Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 130 (2024) 145-153

www.elsevier.com/locate/procedia

57th CIRP Conference on Manufacturing Systems 2024 (CMS 2024)

How Domain Knowledge can Improve Machine Learning Surrogates
for Manufacturing Process Optimization — a Comparative Study

Bela H. Bohnke®, Aleksandr Eismont?, Clemens Zimmerlingb, Luise Kéirgerb, Klemens Bohm?

“Institute for Program Structures and Data Organization (IPD), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
b Institute of Vehicle System Technology - Lightweight Engineering (FAST-LB), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

* Corresponding author. Tel.: +49-176-477-57012. E-mail address: bela.boehnke @kit.edu

Abstract

In various industries, optimizing manufacturing parameters is vital for the efficient production of high-quality products. Traditional methods
involve costly production trials and process tuning — particularly when dealing with complex processes and materials such as composites. High-
fidelity simulations offer a cost-effective alternative. However, they can be computationally intensive, which often renders them impracticable for
iterative optimization. Surrogate model-based optimization (SuMO) provides a solution by using efficient, data-driven approximations. However,
existing approaches often overlook valuable domain knowledge, such as material behavior, spatial relationships and optimization objective. We
investigate different types of knowledge varying in complexity, difficulty to incorporate and transferability to other domains. In numerical studies
on composite manufacturing — specifically, textile draping — we demonstrate that integrating such domain knowledge improves prediction accuracy,

reduces optimization iterations, and enhances overall outcomes.
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1. Introduction and Use Case

Industrial manufacturing processes require careful
parametrization for optimal operation in terms of part quality,
throughput or efficiency. In current practice, identifying optimal
parameters often involves lengthy trial-error campaigns and
significant rework for fault correction. High-fidelity process
simulations, e.g., based on finite elements (FE), allow to assess
manufacturability at the earliest stages of part development [1].
Besides rigorous analysis of process dynamics, their inherently
virtual nature also allows for coupling with optimization
algorithms, often referred to as virtual process optimization.
While such a coupling enables automated search for optimal
parameters, the computational demands of iterative optimiza-
tion often make it impractical in real-world applications [2].
One option to reduce the computational burden in virtual
process optimization is surrogate model-based optimization
(SuMO) [3]. Multiple variants of SuUMO exist, which all share
the idea of constructing a computationally efficient, data-driven
approximation of the expensive simulation — a surrogate. This
process is referred to as training and relies on a priori sampled
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observations. The resultant surrogate then guides the optimizer
in the parameter space.

The more accurate the surrogate, the more efficient the op-
timization process will be. Since accuracy generally improves
with training data, a naive idea could be to supply more sample
simulations. However, the available computational resources
usually limit the number of simulations. This in turn makes
data-efficiency the key for real-world applicability. In this study,
our objective is to enhance surrogate accuracy by leveraging
readily available engineering knowledge while maintaining a
constant number of simulation samples. We stepwise intro-
duce additional knowledge by domain-agnostic and domain-
informed methods and compare the impact on surrogate accu-
racy. Additionally, we categorize different types of additional
knowledge regarding knowledge complexity and assess the dif-
ficulty of incorporating the knowledge. Further, we discuss the
transferability of our methods to other domains.

1.1. Related Work

Data-driven surrogate models can be used to guide the op-
timization and identify promising candidate solutions at low
computational effort [4]. However, due to their statistical na-
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ture, they always deviate from the original process, and thus,
these candidates may differ from the true optimum of the orig-
inal process. SUMO tries to sequentially eliminate this bias of
the surrogate model by iteratively refining the surrogate model
with new observations over the course of optimization [5]. Over
the last decades, research on surrogate modeling mostly studied
the suitability of different models ranging from simple poly-
nomials and regression trees [6] to stochastic processes [7, 8]
and artificial neural networks [9]. Irrespective of the actual
model, the studies tend to view surrogates as a phenomenolog-
ical input-output-relation, where adjustable process parameters
(input), e.g. temperature or pressure, are mapped to a scalar or
low-dimensional quality metric (output) [3].

However, spurred by advances in machine learning (ML),
attempts have been made to process — and also predict — more
complex information with data-driven models. For instance,
data preprocessing steps like principal component analysis have
been introduced to find an information-rich input-space rep-
resentation [10]. Alternatively, techniques have been studied
that do not just output a scalar value but instead predict multi-
dimensional quantities, i.e., a full-field estimation of the quality.
For applications in material forming, see, e.g., [2, 11, 12].

