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Abstract
Despite the proven utility of large language mod-
els (LLMs) in real-world applications, there re-
mains a lack of understanding regarding how they
leverage their large-scale pretraining text corpora
to achieve such capabilities. In this work, we
investigate the interplay between generalization
and memorization in pretrained LLMs at scale,
through a comprehensive n-gram analysis of their
training data. Our experiments focus on three gen-
eral task types: translation, question-answering,
and multiple-choice reasoning. With various sizes
of open-source LLMs and their pretraining cor-
pora, we observe that as the model size increases,
the task-relevant n-gram pair data becomes in-
creasingly important, leading to improved task
performance, decreased memorization, stronger
generalization, and emergent abilities. Our results
support the hypothesis that LLMs’ capabilities
emerge from a delicate balance of memorization
and generalization with sufficient task-related pre-
training data, and point the way to larger-scale
analyses that could further improve our under-
standing of these models.

1. Introduction
Pretrained large language models (LLMs) have shown im-
pressive performance on many text-based tasks, but there
is a debate about whether they are generalizing on unseen
test cases or simply memorizing from their vast training
data (Magar and Schwartz, 2022; Srivastava et al., 2024;
Bender et al., 2021). Previous works have studied LLM
memorization as exactly recalling training examples (Zhang
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et al., 2023; Jiang et al., 2024; Carlini et al., 2022). However,
usually, we aim to utilize more sophisticated LLM capabili-
ties, which cannot be explained by copying training data. In
this paper, we extend the definition of memorization beyond
exact copying and study how pretraining data contributes to
higher LLM capabilities. We define memorization as the
degree of similarity between LLM generations and training
data, and generalization as how different the generated con-
tent is from training data. Several papers have studied the
interplay between memorization and generalization (Feld-
man, 2020; Feldman and Zhang, 2020; Zhang et al., 2023),
but analyzing pretrained LLMs at scale remains challenging.
1 We propose to estimate the pretraining data distribution by
n-gram pairs mined from task data. The appearance of such
pairs in training data can be regarded as weak supervision
of the testing task. We conduct experiments with the Pythia
(Biderman et al., 2023) and OLMO-7B (Groeneveld et al.,
2024) models on translation, factual question answering,
and reasoning tasks. Our findings show that:

1. Task-relevant n-gram pairs are better representative of
task-related data than single n-grams.

2. Task performance is positively related to n-gram pair
frequency.

3. The phenomenon of emergent abilities can be viewed as
a mismatch between adequate task-related pretraining data
and inadequate model size.

4. Small LMs memorize while large LMs generalize.

5. Instruction tuning helps LM make better use of pretrain-
ing data.

To the best of our knowledge, this is the first effort to analyze
the origin of LLM capabilities on full pretraining corpora.

2. Problem Setting
The pretraining corpus of LLMs is usually huge, with bil-
lions even trillions of tokens. It is hard to directly analyze
it without aggressive down-sampling (Kirchenbauer et al.,
2024). In order to model the whole pretraining corpus, we

1Related work can be found in Appendix C due to space limit.
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Figure 1: An overview of our proposed analysis pipeline. For the chosen evaluation task (e.g. WMT (Callison-Burch et al., 2009), MMLU
(Hendrycks et al., 2020)), we first mine task-relevant n-gram pairs by matching semantically similar n-grams from the task input x and
target y, respectively. Then we search these n-grams across the pretraining corpus (e.g. the Pile (Gao et al., 2020)) using the WIMBD
framework (Elazar et al., 2024) to obtain their counts and source documents. Finally, we conduct in-depth analyses with the obtained
pretraining data statistics and LM inference results as detailed in Section 2.

adopt a simple but scalable way of modeling text distribu-
tion: n-gram frequency. Our proposed modeling approach
is inspired by the classic n-gram LMs, with modifications
to better serve our use cases.

