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Abstract
Gradient-based learning in multi-agent systems
is difficult because the gradient derives from a
first-order model which does not account for the
interaction between agents’ learning processes.
LOLA (Foerster et al., 2018a) accounts for this
by differentiating through one step of optimiza-
tion. We extend the ideas of LOLA and develop a
fully-general value-based approach to optimiza-
tion. At the core is a function we call the meta-
value, which at each point in joint-policy space
gives for each agent a discounted sum of its ob-
jective over future optimization steps. We argue
that the gradient of the meta-value gives a more
reliable improvement direction than the gradient
of the original objective, because the meta-value
derives from empirical observations of the effects
of optimization. We show how the meta-value can
be approximated by training a neural network to
minimize TD error along optimization trajectories
in which agents follow the gradient of the meta-
value. We analyze the behavior of our method
on the Logistic Game (Letcher, 2018) and on the
Iterated Prisoner’s Dilemma.

1. Introduction
Multi-agent reinforcement learning (Busoniu et al., 2008)
has found success in two-player zero-sum games (Mnih
et al., 2015; Silver et al., 2017), cooperative settings (Lauer,
2000; Matignon et al., 2007; Foerster et al., 2018b; Panait &
Luke, 2005), and mixed settings with intra-team cooperation
and inter-team competition (Lowe et al., 2017). General-
sum games, however, have proven to be a formidable chal-
lenge.

The classic example is the Prisoner’s Dilemma, a matrix
game in which two players must decide simultaneously
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whether to cooperate or defect. Both players would prefer
for the other player to cooperate, however neither player by
themselves wants to cooperate lest they be exploited. In fact,
defection is a dominating strategy – it yields higher payoff
regardless of what the opponent does – and learning agents
will quickly find defect-defect, the only Nash equilibrium
of the game.

The game becomes qualitatively different when it is in-
finitely repeated and players can see what their opponents
did in previous rounds: this is known as the Iterated Pris-
oner’s Dilemma (IPD). This introduces the ability to re-
taliate against defection, which enables players to cooper-
ate with limited risk of exploitation, for they can always
switch to defecting if the opponent does not play along. The
most well-known retaliatory strategy is tit-for-tat (Axelrod
& Hamilton, 1981), which cooperates initially and from
then on simply plays whatever the opponent played on the
previous round.

The naive application of gradient descent (see Section 2.1)
fails to find tit-for-tat on the IPD unless initialized suffi-
ciently close to it (Foerster et al., 2018a). Instead, it con-
verges to always-defect, to the detriment of both players.
Similarly, the naive application of Q-learning (Watkins &
Dayan, 1992) produces questionable results, often converg-
ing to solutions where one agent is systematically exploited
by the other (Sandholm & Crites, 1996).

The problem of coordination in general-sum games has re-
ceived considerable attention over the years (Busoniu et al.,
2008; Gronauer & Diepold, 2022). Several works approach
the problem through modifications of the objective, e.g. to
share reward (Baker, 2020), to explicitly encourage inter-
action (Jaques et al., 2019) or encourage fairness (Hughes
et al., 2018). While these approaches may work, they may
achieve cooperation for the wrong reasons. We instead are
interested in achieving cooperation only where self-interest
warrants it. Otherwise our policies may end up exploitable
by other self-interested agents. Moreover, an algorithm that
yields cooperation for altruistic reasons simply passes the
buck: an agent that uses such a learning algorithm may be
exploitable by agents that use purely self-interested learning
algorithms.

Some approaches (Al-Shedivat et al., 2017; Lu et al., 2022;
Kim et al., 2022) seek a meta-policy, i.e. an outer policy for



Meta-Value Learning

choosing the inner policy played in the game. We instead
seek an algorithm that produces a fixed policy that can be
deployed without further learning. Although the method
we propose does produce a meta-policy, it serves only to
help us find good inner policies. Scoping the problem this
way frees us to make assumptions that would otherwise be
unrealistic. We will assume control over the entire joint
learning process. In particular, during training, agents have
access to each other’s parameters and learning algorithms.
After training, the agents can be deployed outside of this
context.

