
Local Superior Soups: A Catalyst for Model Merging
in Cross-Silo Federated Learning

Minghui Chen12 Meirui Jiang3 Xin Zhang4 Qi Dou3 Zehua Wang1 Xiaoxiao Li12∗
1University of British Columbia 2Vector Institute 3Chinese University of Hong Kong 4Meta

Abstract

Federated learning (FL) is a learning paradigm that enables collaborative training of
models using decentralized data. Recently, the utilization of pre-trained weight ini-
tialization in FL has been demonstrated to effectively improve model performance.
However, the evolving complexity of current pre-trained models, characterized by
a substantial increase in parameters, markedly intensifies the challenges associated
with communication rounds required for their adaptation to FL. To address these
communication cost issues and increase the performance of pre-trained model
adaptation in FL, we propose an innovative model interpolation-based local train-
ing technique called “Local Superior Soups.” Our method enhances local training
across different clients, encouraging the exploration of a connected low-loss basin
within a few communication rounds through regularized model interpolation. This
approach acts as a catalyst for the seamless adaptation of pre-trained models in in
FL. We demonstrated its effectiveness and efficiency across diverse widely-used FL
datasets. Our code is available at https://github.com/ubc-tea/Local-Superior-Soups.

1 Introduction

Federated learning (FL) [35] has emerged as a promising methodology for leveraging the power
of private data without the need for centralized data governance. However, data heterogeneity in
FL poses significant challenges to the design of efficient training for global convergence. With
the emergence of the pre-training and fine-tuning paradigm in various applications [15, 19], recent
studies [37, 2] have attempted to address the problem of FL under data heterogeneity with pre-trained
initialization. Although pre-trained federated learning can speed up convergence compared to random
initialization, it still requires a significant number of communication rounds between the server and
clients, often amounting to hundreds of rounds [37]. Existing pre-trained models [41, 47] often
have an enormous parameter scale, and following the neural scaling law [24], there is a continuous
trend toward increasing model parameters. Deploying models with such a large parameter size
in FL introduces significant communication overhead. This greatly hampers the flexibility and
scalability of model updates. Reducing FL communication overhead can be approached by reducing
the scale of model parameters involved in distributed training [59] or reducing communication
rounds [35]. Comparing with reducing model parameters, reducing communication rounds typically
leads to a more efficient reduction of network congestion [17], decreased energy consumption on
client devices [33], and a lower risk of privacy breaches [61]. In this paper, we focus on reducing
communication rounds in FL with pre-trained model as initialization.

Typically, increasing the number of local training steps can effectively reduce communication
rounds. However, there is an upper limit to the extent of local training step increments. This
limitation arises due to the presence of data heterogeneity, where the consistency of optimization
among different clients deteriorates with the increasing number of local steps [35]. This optimiza-
tion inconsistency leads to a discrepancy between local and global models and decelerates the

∗Correspondence to xiaoxiao.li@ece.ubc.ca

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

convergence rate of FL. The discrepancy is often called client drift [25]. Previously, some FL
methods [25, 45] attempted to introduce proximal terms to regularize local training, with the aim
of reducing local overfitting and minimizing the problem of client drift. While these methods can
accelerate convergence, they restrict the progress of each local training steps towards the optimal
solution, impeding the attainment of FL with more aggressive communication round reductions.

Isolated Low-Loss Valley Connected Low-Loss Valley

Client A Model

Global Model

Client B Model
Client A Model

Global Model

Client B Model

Low Loss

High Loss

Figure 1: Illustration on isolated (left) and connected
low-loss valley with larger regions in dark red (right).

While these client drift mitigation methods can
reduce local overfitting to some extent, they can-
not ensure strong performance of the global
aggregated models, particularly in scenarios
with limited communication rounds. This sit-
uation arises when individual local clients be-
come trapped in isolated low-loss valleys. More
specifically, as illustrated in Figure 1, two mod-
els from clients ‘A’ and ‘B’, even if their optimal
model distance is small, still result in a poorly
performing aggregated global model. Moreover,
the preceding FL methods aimed at minimizing communication rounds exclusively address scenarios
involving random initialization, lacking a customized approach tailored to pre-trained models. Recent
proposed centralized fine-tuning methods (e.g., model soups [52] and DiWA [43] – a greedy model
selection version of model soups) based on model interpolation (averages of a large number of model
weights) are effective approaches to seek large connected low-loss region, which are promising for
applying in FL to reduce communication rounds. These methods can prevent individual clients
from being trapped in isolated low-loss valleys by positioning the global model centrally within a
larger low-loss region by overlapping the low-loss regions among clients, as shown in Fig. 1 (right).
However, their training efficiency is exceedingly low, requiring complete retraining of numerous
models, leading to significant computational overhead on clients and intolerable communication
costs when applied in FL, due to two aspects: First, they involve a time-consuming model selection
phase within the model pool, which consists of all candidate models available for weight interpolation.
Secondly, model soups entail an extensive number of model training iterations, lacking prior guidance
and relying on brute-force, random, and often redundant training. Many of the trained models end up
unused.

To enjoy the connected low-loss valley benefits of model soup-based methods [52, 43] without
burdening local training, we propose an efficient and local model interpolation-based method,
called Local Superior Soups (LSS). To address the first issue, we propose a sequential ran-
dom model interpolation method during training. This eliminates the need for subsequent
model selection steps and ensures that the models slated for interpolation reside within the same
low-loss valley during training (Sec. 3.3.1). For the second issue, we introduce two quantifi-
able indicators of candidate model quality, inspired by data augmentation quality quantifica-
tion [32, 4]: diversity (Sec. 3.3.2) and affinity (Sec. 3.3.3). Specifically, the diversity indica-
tor quantifies the diversity among models in the model pool with their pairwise model distance,
where larger distances denote higher diversity, signifying better model quality for interpolation.

Low Diversity

High Diversity

small covered region

large covered region

Low Affinity

High Affinity

long distance from init.
small overlapping region

Low Loss

High Loss

Init. Model
Trained. Model

short distance from init.
large overlapping region

Figure 2: Illustration on diversity (left) and affinity
(right) regularization.

As illustrated in Figure 2 (left), a low-loss re-
gion, supported by models with low diversity,
can be effectively covered with only a few candi-
date models positioned near its periphery. Thus,
we propose incorporating the diversity metric
as a regularization term during training to maxi-
mize the expansion of low-loss regions, thereby
increasing the utilization of trained models. The
affinity indicator measures the affinity of each
candidate model in the model pool to the ini-
tial model. Smaller distances indicate greater
affinity, indicating better model quality for in-
terpolation. This affinity is also incorporated as
a regularization term during training to prevent the expansion of low-loss regions from deviating
too far from the shared initialization point, thus increasing the likelihood of overlapping connected
regions (as depicted on the right side of Fig. 2). These two indicators facilitate the efficient inclusion
of models into the model pool, preventing wasteful training of models that may ultimately go unused.

2

In experiments, we found that our proposed method greatly reduces communication rounds, and
we achieved the performance of models fused after multiple rounds of communication in other FL
methods with only a few rounds of communication.

In summary, our contributions are as follows.

(1) We reveal the importance of regularizing local client models in the connected low-loss valleys
for reducing communication rounds when initializing FL with pre-trained models. (2) We introduce
an innovative and efficient model soups-based method for FL, called Local Superior Soups (LSS)
that eliminates the need for time-consuming model selection and redundant model training in the
existing soups-based approaches, while expanding connected low-loss valleys of client models for
faster convergence. (3) In experimental evaluations, LSS demonstrates a significant reduction in
communication rounds, achieving superior performance with only a few rounds of communication,
exceeding baseline FL methods significantly in four datasets and two types of distribution shifts.

2 Related Work

2.1 Heterogeneous Federated Learning

FL struggles with Non-IID data, leading to various proposed algorithms. FedProx [28] uses proximal
term to regularize local training, preventing client divergence. Scaffold [25] adds variance reduction to
combat "clients-drift." MOON [27] employs mode-level contrastive learning to stabilize local training.
Personalized FL [46] targets high local performance on Non-IID data. FedBN [30] applies local batch
normalization to mitigate feature shift before model averaging. Recent one-shot and few-round FL
methods use parallel server-side techniques like prediction ensembles [14], data generation [56, 18],
or meta-learning [39] to improve aggregated model performance.

2.2 Federated Fine-tuning and Model Interpolation

Fine-tuning leverages pre-trained models to enhance task performance [7]. FedFTG [57] proposes
knowledge distillation for global model fine-tuning in FL. Personalized FL employs fine-tuning to
adapt global models to local ones, e.g., FedBABU [38], FTFA, and RTFA [5]. However, this focus
on local performance neglects global generalization. Inspired by linear mode connectivity [36, 12],
Model Soups [52] combines runs with varied hyper-parameters to improving fine-tuning performance
in the centralized setting. DiWA [43] and other Soups-based methods [52, 43, 3] extends this concept,
emphasizing the importance of model diversity. Some methods induce diversity through high learning
rates [34], cosine similarity minimization [51], tempered posteriors [20], or auxiliary dataset-trained
model soups [42]. We depict the difference of different model ensemble-based methods in our
appendix 7.

3 Method

The structure of this Section is as follows: firstly, we provide the problem definition and corresponding
notions to be used (Sec. 3.1); secondly, we reveal the dilemma for existing federated learning methods
on reducing communication rounds (Sec. 3.2); finally, we propose a regularized model interpolation-
based method as a solution, provide corresponding analysis (Sec. 3.3), and present the overall
algorithm flow.