Suppose we have a language model (LM) pretrained on a
corpus D. Considering the setting when we try to prompt
the LM with an instruction text u and an input text x for
an output text sequence ŷ. We denote the task that we are
trying to perform by T and the ground truth output by y.
Then we can denote the LM probability of the generated
output ŷ by PLM(ŷ|u, x). 2

Suppose a text sequence y can be tokenized into sequences
of tokens in the form of [y1, y2, ..., yL], yi ∈ V , where V
is the vocabulary. Define the set of all n-grams in y by
Gn(y) = {y[i:i+n−1]}i∈[1,L−n]. Suppose s ∈ Gn(y) for
some n > 0, then the n-gram count is defined as C(s, y) =∑

si∈Gn(y)
1si=s.

We define a n-gram pair (sx, sy) to be a pair of n-grams that
are semantically related to each other in the context of task
T , with sx ⊆ x, and sy ⊆ y. Denote C((sx, sy), (x, y)) =
min{C(si, x), C(sj , y)} to be the number of occurrences of
the n-gram pair (sx, sy) in the example (x, y) with sx ∈ x
and sy ∈ y. Let Hn(T ) be the set of relevant n-gram pairs
mined from a set of data DT = {(xi, yi)}i from the task T .
Denote all possible combinations of input-output n-gram
pairs by An(T ) = ∪i[Gn(xi)×Gn(yi)]. We then filter all
pairs (sxj , s

y
j ) ∈ An(T ) by a similarity score f(sxj , s

y
j ) =

cos(E(sxj ), E(syj )), with a threshold γT ∈ (0, 1) treated as
a hyperparameter. Here E is a pretrained text embedding
model, and cos(·, ·) denotes the cosine similarity between

2In practice, we use a minimal instruction template to indicate
the input and output.

two vectors:

Hn(T ) = {(sxj , s
y
j ) | f(s

x
j , s

y
j ) > γT , (s

x
j , s

y
j ) ∈ An(T )}.

For tasks with extensive training data, we use a separate
large training set as DT to construct Hn(T ). For tasks
without enough training data to ensure n-gram coverage of
testing data, we directly use the testing data as DT .

3. Experiment Setting
In this section, we introduce the datasets and models we use
for analyzing the memorization and generalization behav-
iors of LLMs.

Models and Pretraining Corpus We utilize two families
of fully open-sourced LMs: Pythia (Biderman et al., 2023)
and OLMo (Groeneveld et al., 2024). Both of them are
autoregressive Transformer-decoder-based LMs. Pythia (Bi-
derman et al., 2023) is a classic suite of fully open-sourced
LMs with a wide range of model sizes ranging from 13M
to 12B parameters. All Pythia models are trained on Pile
(Gao et al., 2020), a diverse pretraining corpus consisting
of approximately 207B tokens. OLMo (Groeneveld et al.,
2024) is a more recent, more performant suite of fully open-
sourced LMs, pretrained on a larger corpus Dolma (Soldaini
et al., 2024) with approximately 3T tokens, and instruction-
tuned on Tulu (Wang et al., 2023b; Ivison et al., 2023).

Downstream Tasks We use three types of tasks: transla-
tion, factual question answering, and reasoning with multi-
ple choices.

For translation, we use the WMT-09 dataset with a 2.5K
testing set, consisting of European languages aligned with
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English translations using the Laser multilingual embedding
model from the Europarl corpus. We use Pythia models
and n = 2 for n-gram analysis, as it captures low-resource
language data well. For factual question answering, we use
the TriviaQA dataset with 95K question-answer pairs. We
mine n-gram pairs using the E5 embedding model from the
training set and use Pythia models on the 10k testing set. We
regard answers as one n-gram and use n = 5 for analysis
to capture task-specific training data. For reasoning with
multiple choices, we use the MMLU benchmark covering
57 tasks. We mine n-gram pairs from the testing sets using
the E5 model and use Pythia-6.9b-Tulu models. We use
n = 5 for analysis, similar to TriviaQA.

Searching over Pretraining Data at Scale Given the
scale of the LLM pretraining corpus, searching over the
whole corpus D is non-trivial. We utilize the What’s In My
Big Data? (WIMBD) platform (Elazar et al., 2024), which
is designed to search and retrieve huge text corpora through
API calls, facilitating the exploration and analysis.