Overall, the literature shows that the introduction of addi-
tional information increases surrogate accuracy. However, most
works view this from a methodological perspective, i.e., seek to
improve accuracy by algorithmic improvements but tend to dis-
regard other information sources. Such sources can be domain
knowledge [13, 14] about material behavior or spatial depen-
dencies, but as of now, no systematic investigations for materi-
als science have been reported.

1.2. Use Case: Textile Forming Optimization

This work considers optimization of the manufacturing pro-
cess of composites, specifically, continuous-fiber reinforced
plastics (CoFRP). CoFRP offer unparalleled weight-specific
mechanical properties and are thus increasingly applied across
industries . However, their superior properties usually come at
a substantial cost: Not only are the materials themselves ex-
pensive, also their complex behavior during manufacture en-
tails considerable optimization effort to produce high-quality
products. CoFRP-processes generally comprise a process chain
with multiple steps [15]. While process parameters need to be
optimized for all steps, this work focuses on forming (draping)
engineering textiles — specifically woven fabrics.

This work revisits the virtual forming optimization problem
from [2]. It studies an FE-based forming simulation model of a
double-dome geometry, a common benchmark geometry in tex-
tile forming. To control the process, 60 spring-guided grippers
clamp the textile along its perimeter, as schematically shown in
Figure 1. The grippers locally exert restraining forces onto the
textile and thereby manipulate its draw-in into the mold. The
optimizer can choose gripper spring stiffnesses ¢; (i = 1...60)
between 0.01...1.0N/mm.

Due to their textile architecture, woven fabrics have a low
shear stiffness compared to their tensile stiffness in warp and
weft direction. This makes in-plane shear the dominant defor-
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Fig. 1. Left: Forming simulation setup with 60 grippers along the textile perime-
ter, visualized by springs. Right: Example shear angle distribution after form-
ing. Some springs stretch and locally introduce a restraining force. [2, 16]

mation mechanism. One can quantify it by the shear angle v, as
visualized in Figure 2.

initial

Fig. 2. Shear deformation of a woven fabric measured by the shear angle . [17]

However, fabrics cannot undergo arbitrarily large shear
deformations but show a forming limit, the locking angle
Yiock [18]. Shearing beyond 7ok increases the likelihood of de-
fects like wrinkling and textile folding. Also, high shear an-
gles impede resin infiltration and may lead to uninfiltrated re-
gions (dry spots) which can compromise the structural perfor-
mance [16, 19]. Therefore, the shear angle is a crucial quality
indicator during the forming process, and it is typically mini-
mized by finding the optimal gripper spring stiffness combina-
tion.

2. Considered Domain Knowledge and Inclusion Methodes

We investigate the effect of domain knowledge on surrogate
accuracy. As Table 1 summarizes, we study three different ap-
proaches to include domain knowledge. We selected our ap-
proaches to cover typical levels of complexity regarding: (1)
Contained domain knowledge, (2) required effort to include the
knowledge, and (3) transferability to other manufacturing pro-
cesses. Our approaches are outlined in the following.

Table 1. Investigated domain knowledge

Example Knowledge Inclusion Transferability
Geometry-strain relation simple simple general
Gripper-tensile-force relation complex complex specific
Objective Alignment complex simple general

2.1. Geometry-Strain Relation

In manufacturing and general engineering, we can typically
expect a complex relation between component geometry, man-
ufacturability and structural performance.
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Fig. 3. Encoding the tool geometry (top left) and material shear (top right) as
grayscale images (bottom).

Knowledge. One such relation stems from the deformation
mechanism of woven fabrics: Shear deformation will mainly
form in doubly-curved geometry regions. That is, a close spa-
tial relation between geometry and high shear angles can be
expected. We deem this rather broad and qualitative statement
a comparably simple form of domain knowledge. It ‘only’ re-
quires a description of the geometry and the part quality distri-
bution, here the set y of shear angles.

Inclusion. For textile forming, this has proven comparably
straightforward: As proposed in [20, 21] and later confirmed
in [22], images are well-suited to describe such spatial relations
in textile forming: One can encode the tool geometry and ma-
terial shear as a grayscale image using the local elevation from
the tool separation plane and, likewise, the local shear angles
as shown in Figure 3. At the same time, images are suitable
data formats for ML techniques, which makes incorporation
straightforward.

Transferability. We hypothesize that a spatial-aware surrogate
model achieves better generalization performance than its clas-
sical input-output counterpart. This is because the spatial-aware
model requires less training data to achieve the same accuracy.
Such qualitative geometry-process-relations are widespread in
manufacturing and general engineering: Consider, for instance,
fiber reorientation along the flow paths in molding processes or
stress concentrations at geometrical notches. Thus, we expect
good transferability to other domains.

