))
14: Augment training set: Dtr

k+1 ← Dtr
k ∪ Dnew.

15: Reset T ← 0.
16: end if
17: end while
18: Finalize: Apply learning rate decay.

during training to evaluate entropy and determine the infor-
mativeness of generated samples dynamically.

3. The Deliberate Practice Framework for
Synthetic Data Generation

In this section, we describe our Deliberate Practice frame-
work, in which we efficiently train the learner with synthetic
data in absence of any real data. In particular, we move to a
setup where we dynamically expand the dataset throughout
the training. Our framework is summarized in Algorithm 1.

The initial training data. The framework begins by gen-
erating an initial set of N synthetic training examples
Dtr

0 = {(xi, yi)}Ni=1 using a pre-trained generative model
gθ. For each class yi ∈ Y , the generative model samples
images xi ∼ gθ(yi) in a class-conditional manner. The clas-
sifier fϕ starts training on this dataset, with a learning-rate
warm-up phase.

Iterative training and additional data. Training proceeds
iteratively with a mechanism to dynamically augment the
dataset whenever the classifier’s performance stagnates. The
process alternates between training the classifier and gener-
ating new synthetic examples.

Patience mechanism. At regular iteration intervals, τ , the

validation accuracy A(fϕ,Dval) is evaluated. If no improve-
ment is observed for Tmax intervals (patience threshold), the
framework triggers new data generation.

Entropy guided sampling. When the patience mechanism
triggers, P new examples Dnew = {(xj , yj)}Pj=1 are gener-
ated. We directly generate samples from the entropy pruned
distribution through entropy guided sampling. The entropy
is computed based on the current stage of the classifier fϕ.
The ω coefficient controls the effect of entropy-guidance.
With ω = 0, we fall back into regular sampling of diffu-
sion models, while ω > 0 results in generations that have a
higher entropy under the classifier.

Training resumption. The newly generated examples are
added to the dataset, Dtr

k+1 = Dtr
k ∪ Dnew. After augment-

ing the dataset, training resumes with a constant learning
rate until the patience mechanism is triggered again. Mini-
batches are drawn uniformly from the updated pool, which
grows dynamically from size N to N+kP after k iterations
of augmentation. This cycle is continued until we reach the
cool-down phase where the learning rate is decreased and no
more new data is added. See Figure 2 for training dynamics
of a classifier training with DP.

In Section 4, we provide an intuitive theoretical framework
to study the scaling behavior of a simplified DP. In Sec-
tion 5, we validate the effectiveness of DP in large-scale
experiments.

4. Training on Informative Examples
Improves the Scaling Laws

Before presenting empirical results, we first analyze how
selecting informative examples affects the scaling of syn-
thetic data. We study a high-dimensional linear classifier
trained with uniform vs. selective sampling and derive an
analytic expression for test error using random matrix the-
ory (RMT). Our results show that selecting hard examples
improves scaling laws, providing theoretical justification for
our approach.

4.1. Theoretical Analysis under an Idealized Setup.

Consider a simple generative model for training data:

x ∼ N (0,Σ), y = sign(w⊤
0 x), (8)

where w0 ∈ Rd is the ground-truth labeling function. This
gives a distribution P on Rd × R.

We study the impact of uniform sampling versus selective
sampling of informative examples on generalization. To
formalize this, we assume a pool of n i.i.d. training pairs:

X ∈ Rn×d, Y ∈ Rn. (9)
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Figure 2: Training loss (left) and validation accuracy (right) of Deliberate Practice on ImageNet-100. The classifier begins
training on an initial static dataset (130k samples) until validation accuracy plateaus. At this point, additional samples are
generated using entropy-guided sampling, focusing on hard/informative examples. The two dashed vertical lines indicate
points where new data is added. We compare three setups: (1) Orange: No additional data is added, training only on the
initial dataset. (2) Purple: One round of entropy-guided data generation adds 130k samples. (3) Blue: Two rounds of
entropy-guided data generation, adding 260k samples in total. Each data addition leads to an accuracy boost, demonstrating
the effectiveness of DP in improving performance with fewer training iterations. For clarity, this figure shows only two
rounds of data addition, but in practice, more rounds occur based on the allowed maximum patience. Notably, while training
loss increases with new data, validation accuracy steadily improves, showing that the model benefits from progressively
challenging examples, ultimately reducing the generalization gap.

A linear classifier ŵ is trained using the following loss:

ŵ = argmin
w

1

n

n∑
i=1

qiℓ(w
⊤xi, yi) +

λ

2
∥w∥2. (10)

where ℓ(z, y) = (z − y)2/2 is the squared loss, λ > 0 is a
regularization parameter, and qi := q(x⊤

i ws) is a selection
strategy that determines whether an example is included in
training based on its projection in a given direction ws ∈ Rd,
and an arbitrary measurable binary function q : R→ {0, 1}
which encodes the selection strategy.

The selection/pruning ratio is given by:

p = E[q(x⊤ws)] for x ∼ N (0,Σ). (11)

The resulting classifier has a closed-form solution:

ŵ =
1

n
RX⊤DY, R :=

(
1

n
X⊤DX + λId

)−1

, (12)

where D ∈ Rn×n is a diagonal matrix with Dii = qi.

Our objective is to analyze the asymptotic test error of ŵ:

Etest(ŵ) = P(sign(x⊤ŵ) ̸= y), (13)

where (x, y) is a test example,

4.2. Asymptotic Behavior of the Test Error.

We leverage random matrix theory (RMT) techniques
(Couillet & Liao, 2022; Liao & Mahoney, 2021; Firdoussi

et al., 2024) to characterize the test error in Eq. (13). Our
analysis is based on the spectral density of the resolvent
matrix R in Eq. (12), allowing us to compute the first two
moments of yx⊤ŵ for a test sample x and derive an ex-
pression for the test error. For simplicity, we assume an
isotropic setup where Σ = Id and defer the general case to
Appendix A.

We shall work in the following so-called high-dimensional
proportionate scaling regime

d, n→∞, d/n→ ϕ, (14)

in which the input-dimension d and the sample size n di-
verge to infinity at the same rate. The scalar ϕ ∈ (0,∞) cap-
tures the effective dimensionality or over-parametrization
rate of the problem.

Key Scalars. WLOG, assume ∥ws∥ = 1. It turns out that
the for fixed, pruning, p, the asymptotic test error is fully
captured by the following scalars:

ρ := w⊤
s w0/∥w0∥, τ :=

ρ√
1− ρ2

, γ := E[q(G)G2],

β := 2E[q(G)φ(τG)], β̃ := 2E[q(G)Φ(τG)G],

(15)

where G ∼ N (0, 1) with pdf φ and cdf Φ. Note that
ρ quantifies the alignment between the pruning direction
ws and the ground-truth labeler w0, while β and γ capture
statistical properties of the pruning strategy q.

Spectral functions. The Stieltjes transform m of the limit-
ing spectral density of the resolvent matrix R is shown in
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Figure 3: Theoretical prediction for scaling behavior of ac-
curacy (Theorem 1) for a simple classifier in a d = 512
dimensional input space, as a function of dataset selection
strategy. The classifier is trained on synthetic data with
different pruning probabilities, where higher pruning prob-
ability corresponds to keeping only the most challenging
examples (those closer to the decision boundary).

Lemma 3 to be given by the exact formula (with z := −λ)

m(z) =
p− ϕ− z −

√
(p− ϕ− z)2 − 4ϕz

2ϕz
, (16)

and will play an important role in our theory. The above
formula represents a somewhat distorted Marchenko-Pastur
law. Indeed, the classical MP (Marčenko & Pastur, 1967)
corresponds to p→ 1 (i.e. no data pruning).

We further define the following auxiliary functions:

s(z) :=
γ

1 + ϕm(z)
, m̃(z) :=

1

s(z)− z
,

r(z) := ω2 ·m(z) + ω̃2 · m̃(z),

with ω :=
√

1− ρ2β, ω̃ := ρβ̃.

(17)

Main Result: Test Error Scaling w.r.t Selection Strategy.

Theorem 1. In the limit Eq. (14), the classification test
error satisfies: Etest(ŵ)→ arccos

(
|m0|/

√
ν0
)
/π, where

m0 := ωm(−λ) + ω̃m̃(−λ),

ν0 := pϕm′(−λ) + r′(−λ)− 2ϕm′(−λ)
1 + ϕm(−λ)r(−λ)

.

The scaling behavior of test error is fully determined by the
six scalars (λ, ϕ, p, ρ, γ, β, β̃). Importantly, the choice of
the data point selection strategy i 7→ q(x⊤

i ws) only influ-
ences performance through ρ, γ, β, and β̃.

4.2.1. EXAMPLE: SELECTING INFORMATIVE
EXAMPLES.

Consider a selection function of the form qi = q(x⊤
i ws) for

all i, where,

q(t) := 1[|t| ≤ ξ] =

{
1, if |t| ≤ ξ,

0, else,
(18)

for some threshold ξ ≥ 0. Such selection strategy selects
only the examples near the decision boundary of ws, analo-
gous to using classifier entropy as a selection criterion but
simpler to study. Lemma 1 and 2 derive explicit expres-
sions for (γ, β, β̃). Figure 3 presents theoretical predictions
for test accuracy across different degrees of example selec-
tion, showing that selecting hard examples improves scaling
laws, reducing the number of training samples needed for
the same performance. However, beyond a certain point,
excessive pruning degrades performance, as illustrated in
Figure 5.