3.1 Notions and Problem Definition

Notions. Let X be the input space of data, Y be the label space. Consider a FL setting with M

clients, τ local steps and R communication rounds. Let D := {Di}Mi=1 be a set of M domain, each
of which is a distribution over the input space X . For each client, we have access to n training data
points in the form of (Xi,Yi) = {(xi

j , y
i
j)}nj=1, where yij denotes the target label for input xi

j . Let
f ∈ Rm represents the parameter for the global model, ℓi : Rm → R denotes the local objective
function at client i, and P denotes a distribution on the entire set of clients. We provide a notation
table in Appendix A to clarify the meanings of the corresponding notations.

3

Problem definition. We aim to address the challenge of optimizing the global performance on D
of aggregated models fine-tuned from different clients with data heterogeneity, while minimizing
communication rounds between the clients and the server in data Non-IID setting. In terms of global
performance, we perform empirical risk minimization (ERM) on the sampled data Di for i ∈ [M],

L(f) =
M∑
i=1

piLi(f), where Li(f) =
1

|Di|
∑
ξ∈Di

ℓi(f, ξ) and
M∑
i=1

pi = 1. (1)

3.2 Effect of Regularization and Local Steps on FL Convergence under Data Heterogeneity

In this section, we present a theoretical analysis to understand how communication rounds, local
steps, and our introduced regularization terms affect the convergence bound in federated learning.
Formally, we present the error term and posit the following assumptions for the purpose of analysis.
Our analysis builds on the assumptions and convergence bound in [50] with formal statements in
Appendix B.1. We first present a theorem providing a convergence guarantee when the proposed
regularization terms are applied.

Theorem 3.1 (Convergence Rate for Convex Local Functions with Affinity and Diversity Constraint).
Under Convexity and Smoothness Assumption on β-smooth loss function, Bounded Variance of
Stochastic Gradient and Bounded Variance of Local and Global Gradient assumptions, when the

client learning rate is chosen properly as, η = min{ 1
4β ,

M
1
2 d

τ
1
2 R

1
2 ,σ

, d
2
3

τ
2
3 R

1
3 β

1
3 σ

2
3
, d

2
3

τR
1
3 β

1
3 (ζ+c)

2
3
}

we define ϵ = E
[

1
τR

∑R−1
r=0

∑τ
k=1 β(f

(r,k)
)− β(f⋆)

]
, and have

ϵ ≤ 2βR2

τR
+

2σd√
MτR

+
5β

1
3σ

2
3 d

4
3

τ
1
3R

2
3

+
15β

1
3 (ζ + c)

2
3 d

4
3

R
2
3 (2)

Here, the update rule of the t iteration with the affinity and diversity term is defined as θ(t+ 1) =
θ(t) − ηg(t) − q(t, µt, µa), and the extra term satisfies q(t, µt, µa) ≤ c. The hyper-parameters µt

and µa represent the co-efficient of tuning affinity and diversity respectively.

Besides, d := ∥f (0,0)−f⋆∥ refers to the distance between initialization f (0,0) and the global optimum
f⋆, σ bounds variance of stochastic gradient by E[∥gi(f (r,k))−∇Li(f

(r,k))∥2|f (r,k)] ≤ σ2, and ζ
bounds variance of local and global gradient by maxi supf

∥∥∇Li(f
(r,k))−∇L(f (r,k))

∥∥ ≤ ζ.

How to reduce communication rounds under data heterogeneity? Increasing local fine-tuning
steps seems to be a straightforward technique to reduce communication costs. Nevertheless, this
approach cannot reduce the an error term in the convergence rate (see the 4th term of the RHS of
Eq. 2), which remains unaltered by increasing local steps. Moreover, increasing local update steps
in the presence of Non-IID client data exacerbates the inconsistency in local objectives, further
magnifying this error term. Here, we provide a more detailed explanation, specifically identifying the
conditions under which increasing iteration steps can effectively reduce communication rounds.

Proposition 3.2. Under the data heterogeneity setting, when the total number of gradient computa-
tions across all clients (K = MτR) is fixed and the local steps τ satisfies

τ ≤ σ

ζ + c

√
σ

dβ

K
1
2

M2
, (3)

the error upper bound Eq.2 will be dominated by the second term O(1/
√
K).

We provide the proof for Proposition 3.2 in Appendix B.2. Accordingly, increasing the bound in
Eq. 2 and meeting the aforementioned condition for local steps allows us to reduce communication
rounds. From the above in-equation, we can observe that although increasing the number of local
training steps can reduce communication rounds, there is a limit to the number of steps that can be
added. This limit is primarily determined by the error term introduced by local updates.

4

Why connecting low-loss valley in local training with pre-trained initialization can achieve
extreme communication rounds reduction? Our analysis indicates that for substantial communica-
tion efficiency in federated learning, it is not enough to just increase local training steps. The focus
should be on minimizing the error term from local updates, particularly the last term in Formula 2.
This term, influenced by gradient dissimilarity (ζ), distance to optimal weights (d), and our proposed
regularization update bound c, remains significant even as training steps increase.

Prior research suggests [37] that pre-training initialization reduces ζ by aligning client updates, and
overparameterization ensures that the optimal parameters are typically close to the initialization [22,
6, 31], decreasing d. It is important to note that the regularization related term c is influenced by
a combination of model diversity and affinity, and can be reduced by adjusting the parameters µt

and µa. In the absence of a common pre-trained initialization, ensuring model affinity within the
model pool is often challenging (i.e., models from different clients tend to diverge significantly from
the initialization values), resulting in a larger value of c, which in turn affects the effectiveness of
our method. Therefore, our approach is more suitable when combined with pre-trained models.
Consequently, a combination of pre-training and our proposed connectivity preserving local training
can effectively lower error terms from local updates, increasing the limit of local training steps and
thus reducing communication rounds. More experimental support see our Appendix.

3.3 Our Solution: LSS Algorithm

In this part, we first present the shortcomings of the previous model soups method applied in FL.
Secondly, we propose our three targeted improvements, i.e. random model interpolation (Sec. 3.3.1),
diversity term (Sec. 3.3.2), and affinity regularization term (Sec. 3.3.3). Finally, we present the
complete algorithm process and detailed implementation in local client training.

Algorithm 1 LSS (Local Training) Pseudo-code

Require: fp pre-trained model (R = 1) or global
aggregated model (R > 1); L loss function;
D dataset; dist distance function; τ iteration
steps; η learning rate; λa affinity coefficient;
λd diversity coefficient; n number of averaged
models.

1: LSS Local Training :
2: M← {fp}
3: for pi = 1 to N do
4: fpi

← Averaging(M)
5: M←M∪{fpi

} {sequential training with
newly added model}

6: for t = 1 to τ do
7: fs ← RandomInterpolation(M)

{connectivity preserving}
8: Lreg(fpi

) = L(fs,D) + λa ·
dist(fpi

, fp)− λd · dist(fpi
,M)

9: fpi
← fpi

− η∇fpi
Lreg(fpi

)
10: end for
11: end for
12: Inference:
13: f ← Averaging(M)

Limitation of previous model soups methods.
Previous model soups methods [52] can induce
a trained model located in a connected low-loss
valley, but their training efficiency is exceed-
ingly low, due to two aspects: Time-Consuming
model selection phase: Firstly, these methods in-
volve a time-consuming model selection phase,
which consists of all candidate models avail-
able for weight interpolation [3, 52]. This phase
aims to choose models that reside within the
same low-loss valleys. During this selection
process, significant computational resources are
consumed to identify suitable models for inter-
polation, adding to the overall training time and
complexity. Extensive and redundant model
training: Secondly, model soups entail an exten-
sive number of model training iterations, lack-
ing prior guidance and relying on brute-force,
random, and often redundant training [29, 52].
Many of the trained models end up unused, fur-
ther exacerbating the computational inefficiency.

3.3.1 Random interpolation
conserving connected low-loss region.

To address the time-consuming model selection
issue of the previous soups-based method, we
propose a sequential random model interpolation method during training. This innovative approach
streamlines the training process by eliminating the need for subsequent model selection steps within
the model pool (i.e., local models to be interpolated), which traditionally consumes a considerable
amount of computational resources and time. LetM = {fp1 , fp2 , . . . , fpN

} be a pool of N models,
where fpi represents the weights of the i-th model. We define the interpolated model finterp as a
weighted combination of the models inM. The interpolation coefficients α = (α1, α2, . . . , αN) are
sampled using a uniform distribution and normalization strategy. The interpolated model finterp is

5

then computed as: finterp =
∑N

i=1 αifpi . Here, αi represents the weight assigned to the i-th model
in the pool. The uniform distribution ensures that the coefficients αi are non-negative and sum to
1, providing a simple and effective way to combine the model weights from the poolM. Forward
and backward propagation are performed using the interpolated model, updating the weights of the
currently active model (i.e., the newly added model) (corresponding to Algorithm 1 Line 7), while
previously added model weights remain fixed.

3.3.2 Diversity term.

The diversity term is proposed to address the redundant model training issue of the previous soups-
based methods by encouraging low-loss region expansion. In particular, the diversity indicator
assesses the variability among models within the model pool by summing the distances between pairs
of models. Greater distances between models indicate a higher degree of diversity, which correlates
with enhanced model quality. This diversity metric is integrated into the FL local training process
as a regularization term to facilitate the extensive enlargement of low-loss regions, consequently
maximizing the effectiveness of trained models. The diversity term (in Algorithm 1 Line 8) measures
the distance between the current training model and other models that will be averaged, and we hope
that this distance to be large. The diversity loss can be defined as

ℓdiversity = dist(f,M) =
1

N

N∑
n=1

dist(f, fn). (4)

Here, fn belongs to local interpolated model poolM and N is the number of local candidate models.
The candidate models (i.e., model soups ingredients) are models to be interpolated in local training,
and the model pool is the set of local candidate models (see Algorithm 1 Line 5). We use the ℓ2 norm
to measure the distance between model weights.