2.2. Gripper-Tensile-Force Relation

We further utilize domain knowledge to encode the positions
and the area of influence of the grippers. The grippers actuate
the textile locally, and thus, we again expect a close spatial re-
lation between grippers and the textile response.

Knowledge. A major and a minor mechanism is assumed to
govern the effect of grippers on the fabric: (1) The continu-
ous fibers can transmit large tensile loads along their axis, and
thus, each gripper will actuate the fabric yarns connected to
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Fig. 4. Relative rotation angle of an affected material point P and fiber axis.

its point of attack in a line-wise manner. (2) Shear forces are
transmitted to neighboring yarns via friction at the warp-weft-
crosspoints, although on a much lower scale. However, as the
frictional forces at the crosspoints add up along the fiber axes,
more and more neighboring yarns are actuated. As a result, the
grippers’ area of influence will spread to a certain extent along
its line of action. We deem these material-specific mechanisms
a complex form of knowledge.

Inclusion. We resort again to image representations and con-
sider two possible approaches: a stiffness-encoding and, ex-
tending it, a force-encoding. Both encodings seek to approxi-
mately represent the two material mechanisms. Since the non-
linear, multi-scale behavior of woven fabrics defies a rigorous
mechanics-based, closed-form model of the gripper effects, we
lean on simplified elasticity theory for orthotropic materials.
Please note that the following is not a rigorous derivation based
on continuum mechanics but a pragmatic adaptation to com-
ply with engineering understanding. We assume that the gripper
influence behaves roughly similarly to the stiffness of a unidi-
rectional fiber under rotation. That is, it is maximal along the
fiber axis (reduced plane-stress stiffness Q1) but diminishes
with relative rotation « to the fiber axis (Figure 4). See, e.g.,
[23] for the transformation equations of the reduced stiffnesses
Q;; under rotation.

In our study, we are more focused on relative values than
absolute ones. Therefore, we normalize the stiffnesses rela-
tive to the stiffness maximum Q;; between 0 and 1 via g =
k Q;j/Q11. This normalization process employs an attenuation
factor k, which reduces the signal’s intensity exponentially in
further distance 4 from the fiber direction and reflects the lower
friction forces. Specifically, we set k = exp (— (l’l/laff)z). L
represents a length which increases in proportion to the dis-
tance r: Lig = [1 —exp (—=r/rmax)] * [af o — lar0] + lar o With
L o = 30mm, Lo = 10mm and ryac = 200 mm. The relative
stiffness g) models the grippers’ areas of influence while the
spring stiffnesses ¢ scale them up and down so that we obtain
the stiffness-encoding Ic via Ic = ¢ - G-

We give two encoding examples for I in Figure 5 (center
top), one with a high stiffness (dark) and one with a lower stiff-
ness (bright). Clearly, the distributions reproduce the engineer-
ing understanding: From the grippers’ points of attack (blue and
yellow markers) Ic is maximal in warp or weft direction, re-
spectively, and gradually widens in perpendicular direction.

To obtain the force-encoding, we extend the stiffness en-
coding. Consider the situation shown on the right of Figure 5.
Spring A (blue marker) is barely stretched, while spring B (yel-
low marker) experiences considerable stretch, i.e., ug >> ua.
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Fig. 5. Gripper stiffness and force impact distribution /c and /r. Gripper forces
F; computed from stiffness ¢; and reference-displacement uer by Fi = ¢; - Upef-

Since the exerted force F' of a gripper depends not only on its
spring stiffness ¢ but also on its stretch u (F' = c-u), the stiffness
of each griper contributes to the forming process to different ex-
tents. Thus, we obtain the force-encoding Ir = I¢ - ures by mul-
tiplying the gripper stiffness /¢ with a reference-displacement
uger to factor in the expected spring stretch during forming.
Here, u,.f comes from an additional forming simulation, where
all gripper springs have a uniform stiffness of ¢ = 0.5SN- mm™".
By comparing the encodings of Ir (cf. Figure 5 center bottom)
and I¢ (cf. Figure 5 center top) it becomes apparent that the
force-encoding of the gripper-tensile-force relation is different
depending on how much the fabric is locally drawn into the
mold: Although spring B has a lower stiffness than spring A
(ca > cp), it stretches much more (#p << ug) and thus exerts a
higher force during forming. Consequently, in the force-based
encoding, spring B is more pronounced.

As with the geometry-strain relation, including the image-
based encoding into the surrogate is easy. However, we deem
the incorporation approaches complex because of the mechani-
cal understanding required to obtain the encoding.