4. Quantify n-gram Contribution by Gradient
To justify the usage of n-gram pairs and understand
the contribution of the task-relevant n-gram pairs to
LLM’s capability of solving the task, we propose a
gradient-based analysis inspired by Han et al. (2023). More
specifically, we quantify the contribution of a n-gram by
the similarity between its pretraining loss gradient and
the task example gradient. For a task-relevant n-gram
pair (sx, sy), with testing task example (x, y), and sx ∈ x,
sy ∈ y, the task gradient gT (sy) is defined as: gT (sy) =

∇θ

∑L−n
i=1

[
− logPLM(y[i:i+n−1]|u, x, y[1:i−1])1y[i:i+n−1]=sy

]
.

Here θ denotes all parameters of the LM. To com-
pute the gradient of the n-gram pair (sx, sy) in the
pretraining corpus D at the pretraining time, we first
retrieve K documents containing the n-gram pair from
pretraining corpus D. Here a maximum number of
retrieved documents is set for computing efficiency,
as back-propagating through a huge number of docu-
ments for each n-gram pair is infeasible for our study.
Denoting the retrieved documents by {d1, d2, ..., dK},
the pretraining gradient gD(sy) is defined as: gD(sy) =

∇θ

∑K
j=1

∑L−n
i=1

[
− logPLM(dj[i:i+n−1]|d

j
[1:i−1])1dj

[i:i+n−1]
=sy

]
.

In practice, we clip long documents to a maximum length to
fit into the GPU memory. Then we compute the contribution
of the pretraining data containing task-related n-gram pairs
to the task example (x, y) by cosine similarity between the
task gradient and pretraining gradient:

βp(x, y,D) =
∑

(sx,sy)∈Hn(T )

C((sx, sy),D)cos(gT (sy), gD(sy))

Similarly, we can compute the contribution of task-relevant
single n-grams βs(x, y,D) by computing the pretraining
gradient over a set of documents that only contain sy . Then
we average the per-example contribution scores over the
testing set and n-grams, to get an overall contribution of
task-relevant n-gram pairs and single n-grams to the task.
We plot the average gradient similarity over the testing set
in Figure 2, with the solid line representing the n-gram pair
data βp(x, y,D) and the dashed line representing the single
n-gram data βs(x, y,D).

Across all three datasets, we observe that the n-gram pair
data consistently contribute more to the task than the single
n-gram data, over different model sizes and types, which
confirms our hypothesis that task-relevant n-gram pairs are a
good indicator of task-relevant pretraining data. For WMT
and TriviaQA, we observe a U-shape trend in the gradi-
ent similarity in general, when model size increases. This
indicates that LMs first become less dependent on the pre-
training data when the model size grows, then become more
dependent. When combined with other results, this can be
understood as the model transitioning from memorizing the
surface form of pretraining data to being able to compose
and generate new content based on the pretraining data. We
will revisit this point later.

For MMLU, we observe that the instruction-tuned model
(right) in fact has a larger gradient similarity than the base
model (left), which implies that instruction-tuning improves
LMs’ ability to utilize the task-related pretraining data to
solve difficult tasks.

5. Estimating Data Distribution
In this section, we model the data distribution with the fre-
quency of the previously defined n-gram pairs. Denote
C((sx, sy), (x, y)) = min{C(sx, x), C(sy, y)} to be the
number of occurrences of the n-gram pair (sx, sy) in a
task example (x, y). We can also define the n-gram paral-
lel pair count in a document string d by C((sx, sy), d) =∑

si∈Gn(d)

∑
sj∈Gn(d)

1si=sx1sj=sy . If we define the pre-
training data distribution to be over all the possible n-
grams, then the empirical data probability of a n-gram
pair (sx, sy) would be PD(s

x, sy) ∝ C((sx, sy),D) =∑
d∈D C((sx, sy), d).

5.1. Task-related Data Frequency v.s. Task Performance

In this section, we show a strong positive correlation be-
tween the frequency of task-related data in the pretraining
corpus and LM’s task performance. We also show that some
abilities appear to be emergence because of the mismatch
between data and model size.