4.2.2. ADAPTIVE SELECTION STRATEGY.

Data selection relies on a pruning direction ws to select
informative/hard examples: i 7→ q(x⊤

i ws) ∈ {0, 1}, but
these examples are ultimately used to train ŵ. If ws and ŵ
are misaligned, what is considered hard by ws may not be
hard for ŵ, reducing the effectiveness of selective sampling.
In fact, hard examples change over time: an example that
was identified hard, might not remain hard are more train-
ing is done. To ensure alignment, ws should periodically
update to reflect the evolving decision boundary of ŵ. This
adaptive selection mechanism motivates the continuous data
generation process of DP, as presented in Section 3.

Data selection relies on a pruning direction ws to identify
informative or hard examples: i 7→ q(x⊤

i ws) ∈ {0, 1}.
However, these selected examples are ultimately used to
train ŵ, and if ws and ŵ are misaligned, what is considered
hard by ws may not be hard for ŵ, reducing the effectiveness
of selective sampling. In fact, ws and ŵ deviate from each
other the more ŵ is trained on these examples. Moreover,
the definition of “hard” changes over time—an example that
was initially difficult may become easier as training pro-
gresses. To maintain alignment, ws should be periodically
updated to reflect the evolving decision boundary of ŵ. This
adaptive selection mechanism underpins the continuous data
generation process in DP, as presented in Section 3.

5. Experiments
For all the experiments, we use the LDM1.5 (Rombach
et al., 2022) as the pre-trained text-to-image (T2I) model.
We studied four different T2I models and found this model
outperforming the rest. For more details see Appendix D.1.

Datasets. We validate our framework on two datasets.
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ImageNet-100 (Tian et al., 2020; Sarıyıldız et al., 2023),
a subset of ImageNet-1k (Deng et al., 2009), containing
100 classes and 5k validation examples, where the real val-
idation set is used for evaluation and the real training set
(126,689 examples) serves as a held-out test set. We also
conduct experiment ImageNet-1k, using the 50k validation
examples to monitor performance and reserving the real
training set (1.3 million examples) as a held-out test set.

5.1. Scaling Laws of Synthetic Data

We train a Vision Transformer (ViT-B) (Dosovitskiy et al.,
2021) classifier with synthetic data. We study two scenarios:
1) Static data generation and 2) Deliberate Practice (DP).
In all the experiments in this section we have a fixed and
controlled setup. We train the models for 100k and 50k
iterations for ImageNet-1k and ImageNet-100 respectively.
For additional details, see Appendix D.5.

Static data generation. In this setup, all data is generated
before training, and the classifier is trained on a fixed dataset.
We experiment with different dataset sizes to see its impact
on accuracy.

Deliberate Practice data generation. Hyperparameters
ω and λ are tuned on ImageNet-100 and found effective
for ImageNet-1k as well (see Section D.5 for details). We
track validation accuracy throughout training and use it to
determine when to generate new data, following a patience-
based criterion. To ensure the model has not over-fitted to
the validation set, we also report accuracy on the full real
training sets of ImageNet-100 and ImageNet-1k, used as
held-out test sets.

Figure 4 compares the scaling laws of the Static and De-
liberate Practice (DP) on ImageNet-100 and ImageNet-1k.
On both datasets, we note that DP scales well with dataset
size and it consistently outperforms the Static setup, achiev-
ing higher validation accuracy at any given dataset size. On
ImageNet-100 we observe that DP can reach the best ac-
curacy of the static setup (with 3 million examples) using
only 400k examples. This means that DP requires 7.5× less
data to reach the same performance. On ImageNet-1k, we
observe that DP can outperform the best accuracy of the
static setup (with 13 million examples), using only 640k
examples. This translates to DP requiring 20× less data to
outperform the Static setup. For additional details on the
hyper-parameters of these experiments, see Appendix D.5.1.
Refer to Figure 13 for a visualization of how the dataset
evolves from the start to the end of training.

5.2. Comparison with Previous Work

We compare DP with prior works on synthetic data gener-
ation for image classification (Sarıyıldız et al., 2023; Fan
et al., 2024). Specifically, we evaluate setups that use class-

names for prompting and publicly available models for
sample generation. Performance is assessed on real Im-
ageNet (held-out) training and validation sets, as well as on
ImageNet-V2 (Recht et al., 2019), ImageNet-Sketch (Wang
et al., 2019), ImageNet-R (Hendrycks et al., 2021a), and
ImageNet-A (Hendrycks et al., 2021b) to measure out-of-
distribution (OOD) generalization.

The results in Table 1 show that DP outperforms prior bench-
marks on both ImageNet-100 and ImageNet-1k while re-
quiring significantly less data and fewer training iterations.
On ImageNet-100, DP generated 4.6 million fewer samples
and trained for only one-sixth of the iterations compared to
previous works, yet achieved superior performance on the
real data. Similarly, on ImageNet-1k, DP reduced sample
generation by 56.2 million and cut training iterations by
over 30%, while still outperforming previous results.

Furthermore, models trained with DP exhibit strong per-
formance on out-of-distribution datasets, even surpassing
models trained on real data on ImageNet-R and ImageNet-
Sketch, with improvements of up to 15%.

5.3. Connection Between Pruning and DP

In Section 2, we discussed how DP approximates direct
sampling from a pruned distribution. Here, we validate this
experimentally on ImageNet-100 using two setups:

1. Oversampling then Pruning: Generate a large pool
and select high-entropy samples.

2. Direct entropy-guided generation: Generate only
informative samples (a special case of DP with a single
step of data addition).

We start with 130k generated samples (regular vanilla sam-
pling), train for 17k iterations, then add a one-time addi-
tional 130k samples, increasing the total data size to 260k
and training for an additional 33k iterations.

In setup 1, we vary the pool size, ranging from no pruning
(130k pool) up to an oversampling ratio of 18 (2.4M pool),
selecting the top 130k high-entropy samples. In setup 2, we
generate exactly 130k entropy-guided samples, varying the
entropy-gauidance coefficient.

Figure 5 (a, b) shows that both methods improve perfor-
mance up to a point, after which excessive selection of
high-entropy samples leads to degradation—likely due to
selecting high-entropy but harmful outliers. This aligns with
our theoretical predictions in Figure 5 (c).

Regarding computational costs, generating a single image
with entropy-guidance on an Nvidia H100 takes 1.82×
longer than standard vanilla sampling. However, achiev-
ing similar performance through oversampling requires sig-
nificantly more data, leading to a linear increase in cost.
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Figure 4: Scaling laws of synthetic data. Real Validation accuracy versus total dataset size for the Static (pink ×), and
Deliberate Practice (blue o) setups on ImageNet-100 (left) and ImageNet-1k (right). DP significantly outperforms Static
data generation, achieving higher accuracy with fewer synthetic examples. DP achieves the same accuracy as the static setup
using 7.5× less data on ImageNet-100 and 20× less data while outperforming it on ImageNet-1K.

Table 1: Comparison with previous work. DP outperforms other models on both ImageNet-100 and ImageNet-1k while
requiring significantly less data and fewer training iterations. Note that DP experiments reported in this table are trained
longer than models reported in the previous section and, consistent with other work, use a smaller classifier free guidance
scale of λ = 2.

Task # Iters Data size IN real Val. IN real tr. IN-v2 IN-Sk IN-R IN-A

Real IN-100 100k 130k 88.5 - 76.4 37.1 60.8 33.5
Syn. Static - (Sarıyıldız et al., 2023) IN-100 13k 130k 63.5 - 62.7 41.8 64.2 13.7
Syn. Static - (Sarıyıldız et al., 2023) IN-100 635k 6.5M 73.3 - 72.3 42.0 59.4 17.1
Syn. DP (ours) IN-100 100k 1.9M 74.3 75.0 66.3 52.0 76.6 25.9

Real IN-1k 200k 1.3M 82.6 - 70.9 32.5 44.6 29.4
Syn. Static - (Sarıyıldız et al., 2023) IN-1k 130k 1.3M 42.9 - 43.0 16.6 26.3 3.6
Syn. Static - (Fan et al., 2024) IN-1k 210k 2M 50 - 42.2 27.2 45.7 6.6
Syn. Static - (Fan et al., 2024) IN-1k 315k 64M 54 - 46.0 32.4 52.5 9.4
Syn. DP (ours) IN-1k 200k 6.5M 54.1 54.84 48.5 34.7 56.0 12.3
Syn. DP (ours) IN-1k 200k 9.1M 55.1 55.73 49.3 36.0 57.2 13.4

As a result, DP is 5× more efficient while also providing
higher absolute improvements compared to pruning-based
selection. See Figure 5 for details and Figure 11 for some
visualizations.