We take inspiration from the recent work Learning with
Opponent-Learning Awareness (LOLA (Foerster et al.,
2018a;c)), the first general learning algorithm to find tit-
for-tat. LOLA mitigates the problems of simultaneous gra-
dient descent by looking ahead: it simulates a naive update
and evaluates the objective at the resulting point. By dif-
ferentiating through the naive update, LOLA effectively
uses second-order information to account for the opponent’s
learning process.

LOLA has a few known issues:

• It fails to preserve the stable fixed points (SFPs) of
the game (Letcher et al., 2018). This is of mainly
theoretical interest, as the SFPs remain close for small
learning rates.

• It is not invariant to policy parameterization; Proximal
LOLA (POLA (Zhao et al., 2022)) addresses this by
replacing all gradient steps by proximal steps, which
however need to be computed by solving an optimiza-
tion problem.

• It is not consistent, in the sense that the simulated
updates do not match the actual updates. Consistent
LOLA (COLA (Willi et al., 2022)) gets around this
with a model of the update that is trained to satisfy a
consistency loss.

• It is not able to look far into the future to accounting for
multiple optimization steps. Extrapolating for multiple
steps is not effective (Foerster et al., 2018a;c), and
neither is increasing the learning rate of the simulated
update.

It is this last issue that we aim to address in this work. Our
contributions are the following:

• We propose a general framework for learning with
learning awareness. Section 2 discusses the surrogate
used by LOLA and its derivatives. In Section 3 we
propose a slightly different surrogate that is naturally
consistent and readily accounts for longer-term and
higher-order interactions.

• We demonstrate the importance of looking far ahead in
Section 5.1, where our algorithm is the only one to find
the Pareto-efficient solution regardless of initialization.

• We show in Section 5.2 that our algorithm finds nonex-
ploitable cooperation, and like LOLA, is able to shape
naive opponents into exploitable cooperation.

Code to reproduce the experiments will be made available
at https://github.com/MetaValueLearning/
MetaValueLearning.

2. Differentiable Games
We consider differentiable games f : R2×n 7−→ R2 that
map pairs of policies to pairs of expected returns,(

y1
y2

)
= f

(
x1

x2

)
,

or y = f(x) for short. For simplicity, we assume x1, x2 ∈
Rn are real-valued parameter vectors that represent policies
through some fixed parametric class (e.g. a lookup table or
a particular neural network architecture).

For notational convenience in working with the concate-
nated vector x we will define the slicing matrices

S1 =
(
In 0n

)
, S2 =

(
0n In

)
,

with In being the n×n identity matrix and 0n the n×n zero
matrix. Now x1 = S1x, x2 = S2x and x = S⊤

1 x1 + S⊤
2 x2.

2.1. Naive Learning

Under naive learning (also known as “simultaneous gradient
descent”), agents update their policies according to

x(t+1) = x(t) + α∇̄f(x(t)) (1)

where ∇̄f(x) =
(

∂f1
∂x1

(x) ∂f2
∂x2

(x)
)⊤

denotes the simul-
taneous gradient and α is a learning rate.

Naive learning is the straightforward application of standard
gradient descent which works extremely well when opti-
mizing a single objective, e.g. a single-agent system or a
supervised learning problem. However, the gradient derives
from a local first-order model – for each element of x, it re-
flects the change in f that can be attained by modifying that
element, but only if all other elements remain constant. For
optimization problems with a single objective, this assump-
tion can profitably be violated, but when different elements
of x optimize different objectives, the gradient generally
fails to be a reliable direction of improvement.

https://github.com/MetaValueLearning/MetaValueLearning
https://github.com/MetaValueLearning/MetaValueLearning
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2.2. Looking Ahead

A number of approaches in the literature aim to address
these issues by “looking ahead”, considering not just the
current parameter values x(t) but also an extrapolation based
on an imagined update. They essentially replace the game f
with a surrogate game f̃ that evaluates f after an imagined
naive update with learning rate α:1

f̃(x) = f(x+ α∇̄f(x)). (2)

This surrogate was to our knowledge first suggested with
LookAhead (Zhang & Lesser, 2010), though in computing
the associated update ∇̄f , the authors considered ∇̄f(x)
constant with respect to x. LOLA (Foerster et al., 2018a)
introduced the idea of differentiating through the imagined
update ∇̄f(x), thus incorporating second-order information
that accounts for interactions between the learning of agents.