Transferability. These image-based encodings are highly
process-specific, because of the material-specific deformation
mechanisms. Thus, they may not be directly applicable to other
processes, although it is certainly conceivable to devise differ-
ent representations for other processes.

2.3. Alignment of training and optimization objective

Optimization amounts to minimization of an scalar objec-
tive function value. Historically, surrogate training aims at pre-
dicting this scalar objective function value accurately. However,
an accurate prediction of the objective function is important
only near minima. Thus, predictions close to minima are more
important and require highest-possible accuracy. Classical sur-
rogate training does not reflect this difference in importance,
though, but weighs all data equally. Recent work has shown that
full-field predictions are beneficial for accuracy [2, 12] because
it allows learning relations between neighboring regions. How-
ever, full-field predictions instead of scalar objective functions
even compound this difference in importance. This is, because
in a full-field many elements contribute only little to the objec-

tive function, making their accurate prediction less important.
However, current work weighs them equally to the — often few
— elements that contribute considerably to the objective func-
tion. We name this issue training-objective-bias.

Knowledge. The objective function already contains well-
formalized domain knowledge about what constitutes part qual-
ity and possibly defect allowables. Specifically, the objective
function quantifies the importance of different elements with
respect to the overall part quality. For the n-th gripper con-
figuration, the shear strain is pixel-wise encoded in an image
Yn = Ynl»- .., Ynp) With P being the pixel count. In accord with

[11], we assume the norm o(y,) = |ly,ll, = (& |y,,p|k)”k with
k = 4 as the objective which balances suppression of maximum
shear and general shear formation. By incorporating this — often
complex — knowledge into the surrogate, we expect to identify
important regions and reflect their importance during training.

Inclusion. We propose a novel method — Objective Alignment
(OA) — that makes use of this knowledge during model train-
ing. OA seeks to align the training objective with the optimiza-
tion objective, thereby counteracting the training-objective-
bias. During training, the pixel-wise loss of the shear strain field
(Figure 3, right) is weighted by its pixel-wise importance with
respect to the objective function. We argue that the importance
of a ground truth value vy,, of image n and pixel p is quantified
by the influence W,,, the value vy, has on the objective function
o(y,) calculated over the whole ground truth strain field y,. We
quantify this influence W,, via backpropagation as the gradi-
ent and then normalize the overall importance matrix W, with
a min-max normalization to the interval [0.1, 1] to obtain pixel
weights w,:

_ 00(¥n)

W, max(W,)
" Sy

1
s> Winp = |0.IWnl’|min(W,,) M

. Note that we do not normalize to O so that any pixel has at
least some influence to avoid random predictions ¥,,. The ob-
tained weights then quantify the contribution of each pixel to
the overall objective-aligned loss. The Mean Absolute Error
(MAE) (per image n) with OA correction reads:

P
MAEoa,, = Z Wnp |7np - i’nﬁ' (2)
p=1

and analogously for other losses such as Mean Square Error
(MSE), see Appendix A.

Overall, we expect OA to reduce the necessary amount of
calibration data, i.e., surrogate refinement iterations, and al-
low for faster identification of optimal parameters. OA is ap-
plicable to any differentiable objective function without further
engineering effort. Thus, we deem OA a simple incorporation
method.
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Fig. 6. The CFPNet architecture, which is the surrogate model of our choice because of its better overall performance compared to all other investigated architectures.

Transferability. Unlike our domain encoding (stiffness-/force-
encoding), the inherent domain knowledge about the optimiza-
tion objective is readily available in any automated parame-
ter optimization context such as SuMO, and already formal-
ized within the objective function. Thus, OA ought to be ex-
cellently applicable to objective functions from other domains.
This makes it generally useful across disciplines.

3. Numerical Studies and Results

Having outlined the envisaged domain knowledge and suit-
able domain-based inclusion methods, this section presents the
setup of our numerical studies and the observed effects on sur-
rogate accuracy and performance for SuMO. First, we introduce
the common study setup. We then discuss various surrogate ar-
chitectures and existing domain-independent knowledge inclu-
sion methods, which we use as baselines in our studies.