5.4. The Evolution of Hard Examples Over Time

“Does the sample hardness change as training progresses?”

To answer this question, Figure 6 tracks the error on exam-
ples that were misclassified at the time they were added.
As expected, once introduced, the model gradually learns
to classify them correctly. However, an interesting trend
emerges: even before these examples were added, their error
was lower than at the moment of inclusion. This suggests
that the notion of hardness is dynamic—what is considered
challenging at one point may become easier over time. Con-
versely, examples that were once easy might later become
difficult due to shifts in the learned decision boundaries.
This highlights a key limitation of static pruning approaches
and underscores the importance of dynamically adapting

the selection of informative examples throughout training,
as done in Deliberate Practice (DP). See Figure 12 for some
visualization of generations through training.

6. Related Work
Synthetic data for training neural networks. Synthetic
data has become a powerful tool for training machine learn-
ing models across various domains. For instance, text-to-
image diffusion models have been successfully used for
visual representation learning (Astolfi et al., 2023; Li et al.,
2025; Tian et al., 2024a;b; Sarıyıldız et al., 2023). How-
ever, limitations of synthetic data are highlighted by Fan
et al. (2024), emphasizing the importance of generating
more challenging and informative examples. Addressing
distribution shifts between synthetic and real data, Hemmat
et al. (2023) and Yuan et al. (2023) propose synthesizing
training data that matches real data distributions or condi-
tioning on real examples to reduce this gap. Expanding
small-scale datasets has also been studied, see e.g. Zhang
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(a) (b) (c) (d)

5x

Figure 5: Plots describing the performance of DP compared to explicit pruning and theory prediction while changing the
oversampling ratio or the DP coefficient. (a) Over-sampling with entropy-based selection – Generate a large pool of samples
(ranging from 130k to 2.4M) and select the 130k highest-entropy examples. (b) Generate 130k high-entropy examples
directly using DP with varying entropy guidance strength through ω. (c) The theory prediction on the accuracy based on the
over-sampling ration. (d) Comparing the compute cost of DP vs oversampling then pruning. We observe that DP exhibits
a similar accuracy curve compared to explicit pruning and theoretical prediction when changing the over-sampling/DP
coefficient. However, DP is computationally remarkably more efficient while gaining more accuracy delta.
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Figure 6: Error trajectories of hard (misclassified) examples
added at different training stages. The red curve highlights
the first batch of added data for better visibility, but the
same trend applies to all batches. Notably, even before
being trained on, these examples exhibit a lower error rate
than at their point of inclusion, indicating that hardness is
not static, it evolves throughout training.

et al. (2024). Another related line of work involves using
VLMs and LLMs to generate descriptions for augmenting
datasets (Dunlap et al., 2023).

Synthetic data is increasingly used to train (LLMs). For
example, LLaMA3 (Grattafiori et al., 2024) employs AI-
generated data for fine-tuning. Similarly, self-play ap-
proaches, e.g., Yuan et al. (2024), align with our framework
by generating increasingly difficult examples for training.

Continual learning and active learning. Our work is also
closely related to principles from active learning (Bang et al.,
2024; Evans et al., 2023) and continual learning, which

prioritize iterative model updates with tailored data. These
methods highlight the importance of selecting informative
samples based on the model’s current state. (Sorscher et al.,
2022) showed that pruning static datasets using metrics
like margin scores can improve scaling laws by retaining the
most informative examples, albeit in a non-adaptive manner.

Challenges and risks of synthetic data. The challenges of
training models on synthetic data, have gained significant
attention. Dohmatob et al. (2024a;b) studied “model col-
lapse”, a phenomenon where iterative training on synthetic
data degrades performance. They emphasize that data verifi-
cation mechanisms can mitigate this risk and enable scaling
with synthetic data. Similarly, our framework by generating
informative examples through a dynamic loop, improves
sample efficiency.

7. Conclusion
We introduced Deliberate Practice for Synthetic Data Gen-
eration, a framework that improves scaling laws by dynami-
cally generating challenging and informative training exam-
ples. Unlike traditional methods that rely on static datasets,
our approach approximates generating data directly from
a pruned distribution, reducing inefficiencies and ensuring
models continuously training on informative samples. We
provided theoretical insights into the benefits of training on
pruned distributions and empirically demonstrated that our
method significantly improves performance while requiring
fewer training iterations. Our results on ImageNet-100 and
ImageNet-1K show that Deliberate Practice achieves supe-
rior accuracy with far less data and compute, outperforming
previous state-of-the-art. Our work highlights the potential
of structured synthetic data generation in advancing efficient
and adaptive learning.

9



Improving the Scaling Laws of Synthetic Data with Deliberate Practice

Impact Statement
This work introduces a method for improving the sample
efficiency of synthetic data generation through a deliber-
ate practice framework that prioritizes the most informative
training examples. By enabling more efficient use of gener-
ated data, our approach may reduce the computational and
environmental costs associated with training large models,
and make data generation more accessible in low-resource
settings.
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role of deliberate practice in the acquisition of expert
performance. Psychological review, 100(3):363, 1993.

Evans, T., Pathak, S., Merzic, H., Schwarz, J., Tanno, R.,
and Henaff, O. J. Bad students make great teachers: Ac-
tive learning accelerates large-scale visual understanding.
arXiv preprint, 2312.05328, 2023.

Fan, L., Chen, K., Krishnan, D., Katabi, D., Isola, P., and
Tian, Y. Scaling laws of synthetic images for model
training... for now. In CVPR, 2024.

Feng, Y., Dohmatob, E., Yang, P., Charton, F., and Kempe, J.
Beyond model collapse: Scaling up with synthesized data
requires reinforcement, 2024. URL https://arxiv.
org/abs/2406.07515.

Firdoussi, A. E., Seddik, M. E. A., Hayou, S., Alami, R.,
Alzubaidi, A., and Hacid, H. Maximizing the potential
of synthetic data: Insights from random matrix theory,
2024.

Grattafiori, A. et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Hemmat, R. A., Pezeshki, M., Bordes, F., Drozdzal, M., and
Romero-Soriano, A. Feedback-guided data synthesis for
imbalanced classification. arXiv preprint, 2310.00158,
2023.

Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F.,
Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M.,
et al. The many faces of robustness: A critical analysis of
out-of-distribution generalization. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 8340–8349, 2021a.

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song,
D. Natural adversarial examples. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 15262–15271, 2021b.

Ho, J. and Salimans, T. Classifier-free diffusion guidance.
arXiv preprint arXiv:2207.12598, 2022.

Hu, S., Tu, Y., Han, X., He, C., Cui, G., Long, X., Zheng, Z.,
Fang, Y., Huang, Y., Zhao, W., et al. Minicpm: Unveil-
ing the potential of small language models with scalable
training strategies. arXiv preprint, 2404.06395, 2024.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Kolossov, G., Montanari, A., and Tandon, P. Towards a
statistical theory of data selection under weak supervision.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=HhfcNgQn6p.

10

https://arxiv.org/abs/2406.07515
https://arxiv.org/abs/2406.07515
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=HhfcNgQn6p
https://openreview.net/forum?id=HhfcNgQn6p


Improving the Scaling Laws of Synthetic Data with Deliberate Practice

Li, X., Yang, Y., Li, X., Wu, J., Yu, Y., Ghanem, B., and
Zhang, M. Genview: Enhancing view quality with pre-
trained generative model for self-supervised learning. In
European Conference on Computer Vision, pp. 306–325.
Springer, 2025.

Liao, Z. and Mahoney, M. W. Hessian eigenspectra of
more realistic nonlinear models. In Advances in Neu-
ral Information Processing Systems, volume 34. Curran
Associates, Inc., 2021.
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A. Further Theoretical Analysis and proofs
A.1. The Unregularized Regime

We now consider our theory in the limit λ→ 0+. Thus, the parameter vector for the classifier is the least-squares estimate
for w0, i.e ŵ = ŵLS = X ′†Y ′. Recall the definition of the constants γ, β, β̃, ω, and ω̃ from equations (17). Recall that
p ∈ (0, 1] is the proportion of training data left after pruning the original dataset (X,Y ) containing n examples. We have
the following important corollary to Theorem 1.

Corollary 1. In the (ordered) limit n, d→∞, d/n→ ϕ, λ→ 0+, it holds that Etest(ŵ)→ arccos(|a|/
√
b)/π, where the

constants a and b are given as follows:

(A) If ϕ < p, then

a := (ω + ω̃p/γ)/(p− ϕ), b :=
p2ϕ+ (r′0 − 2ϕr0)

(p− ϕ)3
, (19)

with r0 := β2 + β̃2p/γ, r′0 := p ·
(
β2 + β̃2 · ((p− ϕ)p/γ2 + ϕ/γ)

)
. (20)

(B) If ϕ > p, then

a := (ω + ω̃/c1)c0, b := (pϕ− r0)c0, (21)

with c0 := 1− p/ϕ, c1 := 1− (p− γ)/ϕ, r0 := β2 + β̃2/c1. (22)

The result is empirically verified in Figure 7(a).
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(a) Regularization parameter λ = 10−6.
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(b) Regularization parameter λ = 10−2.