Unfortunately, this surrogate trades one assumption for an-
other: while it no longer assumes players to stand still, it
now assumes players to update according to naive learn-
ing. The LOLA authors also proposed Higher-Order LOLA
(HOLA (Foerster et al., 2018a)), where HOLA0 assumes
opponents are fixed, HOLA1 assumes opponents are naive
learners, HOLA2 assumes opponents use LOLA, and so
on. Nevertheless there is always a gap where each player
assumes it looks one step further ahead than their oppo-
nent. To avoid such an assumption, we should like to use a
consistent surrogate such as

f̃⋆(x) = f(x+ α∇̄f̃⋆(x)), (3)

however this is an implicit equation; it is unclear how to
obtain the associated update ∇̄f̃⋆(x).

COLA (Willi et al., 2022) solves the implicit equation by
replacing the surrogate with a model ĝ(x; θ) ≈ ∇̄f̃⋆(x).
The model is trained to satisfy

ĝ(x; θ) = ∇̄f(x+ αĝ(x; θ)) (4)

by minimizing the squared error between both sides. When
the equation is tight, ĝ(x; θ) = ∇̄f̃⋆(x) which lets us train
policies according to the consistent surrogate of Equation
(3).

3. Meta-Value Learning
We now describe our method. First we introduce the meta-
value function, a consistent and far-sighted surrogate, to be
used in place of that of Equation 2. Next, we make a con-
nection to reinforcement learning, which yields a straight-
forward way of approximating the surrogate.

1LookAhead (Zhang & Lesser, 2010), LOLA (Foerster et al.,
2018a) and follow-up work differ slightly from Equation (2) in that
each player extrapolates only their opponent and not themselves.
We provide an exact formulation of LOLA and COLA in Appendix
B.

3.1. The Meta-Value Function

We propose to use the surrogate

V (x) = f(x) + γV (x+ α∇̄V (x)) (5)

which consists of the original objective f plus a discounted
sum of objective values at future optimization iterates. Like
the popular surrogate from Equation (2), it looks ahead in
optimization time, but it does so in a way that is consistent
and naturally covers multiple steps.

When agent policies update according to

x(t+1) = x(t) + α∇̄V (x),

then

V (x(t)) =

∞∑
τ=t

γτ−tf(x(τ)),

and hence differentiating V (x(t)) corresponds to differenti-
ating through many steps of optimization.

3.2. Connection to Q-Learning

This approach has a straightforward reinforcement learning
interpretation: optimization takes place in a continuous
spatial environment in which agents move around by making
small modifications ∆x to their parameters x. The transition
is deterministic and simply adds the joint action ∆x to
the state: the next state is x′ = x + ∆x. The reward is
deterministically f(x′), the expected return on the inner
game f .

As the environment is simple and deterministic, we can
equate the state-value function V (x) with a pair of state-
action Q-functions, one for each player:(

Q1(x,∆x1)
Q2(x,∆x2)

)
=

(
V1(x+ S⊤

1 ∆x1)
V2(x+ S⊤

2 ∆x2)

)
.

It is uncommon to use state-action values when the actions
are continuous, as finding the greedy action involves an
argmax that is usually intractible. However, since we are do-
ing local optimization, we are satisfied with a local argmax,
which is what the simultaneous gradient ∇̄V (x) gives us.

Our method is thus related to independent Q-learning
(Watkins & Dayan, 1992; Busoniu et al., 2008), which we
must point out is not known to converge in general-sum
games. It nevertheless does appear to converge reliably in
practice, and we conjecture that applying it on the level of
optimization effectively simplifies the interaction between
the agents’ learning processes.

3.3. Learning Meta-Values

We do not have direct access to the meta-value function, but
we can learn an approximation V̂ (x; θ) with parameters θ.
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In its simplest form, the learning process follows a nested
loop. In the inner loop, we collect a policy optimization
trajectory according to

x(t+1) = x(t) + α∇̄V̂ (x(t); θ). (6)

Then in the outer loop, we train V̂ by minimizing the TD
error ∑

t

∥f̂(x(t)) + γV̂ (x(t+1); θ)− V̂ (x(t); θ)∥2 (7)

along the trajectory. Here f̂(x(t)) is typically an empirical
estimate of the expected return f(x(t)) based on a batch of
Monte-Carlo rollouts.