3.3.3 Affinity term.

The affinity term is proposed to control the expansion of low-loss regions and prevent local candidate
model training divergence. The affinity indicator assesses the level of alignment between each
candidate model within the model pool and the initial global model by calculating the cumulative
distances between each candidate model and the initialization model. Smaller distances between
models signify a stronger affinity, indicating higher model quality. To ensure the controlled expansion
of low-loss regions and reduce the probability of overlapping connected regions, this affinity metric
is integrated into the training process as a regularization term. The affinity term (in Algorithm 1 Line
8) measures the distance between the candidate model and the initial model weights, with the aim of
minimizing this dissimilarity (maximize this loss term) to ensure that the distance remains relatively
small. The affinity loss can be defined as

ℓaffinity = dist(f, fp). (5)

Here, fp is a pre-trained model in the first communication round (R = 1). Moreover, it encourages
each local model to lie in a close zone in the parameter space, which is beneficial for subsequent
server aggregation, especially under data heterogeneity. We use l2 distance for the dist(,) metric for
both Eq. 4 and Eq. 5.

3.3.4 Overall pipeline.

We outline LSS as follows: We begin with the initialization of the client’s local model with the
pretrained global model. Then we will refine the local model using affinity and diversity loss. This
step is performed for a few local update steps. Finally, after updating local model, we aggregate them
in the server following the common averaging operation in FedAvg [35]. The flow of LSS for local
updating (Step 2 described in Sec 3.1) can be found in Algorithm 1.

In conclusion, our method aims to minimize the distance between the local fine-tuned model and
the pre-trained initialized global model while maximizing the distance between the model soups
ingredients (i.e., the models to be averaged). Our fine-tuned models find large low-loss regions on
their respective local datasets while ensuring parameters close to the pre-trained initialization. It
is intuitive that the parameters of our fine-tuned models can be more easily aligned with those of
models fine-tuned on similar datasets, thereby improving communication efficiency.

6

Table 1: Label shift test accuracy after R = 1 and R = 3 communication rounds. We primarily compared two
categories of methods: conventional FL methods and state-of-the-art local weight averaging-based fine-tuning
methods that enhance domain generalization.

FMNIST CIFAR-10
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg [35] 35.54(1.71) 90.04(0.32) 58.34(0.86) 66.74(0.76)
FedProx [28] 33.48(1.52) 89.28(0.36) 56.74(0.92) 63.21(0.83)
MOON [27] 36.01(1.66) 91.28(0.30) 58.96(1.24) 67.04(1.12)
FedBN [30] 34.20(1.73) 89.87(0.47) 57.04(0.75) 64.51(0.67)
FedFomo [58] 33.94(1.65) 88.41(0.69) 55.01(0.89) 62.69(0.75)
FedRep [8] 36.20(1.52) 91.07(0.23) 57.73(0.82) 66.23(0.73)
FedBABU [38] 36.18(1.43) 91.31(0.26) 60.14(1.06) 67.16(0.87)
SWA [21] 55.82(1.02) 91.03(0.19) 59.07(1.28) 67.45(1.15)
SWAD [1] 58.66(0.87) 91.22(0.16) 60.54(1.15) 67.65(0.97)
Soups [52] 60.11(0.64) 91.56(0.24) 61.00(1.04) 67.63(0.94)
DiWA [43] 63.21(0.54) 91.88(0.13) 61.32(1.26) 68.05(1.10)
LSS (4x Mem.) 72.66(0.73) 92.45(0.21) 65.96(1.50) 75.16(1.07)

Table 2: Feature shift test accuracy after R = 1 and R = 3 communication rounds. LSS consistently
outperforms other methods on both datasets across under feature shift settings.

Digit-5 DomainNet
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg [35] 46.36(2.08) 80.48(0.81) 18.76(3.52) 29.43(2.01)
FedProx [28] 44.01(1.92) 77.83(0.68) 17.27(3.22) 27.18(2.29)
MOON [27] 50.11(1.72) 83.02(0.64) 19.61(3.54) 31.27(2.34)
FedBN [30] 46.02(1.93) 81.42(0.71) 18.16(3.09) 28.65(1.89)
FedFomo [58] 41.87(2.13) 76.21(0.98) 15.10(3.82) 25.69(2.38)
FedRep [8] 47.43(1.73) 82.02(0.63) 18.89(2.60) 30.42(1.84)
FedBABU [38] 48.02(1.81) 83.20(0.79) 19.44(2.43) 32.06(1.88)
SWA [21] 54.13(0.72) 85.33(0.62) 22.07(2.55) 35.90(1.61)
SWAD [1] 57.02(0.71) 86.84(0.64) 21.98(2.61) 36.73(1.57)
Soups [52] 59.71(0.82) 87.07(0.58) 22.75(2.85) 38.02(1.40)
DiWA [43] 61.54(0.83) 88.83(0.69) 24.88(2.54) 38.32(1.50)
LSS (4x Mem.) 72.86(1.64) 92.97(0.65) 27.86(2.85) 41.35(1.46)

4 Experiment

4.1 Experimental Setup

Dataset. Our experimental section considers two scenarios of Non-IID settings, namely label shift and
feature shift. The label shift scenario investigates datasets such as FMNIST [53] and CIFAR10 [26],
while feature shift involves Digit5 and DomainNet. Further information on the specific datasets
can be found in the appendix. In the label shift scenario, we partitioned the dataset into five clients
and the data for each client are sampled following Dirichlet distributions with coefficient α = 1.0,
yielding imbalanced label distributions. In the feature shift scenario, we utilized five clients for
Digit5 [13, 30] and five clients for DomainNet [40]. Additional results on an extended number of
clients are presented in the appendix.

Model. In terms of models, we used the ImageNet pre-trained ResNet50 [16] as the base model
for the DomainNet dataset, while for other datasets, we used the pre-trained ResNet-18 trained on
ImageNet [9]. We also present the experimental results based on the vision transformer (ViT) model
[11] with parameter-efficient fine-tuning.

Baselines. We compare LSS against the vanilla FL method - FedAvg [35] and several advanced
FL algorithms designed for Non-IID settings, including FedProx [28], MOON [27], FedBN [30],
FedFomo [58], FedRep [8] and FedBABU [38]. Additionally, we make comparisons with top-
performing weight/model-averaging-based domain generalization methods including SWA [21],
SWAD [1], Soups [52] and DiWA [43] by adapting them to FL. In particular, the specific approach is
to modify the local client training in the FedAvg framework to a corresponding fine-tuning approach.
For more details, please refer to the appendix.

Evaluation and implementation details. Unless otherwise specified, the model performance in the
experiments below refers to the global model performance after aggregation on the server side. Our
training optimizer uses the Adam optimizer with a learning rate of 5e−4 and a training batch size of

7

64. For commonly used FL methods, due to the significant increase in local update steps that leads to
worse convergence, we set their local update steps to 8. For SWA, SWAD, and our method, we take
more local update steps, with each model being averaged trained 8 steps, and the default number of
models to be averaged is 4. For the Model Soups method and DiWA, we train 32 models with 8 steps.
Additional details of experiment implementations are included in the Appendix.

0 2 4 6 8 10
Communication Round

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (
%

)

CIFAR-10 (Early Phase)

LSS
FedAvg

(a)

10 100 200 300 400
Communication Round

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

 (
%

)

CIFAR-10 (Late Phase)

LSS
FedAvg

(b)

0 2 4 6 8 10
Communication Round

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Digit-5 (Early Phase)

LSS
FedAvg

(c)

10 100 200 300 400
Communication Round

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (
%

)

Digit-5 (Late Phase)

LSS
FedAvg

(d)
Figure 3: Convergence comparison of our proposed LSS with FedAvg. LSS achieves high accuracy much earlier
(around 6 to 8 rounds) than FedAvg, which takes hundreds of communication rounds.

4.2 Performance Comparison

Results on label shift. To demonstrate the effectiveness of LSS on label shift scenario, we conduct
comparison experiments on FMNIST and CIFAR-10 datasets. We consider fine-tuning with an
extremely limited number of communication rounds (i.e., R = 1 and R = 3). Table 1 reports the test
accuracy with the format of mean (std) for all compared algorithms. All experiments are repeated 3
runs with different random seeds. In Table 1, LSS achieves the best accuracy on all settings of both
datasets, which validates that LSS is efficient and effective in fine-tuning FL for label shift Non-IID.
Notably, with just one round of communication, LSS can double the accuracy of the best Non-IID FL
baseline method. Surprisingly, the simple extension of model-averaging-based domain generalization
methods onto FedAvg [35] (the 2nd big row in Table 1) perform very well, especially when the
number communication round is small. The superior performance using local weight averaging-based
fine-tuning is likely because it significantly reduces the gradient variance of local and global variance
(see 3.2). We further provide results on different levels of label shift in the supplementary material.

Results on feature shift. Table 2 evaluates on feature shift scenario using Digits-5 and DomainNet
datasets. Similar to the previous experiment setting for Table 1, we repeat all the algorithms with
3 random seeds. Consistent with the observation in Table 2, LSS is the top-performing method
under all the settings for both datasets. We also observe better performance achieved by adapting
model-averaging-based domain generalization methods (the 2nd big row in Table 2) in FL than the
existing Non-IID FL methods (the 1st big row in Table 2), which further verifies the effectiveness of
model averaging to obtain better global model while improving communication efficiency.