Figure 7: Empirical verification of Theorem 1 and Corollary 1. For this experiment, the input dimension is d = 350,
and each subplot corresponds to a different value of the original sample size n. The experiment for λ = 10−6 is a proxy
for the unregularized case λ→ 0+. Solid lines correspond to observed values of the test error Etest(ŵ), while broken lines
are the theoretical prediction of Theorem 1 (bottom row) and Corollary 1 (top row). Notice the excellent match between
the experimental results and our theory. Also, observe the multiple-descent patterns, reminiscent of a non-trivial effect of
different pruning strategies in different regimes of the pruned training dataset size n0 = np; the vertical line corresponds to
an interpolation threshold at p = ϕ, i.e., n0 = d.
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A.2. Some Important Examples of Pruning Strategies

Keep Hard Examples (KH). Consider the case where the pruning strategy is given by qi = qKH(x⊤
i ws) for all i, where

qKH(t) := 1[|t| ≤ ξ] =

{
1, if |t| ≤ ξ,

0, else,
(23)

for some ξ ≥ 0. Define α := ξ/∥ws∥. We have explicit formula for the constants β and β̃ appearing in Theorem 1. Viz,

Lemma 1. With τ := ρ/
√

1− ρ2, ϵ1 := 2Φ(α/
√
1− ρ2)− 1, and ϵ2 := 2Φ(τα)− 1, it holds that

β̃(qKH) = 2(ρφ(0)ϵ1 − φ(α)ϵ2), β(qKH) = 2φ(0)
√
1− ρ2 · ϵ1. (24)

Example 2: Keep Easy Examples (KE). Here, the pruning strategy is qi = qKE(x
⊤
i ws), where

qKE(t) := 1[|t| > ξ] =

{
0, if |t| ≤ ξ,

1, else.
(25)

Lemma 2. With τ := ρ/
√
1− ρ2, ϵ1 := 2(1− Φ(α/

√
1− ρ2)), ϵ2 := 2Φ(τα)− 1, it holds that

β̃(qKE) = 2(ρφ(0)ϵ1 + φ(α)ϵ2), β(qKE) = 2φ(0)
√
1− ρ2 · ϵ1. (26)

Example 3: Interpolation between Keep Hard and Keep Easy Strategies. Consider the following pruning strategy
proposed in (Kolossov et al., 2024)

q(t) ∝ σ(t)ω(1− σ(t))ω, (27)

for some tuning parameter ω. Here, σ is the sigmoid function. We can associate q(x⊤
i ws) with the probability the auxiliary

classifier x 7→ sign(x⊤ws) assigns to an example xi. Thus, positive values of ω correspond to keeping examples considered
uncertain (i.e hard) by this classifier, while negative values correspond to examples considered easy.

A.3. Main Ingredients of Proofs

A.3.1. DETERMINISTIC EQUIVALENT FOR THE RESOLVENT MATRIX R

Definition 1 (Deterministic Equivalents). Given a sequence of random N ×N matrices (RN )N , a deterministic equivalent
thereof is a sequence of deterministic N ×N matrices (RN )N such that

trAN (RN −RN )
a.s→ 0, (28)

for all sequences of N ×N matrices (AN )N with bounded Frobenious norm.

Let Π (resp. Π⊥ = Id −Π) be the projection onto the span (resp. orthogonal complement of the span) of ws. Define the
following auxiliary vectors and scalars

v = Σ1/2ws, v1 =
v⊤ws

∥ws∥
, v⊥ = Π⊥v. (29)

Note that v⊥ is (d− 1)-dimensional and ∥v⊥∥ =
√
∥v∥2 − v21 .

Henceforth we make the replacement z = −λ < 0, so that the resolvent matrix R now writes

R = R(z) := (X⊤DX/n− zId)
−1. (30)
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Let δ(z) be the unique positive solution to the fixed-point equation

m(z) = d−1 tr R̄b(z), δ(z) = n−1 tr ΣR̄b(z), (31)

R̄b(z) =

(
Ex∼N (0,Σ)

[
q(x⊤ws)

1 + q(x⊤ws)δ(z)

]
Σ− zId

)−1

. (32)

Note that the inner expectation evaluates to

Ex∼N (0,Σ)

[
q(x⊤ws)

1 + q(x⊤ws)δ(z)

]
=

p

1 + δ(z)
=: t(z),

and so R̄b(z) = (t(z)Σ− zId)
−1. Observe that R̄b(z)(t(z)Σ− zId) = Id, and so t(z)ΣR̄b(z) = Id + zR̄b(z). We deduce

that

t(z)δ(z) = n−1 tr t(z)ΣR̄b(z) = n−1 tr(Id + zR̄b(z)) = ϕ · (1 + zm(z)) .

Thus the equations defining m(z) and δ(z) can be rewritten as

m(z) = d−1 tr(t(z)Σ− zId)
−1, (33)

t(z) =
p

1 + δ(z)
, (34)

ϕ · (1 + zm(z)) = t(z)δ(z) = t(z)

(
p

t(z)
− 1

)
= p− t(z). (35)

Solving for ϕzm(z) in terms of t(z) in the last equation gives

ϕzm(z) =
pδ(z)

1 + δ(z)
− ϕ = p− ϕ− p

1 + δ(z)
= p− ϕ− t(z).

Plugging this into the first equation gives the following fixed-point equation for t(z)

p− ϕ− t(z) = zn−1 tr(t(z)Σ− zId)
−1. (36)

The following result shows that R̄ is a deterministic equivalent for R.
Proposition 1. Recall the function t(z) as the unique positive solution to the equation (36). Then,

R ≃ R̄, with R̄ = Σ−1/2(m̄(z)Π⊥ + m̃(z)Π)Σ−1/2, (37)

where m̄(z) =
1

t(z)− z
, m̃(z) =

1

s(z)− z
, s(z) =

γ

1 + δ(z)
= (γ/p)t(z), (38)

γ := E[q(G)G2], for G ∼ N (0, 1). (39)

A.4. Isotropic Case

Consider the special case where the covariance matrix is Σ = Id. It is not hard to see that we must have m̄(z) ≡ m(z) ≡
δ(z)/ϕ. Let us now compute m(z).
Lemma 3. For every z = −λ < 0, m(z) is given by formula (16).

Proof. Indeed, observe that in the isotropic case the equation (36) reduces to p− ϕ− t(z) = ϕz/(t(z)− z), or equivalently

0 = ϕz + (t(z)− p+ ϕ)(t(z)− z) = t(z)2 − (p− ϕ+ z)t(z) + pz.

The discriminant of this quadratic equation evaluates to

(p− ϕ+ z)2 − 4pz = (p− ϕ− z + 2z)2 − 4pz

= (p− ϕ− z)2 + 4z2 + 4z(p− ϕ− z)− 4pz

= (p− ϕ− z)2 − 4ϕz,

14
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and so because z = −λ < 0, the positive solution is

t(z) =
p− ϕ+ z +

√
(p− ϕ− z)2 − 4ϕz

2
. (40)

We deduce that

m(z) =
1

t(z)− z
=

(
p− ϕ− z +

√
(p− ϕ− z)2 − 4ϕz

2

)−1

= 2 ·
p− ϕ− z −

√
(p− ϕ− z)2 − 4ϕz

(p− ϕ− z)− ((p− ϕ− z)2 − 4ϕz)

=
p− ϕ− z −

√
(p− ϕ− z)2 − 4ϕz

2ϕz
,

which is precisely the claimed formula given in (16).

The following result then follows directly from Proposition 1.

Corollary 2. In the isotropic setting, we have the following deterministic equivalents:

R ≃ R̄, with R̄ = m(z)Π⊥ + s(z)Π, (41)

R2 ≃ m′(z)Π⊥ + m̃′(z)Π. (42)

where m̃(z) := 1/(s(z)− z), s(z) = γ/(1 + ϕm(z)), and γ ≥ 0 is as given in (43).

ρ =
w⊤

s w0

∥ws∥∥w0∥
, β := E [q(∥ws∥G2)|G1|], γ := E [q(∥ws∥G1)G

2
1], (43)

A.5. Test Error Representation (”Scaling Laws”)

We are now ready to state our main theoretical results, which is a generalization of Theorem 1.

Remark 1. For simplicity of presentation, all our theoretical results only consider symmetric pruning strategies for which
q(−t) ≡ q(t). This includes the ”keep hard” and ”keep easy” pruning strategies considered in (Sorscher et al., 2022).

Proposition 2. Define the following quantities:

m :=
m0

1 + δ
, m0 :=

c⊤R̄Σw0

∥Σ1/2w0∥
(44)

ν :=
ν0

(1 + δ)2
, ν0 :=

p

n
tr ΣΣ′ + c⊤Σ′c− 2c⊤R̄c

1 + δ

1

n
tr ΣΣ′, (45)

with c := E[qiyixi] = E(x,y)∼P [q(x
⊤ws)yx], Σ′ := E [RΣR]. (46)

Then, in the limit (14), the test error of ŵ is given by

Etest(ŵ)→
1

π
arccos (|m0|/

√
ν0) . (47)

B. Proof of Proposition 2
The proof follows standard (Couillet & Liao, 2022; Firdoussi et al., 2024) ”leave-one-out” techniques which are now
standard for analyses based on random matrix theory.