While we write V̂ (x; θ) for convenience, this should be
understood to be a separate model for each agent:

V̂ (x; θ) =

(
V̂1(x; θ1)

V̂2(x; θ2)

)
, θ =

(
θ1
θ2

)
.

In our experiments we share parameters θ1 = θ2 to exploit
the symmetry of the games and optimization processes (see
Appendix D).

Once trained, V̂ ≈ V and we can use ∇̄V̂ in place of the im-
plicit ∇̄V . Thus rather than modeling gradient directly (as
COLA does), we model scalars and estimate the gradient of
the scalar by the gradient of the estimated scalar. The result-
ing algorithm is related to Value-Gradient Learning (Fair-
bank & Alonso, 2012), but applied on the meta-level.

4. Practical Considerations
We use a number of established techniques to improve the
dynamics of training value functions (Hessel et al., 2018).
The prediction targets in Equation 7 are computed with a
target network (Mnih et al., 2015) that is an exponential
moving average of the parameters θ. We use distributional
reinforcement learning with quantile regression (Dabney
et al., 2018). Instead of the fully-bootstrapped TD(0) error,
we use λ-returns (Sutton & Barto, 2018) as the targets,
computed individually for each quantile. Appendix C lays
out the learning process with all the techniques discussed in
this section applied.

4.1. Reformulation as a Correction

We use a variant of the method that provides a correction to
the naive gradient ∇̄f rather than replacing it entirely. If we
define U(x) = V (x+ α∇̄V (x)) then we have the Bellman
equation

U(x) = f(x+ α∇̄(f(x) + γU(x)))

+γU(x+ α∇̄(f(x) + γU(x))).

Now agents follow the gradient field ∇̄f(x)+γ∇̄U(x), and
we minimize

∑
t

∥f̂(x(t+1)) + γÛ(x(t+1); θ)− Û(x(t); θ)∥2

with respect to the parameters θ of our model Û(x; θ).

This variant is more strongly grounded in the game f and
helps avoid the detachment from reality that plagues boot-
strapped value functions. A drawback of this approach is
that the naive gradient term ∇̄f(x) will typically have to be
estimated by REINFORCE (Williams, 1992).

4.2. Variable Discount Rates

We also set up the model (be it Û or V̂ ) to condition on
discount rates γ1, γ2, so that we can train it for different rates
and even rates that differ between the players. This is helpful
because it forces the model to better understand the given
policies, in order to distinguish policies that would behave
the same under some fixed discount rate but differently
under another. When the context calls for it, we will make
this structure explicit by writing f(x)+γ⊙Û(x; θ, γ) where
γ is now a vector and ⊙ denotes the elementwise product.
During training, we draw γ1, γ2 ∼ Beta (1/2, 1/2) from the
standard arcsine distribution to emphasize extreme values.

Varying γ affects the scale of V,U and hence the scale of
our approximations to them. This in turn results in a change
in the effective learning rate when we take gradients. To
account for this, we can normalize the outputs and gradients
of V,U by scaling by 1 − γ before use. However, this is
numerically problematic for values of γ close to 1. Instead,
we multiply the meta-reward term f(x) in the Bellman equa-
tion by 1− γ. This ensures our models learn the normalized
values instead, which will fall in the same range as f(x).
Appendix A has a derivation.

4.3. Exploration

Our model V̂ provides a deterministic (meta-)policy for
changing the inner policies x. For effective value learning,
however, we need exploration as well as exploitation. A
straightforward way to introduce exploration into the system
is to perturb the greedy transition in Equation 6 with some
additive Gaussian noise (Heess et al., 2015). However, this
leads to a random walk that fails to systematically explore
the state space. Instead of perturbing the actions, we per-
turb the policy by applying noise to the parameters θ, and
hold the perturbed policy fixed over the course of an entire
optimization trajectory. Specifically, we randomly flip signs
on parameters in the final layer of V̂ ; this results in a per-
turbed value function that incentivizes different high-level
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characteristics of the inner policies x.2 The trajectories so
collected are entirely off-policy and serve only to provide
a variety of states. In order to train our model on a given
state x, we do a short on-policy rollout with the unperturbed
parameters θ and minimize TD error there.

5. Experiments
The method is evaluated on two environments. First, we
demonstrate the advantage of being able to look farther
ahead on a two-dimensional game that is easy to visualize.
Next, we turn to the IPD to demonstrate that our method
does not simply cooperate unconditionally, but in fact learns
to play tit-for-tat.