Convergence plots. We also evaluate the strength of faster convergence using the proposed LSS
compared with FedAvg [35] on CIFAR-10 (label shift) and Digtis-5 (feature shift). Fig. 3 depicts the
testing accuracies at early and late phases regarding the number of communication rounds to reach
convergence. First, by looking at the final testing accuracies on Fig. 3 (b) and (d), LSS achieves better
performance. Second, Fig. 3 (a) and (c) show that LSS almost meets the targeted performance at the
very early stage (i.e.around 6 to 8 rounds), whereas FedAvg requests over hundreds of communication
rounds.

Fe
dAvg

Fe
dProx

MOON
Fe

dBN

Fe
dFo

mo

Fe
dRep

Fe
dBABULS

S

50

60

70

80

Ac
cu

ra
cy

53.85
50.22

58.7

50.91
47.62

57.4558.66

80.29
Communication Round: 1

(a)

Fe
dAvg

Fe
dProx

MOON
Fe

dBN

Fe
dFo

mo

Fe
dRep

Fe
dBABULS

S
75

80

85

90

95

Ac
cu

ra
cy

82.73

79.04

85.32

82.48

77.96

82.78
85.11

94.34Communication Round: 3

(b)
Figure 4: Evaluation on ViT fine-tuned with
LoRA (Digit5 dataset).

Parameter-Efficient Tuning with ViT. We also de-
ployed the Vision Transformer (ViT) [11] in FL learn-
ing. On Digits-5 dataset, we evaluate the ViT model
with a resolution of 224 and a patch size of 16,
which was pretrained on the ImageNet-21k dataset.
Due to the large number of parameters in ViT, we
used a parameter-efficient fine-tuning method called
LoRA [19] to train it for all the methods. For more
details about our ViT architecture and LoRA training,
please refer to the appendix. It can be observed in
Fig. 4 that our method is applicable to pre-trained
ViT models, demonstrating that our approach can
be combined with parameter-efficient fine-tuning methods to further enhance the communication
efficiency of FL.

8

4.3 Ablation Studies

We conducted ablation experiments on the main components (i.e., affinity, diversity term and averaged
model quantity) of our proposed method and evaluated their performance on the CIFAR dataset, with
the performance metric being the global model performance at communication round R = 1.

0 1 2 3 4
Affinity Coefficient

62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0

Ac
cu

ra
cy

 (
%

)

Affinity Varies
DivCoeff = 0
DivCoeff = 3

(a)

0 1 2 3 4
Diversity Coefficient

62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0

Ac
cu

ra
cy

 (
%

)

Diversity Varies
AffCoeff = 0
AffCoeff = 3

(b)
Figure 5: Ablation on the affinity & diversity.

Investigation on regularization losses. In order to
examine the importance of affinity loss and diversity
loss, as well as the influence of their correspond-
ing coefficients, we adjust one coefficient within a
range of 0 to 4 while maintaining the other at a con-
stant value. By comparing the performance with and
without loss term, we observe that adding affinity
and diversity terms can enhance the model’s perfor-
mance. Additionally, we observe that the two terms
complement each other, and selecting appropriate co-
efficients can achieve significant performance improvement (e.g., adjusting the affinity coefficient to
3 as shown in Fig. 5 (a) and diversity coefficient to 3 as shown in Fig. 5 (b)).

2 3 4 5
Averaged Model Num

61

62

63

64

65

66

67

Ac
cu

ra
cy

 (
%

)

After Aggregation Global Perf.

(a)

2 3 4 5
Averaged Model Num

60

61

62

63

64

65

Ac
cu

ra
cy

 (
%

)

Before Aggregation Global Perf.

(b)

2 3 4 5
Averaged Model Num

31

32

33

34

35

36

37

Ac
cu

ra
cy

 (
%

)

Before Aggregation Worst Perf.

(c)
Figure 6: Ablation studies on the impact of the
number of averaged models on communication
efficiency and performance variance. We evaluated
the influence of varied model quantities on global
and averaged local model performance, as well as
generalization on the worst client.

Investigation on the number of averaged models.
To investigate the impact of the averaged model quan-
tity on enhancing communication efficiency and re-
ducing gradient variance between local and global,
we experiment with varied model quantities and eval-
uate their influence on global model performance,
averaged local model performance2, and worst out-
of-distribution (OOD) generalization performance on
the other clients. Fig. 6 shows that increasing the
number of averaged models can improve the model’s
OOD generalization ability and enhance the perfor-
mance of the aggregated model. This similar upward
trend confirms the validity of our analysis linking
OOD generalization and local-global variance. We provide a more detailed analysis on connecting
our proposed LSS and OOD generalization in appendix C. Additionally, we can observe that increas-
ing the number of models in our method can improve both pre-aggregation and post-aggregation
model performance.

5 Conclusion

Limitations and Broader Impact. Our method reduces communication rounds but trades off
training memory and performance. Future work should explore more memory-efficient deploy-
ments. While focused on vision tasks, extending to language and multimodal scenarios is promising.
Balancing performance and communication in healthcare FL is promising, but excessive reduction
can impair critical medical decisions. Careful trade-off consideration is essential for reliable FL
applications in sensitive areas.

Conclusion. We propose an efficient method, Local Superior Soups (LSS), to reduce communication
rounds in FL with pre-trained initialization, addressing the challenge of data heterogeneity. By
employing sequential model interpolation, connectivity preservation, and two regularization terms
(diversity and affinity), the method allows for an increase in local training steps and a reduction in
communication rounds while avoiding client drift. This approach, tailored for pre-trained model
adaptation in FL, offers training and inference efficiency, making it suitable for practical deployment
in edge computing scenarios. As the first step towards understanding and developing model soups-
based methods in pre-trained models in FL, this study conducts experiments on benchmark datasets.
Our method attain superior performance with a only few rounds of communication and surpasses the
performance of standard FL methods significantly across four datasets and under two distribution
shift scenarios.

2the average performance of local models of individual clients before aggregation on the overall client dataset

9

Acknowledgement. M. Chen, Z. Wang and X. Li are grateful for the support of the Natural Science
and Engineering Research Council of Canada (NSERC). M. Chen and X. Li are supported by the
Canada CIFAR AI Chairs program, MITACS-CIFAR Catalyst Grant Program, NVIDIA Hardware
Awards, the Digital Research Alliance of Canada, and Canada Foundation for Innovation (CFI).
M. Jiang and Q. Dou are supported by the Research Grants Council of the Hong Kong Special
Administrative Region (Project No. T45- 401/22-N).

References
[1] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,

and Sungrae Park. SWAD: domain generalization by seeking flat minima. In NeurIPS, pages
22405–22418, 2021.

[2] Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei Shen, and Wei-Lun Chao. On the impor-
tance and applicability of pre-training for federated learning, 2022.

[3] Minghui Chen, Meirui Jiang, Qi Dou, Zehua Wang, and Xiaoxiao Li. Fedsoup: Improving
generalization and personalization in federated learning via selective model interpolation. In
MICCAI (2), volume 14221 of Lecture Notes in Computer Science, pages 318–328. Springer,
2023.

[4] Minghui Chen, Cheng Wen, Feng Zheng, Fengxiang He, and Ling Shao. VITA: A multi-source
vicinal transfer augmentation method for out-of-distribution generalization. In AAAI, pages
321–329. AAAI Press, 2022.

[5] Gary Cheng, Karan N. Chadha, and John C. Duchi. Fine-tuning is fine in federated learning.
CoRR, abs/2108.07313, 2021.

[6] Lénaïc Chizat, Edouard Oyallon, and Francis R. Bach. On lazy training in differentiable
programming. In NeurIPS, pages 2933–2943, 2019.

[7] Leshem Choshen, Elad Venezian, Shachar Don-Yehiya, Noam Slonim, and Yoav Katz. Where
to start? analyzing the potential value of intermediate models. CoRR, abs/2211.00107, 2022.

[8] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared
representations for personalized federated learning. In ICML, volume 139 of Proceedings of
Machine Learning Research, pages 2089–2099. PMLR, 2021.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255. IEEE Computer Society, 2009.

[10] Li Deng. The MNIST database of handwritten digit images for machine learning research [best
of the web]. IEEE Signal Process. Mag., 29(6):141–142, 2012.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In ICLR. OpenReview.net, 2021.

[12] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. In ICML, volume 119 of Proceedings of
Machine Learning Research, pages 3259–3269. PMLR, 2020.

[13] Yaroslav Ganin and Victor S. Lempitsky. Unsupervised domain adaptation by backpropagation.
In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pages 1180–1189.
JMLR.org, 2015.

[14] Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. CoRR,
abs/1902.11175, 2019.

[15] Kaiming He, Ross B. Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In ICCV,
pages 4917–4926. IEEE, 2019.

10

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pages 770–778. IEEE Computer Society, 2016.

[17] Parikshit Hegde, Gustavo de Veciana, and Aryan Mokhtari. Network adaptive federated learning:
Congestion and lossy compression. In INFOCOM, pages 1–10. IEEE, 2023.

[18] Clare Elizabeth Heinbaugh, Emilio Luz-Ricca, and Huajie Shao. Data-free one-shot federated
learning under very high statistical heterogeneity. In The Eleventh International Conference on
Learning Representations, 2023.

[19] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR.
OpenReview.net, 2022.

[20] Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry P. Vetrov, and
Andrew Gordon Wilson. Subspace inference for bayesian deep learning. In UAI, volume 115 of
Proceedings of Machine Learning Research, pages 1169–1179. AUAI Press, 2019.