15
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B.1. Main Idea

For a random test point (x, y) ∼ P∗, we can write

yx⊤ŵ = yz⊤Σ1/2ŵ = sign(z⊤Σ1/2w0)z
⊤Σ1/2ŵ.

Write Σ1/2ŵ = αΣ1/2w0+r, where r = Σ1/2ŵ−αΣ1/2w0 and α ≥ 0 is to be determined. Observe that r is perpendicular
to Σ1/2w0 iff r⊤Σ1/2w0 = ŵ⊤Σw0 − α∥Σ1/2w0∥2 = 0 iff

α = ŵ⊤w0/∥Σ1/2w0∥2. (48)

With this choice of α, one computes

yx⊤ŵ = αyz⊤Σ1/2w0 + yz⊤r. (49)

Because r is perpendicular to Σ1/2w0, we know that the above is a sum of two independent random variables.

For the first summand in (49), observe that

yz⊤Σ1/2w0 = yx⊤w0 = sign(x⊤w0)x
⊤w0 = |x⊤w0|,

which has the same distribution as ∥Σ1/2w0∥|G1| for G1 ∼ N(0, 1). For the second summand, it has the same distribution
as distribution ∥r∥G2 where G2 ∼ N (0, 1) and ∥r∥2 = ∥Σ1/2ŵ∥2 − α2∥Σ1/2w0∥2. It follows that if α > 0,

Etest(ŵ) = Px,y(yx
⊤ŵ ≤ 0) = P(α∥Σ1/2w0∥|G1|+ ∥r∥G2 ≤ 0)

= P(α∥Σ1/2w0∥|G1|+ ∥r∥G2 ≤ 0, G2 < 0)

= P(|G2/G1| ≥ η, G2 < 0) with η := α∥Σ1/2w0∥/∥r∥
= P(G2 < 0)P(|T | ≥ η) with T := G2/G1 ∼ Cauchy(0, 1)

=
1

2
· 2P(T ≥ η) = P(T ≥ η)

= 1− (
1

2
+

1

π
arctan η) =

1

π
(π/2− arctan η)

=
1

π
arccos(

η√
1 + η2

) =
1

π
arccos(

α∥Σ1/2w0∥
∥Σ1/2ŵ∥

).

Similarly, if α < 0, we get the same expression with α replaced by −α. Therefore, irrespective of α, we have

Etest(ŵ) =
1

π
arccos(

|α|∥Σ1/2w0∥
∥Σ1/2ŵ∥

). (50)

It remains to estimate the random quantities |α| and ∥Σ1/2ŵ∥, in the asymptotic limit (14).

B.2. Leave-One-Out Arguments

We start with the Woodbury identity tells us that

Rxi = (X⊤DX/n+ λId)
−1xi = (

n∑
j=1

qjxjx
⊤
j /n+ λId)

−1xi

= (R−1
−i + qixix

⊤
i /n)

−1xi =
R−ixi

1 + qix⊤
i R−ixi/n

,

where R−i := (n−1
∑

j ̸=i qjxjx
⊤
j +λId)

−1 is a version of the resolvent matrix constructed without the ith data point. This
”leave-one-out” trick is well-known in random matrix theory calculations.

On the other hand qix
⊤
i R−ixi/n concentrates around its mean which is

E [qix
⊤
i R−ixi/n] = tr

(
E[qixix

⊤
i ]R−i/n

)
=

α

n
tr ΣR−i ≃ δ,

with δ :=
p

n
tr ΣR̄, p := E[qi].

16
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Therefore, we have the following identities holding for every i, j ∈ [n] with i ̸= j:

Rxi ≃
R−ixi

1 + δ
, (51)

R−i ≃ R−ij −
R−ijxjx

⊤
j R−ij

1 + δ
. (52)

Now, let x be a random test point from class y, independent of training data. For later use, note that

yx⊤ŵ =
1

n

n∑
i=1

qiyiyx
⊤Rxi =

1

n

n∑
i=1

qiyiyx
⊤Rxi

=
1

(1 + δ)n

n∑
i=1

qiyiyx
⊤R−ixi. (53)

B.3. Asymptotics of ∥Σ1/2ŵ∥2

Note that ∥Σ1/2ŵ∥2 = Ex,y[(yx
⊤ŵ)2] = E[(x⊤ŵ)2]. Squaring (53) gives

(x⊤ŵ)2 =
1

(1 + δ)2n2

n∑
i=1

qi · (x⊤R−ixi)
2 +

1

(1 + δ)2n2

∑
i ̸=j

qiqjyiyj(x
⊤R−ixi)(x

⊤R−jxj)

For the expectation first some, note that

1

n
E [qi · (x⊤R−ixi)

2] =
1

n
E[qix⊤R−ixix

⊤
i R−ix] =

1

n
tr
(
E [xx⊤]E [qiR−ixix

⊤
i R−i]

)
=

p

n
tr ΣΣ′,

with Σ′ := E[RΣR]. We deduce that

E
1

(1 + δ)2n2

n∑
i=1

qi · (x⊤R−ixi)
2 =

1

(1 + δ)2
p

n
tr ΣE [RΣR]

=
p

(1 + δ)2
·

{
n−1 trE [R2]Σ, if isotropic,
hard life!, otherwise.

Now, let i, j ∈ [n] with i ̸= j. One computes

E [qiqjyiyj · (x⊤R−ixi)(x
⊤R−jxj)] =

1

1 + δ
E
[
qiqjyiyjx

⊤
i TijΣTjixj

]
,

=
1

1 + δ
(A1 −A2 −A3 +A4),

where Tij := R−ij − Sij/n,

Sij :=
R−ijxjx

⊤
j R−ij

1 + δ
,

A1 := E [qiqjyiyjx
⊤
i R−ijΣR−ijxj ],

A2 :=
1

(1 + δ)n
E [qiqjyiyjx

⊤
i SijΣR−ijxj ],

A3 :=
1

(1 + δ)n
E [qiqjyiyjx

⊤
i R−ijΣSjixj ],

A4 :=
1

(1 + δ)2n2
E [qiqjyiyjx

⊤
i SijΣSjixj ]

17
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We now compute the terms A1, A2, A3, A4.

A1 = E [qiqjyiyjx
⊤
i R−ijΣR−ijxj ] = E [qiqjyiyjx

⊤
i RΣRxj ]

= tr
(
E [(qjyjxj)(qiyixi)

⊤]E [RΣR]
)
= c⊤Σ′c,

where Σ′ := E[RΣR].

Similarly, A3 = A2 with

A2 = E [qiqjyiyjx
⊤
i SijΣR−ijxj ] =

1

(1 + δ)n
E [qiqjyiyjx

⊤
i R−ijxjx

⊤
j R−ijΣR−ijxj ]

=
1

(1 + δ)n
tr
(
E [qiqjyiyjxjx

⊤
i R−ijxjx

⊤
j ]E [R−ijΣR−ij ]

)
Now, computes

E [qiyiqjyjx
⊤
i R−ijxj ] = E [(qiyixi)

⊤R−ij(qjyjxj)] = c⊤E [R−ij ]c ≃ c⊤E [R]c ≃ c⊤R̄c,

E[R−ijΣR−ij ] ≃ E[RΣR] =: Σ′,

from which it follows that

A3 = A2 ≃
c⊤R̄c

1 + δ

1

n
tr ΣΣ′. (54)

Finally, it is easy to show that A4 = O(1/n) = o(1).

Putting things together, we deduce that

E[∥Σ1/2ŵ∥2] ≃ ν :=
ν0

(1 + δ)2
, (55)

where ν0 ≥ 0 is as Proposition 2.

B.4. Asymptotics of α

Proceeding as in the computation of the asymptotics of ∥Σ1/2ŵ∥2 above, we can show that

∥Σ1/2w0∥4Eα2 = E(ŵ⊤Σw0)
2 = Eŵ⊤Σw0w

⊤
0 Σŵ ≃

1

(1 + δ)2
c⊤RΣw0w

⊤
0 ΣRc ≃ (c⊤R̄Σw0)

2

(1 + δ)2
.

On the other hand,

∥Σ1/2w0∥2Eα = Eŵ⊤Σw0 ≃
1

1 + δ
E
1

n

∑
i

qiyix
⊤
i R−iΣw0

≃ 1

1 + δ
E[qiyix⊤

i R−iΣw0]

=
1

1 + δ
E[qiyixi]

⊤E[R−i]Σw0

≃ c⊤R̄Σw0

1 + δ
.

Thus, the variance of α is vanishing, and we deduce that

α ≃ Eα ≃ c⊤R̄Σw0

(1 + δ)∥Σ1/2w0∥2
=:

m0

(1 + δ)∥Σ1/2w0∥
, (56)

where m0 is as given Proposition 2.
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B.5. Final Step (Proof of Proposition 2)

Combining (50), (55), and (56) completes the prove of Proposition 2.