5.1. Logistic Game

We analyze the behavior of several algorithms on the Logis-
tic Game (Letcher, 2018), a two-player game where each
player’s policy is a single scalar value. Thus the entire
joint policy space is a two-dimensional plane, which we can
easily visualize. The game is given by the function3

f(x) = −
(

4σ(x1)(1− 2σ(x2))
4σ(x2)(1− 2σ(x1))

)
− x2

1x
2
2 + (x1 − x2)

2(x1 + x2)
2

10000
. (8)

Figure 1 shows the structure of the game. There are two
stable fixed points – one in the lower left (A) and one in the
upper right (B). Both players prefer B to A, however to get
from A to B requires coordination: the horizontal player
prefers left if the vertical player plays low and vice versa.

We look at this game through the lens of basins of attrac-
tion, and how different algorithms affect them (Figure 2b).
Following naive gradients (lola:0.0,hola2:0.0), players con-
verge to whichever solution is nearest; the basins of attrac-
tion meet at a diagonal line through the origin. LOLA grows
the basin of the preferred solution B, but only slightly and
increasing the extrapolation step size α does not help much.
HOLA2 grows the basin of B around the edges, but suf-
fers from instabilities around the origin (a saddlepoint). We
found HOLA3 to be significantly worse than HOLA2 and
did not pursue that direction further. COLA (our implemen-
tation) makes significant improvements around the edges
and around the origin. Finally, our meta-value approach

2For the ∇̄f(x) + γ∇̄Û(x; θ) formulation, we find that the
effect of the exploration noise is diminished because the ∇̄f(x)

term is unaffected; for this reason we simply use ∇̄Û(x; θ) during
exploration.

3(Letcher, 2018) use the divisor 1000 in Eqn (8), however it
does not match their plots. Moreover we have flipped the sign
to turn this into a maximization problem in accordance with our
notation.

Figure 1: The Logistic Game. The left panel displays the
contours of player 1’s objective f1(x), the right panel sim-
ilarly for player 2. Player 1’s policy x1 is a horizontal
position, player 2’s policy x2 is a vertical position. Both
players prefer solution B over solution A, but cannot uni-
laterally go there. Naive learning converges to whichever
solution is closest upon initialization.

MeVa is able to make the basin of B arbitrarily large. When
γ > 0.9, it converges to the preferred solution B from
anywhere in the surveyed area. We also show some actual
optimization trajectories in Figure 2a.

The meta-value approach gives us an additional hyperpa-
rameter γ to control the extent to which we look ahead. By
increasing γ, we can make the basin of B arbitrarily large.
Even if agents initialize close to A, it is worth moving in a
direction that immediately decreases f , because they know
(through the gradient of the meta-value) that doing so will
eventually increase f .

We use hyperparameters α = 1,M = 16, T = k = 50. The
model is trained for 1000 outer loops using Adam (Kingma
& Ba, 2014) with learning rate η = 10−3 and batch size
128. In this experiment we do not use a target network or
λ-returns, nor do we use exploration. More detail can be
found in Appendix D.

5.2. Iterated Prisoner’s Dilemma

The Iterated Prisoner’s Dilemma is a repeated matrix game
in which two players choose whether to cooperate (C) or
defect (D) with one another based on what happened in
previous turns. As in (Foerster et al., 2018a), we consider
policies with one turn’s worth of memory; this class contains
tit-for-tat as well as always-defect, with tit-for-tat being the
preferred solution that naive learning fails to find. Specif-
ically, a policy consists of five numbers: the log-odds of
cooperation in the initial state, and after each of the four
possible joint actions (DD,CD,DC,CC). We use the (nor-
malized) exact value function formulation given in (Foerster
et al., 2018a) with discount rate 0.96 (not to be confused
with our meta-discount rate γ).

We trained 8 models Û from different random seeds, and
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(a) Optimization trajectories. We took a random set of
policy pairs and, for each panel, optimized them according
to the algorithm under consideration. Each curve shows
an optimization trajectory, typically finishing in or close to
either A or B.