We can estimate the probability of task T related data ap-
pearing in the pretraining corpus as the probability of any
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Figure 2: Cosine similarity between n-gram task gradient and pretraining gradient. A: Gradient v.s. Pythia model size with WMT; B:
Gradient v.s. Pythia model size with TriviaQA; C: Gradient v.s. different tasks in MMLU with base (left), and instruction-tuned (right)
OLMo-7B. Solid: Single Instances. Dotted: X-Y Pairs.

of the task-relevant n-gram pairs appearing:

PD,n(T ) =
∑

(sx,sy)∈Hn(T )

PD(s
x, sy) ∝

∑
(sx,sy)∈Hn(T )

C((sx, sy),D)

We then investigate the relationship between LMs’ task
capabilities and task-related pretraining data distribution
by plotting task performances against the sum of all task-
related n-gram pair counts. For WMT, we count relevant
n-gram pairs for each language and use BLEU as the per-
formance metric. For TriviaQA, we group testing examples
by n-gram pair matching count and use the exact match
rate. Figure 3 shows that task performance generally in-
creases with the number of task-related n-gram pairs when
the model size is large enough. We observe a threshold
model size (around 400M) below which performance re-
mains near-random regardless of n-gram pair count. At
the threshold, we see a sudden phase change, or "emergent
abilities," where performance jumps from near-random to
reasonable, with more significant jumps for more n-gram
pairs found in pretraining. This suggests emergent abili-
ties require both a large enough model size and sufficient
relevant pretraining data.

5.2. Data Distribution v.s. Language Model Distribution

In this section, we measure the memorization of LMs by the
similarity between the LM distribution and the pretraining
data distribution, while we measure the generalization of
LMs by the novelty of the generation, in terms of distribu-
tion difference or the amount of novel n-grams.

We can decompose a pair of input-output text (x, y) into
many such n-gram pairs. Then suppose the n-gram pairs are
mutually independent, the empirical data probability of a

pair of translated sentences (x, y) can be decomposed into:

PD,n(x, y) =
∏

si∈Gn(x)

∏
sj∈Gn(y)

PD(si, sj)
1(si,sj)∈Hn(T )

∝ exp(
∑

(si,sj)∈Hn(T )

C((sx, sy), (x, y)) logC((sx, sy),D)) (1)

To avoid excessive searches over the pretraining corpus, we
suppose the marginal distribution PD,n(x) is similar for all
input x’s from task T . Then we approximate the conditional
distribution as PD,n(y|x) ∝ PD,n(x, y). Similarly, we can
decompose the LM probability PLM(ŷ|u, x) into n-grams
as follows:

P̃LM,n(ŷ|u, x) = exp

L−n∑
i=1

[logPLM(ŷ[I:i+n−1|u, x, ŷ[1:i−1])∑
sx∈Gn(x)

1(sx,ŷ[i:i+n−1])∈Hn(T )] (2)

Then we can compare the (empirical) data distribution and
the LM distribution. Since the sample space of text se-
quence ŷ is too large, even after decomposed into n-grams,
the common distribution similarity measure requiring the
whole distribution over the sample space would be infeasi-
ble. So we choose to fit a linear regression instead from the
log data probability logPD,n(ŷ|x) to the log LM probabil-
ity log P̃LM,n(ŷ|u, x) for each training example (x, ŷ). In
this way, we take into consideration the possible mismatch
in scale between these two distributions, but reserve the
distribution shape. We measure the closeness of these two
distributions by the R2 score of the regression.

The left two panels of Figure 4, for WMT and TriviaQA,
R2 score first decreases then slightly increases as model
size increases, suggesting that smaller models learn a dis-
tribution more similar to pretraining data and are more data
dependent. The decreasing similarity to data distribution
and gradient similarity suggests that memorization plays a
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smaller role while generalization strengthens task perfor-
mance. Larger models generate more novel n-gram pairs
not seen in pretraining, supporting this transition. Emergent
abilities, positively related to task-relevant data amount, can
be understood as LMs transitioning from pure memoriza-
tion to generalization. Interestingly, there is a slight in-
crease in distribution and gradient similarity for sufficiently
large models, implying that while generalization strength-
ens, memorization also increases, allowing LMs to better
utilize training data.