3.1. General Study Setup

We perform studies for all three types of domain knowledge
similarly: We scale the data to an [0, 1] interval with respect to
the physically possible shear minimum (0°) and maximum val-
ues (90°). We train each investigated surrogate model with the
Adam optimizer [24] with an initial learning rate of 0.001 and a
batch size of 8. We perform each study on training sets of sizes
between 100 and 900 to investigate how well the surrogate can
generalize from different amounts of data. The generalization
capability is especially important for SuMO, where each data
point is costly, which is why our discussion of results will fo-
cus on smaller training set sizes up to 500. For each training set
size, we perform a 5-fold cross-validation with a separate test
set of constant size 100. For each validation we take the end
results after early stopping with a 60-epoch patience period or
after a maximum of 300 epochs. We then report their mean and
95 % confidence interval per training set size.

3.2. Geometry-Strain Relationship

The first kind of additional information we include in the
surrogate model is the geometry-strain-relation, cf. Section 2.1.
There we represent the geometry and the shear strain field by
grayscale-images (Figure 3). This provides root-cause informa-
tion (doubly-curved geometry regions) towards the formation
of the shear field, which the grippers then manipulate. We ac-
cordingly select image-processing architectures for the surro-
gate, namely convolutional neural networks (CNN).

3.2.1. Surrogate Architectures

We use the Multi-layer perceptron (MLP) from the original
paper [2] as our baseline. It takes the 60 spring stiffnesses c;,
i =1...60 as input and estimates the full strain field. It neither
has knowledge of spatial relationships or stamp geometry nor
does it feature convolutional layers.

We compare this baseline (MLP) to three CNN architec-
tures for image-to-image tasks: A classical encoder-decoder-
architecture from [17, 20] for geometry-to-strain prediction, a
U-Net architecture [25], and the state-of-the-art CFPNet-M ar-
chitecture [26] (cf. Figure 6). Note that the U-Net and the CFP-
Net use skip connections, which allow information to flow from
previous layers to subsequent layers to prevent the problem of
vanishing gradients in deep networks. The CFPNet addition-
ally introduces the new Channel-wise Feature Pyramid (CFP)
-modules, which facilitate learning of features of varying sizes.
A regular multi-path architecture includes the non-image spring
stiffnesses into the CNNs. As Figure 7 shows, they are fed
through a separate network which is concatenated to the bot-
tle net stage of the CNNs. Specifically, we reuse the MLP from

[2] for the non-image path.
Stiffnesses—s —

I 000

dense  conv batch-norm concat reshape

138000

500
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Fig. 7. The multi-path architecture for merging non-image data with image data.

We train all models with the MSE-loss and evaluate them af-
ter training in terms of MAE and RMSEy;. See Appendix A for
their definition. The RMSEy; considers the objective function
and, thereby, is especially informative regarding optimization
performance.

3.2.2. Results

Figure 8 visualizes the results. Clearly, U-Net and CFP-
Net outperform all other architectures when training on small
data, i.e., < 250 samples. For 250 data points, the MAE de-
creases by ~ 65% and the RMSE,; even by 75% of the MLP
(baseline) with practically negligible scatter. The U-Net per-
forms exceptionally well and almost reaches its maximum per-
formance with only 100 data points. Interestingly, the MLP is
able to catch up from 500 data points onwards and even out-
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Fig. 8. (left) model comparison of MAE between predicted strain fields; (right)
model comparison in RMSE based on the objective function. Small values im-
ply better performance.

performs the CNNs regarding the MAE. However, we expect
the performance on RMSE,; to be more informative regarding
optimization performance, where the CNNs consistently keep
their superiority. The encoder-decoder performance proves en-
tirely unstable — presumably due to missing skip connections —
and we exclude it from further investigations. Nonetheless, we
can observe that every architecture that makes use of domain
knowledge performs significantly better for small training set
sizes than the MLP without domain knowledge.

3.3. Encoding of Grippers

We further study the effect of different gripper representa-
tions on surrogate accuracy. Specifically, we want to assess the
suitability of our domain-informed gripper-tensile-force encod-
ings Ic and Ir (Figure 5), respectively, compared to domain-
independent encodings.

3.3.1. Gripper Encoding Methods Investigated

We study two CNN architectures, U-Net and CFPNet. Our
baseline uses a vector-valued gripper encoding, which is fed
into the CNNs via the multi-path architecture, cf. Figure 7.
We compare these baselines to models with *image-only’ grip-
per encoding. Specifically, we use two domain-agnostic encod-
ings and our domain-informed encoding /¢ and /r. As domain-
agnostic methods we use naive copy and Deeplnsight+ to
transform the vector-data to image-data without using domain
knowledge. All tested models now make use of the geometry-
strain-relation from Section 2.1.

Naive copy populates for each value of a vector a matrix of
the desired image input size. In our case, this amounts to 60
matrices for the 60 gripper stiffnesses and to 2-60 = 120 matri-
ces for their positions, i.e., an input shape H X W X 3 - 60, with
image height H and width W. While simple and easy to imple-
ment, this method can lead to excessive memory consumption,
as it replicates values for each vector element.