(b) Basins of attraction. For each panel, we took a grid of policy space points
and optimized them according to the algorithm under consideration. White
cells indicate that the corresponding point ended up in the positive quadrant
x1, x2 > 0, black cells ended up in other quadrants (typically the negative
quadrant).

Figure 2: Logistic Game behaviors of different algorithms (rows) with different settings (columns).

for each model produced 256 policy pairs by following
gradients of f(x) + γÛ(x; θ), for a total of 2048 policy
pairs. Figure 3a shows our results, averaged over the policy
pairs. The leftmost panel shows the expected returns f(x)
obtained by the policy pair. At low γ, policies converge to
mostly defective strategies and approach the DD payoff -2.
As γ increases, cooperation becomes more prevalent, with
returns approaching the CC payoff of -1.

Now that we have exhibited cooperation, we must show that
it is not exploitable. For each pair of agents that we trained,
we hold one fixed and find the (self-interested) best response
policy using standard gradient descent. If our agent were
to cooperate or defect unconditionally, the best response
would be to defect, in which case our agent would obtain -3
or -2 respectively. Instead, the best response is to cooperate
(Figure 3a, middle), which indicates that our agent uses the
threat of retaliation to enable mutual cooperation.

Finally, we demonstrate opponent shaping (Foerster et al.,
2018a). We train a pair of agents, one following meta-value
gradients and the other following naive gradients. Since we
trained our model with variable values of γ (Section 4.2),

following naive gradients is a special case of following
meta-value gradients. So to implement this, we can simply
use ∇̄f(x) + γ ⊙ ∇̄Û(x; θ, γ) with γ2 = 0 and γ1 set to
some fixed value. The right-hand panel of Figure 3a shows
our ability to shape the naive opponent into exploitable
cooperation as γ1 → 1.

Figure 3b shows LOLA’s behavior on the same experiment.
LOLA exhibits qualitatively the same results. However, the
α hyperparameter can only be increased so far before results
deteriorate. MeVa retains the desirable features of LOLA,
but is easier to extend farther into the future.

Our demonstration of opponent shaping doubles as a demon-
stration of how MeVa may be applied in the case where
different agents use different learning algorithms. Since we
train our model with variable γ, we can immediately use it
for any combination of different γs. In general, however, we
will need to train the model for the specific downstream situ-
ation, because like any other value function, the meta-value
function has an implicit dependency on the meta-policy with
which it is co-trained.

We used hyperparameters α = 2,M = 32, T = 100, k =
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(a) Behavior of MeVa on the IPD, as a function of (meta)discount
rate γ. Each plot shows mean±standard error of the IPD value
(expected return) computed over 2048 policy pairs (256 per model
seed).

(b) Behavior of LOLA on the IPD, as a function of extrapolation
step size α. Each plot shows mean±standard error of the IPD
value (expected return) computed over 256 policy pairs.

Figure 3: Behavior of MeVa (top) and LOLA (bottom) on
Iterated Prisoner’s Dilemma.
Left: two agents trained simultaneously, both following
MeVa (top) or LOLA (bottom). Higher values of γ, α lead
to policies that yield higher returns through cooperation.
Middle: after training two agents following MeVa/LOLA
(top/bottom), we hold one fixed and train (using the naive
gradient) another agent against it to find the best response.
The best response is cooperative, which means the agent
exhibits nonexploitable cooperation.
Right: two agents trained simultaneously, one following
MeVa/LOLA (top/bottom), the other following naive gradi-
ents. The naive agent is led to exploitable cooperation.

10, ρ = 0.99, λ = 0.9. The model is trained for 2000 outer
loops, using AdamW (Loshchilov & Hutter, 2017) with
learning rate 10−4 and batch size 128. During exploration,
we flip signs on the last layer of the model (see Section 4.3),
such that on average 1

16 of the units are perturbed. Full
details can be found in Appendix E.

6. Limitations
The method requires access to and control over the param-
eters and learning processes of all agents. This is not nec-
essarily unrealistic – our aim is to devise an algorithm to
learn a policy for the game f that can then be deployed in
the wild without further training.

The meta-value function is a function over (joint) policies.
In practice, policies will often take the form of neural net-

works, and so will our approximations to the meta-value
function. Conditioning neural networks on other neural net-
works is a major challenge (Harb et al., 2020). In addition,
the large parameter vectors associated with neural networks
will quickly prohibit handling batched optimization trajec-
tories.