[21] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In UAI, pages
876–885. AUAI Press, 2018.

[22] Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In NeurIPS, pages 8580–8589, 2018.

[23] Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J. Kusner. Questions for flat-minima
optimization of modern neural networks. CoRR, abs/2202.00661, 2022.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020.

[25] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich,
and Ananda Theertha Suresh. SCAFFOLD: stochastic controlled averaging for federated
learning. In ICML, volume 119 of Proceedings of Machine Learning Research, pages 5132–
5143. PMLR, 2020.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
corr, 2009.

[27] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In CVPR,
pages 10713–10722. Computer Vision Foundation / IEEE, 2021.

[28] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In MLSys. mlsys.org, 2020.

[29] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey. CoRR, abs/2309.15698, 2023.

[30] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated
learning on non-iid features via local batch normalization. In ICLR. OpenReview.net, 2021.

[31] Xinyan Li and Arindam Banerjee. Experiments with rich regime training for deep learning.
CoRR, abs/2102.13522, 2021.

[32] Raphael Gontijo Lopes, Sylvia J. Smullin, Ekin D. Cubuk, and Ethan Dyer. Affinity and
diversity: Quantifying mechanisms of data augmentation. CoRR, abs/2002.08973, 2020.

[33] Bing Luo, Xiang Li, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Cost-effective
federated learning in mobile edge networks. IEEE J. Sel. Areas Commun., 39(12):3606–3621,
2021.

[34] Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. A simple baseline for bayesian uncertainty in deep learning. In NeurIPS, pages
13132–13143, 2019.

11

[35] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS,
volume 54 of Proceedings of Machine Learning Research, pages 1273–1282. PMLR, 2017.

[36] Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning. In NeurIPS, pages 11611–11622, 2019.

[37] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael Rabbat. Where to be-
gin? on the impact of pre-training and initialization in federated learning. CoRR, abs/2210.08090,
2022.

[38] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation
for federated image classification. In ICLR. OpenReview.net, 2022.

[39] Younghyun Park, Dong-Jun Han, Do-Yeon Kim, Jun Seo, and Jaekyun Moon. Few-round
learning for federated learning. In NeurIPS, pages 28612–28622, 2021.

[40] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment
matching for multi-source domain adaptation. In ICCV, pages 1406–1415. IEEE, 2019.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML,
volume 139 of Proceedings of Machine Learning Research, pages 8748–8763. PMLR, 2021.

[42] Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-
Paz. Recycling diverse models for out-of-distribution generalization. CoRR, abs/2212.10445,
2022.

[43] Alexandre Ramé, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Galli-
nari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In
NeurIPS, 2022.

[44] Shivalika Singh, Freddie Vargus, Daniel D’souza, Börje F. Karlsson, Abinaya Mahendiran,
Wei-Yin Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura O’Mahony, Mike
Zhang, Ramith Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik
Krzeminski, Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake,
Zaid Alyafeai, Minh Chien Vu, Sebastian Ruder, Surya Guthikonda, Emad A. Alghamdi,
Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh
Fadaee, and Sara Hooker. Aya dataset: An open-access collection for multilingual instruction
tuning. CoRR, abs/2402.06619, 2024.

[45] Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, and Dacheng Tao. Fedspeed: Larger local in-
terval, less communication round, and higher generalization accuracy. In ICLR. OpenReview.net,
2023.

[46] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated
learning. CoRR, abs/2103.00710, 2021.

[47] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

[48] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,

12

Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[49] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[50] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Agüera
y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh
Data, Suhas N. Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis,
Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horváth, Zhouyuan Huo, Alex Ingerman,
Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konečný,
Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtárik,
Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song, Ananda Theertha Suresh,
Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake E. Woodworth, Shanshan Wu,
Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang, Chunxiang Zheng, Chen
Zhu, and Wennan Zhu. A field guide to federated optimization. CoRR, abs/2107.06917, 2021.

[51] Mitchell Wortsman, Maxwell Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Rastegari.
Learning neural network subspaces. In ICML, volume 139 of Proceedings of Machine Learning
Research, pages 11217–11227. PMLR, 2021.

[52] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo
Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time. In ICML, volume 162 of Proceedings of Machine
Learning Research, pages 23965–23998. PMLR, 2022.

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[54] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Pyhessian: Neural
networks through the lens of the hessian. In IEEE BigData, pages 581–590. IEEE, 2020.

[55] Rui Ye, Rui Ge, Xinyu Zhu, Jingyi Chai, Yaxin Du, Yang Liu, Yanfeng Wang, and Siheng Chen.
Fedllm-bench: Realistic benchmarks for federated learning of large language models. CoRR,
abs/2406.04845, 2024.

[56] Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chunhua Shen, and
Chao Wu. DENSE: data-free one-shot federated learning. In NeurIPS, 2022.

[57] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via
data-free knowledge distillation for non-iid federated learning. In CVPR, pages 10164–10173.
IEEE, 2022.

[58] Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M. Alvarez. Personalized
federated learning with first order model optimization. In ICLR. OpenReview.net, 2021.

[59] Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu.
Fedpetuning: When federated learning meets the parameter-efficient tuning methods of pre-
trained language models. In ACL (Findings), pages 9963–9977. Association for Computational
Linguistics, 2023.

[60] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In NeurIPS, 2023.

[61] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In NeurIPS, pages
14747–14756, 2019.

13

Roadmap of Appendix The appendix is organized as follows. We list the notations table in Section A.
We provide the theoretical proof of the convergence analysis in Section B. We present the theoretical
intuition of our proposed two loss term C. Next, we provide more detailed related work in Sec. D We
present more experiment details and results in Sec. E.

A Notation Table

Table 3: Important notations used in the paper.
Notations Description

f model parameters
l learning procedure
m feature dimension
n number of samples
x a sample
y a label
D set of training domain
L loss function
M number of clients
N number of averaged models
R total communication rounds
X input space of data
Y label space
λ coeff. for local training reg. term
τ local training steps

B Convergence Analysis

B.1 Formal Restatement of Convergence Theorem

Standard FL [35] employs a server to coordinate the following iterative distributed training:

Step 1 In each global round of training r ∈ [R], the server broadcasts its current global model
weight f (r−1)

g to all the clients;
Step 2 The selected client c copies the current server model weight fr,0

c ← fg, performs τ local
step updates, then sends fr,τ

c − f
(r−1)
g back to the server;

Step 3 The server aggregates the updates from all clients {fr,τ
c −f

(r−1)
g }Cc=1 to form the new server

model using the weighted averaging in Eq 1:

Note that the initialization f (0,0) ,with the subscription indicating model at 0-th communication
round and 0-th local step, is a pre-trained model (e.g. using public datasets) in our problem. This
work focus on improving Step 2 to explore a larger low-loss region in local clients.

Formally, we present the convergence results (Theorem 3.1) and specify the following formal
assumptions: 1) Convexity and Smoothness Assumption on β-smooth loss function, 2) Bounded
Variance of Stochastic Gradient Assumption and 3) Bounded Variance of Local and Global Gradient
Assumption).
Assumption B.1. (Convexity and Smoothness). Li is convex and β-smooth for all i ∈ [M], i.e.,

∥∇Li(w)−∇Li(v)∥ ≤ β∥w − v∥,

for all w, v in its domain and i ∈ [M].
Assumption B.2. (Bounded variance of stochastic gradient). Each client can achieve an unbiased
stochastic gradient with σ2-uniformly bounded variance for all k ∈ [0, τ), namely

E[gi(f (r,k)
i)|f (r,k)

i] = ∇Li(f
(r,k)
i), E[∥gi(f (r,k)

i)−∇Li(f
(r,k)
i)∥2|f (r,k)

i] ≤ σ2. (6)

14

Assumption B.3. (Bounded variance of local and global gradient). The difference of local gradient
∇Li(f) and the global gradient∇L(f) is bounded in ℓ2 norm, namely

max
i

sup
f

∥∥∥∇Li(f
(r,k)
i)−∇L(f (r,k)

i)
∥∥∥ ≤ ζ. (7)

Assumption B.4. (Bounded regularization update). The update introduced by the affinity and
diversity regularization term q(t, µt, µa) in the update rule θ(t+ 1) = θ(t)− ηg(t)− q(t, µt, µa), is
bounded by a constant c, namely

q(t, µt, µa) ≤ c. (8)

We have the main theorem on convergence rate, which similar to [49] except for the introduced
regularization terms.

Theorem 3.1: Convergence Rate for Convex Local Functions with Affinity and Diversity Constraint
Under Convexity and Smoothness Assumption on β-smooth loss function, Bounded Variance of
Stochastic Gradient and Bounded Variance of Local and Global Gradient assumptions, when the
client learning rate is chosen properly as,

η = min{ 1

4β
,

M
1
2 d

τ
1
2R

1
2 , σ

,
d

2
3

τ
2
3R

1
3 β

1
3σ

2
3

,
d

2
3

τR
1
3 β

1
3 (ζ + c)

2
3

} (9)

we define ϵ = E
[

1
τR

∑R−1
r=0

∑τ
k=1 β(f

(r,k)
)− β(f⋆)

]
, and have

ϵ ≤ 2βR2

τR
+

2σd√
MτR

+
5β

1
3σ

2
3 d

4
3

τ
1
3R

2
3

+
15β

1
3 (ζ + c)

2
3 d

4
3

R
2
3 (10)

Here, the update rule of the t iteration with the affinity and diversity term is defined as θ(t+ 1) =
θ(t) − ηg(t) − q(t, µt, µa), and the extra term satisfies q(t, µt, µa) ≤ c. The hyper-parameters µt

and µa represent the co-efficient of tuning affinity and diversity respectively.