Deeplnsight+ is a combination of two state-of-the-art
domain-independent techniques to transform non-image data
into image data. The first technique is based on the finding
that combining multiple data representations generally bene-
fits learning. While the original work [27] proposes to com-
bine three simple encoding schemes — Row-Wise Copy, Dis-

U-Net CFPNet-M
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Fig. 9. Comparison of gripper-encoding approaches for CFP-Net regarding
MAE and RMSthj.

tance Matrix, and Equidistant Bars — we add the Deeplnsight
encoding taken from [28]. Notwithstanding algorithmic details,
Deeplnsight utilizes the property that CNNs compute neighbor-
ing pixels together and that such pixels share information. The
Deeplnsight methodology automatically places similar features
close together while distancing dissimilar ones. The placement
of features involves a dimensionality reduction on the whole
training set and projects high-dimensional feature vectors onto
a two-dimensional image plane. The feature values of a specific
input vector are then mapped to these locations producing one
specific image for one specific vector.

Note that Deeplnsight requires a fixed training data set. Se-
quential data acquisition schemes such as SuMO require recal-
culating the Deeplnsight mapping and retraining the entire net-
work at each iteration, increasing the computational effort.

3.3.2. Results

Figure 9 shows the results obtained with U-Net and CFP-
Net. Our domain-driven encodings /¢ and /g almost consis-
tently outperform the domain-independent encoding schemes
(cf. Section 3.3.1), especially for small training sets. While in-
creasing the training set size benefits all encodings, the multi-
path architecture with vector-valued gripper encoding exhibits
performance plateaus between 250 and 500 data points. Inter-
estingly, there is practically no difference between gripper stift-
ness and gripper-force encoding. This might imply that the spa-
tial distribution of the gripper influence is more important than
the signal intensity. For the optimization-relevant sparse-data
situations (100 samples), our domain encoding performs best
on the CFPNet-architecture and reduces the MAE by ~ 120%
and the RMSE,; by = 20%. We observe inferior performance
of U-Net throughout our studies. Thus, we select CFPNet as the
model of our choice and for discussion in the following.
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3.4. Alignment of Training and Optimization Objective

The last kind of additional information we study is objec-
tive alignment (OA), cf. Equation (2). The objective function of
an engineering problem contains complex and well-formalized
domain knowledge, which OA seeks to leverage. Although this
knowledge is case-specific, it is always available in any auto-
mated parameter optimization context across disciplines. How-
ever, a key challenge remains: developing a method to effec-
tively exploit this information in the surrogate model.

3.4.1. Investigated Loss Functions

To evaluate the suitability of OA, we compare the resulting
surrogate accuracy obtained by OA to the accuracy obtained
with other loss functions. Specifically, we compare our MAEq4
(Equation (2)) to the commonly used MAE, MSE, and also the
structural similarity (SSIM) loss [29] and a domain-regularized
loss (DRL) [30].

The SSIM-loss considers changes in structural information,
luminance, and contrast of an image. Similar to CNNs, SSIM
operates on a number M of image windows rather than individ-
ual pixels. SSIM reads per image n:

Cpty,, My, + 1)(20y,,3,, +C2)

2 2 7 ; ‘
w'}’nm + ﬂ'f’,tm + Cl)(o-')’nm + O’?nm + ('2)

1 M
SSIM,, = 1 — Z 3)

M

m=1

where ¥, ¥,,, are windows in the original y, and the predicted
¥, image, and pu. and o, is the mean and the variance of such
a window, while o, , is the covariance between windows. The
constants cy, c; are added to avoid instability. We use the stan-
dard hyperparameters, except for the window size, which we
set to 5; for more details on SSIM and its parameters, see [29].

The DRL adjusts the loss function with penalty terms
to reflect domain constraints and is used to include domain
knowledge in several works [31-33]. It consists of two parts:
a label-based part for the training data and a knowledge-based
part for the domain knowledge. During model training, the opti-
mizer tries to satisfy both parts simultaneously using a tradeoff
hyperparameter @. We use the difference of weights wy,,, Wy,
for pixel p in image n, based on the predicted shear strain
Ynp and the ground truth shear strain v, as in Equation (1) as
knowledge-based part:

P P
MAEprL,, = (1 - @) Z |7np - 5’np| +a Z |Wnp - Wnp| C

p=1 p=1

Label-based Knowledge-based

The intuition behind this formulation is to punish pixels that
should be important for the objective but whose predictions are
not, and vice versa. DRL can be combined with any standard
loss function. We did this in our evaluation with MAE, MSE,
and SSIM. To select the @ hyperparameter, we conducted a grid

Table 2. Evaluation metrics for different loss functions and train sizes. Bold
entries mark the best result within one metric

Evaluation Metrics

Samples Loss RMSE MAE RMSE
MAE 1.37 = 0.05 1.01 + 0.03 3.00+0.46
MSE 1.74 £ 0.12 1.31 £0.10 3.13+0.33
SSIM 1.74 £ 0.23 1.03 £ 0.03 15.78+7.55
100 DRL MAE 1.94 £ 0.40 1.41 £0.29 3.43+0.67
DRL MSE 1.91 £ 0.05 1.42 £ 0.04 3.06+0.27
DRL SSIM 1.68 £0.11 1.24 £0.09 5.26+1.58
OA MAE 1.63 £ 0.10 1.18 £ 0.08 2.36 + 0.20
OA MSE 1.77 £ 0.08 1.34 £ 0.06 2.44+0.25
MAE 1.02 = 0.04 0.74 + 0.03 1.66+0.18
MSE 1.25 £ 0.09 0.93 £ 0.06 1.85+0.23
SSIM 1.03 £ 0.08 0.75 £ 0.04 4.83+4.73
250 DRL MAE 1.28 £0.22 0.93 £0.14 1.75+0.18
DRL MSE 1.42 +0.10 1.05 + 0.06 1.92+0.20
DRL SSIM 1.26 + 0.19 0.93 +0.13 2.55+0.23
OA MAE 1.17 £ 0.07 0.85 +0.05 1.27 + 0.06
OA MSE 1.33 £ 0.06 1.00 £ 0.07 1.62+0.16
MAE 0.75 + 0.03 0.55 + 0.02 1.28+0.10
MSE 0.91 + 0.06 0.68 + 0.05 1.21+0.09
SSIM 0.79 £ 0.07 0.56 + 0.02 5.36+5.74
500 DRL MAE 0.83 £0.03 0.60 + 0.03 1.23+0.10
DRL MSE 0.97 £ 0.06 0.72 £ 0.04 1.39+0.07
DRL SSIM 0.86 £ 0.07 0.64 £ 0.05 1.92+0.15
OA MAE 0.87 £ 0.03 0.62 +0.03 0.88 + 0.11
OA MSE 1.02 £0.10 0.75 £0.08 1.10+£0.09

search in the range [0, 1] with a step size of 0.1 with a fixed
training set size of 500. The optimal value for & was determined
to be 0.5 and used for all subsequent numerical studies.

3.4.2. Results

Table 2 summarizes the average accuracy and the 95%-
confidence interval for models trained with a given loss and
evaluated on different evaluation metrics. For brevity, Table 2
concentrates on sample sizes from 100 to 500 as they are most
relevant for data-efficient SuMO. The following observations
were consistent across all sample sizes, though. If the loss func-
tion is similar to the evaluation metric, i.e., training and eval-
uation objectives are aligned, performance is best. This sup-
ports our hypothesis that objective alignment is important. To
estimate product quality, we deem the RMSE,; metric most
relevant. For RMSE,; we see that MAEps and MSEp, out-
performs every other loss function. It is noteworthy that for all
evaluation metrics, some version of the MAE performs best. We
conclude that MAE is the most suitable loss for general strain
field prediction and MAEg4 for product quality prediction.

4. SuMO with Domain Knowledge

After evaluating the surrogate performance for each
knowledge type separately, we assess their suitability for SuMO
with all knowledge included. We evaluate four distinct opti-
mization strategies, a non-surrogate approach, and three differ-
ent SuMO strategies: I) This approach is a classical evolution-
ary algorithm (EA) without surrogate as in [11]. IT) The second
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Table 3. Comparison of final optimization results for different metrics. Bold
values mark the best results.

Start Results End Results
Surrogate Quality Ymax Quality Ymax AUC
o(P) in ° o) in °
EA 385.24 47.29 380.18 43.73 342473
MLP 382.61 43.92 379.29 43.70 341716
MLP - MC 382.61 43.92 377.70 42.72 341251
CFPNet-M-MC 382.61 43.92 373.77 41.03 339381

approach (MLP) aligns with [2, 11]. It uses the MLP model
from [2] as a surrogate and employs an EA to minimize the ob-
jective function while iteratively refining the surrogate. III) The
third approach (MLP-MC) extends the MLP model by integrat-
ing MC-Dropout' for uncertainty estimation and Bayesian Op-
timization with Expected Improvement. No domain knowledge
is involved so far. IV) Finally, our approach (CFPNet-M-MC)
substitutes the MLP-MC surrogate with the CFPNet-M and in-
cludes all domain knowledge. CFPNet-M-MC also uses MC—
Dropout to enable Bayesian Optimization.