Our discount rate γ, like LOLA’s step size α, is hard to
interpret. Its meaning changes significantly depending on
the learning rate α and the parameterization of both the
model V̂ and the policies x. Future work could explore the
use of proximal updates, like POLA (Zhao et al., 2022) did
for LOLA.

It is well known that LOLA fails to preserve the Nash equi-
libria of the original game f . The method presented here
shares this property.

7. Conclusion
We have introduced Meta-Value Learning (MeVa), a new
perspective on learning with learning awareness. The meta-
value function is naturally consistent and far-sighted, and
lends itself to standard reinforcement learning treatment.
Our method exhibits LOLA-like behavior on the IPD, in-
cluding opponent shaping, and surpasses LOLA on the Lo-
gistic Game due to its ability to look ahead.

The main weakness of the method as it stands is scalability,
particularly to policies that take the form of neural networks.
We aim to address this in future work using policy finger-
printing (Harb et al., 2020).

Finally, we note that although we develop our method in the
context of multi-agent reinforcement learning, it is a general
meta-learning approach that readily applies to optimization
problems with a single objective.
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A. Normalized Bellman Equation
We introduce a slight tweak to the usual Bellman equation

V (st) = rt + γV (st+1)

to address a scaling issue. Suppose the rewards fall in the range (0, 1). Then V will take values in the range
(
0, 1

1−γ

)
. We

can multiply through by 1− γ to obtain a new equation that will force values Ṽ into the same range as the rewards:

(1− γ)V (st) = (1− γ)rt + γ(1− γ)V (st+1)

Ṽ (st) = (1− γ)rt + γṼ (st+1).

This is useful in our case because otherwise changing γ would affect the scale of the gradient ∇̄V and hence change the
effective learning rate. We also found it helpful when using distributional RL with a fixed binning – the convex-combination
form of the right-hand side guarantees it will fall within the same range as the left-hand side. Finally, we find the normalized
values easier to interpret.

B. LOLA, HOLA, COLA
LOLA (Foerster et al., 2018c) (sans Taylor approximation) uses the update

∇̄fLOLA(x) = ∇̄
(

f1(x+ αS⊤
2 S2∇̄f(x))

f2(x+ αS⊤
1 S1∇̄f(x))

)
.

This differs from what we presented in Equation 2 in that each player only considers their opponent’s update, and not their
own.

HOLAn (Foerster et al., 2018a;c) (again sans Taylor approximation) applies the LOLA surrogate recursively to itself:

∇̄fHOLA(n)(x) = ∇̄
(

f1(x+ αS⊤
2 S2∇̄fHOLA(n−1)(x))

f2(x+ αS⊤
1 S1∇̄fHOLA(n−1)(x))

)
,

with base case ∇̄fHOLA(0)(x) = ∇̄f(x). Notice that HOLA1 recovers LOLA: ∇̄fHOLA(1)(x) = ∇̄fLOLA(x).

COLA (Willi et al., 2022) considers

∇̄fCOLA(x) = ∇̄
(

f1(x+ αS⊤
2 S2∇̄fCOLA(x))

f2(x+ αS⊤
1 S1∇̄fCOLA(x))

)
,

an implicit equation similar to Eqn (3). The equation is solved with a model ĝCOLA(x; θ) ≈ ∇̄fCOLA(x) of the gradient of
the implicit surrogate. The model is trained to satisfy

ĝCOLA(x; θ) = ∇̄
(

f1(x+ αS⊤
2 S2ĝ

COLA(x; θ))
f2(x+ αS⊤

1 S1ĝ
COLA(x; θ))

)
by minimizing the squared distance between the two sides of this equation.

C. Full Algorithm
Algorithm 1 details the learning process we use after incorporating the techniques discussed in Section 4. Note that after
introducing quantile distributional RL, Û(x; θ, γ) ∈ R2×M is a matrix with a column for each of the M quantiles. Whenever
we take gradients with respect to x, we use the gradients of the mean, denoted ÛE(x; θ, γ) =

1
M Û(x; θ, γ)⃗1 where 1⃗ is the

vector of ones. The divergence D(ŷ, y) is the quantile regression loss (Dabney et al., 2018) between the predictions ŷ and
the targets y.
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Algorithm 1 Meta-Value Learning.