Besides, d := ∥f (0,0)−f⋆∥ refers to the distance between initialization f (0,0) and the global optimum
f⋆, σ bounds variance of stochastic gradient by E[∥gi(f (r,k))−∇Li(f

(r,k))∥2|f (r,k)] ≤ σ2, and ζ
bounds variance of local and global gradient by maxi supf

∥∥∇Li(f
(r,k))−∇L(f (r,k))

∥∥ ≤ ζ.

The regularization update bound is reasonable since q(µt, µa) = µt ∗ (θ − θm) − µa ∗ (θ − θm).
Here, θm is the averaged parameter of all the parameter in the model pool for interpolation. As the
inherent trade-off effect of diversity and affinity term, q(µt, µa) will not diverge too much in practice.
And the the bounded value c can be effectively controlled by tuning hyper-parameter µa and µt

The distinguishing factor in our convergence rate, as compared to that in [49], stems from the unique
inter-client update bound facilitated by our proposed regularization term. We have the inter-client
(e.g., for client index 1 and 2) update bound as

∥∇L1(f)−∇L2(f)− q1(µt, µa) + q2(µt, µa)∥ ≤ 4(ζ2 + c2 + 2ζc) (11)

Proof. To find a tight bound for ∥∇L1(f)−∇L2(f)− q1(µt, µa) + q2(µt, µa)∥ , we will use the
given inequalities:

∥∥∇Li(f
(r,k))−∇L(f (r,k))

∥∥ ≤ ζ, i.e.,

∥∇L1(f)−∇L(f))∥ ≤ ζ, ∥∇L2(f)−∇L(f))∥ ≤ ζ. (12)

By breaking down the expression with inserting global gradient ∇L and then apply the triangle
inequality of absolute value, and our given inequalities, we have

∥∇L1(f)−∇L2(f))− q1(µt, µa) + q2(µt, µa)∥ ≤ (2ζ + 2c)2. (13)

Combined our derived inter-client update bound with the Equation (30) in Appendix D.2 in [49], we
can easily obtain a different bounded client update drift bound ϵc as follows:

ϵc ≤ 4τη2σ2 + 14τ2η2(ζ + c)2 (14)

Leveraging the above in-equation and choosing the learning rate η properly, we can get our Theo-
rem 3.1.

15

B.2 Proof of Proposition 3.2

Proposition 3.2 Under the data heterogeneity setting, when the total number of gradient computations
across all clients (K = MτR) is fixed and the local steps τ satisfies

τ ≤ σ

ζ + c

√
σ

dβ

K
1
2

M2
, (15)

the error upper bound Eq.equation 15 will be dominated by the second term O(1/
√
K).

Taking local steps can save total communication rounds compared to synchronous SGD. To be more
specific, as suggested in [49], when the total number of gradient evaluations/computations across all
clients (K = MτR) is fixed and the local steps τ satisfies:

τ ≤ min

 σ

dβ

K
1
2

M2
,

σ

ζ + c

√
σ

dβ

K
1
2

M2

 . (16)

When the upper bound of local steps (Eq.(3)) becomes larger, there will be more communication
savings. Therefore, the quantity in Eq.(3) represents the largest savings in communication rounds.
Next, we show the error upper bound under the data heterogeneity setting.

Proof. Under high data heterogeneity, we have ζ + c ≥ σ, and:

1 ≤ σ

ζ + c

√
σ

dβ

K
1
2

M2
≤

√
σ

dβ

K
1
2

M2
≤ σ

dβ

K
1
2

M2
(17)

Therefore, we have Proposition 3.2:

τ ≤ σ

ζ + c

√
σ

dβ

K
1
2

M2
, (18)

This Proposition 3.2 indicates that when client data are Non-IID, the side effects of the error term in
the Theorem 1 will be further exacerbated, therefore, increasing the local iteration steps effectively
reduces the communication rounds.

C Theoretical Intuitions.

C.1 Decomposition of Generalization Bound

Connecting ζ with out-of-distribution error. Ensemble is a category of the promising method
that ensembles trained models to improve generalizability as demonstrated in centralized settings
via reducing model discrepancy [21]. To reduce the variance ζ of local and global gradients that is
resulted by data heterogeneity, we aim to adapt ensemble to FL. Intuitively, local client training that
can reduce the error on the worst domain (client) in FL will reduce the variance ζ.

In the following, we detail how to reduce ζ with OOD error with a bias-variance-covariance-locality
(BVCL) decomposition analysis. ensemble can be defined as: fWA ≜ 1/N

∑N
n=1 fn. We have

the following decomposition of ensemble’s expected test error. Bias-variance-covariance-locality
decomposition. The expected generalization error on domain T of fWA over the joint distribution
(LN

S ≜ {l(N)
S }NN=1) of N learning procedure on domain S is:

ELN
S
ET (fWA(L

N
S)) = E(x,y)∼pT

[
bias2(x, y) +

1

N
var(x) +

N − 1

N
cov(x)

]
+O(∆̄2), (19)

Here, cov refers to the covariance of predictions made by two member models. The first component
is the same bias as that of each individual member. The variance of ensemble is split into two parts:

16

the variance of each member divided by the number of members (N) and a covariance term. The last
locality term enforces constraints on the weights to ensure the functional ensembling approximation
remains valid. In summary, combining N models reduces variance by a factor of N , but introduces
the covariance and locality terms which must be controlled to ensure low OOD error.

In the analysis presented in [43], the authors proposed a BVCL decomposition based on the ap-
proximation of functional ensembling (i.e., averaged prediction instead of parameter) by WA. The
expected generalization error on domain T of fWA over the joint distribution (LN

S ≜ {l(N)
S }NN=1) of

N learning procedure on domain S is:

ELN
S
ET (fWA(L

N
S)) = E(x,y)∼pT

[
bias2(x, y) +

1

N
var(x) +

N − 1

N
cov(x)

]
+O(∆̄2), (BVCL)

Definition C.1 (Bias). For x ∈ X and y ∈ Y , we define the bias of OOD prediction as,

bias(x, y) = y − ElS [f(x, lS)]. (20)

Definition C.2 (Variance). For x ∈ X , we define the variance of prediction as

var(x) = EfS

[
(f(x, lS)− ElS [f(x, lS)])

2
]
. (21)

Definition C.3 (Covariance). For x ∈ X , we define the covariance of prediction produced by two
different learning procedures lS and l′S as

cov(x) = ElS ,l′S
[(f(x, lS)− ElS [f(x, lS)]) (f(x, l

′
S)− ElS [f(x, lS)])] . (22)

Definition C.4 (Locality). For any averaged models fi (for i ∈ [N]), i is the index of an averaged
model, N is the total number of averaged models, we define the locality of all averaged models as

∆̄2 = ELN
S
∆2

LN
S

with ∆LN
S
=

N
max
i=1
∥fi − fWA∥2 . (23)

Following the definitions of the terms in the BCVL generalization bound, we discuss the insights
of reducing the bound via the proposed strategy. Our method is based on WAFT, which enjoys the
benefit of reducing prediction variance by averaging the predictions of multiple models. The diversity
term in our proposed method reduces the covariance term by encouraging functional diversity in the
parameter space. The affinity term in our proposed method reduces the locality term to ensure the
approximation of weight averaging (WA) to prediction ensembling.

Analysis on variance. One can see that an increase in the number of averaged models can directly
lead to a reduction in variance. The straightforward averaging M models, as seen in the vanilla WAFT
method, diminishes variance by a factor of M . However, this approach also introduces covariance
and locality terms, which necessitate meticulous management on adding new averaged models to
guarantee minimal out-of-distribution (OOD) error.

Analysis on covariance. The covariance term represents the predictive covariance between two
member models whose weights are averaged. It increases when the predictions of different averaged
models are highly correlated. In the worst-case scenario where all predictions are identical, the
covariance is equal to the variance, rendering the benefits of weight averaging ineffective [43].
Conversely, when the covariance is lower, the advantages of weight averaging over individual models
become more pronounced. Therefore, it is crucial to address covariance by promoting functional
diversity among the averaged models. Our proposed method incorporates a diversity term that aims
to reduce this covariance.

Analysis on locality. The locality term, which represents the expected squared maximum distance
between weights and their average, constrains the weights to be close and ensures the approximation.
The affinity term in our proposed method encourages the reduction of this locality term.

Overall, to reduce WA’s error in OOD, we need to seek a good trade-off between diversity and locality.
Our solution achieves this balance through two optimizable loss terms, the diversity term, and the
affinity term. Besides, the direct combination of M models, as in the vanilla WAFT method, reduces

17

Model SoupsModel Ensemble Superior Soups

Inference

Training

Single Final Model

Curated
Ingredients

Figure 7: Comparison on model ensemble, model soups, and superior soups.

variance by a factor of M but introduces covariance and locality terms that need to be carefully
managed in order to ensure low OOD error.

It is worth noting that, from an implementation perspective, unlike the model soups method (see
Fig. 7 middle), which requires retraining a large number of candidate models for model selection
and interpolation, our method only selects a few models (typically 3 to 5) for sequential random
interpolation training in order to maintain connectivity. This significantly reduces the time cost of
local training. Furthermore, unlike model ensembles (see Fig. 7) that require storing multiple model
weights and integrating predictions during inference, our method only needs to retain an averaged
weight during the final inference stage. This greatly reduces the memory footprint and enhances the
inference speed on the client side.