B.6. An Important Lemma

The following result computes the mean vectors µ and c.

Lemma 4. Let ρ ∈ [−1, 1] be the cosine of the angle between w̄s := Σ1/2ws and w̄0 := Σ1/2w0. Let u be the unit-vector
in the direction of w̄s and let v be its completion to an orthonormal basis for the span of w̄s and w̄0 (if w̄s and w̄0 are
parallel, i.e if ρ = ±1, we simply set v = 0).

µ := E(x,y)∼P [yx], c := E(x,y)∼P [q(x
⊤ws)yx] (57)

Then, µ =
√
2/π · Σw0/∥w0∥Σ, and c = β̃u+ βv, where

β̃ = β1 := 2E [q(∥w̄s∥G)Φ (τG)G] , β = β2 := 2E [q(∥w̄s∥G)φ(τG)] , with G ∼ N (0, 1). (58)

In particular, when ρ = ±1 (i.e pruning along the data generator),

β1 = E[q(∥w̄s∥G)|G|], β2 = 0. (59)

Proof. Observe that by instead considering Σ−1/2µ, Σ−1/2c, and defining v := Σ1/2ws and u := Σ1/2w0 when computing
µ, and then u = Σ1/2w0 when computing c, we reduce the problem to the isotropic case x ∼ N (0, Id).

So let u = Σ1/2w0, and WLOG, assume u is aligned with the first canonical axis in Rd, i.e u = ∥u∥e1. Write x = (x1, x⊥)

and v = (v1, v⊥), where x⊥ :=
∑d

j=2 xjej ∈ Rd−1, and v⊥ :=
∑d

j=2 vjej ∈ Rd−1. It is clear that x⊤u = ∥u∥x1, and
x⊤v = v1x1 + g, where g = x⊤

⊥v⊥. Furthermore, x1 and g are independent with distributions N (0, 1) and N (0, ∥v⊥∥2)
respectively. It follows that

Σ−1/2µ = E [sign(x⊤u)x] = E [sign(∥u∥x1)x1]e1 = E [|x1|]e1

=

√
2

π
e1 =

√
2

π

u

∥u∥
=

√
2

π

Σ1/2w0

∥w0∥Σ
,

from which we deduce the prescribed formula for the vector µ. This proves the first part of the claim.

We now establish the formula c = β1u+ β2v. The proof for the formula for µ follows a similar (but simpler) path.

Observe that by instead considering Σ−1/2c, we reduce the problem to the isotropic case x ∼ N (0, Id). We can explicitly
write

u =
w̄s

∥w̄s∥
, v =

Π⊥w̄0

∥Π⊥w̄0∥
, ρ =

w̄⊤
s w̄0

∥w̄s∥∥w̄0∥
, (60)

where Π = uu⊤ and Π⊥ = Id −Π. One can decompose x = G1u+G2v +G⊥ and w̄0 = c1u+ c2v + c⊥

G1 := x⊤u, G2 := x⊤v, G⊥ := P⊥x, (61)

c1 := w⊤
0 u, c2 := x⊤v, c⊥ := P⊥Σ1/2w0, (62)

where P is the projector onto the span of u and v. Note that G1, G2, and G⊥ forms a set of independent random variables.
Moreover, G1 and G2 have distribution N (0, 1), while G⊥ has distribution N (0, Id−2). We obtain

E[q(x⊤ws)sign(x
⊤w0)x] = E [q(x⊤ws)sign(x

⊤w0)x] = E [q(x⊤ws)sign(x
⊤w0)x] (63)

= E [q(∥ws∥G1)sign(c1G1 + c2G2)G1] · u (64)
+ E [q(∥ws∥G1)sign(c1G1 + c2G2)G2] · v (65)
+ E [q(∥ws∥G1)sign(c1G1 + c2G2)G⊥]. (66)
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Now, due independence, the third term decomposes as

E [q(∥ws∥Σ ·G1)sign(c1G1 + c2G2)] · E [G⊥] = 0.

We deduce that

E[q(x⊤ws)sign(x
⊤w0)x] = β1u+ β2v,

where β1 and β2 are as specified in the lemma and we have used the fact that

c1/∥w̄0∥ = ρ, c2/∥w̄0∥ =
√

1− ρ2.

In particular, if ρ = ±1 (meaning that w0 and ws are parallel), then

βk = E [sign(±G1)q(∥w̄s∥ ·G1)Gk] =

{
±β, if k = 1,

0, otherwise.
(67)

We now compute the coefficients β1 and β2. Observe that thanks to Lemma 5, one has

E[sign(G3) | G1] = E[sign(ρG1 +
√

1− ρ2G2) | G1] = 2Φ (τG1)− 1,

E[sign(G3)G2) | G1] = E[sign(ρG1 +
√
1− ρ2G2)G2 | G1] = 2φ(τG1).

Therefore, with r := ∥w̄s∥, we have

β1 := E[q(rG1)sign(G3)G1] = 2E [q(rG1)Φ (τG1)G1]− E [q(rG1)G1] = 2E [q(rG1)Φ (τG1)G1] ,

β2 := E[q(rG1)sign(G3)G2] = 2E [q(rG1)φ(τG1)] ,

where we have used the oddness of the function t 7→ tq(rt) in the last equation on the first line.

Lemma 5. Let G ∼ N (0, 1), and let a, b ∈ R with a ̸= 0. Then,

E[sign(aG+ b)] = 2Φ(b/|a|)− 1, E[sign(aG+ b)G] = 2φ(b/a). (68)

Furthermore, it holds that

lim
a→0

E[sign(aG+ b)] = sign(b), lim
a→0

E[sign(aG+ b)G] = 0. (69)

Proof. Indeed, one computes

E[sign(aG+ b)] = P(aG+ b > 0)− P(aG+ b < 0) = 2P(aG > −b)− 1

=

{
2P(G > −b/a)− 1 = 2Φ(b/a)− 1, if a > 0,

2P(G < −b/a)− 1 = 2Φ(−b/a)− 1, if a < 0.

We deduce that E[sign(aG+ b)] = 2Φ(b/|a|)− 1 as claimed.

C. Proof of Lemma 1 and Lemma 2
”Keep Hard” Examples (Lemma 1). Let b = τ , t =

√
1 + b2 =

√
1 + τ2 = 1/

√
1− ρ2. Using Lemma 4 and standard

formulae1 for the anti-derivative of the function z 7→ zφ(bz)φ(z)

β = β2 = 2E [q(rG)φ(τG)] = 2

∫ α

−α

φ(τz)φ(z)dz =
2

t
φ(0)Φ(tz)

]α
z=−α

= 2
√

1− ρ2φ(0)
(
2Φ(α/

√
1− ρ2)− 1

)
= 2φ(0)

√
1− ρ2ϵ2.

1For example, see Wikipedia https://en.wikipedia.org/wiki/List_of_integrals_of_Gaussian_
functions.
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On the other hand, we have β̃ = β1 = 2E [q(rG)Φ(τG)G] = 2
∫ α

−α
zΦ(τz)φ(z)dz with∫ α

−α

zΦ(τz)φ(z)dz = (b/t)φ(0)Φ(tz)− φ(z)Φ(bz)

]α
z=−α

= (b/t)φ(0)(2Φ(tα)− 1)− φ(α)(2Φ(bα)− 1)

= ρφ(0)(2Φ(α/
√
1− ρ2)− 1)− φ(α)(2Φ(τα)− 1)

= ρφ(0)ϵ1 − φ(α)ϵ2,

which proves Lemma 1

”Keep Easy” Examples (Lemma 2). Indeed, since qKE = 1− qKH , we know from the previous lemma (KH strategy) that

β̃(qKE) = 2E [qKE(rG)Φ(τG)G] = 2E [Φ(τG)G]− 2E [qKH(rG)Φ(τG)G]

= 2E [Φ(τG)G]− 2β̃(qKH) = 2(ρφ(0)− φ(α))− β̃(qKH)

= 2ρφ(0)− 2ρφ(0)ϵ1(qKH) + 2φ(α)ϵ2(qKH)

= 2(ρφ(0)(1− ϵ1(qKH)) + φ(α)ϵ2(qKH))

= 2(ρφ(0)ϵ1 + φ(α)ϵ2).

The computation of β2(qKE) uses a completely analogous idea:

β(qKE) = 2E[qKE(rG)φ(τG)] = 2E[φ(τG)]− 2E[qKH(rG)φ(τG)]

= 2φ(0)
√
1− ρ2 − 2β(qKH)

= 2
(
φ(0)

√
1− ρ2 − φ(0)

√
1− ρ2ϵ1(qKH)

)
= 2φ(0)

√
1− ρ2 (1− ϵ1(qKH))

= 2φ(0)
√
1− ρ2ϵ1(qKE)

This proves Lemma 2.