Input: Learning rates η, α, exploration trajectory length T , stride k, bootstrapping rate λ, target network inertia ρ.
Initialize meta-value functions θ1, θ2 and target networks θ̄ = θ.
while θ has not converged do

Initialize policies x̃(0); draw γ̃ (Section 4.2); draw θ̃ (Section 4.3).
t← 0
while t < T do

for τ = t . . . t+ k do
x̃(τ+1) = x̃(τ) + α∇̄f̂(x̃(τ)) + αγ̃ ⊙ ∇̄ÛE(x̃

(τ); θ̃, γ̃)
end for
t← t+ k
Let x(0) = x̃(t); draw γ (Section 4.2).
for τ = 0 . . . k − 1 do
x(τ+1) = x(τ) + α∇̄f̂(x(τ)) + αγ ⊙ ∇̄ÛE(x

(τ); θ, γ)
end for
for i ∈ 1, 2 do
Y

(k)
i = Ûi(x

(k); θ̄i, γ) ∈ RM

for τ = k − 1 . . . 0 do
Y

(τ)
i = (1− γi)f̂i(x

(τ+1)) + γi

(
(1− λ)Ûi(x

τ+1; θ̄i, γ) + λY
(τ+1)
i

)
end for
θi ← θi − η∇Li(θi) where Li(θi) =

1
k

∑k−1
τ=0 D(Ûi(x

(τ); θi, γ), Y
(τ)
i ).

end for
θ̄ ← θ̄ + (1− ρ)(θ − θ̄)

end while
end while

D. Logistic Game Details
We use the V̂ (x; θ, γ) formulation. While conceptually, each agent maintains their own model V̂1(x; θ1, γ), the implementa-
tion combines the computation of both models. The structure of the resulting single model can be seen in the following
diagram:

(
x1

γ1

)
MLP1 z1

(
z1
z2

)
MLP2 V̂1

(
x2

γ2

)
MLP1 z2

(
z2
z1

)
MLP2 V̂2

We first feed the xi, γi pairs into a multi-layer perceptron (MLP) to obtain a representation zi of each agent. Then for each
agent we concatenate their own representation with that of their opponent. This is run through a second MLP which outputs
the quantile estimates.

The dotted lines in the diagram indicate parameter sharing between the two players (θ1 = θ2), which exploits the symmetry
of the games under consideration (specifically f1(x1, x2) = f2(x2, x1)) to improve sample efficiency of the learning
process.

The MLPs consist of a residual block (Srivastava et al., 2015; He et al., 2016) sandwiched between two layer-normalized
GeLu (Hendrycks & Gimpel, 2016) layers. The residual block uses a layer-normalized GeLu as nonlinearity, and uses
learned unitwise gates to merge with the linear path. Each layer has 64 units.

We use the same model structure for COLA, albeit without quantile regression. In the case of COLA we pass the inner
learning rate α in place of γ, and we trained a single model for values of α ∼ U [0, 10].
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Policies x̃(0)
i ∼ U(−8,+8) are initialized uniformly on an area around the origin.

We used hyperparameters α = 1,M = 16, T = k = 50. In this experiment we do not use a target network or λ-returns (i.e.
λ = 0), nor do we use exploration (i.e. θ̃ = θ). The model is trained for 1000 outer loops using Adam (Kingma & Ba, 2014)
with learning rate η = 10−3 and batch size 128. Training takes about a minute on a single GPU.

E. Iterated Prisoner’s Dilemma Details
For the IPD we use the Û(x; θ, γ) formulation. We use a similar shared-model structure as for the Logistic Game (see the
diagram in the previous section), but we use two residual blocks in each MLP. In the final nonlinear layer, the GeLu is
replaced by a hyperbolic tangent – a signed nonlinearity that enables our exploration scheme. During exploration, we flip
signs on the units in this layer with Bernoulli probability 1/16.

Policy logits are initialized from a standard Normal distribution, i.e. x̃(0)
i ∼ N (0, I).

We used hyperparameters α = 2,M = 32, T = 100, k = 10, ρ = 0.99, λ = 0.9. The model is trained for 2000 outer loops,
using AdamW (Loshchilov & Hutter, 2017) with learning rate 10−4, batch size 128 and 10−2 weight decay. Training the
model on the IPD takes about half an hour on a single GPU.
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