D More Related Work

D.1 Heterogeneous Federated Learning

FL performance downgrading on Non-IID data is a critical challenge. A variety of FL algorithms have
been proposed to handle this heterogeneous issue. From an optimization perspective: FedProx [28]
adds L2 norm to the client model and the previous server model to regularize them. This helps to
prevent the client models from diverging too far from the server model. Scaffold [25] adds a variance
reduction term to mitigate the “clients-drift.” MOON [27] uses mode-level contrastive learning to
stabilize local training by making the client models more robust to changes in the data distribution.
In addition, personalized FL [46] is another approach to achieving high local testing performance on
Non-IID data. For aggregation perspective: FedBN [30] uses local batch normalization to alleviate
the feature shift before averaging models. For extreme communication efficient: In recent years, there
have been some FL methods based on one-shot communication rounds. These methods typically use
additional techniques on the server-side, such as using prediction ensembles [14] instead of weight
ensembles or generating data [56, 18] from local models for centralized training, to improve the
performance of the aggregated model. These methods are orthogonal to our client training-based
approach. There are also works on few-round communication rounds in FL based on meta-learning
frameworks [39], but the data partition used in the experimental setup may not be suitable for practical
FL scenarios.

D.2 Federated Fine-tuning and Model Interpolation

Fine-tuning aims to achieve improved performance on the given task by leveraging the learned
knowledge of the pre-trained model. [7] empirically study the impact of fine-tuning from a pre-
trained model in FL and unsurprisingly find that starting from a pre-trained model reduces the training
time required to reach a target error rate and enables the training of more accurate models than

18

starting from random initialization. [57] propose a knowledge distillation approach for fine-tuning
the global model, called FedFTG. In addition, fine-tuning in FL has been widely used in personalized
FL to address Non-IID problems by having each user adapt the global model to personalized local
models using their own data. For example, FedBABU [38] splits the model into body and head, then
fine-tuning the head part for personalization. [5] propose FTFA and RTFA that start with a pre-trained
model and then fine-tunes a small subset of model parameters using the FedAvg [35] algorithm.
However, this line of work focuses on optimizing local performance and ignores the generalization of
global data. This can lead to a performance drop when we further update the global model from the
updated local models. Weight averaging and model recycling are not only efficient ways to aggregate
machine learning models but also present promising benefits of improving model generalizability.
Inspired by the linear mode connectivity property of neural networks trained with stochastic gradient
descent (SGD) [36, 12], Model Soups [52] proposes to combine many independent runs with varied
hyper-parameter configurations. Similarly, DiWA [43] utilizes this idea of Model Soups while
theoretically analyzing the importance of training different models with diverse hyper-parameters
within mild ranges. Soups-based methods [52, 43] rely on aggregating diverse models to improve
model generalizability. To induce greater diversity, some methods such as [34] using a high constant
learning rate, [51] minimizing cosine similarity between weights, [20] using a tempered posterior
and model Ratatouille [42] averages diverse model trained from auxiliary datasets.

E Experiment Details

E.1 Experimental Setup Details

Dataset. We validate the effectiveness of our proposed method with four datasets, FMNIST [53],
CIFAR-10 [26], Digit-5 [13, 30], and DomainNet [40]. The Fashion-MNIST (FMNIST) dataset is a
dataset of Zalando’s article images consisting of a training set of 60, 000 examples and a test set of
10, 000 examples. Each example is a 28 × 28 grayscale image of a piece of clothing. The dataset
is divided into 10 classes: t-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot. The CIFAR-10 dataset is a popular dataset for machine learning research. It consists of
60, 000 32× 32 color images divided into 10 classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. The dataset is split into 50, 000 training images and 10, 000 test images. The
Digit-5 dataset is a collection of five popular digit datasets, MNIST [10] (55000 samples), MNIST-M
(55000 samples), Synthetic Digits [13] (25000 samples), SVHN (73257 samples), and USPS (7438
samples). Each digit dataset includes a different style of 0-9 digit images. The DomainNet dataset
is a large-scale dataset of images collected from six different domains: clipart, infograph, painting,
quickdraw, real, and sketch. The dataset contains 600, 000 images, each labeled with one of 345
object categories. The images in the DomainNet dataset are of high quality and are diverse in terms
of their content and style.

Model. We used the pre-trained models from the timm repo 1, which are a collection of state-of-the-
art deep learning models for computer vision tasks. For our proposed LSS, we use Adam optimizer
with a learning rate of 5e−4 , momentum 0.9, and weight decay 5e−4. The default number of
averaged models is 4. Each model updates 8 epoch then aggregates with the others. The default
affinity term coefficient is 3 and diversity term coefficient is 3. We set the batch size to 64 by default.
For vision transformer (ViT) [11] model, we adopt ViT base model with 224× 224 image size and
16× 16 input patch size. The ViT is a neural network architecture for image classification that uses a
self-attention mechanism to learn the relationships between pixels in an image. ViT has been shown
to achieve state-of-the-art results on a variety of image classification benchmarks, including ImageNet
and CIFAR-10.

Training Details. We implement all the methods in PyTorch, and we run all the experiments on an
NVIDIA Tesla V100 GPU. Unless otherwise specified, the model performance in the experiments
below refers to the global model performance after aggregation on the server side. For commonly
used FL methods, due to the significant increase in local update steps that leads to worse convergence,
we set their local update steps to 8.

Applying WAFT to FL Local Update. For SWA [21], SWAD [1], and our method LSS, we take
more local update steps, with each model being averaged trained 8 steps, and the default number

1https://github.com/huggingface/pytorch-image-models

19

of models to be averaged is 4. For the Model Soups [52] method and DiWA [43], we trained 32
models and each model trained 8 steps. The hyper-parameter configuration for model selection
includes learning rate ([1e−4, 5e−4, 1e−5]), batch size ([32, 64, 128]), dropout rate ([0.0, 0.1, 0.3]),
and weight decay [5e−4, 5e−5, 5e−6]. Each run randomly select one of the hyper-parameter options.
From each run of WAFT method, we take the weights of the epoch with maximum accuracy on the
validation dataset, which follows the training distribution.

E.2 Extended Experiment Results

Arbitrarily increasing local steps cannot reduce communication rounds.

From Table 4, we can see that simply increasing local steps does not always lead to improved model
performance. For FedAvg on the CIFAR10 dataset, increasing local steps beyond 8 actually results in
a decrease in model performance.

Table 4: FedAvg with different local steps: Label shift test accuracy after R = 1 communication
rounds (CIFAR-10 with 5 Clients).

Method Accuracy (τ = 1) ↑ Accuracy (τ = 4) ↑ Accuracy (τ = 8) ↑ Accuracy (τ = 12) ↑ Accuracy (τ = 16) ↑
FedAvg [35] 34.03(2.84) 49.08(1.51) 58.34(0.86) 55.76(0.82) 53.21(0.80)

Computational and memory costs comparison.

In Table 5, we provide detailed information on computational overhead and memory usage for
various methods. Since the computational overhead and memory usage of FedAvg and other used
FL methods are nearly identical, we only present the data for FedAvg here. Similarly, as the
computational overhead and memory usage for SWA and SWAD, as well as for Soups and DiWA,
are also nearly the same, we only show the data for SWA and Soups methods. It can be observed that
our method requires more memory compared to other soups-based methods. However, the overall
computational time for a single client’s communication round is faster in our approach. This is
because other soups-based methods require training a large number of models repeatedly to achieve
good model performance. For instance, Soups needs to train 32 models, whereas our method only
requires training 4 models. If the number of models trained by Soups is reduced to just 4, it only
brings about a 5% improvement compared to FedAvg with a communication round of 1.

Table 5: Computational and memory costs of different types of method (ResNet-18).
Costs FedAvg [35] SWA [21] Soups [52] LSS (M = 2) LSS (M = 4)
MACs (G) 1.82 1.82 1.82 2.73 4.55
Train Time Per Epoch (s) 2.66 2.73 2.66 12.27 20.43
Train Time Per Round (s) 21.28 433.31 683.52 100.98 169.77

LSS encourages smoothness (reducing β). In Table 6, we provide the performance degradation of
trained models evaluating under varying levels of random noise. Generally, a smaller performance
degradation indicates a more robust model, which to some extent reflects the smoothness of the
trained model. We can observe that our method exhibits greater robustness to noise perturbation.

Table 6: Smoothness of the trained model. Evaluated trained model performance drop on a testset
with added ℓ0 norm random noise. CIFAR-10 dataset Dirichlet distribution α = 1.0 and α = 0.1:
Label shift test accuracy after R = 1

CIFAR-10 (4/255) CIFAR-10 (8/255)

Method Accuracy (R = 1) ↓ Accuracy (R = 3) ↓ Accuracy (R = 1) ↓ Accuracy (R = 3) ↓
FedAvg [35] 1.30 1.17 3.06 2.93
LSS 0.89 0.76 2.37 1.85

LSS improves flatness of loss landscape. The sharpness measure utilized in the Table 7 computes the
median of the dominant Hessian eigenvalue across all training set batches through the Power Iteration
algorithm [54]. This metric signifies the maximum curvature of the loss landscape, commonly

20

employed in the literature on flat minima [23] to indicate sharpness. As demonstrated in the presented
table, it is clear that our proposed method results in flatter minima compared to FedAvg.

Table 7: Loss landscape flatness quantification with Hessian eigenvalue.

FedAvg ↓ LSS (M = 2) ↓ LSS (M = 3) ↓ LSS (M = 4) ↓
Hessian Eigenvalue 193.18 147.20 136.67 119.14

Evaluation with more clients. To assess the effectiveness of our method in larger-scale client
scenarios, we conducted an expanded experiment involving 50 clients. From the Table 8, we can
observe that our proposed method maintains a significant advantage across different client scales,
particularly when the number of communication rounds is small (R = 1).