In the right two panels of Figure 4, for MMLU, we observe
that the instruction-tuned LM is closer to the pretraining

data distribution than the base LM distribution, which is
surprising. This echoes the gradient similarity results in
Figure 2, that the instruction-tuned model shows more de-
pendency on relevant pretraining data. We have extensively
searched the instruction tuning dataset, Tulu, to make sure
there are no task-relevant n-gram pairs, thus rule out the ef-
fect of memorizing the instruction tuning set. As reported in
Groeneveld et al. (2024), the performance of the instruction-
tuned OLMo model is significantly better on MMLU than
the base model. This indicates that instruction-tuning boosts
the existing capabilities that LMs have already learned from
pretraining, instead of learning new capabilities.

6. Conclusion
In this paper, we propose a scalable method to trace LLMs’
capabilities back to the pretraining data by searching for
pretraining data at the n-gram level and enforcing seman-
tic similarity within n-gram pairs using embedding models.
This approach enables an extensive search across the pre-
training corpus while allowing direct interpretation of the
n-grams. Experiments with Pythia and OLMO models on
various tasks reveal that task-relevant n-gram pairs play a
crucial role in model performance, with small models tend-
ing to memorize and larger models demonstrating enhanced
generalization. This analysis is a first step in comprehen-
sively analyzing the origins of LLM capabilities.
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Appendix

A. Limitations
While this paper provides valuable insights into how large-
scale pretraining corpus contributes to the emergent abilities
of LLMs through n-gram search, there are a few limita-
tions that we want to list out. First, the main model we use,
Pythia, and the main pretraining corpus, Pile, is slightly out-
dated, and has been outperformed by many new open-source
LLMs. Most open-source LLMs lack corresponding pre-
training data and have limited model sizes, hindering scaling
effect studies. The recently released Neo LLMs and Matrix
pretraining corpus offer better experimental opportunities
for future work. The current WIMBD system has limita-
tions in searching larger corpora like Dolma (3T tokens)
and Matrix (4.7T tokens), requiring improved searching
and retrieval methods. The quality of task-relevant n-gram
pairs is highly sensitive to the filtering method, and while
the current embedding similarity-based approach is effec-
tive, better filtering methods could significantly enhance the
analysis, which is left for future research.

B. Broader Impacts
The insights and methodologies developed in this paper
have several significant implications for the broader field of
artificial intelligence, particularly in the development and
deployment of large language models (LLMs). Understand-
ing the balance between memorization and generalization
within LLMs is crucial for both advancing the theoretical
foundation of machine learning and addressing practical
concerns related to their use.

Enhanced Model Interpretability: By extending the def-
inition of memorization and examining how LLMs utilize
their pretraining data, our research contributes to a deeper
understanding of the internal mechanics of these models.
This improved interpretability can help researchers and prac-
titioners diagnose and mitigate issues related to data bias,
model robustness, and unexpected behaviors in AI systems.

Pri vacy and Security Considerations: Our findings have
direct implications for privacy and security in AI. Demon-
strating how LLMs memorize and potentially recall train-
ing data underscores the need for rigorous data handling
and anonymization techniques. It raises awareness about
the risks of inadvertent leakage of sensitive information,
thereby informing policy and best practices for data usage
in training large models.

Economic and Societal Impact: As LLMs become more in-
tegral to various industries, understanding their capabilities
and limitations can have significant economic and societal
implications. Our research can help businesses and poli-
cymakers make informed decisions about deploying these

models, ensuring they are used ethically and effectively.
This, in turn, can lead to more reliable and trustworthy AI
systems, fostering greater public trust and acceptance.

C. Related Work
Understanding LLMs’ capabilities from training data
Because of the scale of the data and model sizes, most
work on understanding LLMs attempts to examine how
LLMs gain their capabilities from synthetic experiments
or on a small scale (Arora and Goyal, 2023). Prystawski
et al. (2023) and Wang et al. (2024) discuss how the rea-
soning ability of language models is a consequence of their
pretraining data. Prystawski et al. (2023) discusses how
chain-of-thought reasoning is effective in autoregressive lan-
guage models because of local structure within pretraining
data, and Wang et al. (2024) derives novel conclusions from
known facts by aggregating reasoning paths seen in pretrain-
ing data. On the other hand, Xie et al. (2022) and Wang et al.
(2023a) discuss how in-context learning is a by-product of
learning the pretraining data distribution. They both sug-
gest that language models learn to implicitly infer a latent
variable from the given prompt, as the pretraining data is
generated from some unknown latent variable. Additionally,
Chan et al. (2022) propose that the distributional properties
of training data drive emergent in-context learning behaviors
in large language models. Chen et al. (2024) also highlights
the significance of parallel structures in pretraining data for
the emergence of in-context learning.