C.1. Proof of Proposition 1

Using Theorem 4 of Liao and Mahoney’s ”Hessian Eigenspectra of More Realistic Nonlinear Models” https://arxiv.
org/abs/2103.01519 and some basic manipulations, we can write

R ≃ R̄, (70)

where R̄−1 = Ex

[
q

1 + qδ(z)
(Σ1/2Π⊥Σ

1/2 + αα⊤)

]
− zId, (71)

where q := q(x⊤ws) for x ∼ N (0,Σ), α := Σ1/2Πx. Since q is Bernoulli with mean p := P(q = 1), it is clear that

Ex

[
q

1 + qδ(z)

]
=

p

1 + δ(z)
:= t(z).

This further gives

R̄−1 = t(z)Σ1/2Π⊥Σ
1/2 − zId +Σ1/2ΠKΠΣ1/2,

with K := Eu

[
q(u⊤v)

1 + q(u⊤v)δ(z)
uu⊤

]
,

(72)

where u := Σ−1/2x ∼ N (0, Id) and v := Σ1/2ws.

Now, to determine the matrix K, we first rewrite u = (u/
/
, u⊥) and v = (v1, v⊥), where

u/
/
:=

u⊤ws

∥ws∥
∈ R, v1 :=

v⊤ws

∥ws∥
∈ R, (73)

u⊥ := Π⊥u ∈ Rd−1, v⊥ := Π⊥v ∈ Rd−1. (74)
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The advantage of this representation is that

• u⊥ and v⊥ are orthogonal to ws.

• u/
/

and u⊥ are statistically independent.

• u/
/

has distribution N (0, 1).

• u⊥ has distribution N (0, Id−1).

By symmetry of the situation, we know that

K = s(z)Π + s⊥(z)Π⊥,

where s(z) := E[h(w⊤g)G2
1], s⊥(z) := E[h(w⊤g)G2

⊥]

w := (v1, ∥v⊥∥) ∈ R2, g := (G1, G⊥) ∼ N (0, I2),

h(q) :=
q

1 + qδ(z)
.

Combining with (72), we get

R̄−1 = Σ1/2(a(z)Id + b(z)Π)Σ1/2, (75)

where a(z) = t(z)− z, t(z) =
p

1 + δ(z)
, b(z) = s(z)− t(z). (76)

Now, using the Matrix-Inversion Lemma, one can obtain R̄ from R̄−1 as follows:

Σ1/2R̄Σ1/2 = (a(z)Id + b(z)Π)−1 =
1

a(z)

(
Id −

b(z)/a(z)

b(z)/a(z) + 1
Π

)
=

1

a(z)
Π⊥ +

1

b(z) + a(z)
Π.

It suffices to notice that 1/(b(z) + a(z)) = 1/(s(z)− z) = m̃(z) and 1/a(z) = m̄(z) by definition, and the result follows.

C.2. Proof of Theorem 1

Set z = −λ. Recall from Lemma 4 c = β1u + β2v. In Theorem 1, we have the identification β = β2 and β̃ = β1. We
know that R ≃ R̄ = m(z)Π⊥ + m̃(z)Π, where Π = uu⊤. One computes

m0 = (w0/∥w0∥)⊤R̄c =
1

∥w0∥
w⊤

0

(
m(z)Π⊥ + m̃(z)Π

)
(β1u+ β2v),

=
1

∥w0∥
w⊤

0 (β1m̃(z)u+ β2m(z)v) ,

with
w⊤

0 u

∥w0∥
= ρ,

w⊤
0 v

∥w0∥
=

w⊤
0 w0/∥w0∥ − ρ∥w0∥(u⊤w0/∥w0∥)

∥w0∥
√

1− ρ2

=
ρ− ρ2√
1− ρ2

=
√
1− ρ2 =: ω/β2,

Putting things together gives m0 ≃ ωm(z) + ω̃m̃(z) as claimed.

Likewise, one computes

1

n
trR2 ≃ 1

n
tr
(
m′(z)Π⊥ + m̃′(z)Π

)
≃ ϕm′(z),

c⊤R̄c = c⊤
(
m(z)Π⊥ + m̃(z)Π

)
c = (β1u+ β2v)

⊤(m̃(z)Π +m(z)Π⊥)(β1u+ β2v)

= β2
2m(z) + β2

1m̃(z) = β2m(z) + β̃2m̃(z) =: r(z),

c⊤Σ′c = c⊤E [R2]c ≃ c⊤
(
m′(z)Π⊥ + m̃′(z)Π

)
c = β2m′(z) + β̃2m̃′(z) = r′(z),

from which the claimed formula for ν follows.
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C.3. Proof of Corollary 1

As usual, set z := −λ < 0.

(A) For ϕ < p, it is easy to see from formula (16) and Lemma 6 that in the limit z → 0, one has

m(z)→ 1

p− ϕ
,

m̄(z)→ 0,

m̃(z)→ p/γ

p− ϕ
,

m′(z)→ p

(p− ϕ)3
,

m̄′(z)→ 1

p− ϕ
,

m̃′(z)→ p/γ2

(p− ϕ)3
(p(p− ϕ) + ϕγ) =

p

(p− ϕ)3
(
(p− ϕ)p/γ2 + ϕ/γ

)
,

m′(z)

1 + ϕm(z)
→ 1

(p− ϕ)2
.

Furthermore, with m0 and ν0 as defined in Theorem 1, one computes

r(z) = β2m(z) + β̃2m̃(z)→ β2 1

p− ϕ
+ β̃2 p/γ

p− ϕ
=

r0
p− ϕ

,

r′(z) = β2m′(z) + β̃2m̃′(z)→ β2 · p

(p− ϕ)3
+ β̃2 · p/γ2

(p− ϕ)3
(p(p− ϕ) + ϕγ) =

r′0
(p− ϕ)3

,

where r0 and r′0 are as defined in the claim. We deduce that m0/
√

ν0 −m2
0 = a/

√
b− a2 and the result follows from

Theorem 1.

(B) Now consider the case ϕ > p. Observe that m0 =
√

ν0 −m2
0 = −zm0/

√
z2 − z2m2

0. On the other hand, from (16)
we know that

−zm(z) =

√
(p− ϕ− z)2 − 4ϕz − (p− ϕ− z)

2ϕ
(77)

Combining with Lemma 6, we deduce the following limits

−zm(z), z2m′(z)→ c0 := 1− p/ϕ > 0,

m̄′(z)→ p/ϕ

ϕ− p
,

−zm̃(z), z2m̃′(z)→ c0
γ/ϕ+ c0

,

−zm′(z)

1 + ϕm(z)
→ 1

ϕ
.

Furthermore, one computes

−zr(z) = β2
2 · (−zm(z)) + β2

1 · (−zm̃(z)) = β2
2c0 + β2

1

c0
γ/ϕ+ c0

=: c0r0,

z2r′(z) = β2
2z

2m′(z) + β2
1z

2m̃(z) = β2
2c0 + β2

1

c0
γ/ϕ+ c0

= c0r0,

−zm0 =
√
2/π · (−zm(z)ω − zm̃(z)ω̃)→

√
2/πc0 · (ω + ω̃/(γ/ϕ+ c0)) := a,

z2ν0 = pϕz2m′(z) + z2r′(z)− 2ϕ
−zm′(z)

1 + ϕm(z)
· (−zr(z))

→ pϕc0 + r0c0 − 2r0c0 = c0 · (pϕ− r0) =: b.
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We deduce that
m0/

√
ν0 −m2

0 = −zm0/
√

z2ν0 − z2m2
0 = a/

√
b− a2,

and the result follows from Theorem 1.

Lemma 6. We have the following identities:

m′(z) =
m(z)2

1− (1 + m̄(z))2ϕ/p
,

m̄′(z) =
p

(z + ϕm̄(z))2/m̄(z)2 − pϕ
=

p

(ϕ+ 1/m(z))2 − pϕ
,

m̃′(z) = m̃(z)2
(

γϕm′(z)

(1 + ϕm(z))2
+ 1

)
,

r′(z) = β2m′(z) + β̃2m̃′(z).

D. Additional Experimental
D.1. Choice of Generative Model

We evaluate the capabilities of four open-source large-scale pre-trained text-to-image models (Rombach et al., 2022) in a
controlled setup to determine which one performs best for the image-classification task. Each synthetic image is generated
with a simple prompt (class name). We create a dataset of size 130,000 examples and train a ViT-B model on the
synthetic data. Our results (Table 2) show that LDM-1.5 outperforms its more recent counterparts, LDM-XL and LDM-2.1,
despite being an older model. We hypothesize that this is due to the lower diversity of generations in more recent models.
This finding is consistent with previous work (Astolfi et al., 2024), which observed lower diversity in more recent latent
diffusion models. For all of our experiments, we use LDM-1.5 as it is the best performing model.
Table 2: Study on the choice of generative model for the task of ImageNet-100 classification with synthetic data. All
experiments are trained for 50k iterations and the dataset size is a static size of 130k.

Syn. Data Source Real Val. Acc.

LDM-1.4 59.06
LDM-1.5 59.24
LDM-2.1 55.92
LDM-XL 52.8

D.2. Ablations

ω = 0 vs ω > 0 To understand the effect of different components of our framework, we ablate the case where data is
generated through the DP framework, but with a coefficient of zero for the term ω. We also report results using different
values of ω. See results in Table 3 comparing row 1 with rows 2, 3 and 4.