Table 8: Different client numbers (5 Clients and 50 Clients): Label shift test accuracy after R = 1
and R = 3 communication rounds.

CIFAR-10 (5 Clients) CIFAR-10 (50 Clients)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg [35] 58.34(0.86) 66.74(0.76) 49.32(0.93) 68.39(0.61)
LSS 65.96(1.50) 75.16(1.07) 56.72(0.53) 73.32(0.46)

Table 9: Different Network Architecture (ResNet-18 and ViT): Label shift test accuracy after R = 1
and R = 3 communication rounds.

CIFAR-10 (ResNet-18) CIFAR-10 (ViT Base)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg [35] 58.34(0.86) 66.74(0.76) 60.35(0.82) 69.38(0.51)
LSS 65.96(1.50) 75.16(1.07) 67.48(0.70) 76.81(0.47)

Figure 8: FedAya Evaluation Comparison with
FedAvg and LSS. Our method, LSS, when applied
to large language models for instruction tuning,
achieves higher scores than the common FedAvg.
This suggests that LSS is a promising approach for
improving performance and convergence in feder-
ated learning settings for large language models,
in addition to its success in image classification.
Exploring the use of our method in a diverse set of
complex LLM tasks is an interesting direction for
future research.

Evaluation with ViT. To validate the effectiveness of
our method across different network architectures, we
conducted an expanded experiment using the Vision
Transformer (ViT) model based on the Transformer
architecture. Upon observing the Table 9, it is evident
that our method consistently enhances the commu-
nication efficiency of federated learning with ViT
model architectures.

Evaluation with different Non-IID level. To fur-
ther comprehensively validate the effectiveness of
our method under different levels of data hetero-
geneity, we conducted experiments on the CIFAR-10
dataset by adjusting the coefficients α of the Dirichlet
distribution. We examined the performance of our
method in scenarios with greater distribution varia-
tions. Based on the Table 10, it is evident that our
method maintains a significant advantage in scenarios
with larger data heterogeneity.

Evaluation with different Initialized Models. To
compare the performance of our method under differ-
ent types of parameter initialization, we conducted
experiments on the CIFAR-10 dataset using both pre-
trained and random initialization. Table 11 shows
that our method still maintains a significant advantage with random initialization, but it does not
achieve the near-optimal performance seen with pre-trained initialization.

21

Table 10: Different Non-IID level (Dirichlet distribution α = 1.0 and α = 0.1): Label shift test
accuracy after R = 1 and R = 3 communication rounds.

CIFAR-10 (α = 1.0) CIFAR-10 (α = 0.1)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg [35] 58.34(0.86) 66.74(0.76) 18.30(2.25) 45.85(1.24)
LSS 65.96(1.50) 75.16(1.07) 26.70(1.62) 50.02(0.82)

Comparison of Convergence Speed Between FedProx and LSS. Fig. 9 shows the accuracy of the
testing during the early and late phases in terms of the number of communication rounds required to
reach convergence. These results demonstrate that our method outperforms FedProx in both the early
and late phases of federated learning.

Evaluation of Large Language Models for Multilingual Instruction Tuning

Setup. We follow the setup of Fed-Aya [55], which involves four iterative steps: server-to-client
model downloading, local model training, client-to-server model uploading, and global model
aggregation. For instruction tuning, we use the parameter-efficient fine-tuning technique, LoRA [19],
applied to the Llama-7b model.

Dataset. We use the Aya dataset [44], a multilingual instruction tuning dataset with annotations
from contributors worldwide. Our experiments include 6 high-resource languages (English, Spanish,
French, Russian, Portuguese, Chinese) and 2 low-resource languages (standard Arabic, Telugu). The
dataset is filtered to include contributors with at least 100 annotations, resulting in 38 clients with a
total of 25k data samples.

Model. The model used for our experiments is the Llama2-7b [48], fine-tuned using the LoRA
technique. We evaluate the effectiveness of the training methods using an in-domain evaluation
metric termed Ref-GPT4 [60], where GPT-4o rates the generated responses against ground-truth
responses. The score given by GPT-Ref ranges from 0 to 10. We adopt the same prompt template
used in FedLLM-Bench [55]. The implementation of applying our method to LoRA is the same as
that used in the ViT experiments (see Fig. 4) described earlier.

Result. Our method, LSS, when applied to large language models for instruction tuning, achieves
higher scores than the common FedAvg. This suggests that LSS is a promising approach for improving
performance and convergence in federated learning settings for large language models, in addition to
its success in image classification. Exploring the use of our method in a diverse set of complex LLM
tasks is an interesting direction for future research.

Table 11: Different model initialization (Pre-trained v.s. Random): Label shift test accuracy after
R = 1 and R = 3 communication rounds. Result: It shows that our method still maintains a
significant advantage with random initialization, but it does not achieve the near-optimal performance
seen with pre-trained initialization.

CIFAR-10 (Pre-trained) CIFAR-10 (Random)
Method Accuracy (R = 1) ↑ Accuracy (R = 3) ↑ Accuracy (R = 1) ↑ Accuracy (R = 3) ↑
FedAvg [35] 58.34(0.86) 66.74(0.76) 14.83(2.03) 25.42(0.71)
LSS 65.96(1.50) 75.16(1.07) 30.64(1.73) 37.86(1.33)

0 2 4 6 8 10
Communication Round

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (
%

)

CIFAR-10 (Early Phase)

LSS
FedAvg

(a)

10 100 200 300 400
Communication Round

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Ac
cu

ra
cy

 (
%

)

CIFAR-10 (Late Phase)

LSS
FedAvg

(b)

0 2 4 6 8 10
Communication Round

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Digit-5 (Early Phase)

LSS
FedAvg

(c)

10 100 200 300 400
Communication Round

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 (
%

)

Digit-5 (Late Phase)

LSS
FedAvg

(d)
Figure 9: Convergence comparison of our proposed LSS with FedProx. LSS also achieves high accuracy much
earlier (around 6 to 8 rounds) than FedProx, which takes hundreds of communication rounds.

22

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope. The concepts of federated learning settings are clearly
introduced and defined in Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper acknowledges several limitations and areas for future research in
Sec. 5. Firstly, it highlights a trade-off between training memory and performance when
reducing communication rounds in model merging. This indicates an awareness of the
potential drawbacks of their method and suggests that further work is needed to make
the method more training-memory efficient. Additionally, the paper notes that it focuses
exclusively on vision-related tasks, suggesting that extending the findings to language tasks
or multimodal scenarios would be a promising direction for future research.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

23

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, the paper meticulously outlines all relevant assumptions and presents com-
prehensive, logically sound proofs, ensuring the validity and reliability of each theoretical
result. These elements are included in Sec. 3 and Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. This information is provided in Sec. 4, with additional detailed
information available in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

24

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper specifies all the training and test details necessary to understand
the results, including data splits, hyperparameters, their selection process, and the type
of optimizer used. This comprehensive detailing ensures that the experimental setup and
outcomes are transparent and reproducible in Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary to understand
the results, including data splits, hyperparameters, their selection process, and the type of
optimizer used. These details are comprehensively documented in Sec. 4 to ensure clarity
and reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, the paper reports error bars and other appropriate information about the
statistical significance of the experiments in Sec. 4. These details are suitably and correctly
defined to ensure the reliability and validity of the reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the paper provides sufficient information on the computer resources
needed to reproduce the experiments in Sec. 4. This includes details on the type of compute
workers, memory requirements, and execution time, ensuring that others can accurately
replicate the experimental setup and results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

26

https://neurips.cc/public/EthicsGuidelines

Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics. The paper adheres to the guidelines on responsible release and
publication strategy, ensuring that all necessary safeguards are in place for controlled use of
the model (see Sec. 4).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: es, the paper discusses both potential positive and negative societal impacts of
the work performed. The discussion includes an analysis of how the research can benefit
society and also addresses possible adverse effects, ensuring a balanced and comprehensive
evaluation of the societal implications in Sec. 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not describe safeguards for the responsible release of data
or models that have a high risk for misuse, such as pretrained language models, image
generators, or scraped datasets. Because we does not focus the release of such assets, we
focus model training techniques. (see Sec. 4).

Guidelines:

• The answer NA means that the paper poses no such risks.

27

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not utilize external assets such as code, data, or models from
other creators or original owners. Therefore, there are no specific credits, licenses, or terms
of use that need to be mentioned or respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce any new assets such as code, data, or models.
Therefore, there is no documentation provided alongside new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

28

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing experiments or research with human
subjects. Therefore, it does not include instructions given to participants, screenshots, or
details about compensation.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any study participants, crowdsourcing experiments,
or research with human subjects. Therefore, it does not describe potential risks incurred
by study participants, disclose such risks to subjects, or obtain Institutional Review Board
(IRB) approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Heterogeneous Federated Learning
	Federated Fine-tuning and Model Interpolation

	Method
	Notions and Problem Definition
	Effect of Regularization and Local Steps on FL Convergence under Data Heterogeneity
	Our Solution: LSS Algorithm
	Random interpolation conserving connected low-loss region.
	Diversity term.
	Affinity term.
	Overall pipeline.

	Experiment
	Experimental Setup
	Performance Comparison
	Ablation Studies

	Conclusion
	Notation Table
	Convergence Analysis
	Formal Restatement of Convergence Theorem
	Proof of Proposition 3.2

	Theoretical Intuitions.
	Decomposition of Generalization Bound

	More Related Work
	Heterogeneous Federated Learning
	Federated Fine-tuning and Model Interpolation

	Experiment Details
	Experimental Setup Details
	Extended Experiment Results