However, the small-scale nature of such analysis is antithet-
ical to the commonly believed main driving factor behind
the performance of LLMs: scaling. Recently, Kirchen-
bauer et al. (2024) proposes to provide statistical evidence
of the dependence of a target model capabilities on sub-
sets of its training data, by estimating the data distribution
with an embedding-induced kernel. However, their esti-
mation is based on a very small portion of the pretraining
data (around 0.3%) as computing the embeddings of a huge
dataset is very non-trivial. To get a better estimation of
the whole distribution of the pretraining data, Elazar et al.
(2024) construct a retrieval system, WIMBD, that can effi-
ciently search n-gram phrases over hundreds and thousands
of GBs of pretraining data. However, it is unclear what in-
sights of the LLMs trained on these datasets can be obtained
from such searches.

New methods and analysis to investigate these capabilities
at scale and to understand the role of scaling are needed to
obtain useful insights into real-world LLMs. In this work,
we aim to provide an in-depth analysis of the origin of
the general zero-shot capabilities of LLMs, by performing
full searches across the whole pretraining corpus with the
WIMBD framework.
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Memorization v.s. generalization The phenomenon of
machine learning models being able to perfectly memorize
the training data has been studied in many previous works.
Most of them define LLM memorization as exactly recalling
the training examples by designed prompting, including the
memorization of rare long-tail data, like private information
(Zhang et al., 2023), and the contamination of testing sets
(Jiang et al., 2024). Carlini et al. (2022) found that the exact
copy and pasting behaviors are more prevalent in larger
LMs.

Several papers have studied the interplay between memo-
rization and generalization of training data. Feldman (2020)
prove that memorizing the training data is in fact required for
optimal generalization on testing data. Many works along
this line (Feldman and Zhang, 2020; Zhang et al., 2023)
extend the original definition of memorization by quantify-
ing the extent of memorizing a training example with the
performance difference when including and excluding this
specific example in training data. However, this definition is
impractical for large-scale analysis of pretrained LLMs as
it would require retraining an LLM from scratch to analyze
one data point. In this paper, we propose a new definition
of memorization by using n-gram counts, which is more
suitable for large-scale analysis with LLMs.

D. Experiment Details
We perform our experiments on 8 GPU 40G A100 working
stations. Below is the license information for the datasets
we used:

• Pile: MIT license. URL: https://github.com/
EleutherAI/the-pile/tree/master

• Tulu: ODC-BY license. URL: https:
//huggingface.co/datasets/allenai/
tulu-v2-sft-mixture

• WMT-09: published with the WMT workshop.
URL: https://www.statmt.org/wmt09/
translation-task.html

• TriviaQA: Apache License 2.0. URL: https://
nlp.cs.washington.edu/triviaqa/

• MMLU: MIT license. URL: https://github.
com/hendrycks/test

E. n-gram Pair Examples
In this section, we present some representative examples
collected from the analysis for the different tasks evaluating,
including Translation and Question-Answering (MMLU,
TriviaQA). In order to show examples from the different
experiments, we show examples with different model sizes
and number of n-grams.
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Figure 6: Examples of mined pairs for the translation Task (English to Spanish) using Pythia Models with 4-Gram analysis. Models
evaluated include those with 12 billion and 410 million parameters.

Figure 7: Examples of mined pairs for the translation Task (English to Spanish) using Pythia Models with 2-Gram analysis. Models
evaluated include those with 12 billion and 410 million parameters.
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Figure 8: Examples of mined pairs for the MMLU Task using Pythia Models with 2-Gram and 5-gram analysis. Models include 12 billion
and 6.9 billion parameters.
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Figure 9: Examples of mined pairs for the TriviaQA Task using Pythia Models (12b) with 3-Gram analysis.
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