Incremental patience In our experiments, setting the maximum patience value (Tmax) to a fixed number resulted in
the model requesting too much data when the size of the dataset was grown too big. For example, with a fixed patience
of Tmax = 7, for an experiment with initial dataset of size 130k samples, monitoring the validation accuracy every 130k
iterations, meant that in the beginning every example was seen on average 7 times before the patience reached Tmax. But as
we generate more examples throughout the training, with a fixed patience value, each example would not be able to be seen
even at least once. When the dataset grows to be 1.3 million, each example is seen on average of 0.7 times. This resulted in
the model hitting the maximum patience very often. As a result, we incrementally increase the maximum patience value as
the dataset increases in size. See Table 3 for the result that compares the two scenarios (comparing rows 1 and row 5). Note
we found using an incremental patience to be significantly easier to tune. We often start with a patience of 1 and continue
training. However, fixed patience requires more tuning depending on the size of the dataset and the number of training
iterations.

Dataset sampling probabilities One can assume that newly generated examples could be more valuable then previously
generated examples. As a result, we experiment the case where every newly generated example has twice as much probability
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Table 3: Ablation study on ImageNet-100. Given a baseline method with DP, we modify each component of the framework
one-by-one and study the effect of each change. All the experiments are trained for 50k iterations and have the same final
size.

# ω Tmax Sampling Real Val. Acc. Real tr. Acc.

1 0.05 inc. uniform 68.04 69.25
2 0 inc. uniform 61.58 63.09
3 0.03 inc. uniform 66.70 68.00
4 0.07 inc. uniform 66.88 68.66
5 0.05 fixed uniform 67.22 70.38
6 0.05 inc. non-uni. 68.01 69.11

Figure 8: Intermediate stages of reverse sampling. Samples of the x0 approximation using the DDIM sampler. While
blurry, these intermediate samples provide sufficient gradients for entropy guidance, with key features like color and shape
discernible even in early stages.

to be selected when sampling the data batch for a given iteration. We observe that having higher probability does not lead to
statistically significant improvements. See results in Table 3 comparing rows 1 and 7.

D.3. Intermediate stages of reverse sampling

In section 2 we mentioned that DDIM’s x0 approximation is a good approximation to guide the sampling process. In this
section we plot these intermediate examples which are fed to the classifier to compute the entropy of the sample and use it
for guidance in the sampling process. Figure 8 shows that although intermediate samples are noisy, they contain the key
features.

D.4. Studying the effect of ω

In this section we study the effect of dynamically generating the data without entropy guidance versus generating it uniformly
from the beginning. In the first scenario, we use the DP framework, with monitoring the patience variable but using an
ω = 0 which effectively generates with naive sampling. In the second case all the data is generated in advance and no data is
added during training. As it can be see in Figure 9, there is close to no difference between generating all the data in advance
or generating it dynamically if we allow for enough iterations for training.

In this experiment, we evaluate on ImageNet-100 validation set and train all the models for 50,000 iterations.

D.5. Experimental Details

D.5.1. SCALING PLOTS

We have used the Warmup-Stable-Decay (WSD) learning rate scheduler (Hu et al., 2024), which stabilizes the learning rate
throughout most of the training, ensuring effective adaptation to newly generated data. For ImageNet-100, we train on 4
nodes, each with 8 GPUs with a batchsize of 64. For ImageNet-1k, we train on 4 nodes, each with 8 GPUs with a batchsize
of 128. For all the experiments, initial 10% of the iterations is done with linear-warmup and the last 20% of the iterations is
for cool-down with Cosine Annealing. The intermediate steps are constant learning rate. For all these experiments we use
λ = 3 and ω = 0.05.

For ImageNet 100, the learning rate is 0.003 with an EMA momentum of 0.001. For ImageNet-1k, the learning rate is set to
0.0016 with an EMA momentum of 0.001. We also use label smoothing with a value of 0.11. We use Mixup with an alpha

25



Improving the Scaling Laws of Synthetic Data with Deliberate Practice

105 106

Total Data Size

52

54

56

58

60

62

To
p-

1 
Ac

cu
ra

cy

DP, omega=0
Static

Figure 9: there is close to no difference between generating all the data in advance or generating it dynamically if we allow
for enough iterations for training. Both cases have the same scaling behavior.

of 0.5 and CutMix with an alpha of 1.0. Furthermore, we use the AdamW optimizer.

Furthermore, for each setup in our experiments, we apply branch-outs. A branch-out is the same experiment as an initial
setup except that it does not allow additional data starting from a specific epoch. The epoch is selected based on the times
that the Tmax was hit. Meaning a branch out is just before additional data is added to the training set.

N P k N + kP ω Init. Tmax Branch out Epoch IN Val. IN-Sk IN-R*

32000 16000 3 80000 0.05 6 662 59.48 31.49 58.92
32000 16000 4 96000 0.05 6 701 60.54 33.69 59.97
32000 16000 5 112000 0.05 6 767 61.80 35.03 61.24
32000 16000 6 128000 0.05 6 859 62.68 35.95 62.55
32000 16000 8 160000 0.05 6 951 64.40 38.08 63.87
64000 32000 6 256000 0.05 4 469 65.52 43.42 67.32
64000 32000 8 320000 0.05 4 606 66.28 44.33 67.94
64000 32000 11 416000 0.05 4 782 66.92 44.99 68.81
64000 32000 18 640000 0.05 4 1001 67.80 45.25 68.46

130000 130000 6 910000 0.05 14 - 68.28 45.06 70.87
130000 64000 27 1794000 0.05 5 494 68.46 46.33 71.04
130000 64000 47 3138000 0.05 5 618 68.88 45.76 71.26
64000 0 - 64000 0 inf - 56.56 27.86 52.97

130000 0 - 130000 0 inf - 59.44 33.32 55.95
260000 0 - 260000 0 inf - 60.02 33.79 56.74
400000 0 - 400000 0 inf - 61.92 36.03 59.75

2000000 0 - 2000000 0 inf - 62.16 34.97 60.15
4000000 0 - 4000000 0 inf - 62.32 36.43 60.89

Table 4: Details of the results reported in Figure 4 for the ImageNet-100 dataset. All the experiments are trained for 50k
iterations. The variables are based on the notations defined in Algorithm 1. Note that Tmax is incremental.

D.6. Visual examples

Below we provide additional examples of generations throughout time with different ω coefficients (x-axis) of [0.0001, 0.1,
0.3, 0.5, 0.7]. All samples are generated with the same seed. As from top to bottom the epoch number increases.
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N P k N + kP ω Init. Tmax Branch out Epoch IN Val. IN-Sk IN-R

160000 160000 1 320000 0.05 1 134 42.572 39.363 20.987
320000 160000 1 480000 0.05 1 191 44.880 41.987 23.095
320000 320000 1 640000 0.05 1 71 47.910 46.887 27.568
654000 654000 1 1308000 0.05 1 124 50.226 49.867 29.843
654000 654000 2 1962000 0.05 1 156 50.670 51.027 29.944
1300000 650000 10 7800000 0.05 1 246 50.908 49.820 31.217
654000 654000 19 13080000 0.05 1 - 51.198 - 16.776
320000 0 - 320000 0.0 inf - 39.334 32.653 18.495
654000 0 - 654000 0.0 inf - 42.514 33.883 21.303
1300000 0 - 1300000 0.0 inf - 44.116 37.337 23.653
2600000 0 - 2600000 0.0 inf - 45.006 38.667 24.298

10000000 0 - 10000000 0.0 inf - 45.614 40.050 24.762
13000000 0 - 13000000 0.0 inf - 45.628 40.357 -

Table 5: Details of the results reported in Figure 4 for the ImageNet-1k dataset. All the experiments are trained for 100k
iterations. The variables are based on the notations defined in Algorithm 1. Note that Tmax is incremental.
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(a) Class snail. (b) Class daisy.

(c) Class seat belt. (d) Class volcano.

Figure 10: Examples of generated samples for different class prompts across training epochs, with varying entropy guidance
coefficient (ω) (left to right) as the training progresses (top to bottom).
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DP: Direct 
High-entropy 
Generation

High-entropy Selection

Generator

Uniform Selection

Pool of generations:

Figure 11: Efficient and Diverse Sampling with DP: Instead of inefficiently over-sampling and selecting high-entropy
examples, DP directly generates high-entropy samples. This not only improves computational efficiency but also results in
greater visual diversity.
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Initial samples with 
no entropy-guidance 

DP samples with entropy-guidance 
Earlier during training

DP samples with entropy-guidance 
Later during training

Figure 12: Evolution of High-Entropy Samples During Training: Early-stage generations show mainly color diversity,
while later stages exhibit a richer set of transformations, aligning with the classifier’s evolving uncertainties.
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Initial data at the beginning of training:

Final accumulated data at the end of training:

Figure 13: Comparison of Initial and Final Training Data: The initial training data lacks entropy guidance, as the
classifier is untrained. By the end of training, the accumulated dataset contains progressively harder/diverse examples.
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