4.1. Numerical Study Setup

Since the optimization approaches are stochastic, perfor-
mance evaluations on a single optimization run are not mean-
ingful. Thus, we reevaluate each optimization strategy three
times. To validate our domain-informed SuMO approach, we
need to run the entire SuMO procedure assuming that we have
no initial data. This requires a ground truth simulator. Since a
single FE forming simulation takes up to 2 hours, repeated op-
timization runs with hundreds of simulations are not feasible.
Hence, we replace the FE simulator with a more efficient oracle
model based on our best-performing model: CFPNet, with all
domain knowledge, trained with MAE loss on the entirety of
the available dataset of 900 simulations. In our study, we treat
data from the oracle as ground truth data. Since we only have
to train this model once, we use a model with higher learning
capacity, i.e., it has 128 convolutional channels [26].

We initiate all SUMO strategies with a design of 100 sim-
ulations generated via a Sobol sequence. The EA-method,
i.e. strategy I), starts without simulations. We restrict each
method’s access to the oracle to a total of 1000 simulations,
which includes the initial 100 simulations.

4.2. Results

Table 3 compares the start and end results of the opti-
mization. Our CFPNet-M-MC method outperforms every other
method in every metric. Compared to the start shear angle of
EA, CFPNet-M-MC improves on the maximum shear angle
Ymax DY 6.3° or 13.24 %, respectively. We further evaluate the
area under the curve (AUC, see Appendix A). Besides the op-
timization result, it factors in how fast the optimization con-

! Monte Carlo Dropout randomly switches off a certain number of neurons
during model training and evaluation to calculate estimation uncertainty.
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Fig. 10. Improvement during optimization with 95% confidence interval.

verges. Again, our method outperforms every other method, in-
dicating that it performs better almost everywhere during the
optimization.

Figure 10 shows optimization convergence in terms of
Relative Improvement (RI) in iteration i according to:
RI; = (0(y)i — 0(¥)EAs)/(0(¥)EAe — O(Y)EAs), Where O(¥)Eas
and o(y)ga. is the part quality of the EA at optimization start
and end, respectively, averaged for three runs. Likewise, o(y);
is the part quality of the corresponding optimization strategy. In
loose terms, RI quantifies how much total optimization poten-
tial of the EA-performance another strategy has exhausted in
iteration i. The graphs in Figure 10 confirm the AUC result: In
every iteration, our approach finds a process configuration that
is, on average, better than any of its competitors. While the re-
sults of our method scatter more than the baselines, they scatter
in the direction of even better results. We assume the increased
scatter stems from network initialization effects which may be
larger for CNNs than for MLPs.

5. Conclusions

We investigated different methods of including domain
knowledge and proposed objective alignment (OA), a new
method that is generally useful across domains for including
complex domain knowledge in surrogate models for SuMO. All
investigated methods in isolation significantly improve the sur-
rogate model. For the combination, we have shown that domain
knowledge in SuMO outperforms every state-of-the-art model
by a significant margin.

Further research is envisaged: In particular, we want to ap-
ply our methods to other domains to see if we can reach simi-
lar surrogate improvements. Domain-independent methods like
OA are directly applicable and promise to improve the surro-
gate in any domain. Domain-specific types of knowledge like
geometry-process-relations may require adaptations of the in-
corporation methods and different network structures for repre-
sentation, e.g., graph neural networks.
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Appendix A. Loss Functions for Neural Networks

Mean Absolute Error (MAE) and (Root) Mean Squared Er-
ror (MSE, RMSE) are commonly used as loss functions and
evaluation metrics to assess the quality of a trained network.
This work further uses the RMSE on the objective function
(RMSEy;) and the Area Under the Curve (AUC), defined as:

P
MAE, = Z |7np - i’np' > RMSEgbj,n = (0(7'1) - o(/)\,n))Z
p=1

(AD) (A.3)
P , 1 I1-1 N "

MSE, = Z (Yup = ) AUC=3 ;(0(7"“) o)
a (A2) Aa4)

Therein, P is the number of pixels in an image n, with y,,
denoting the true and %, the predicted value of the p-th pixel.
Further, 1 is the number of optimization steps, and 7 is the
strain field of the best product found up to the current iteration i.
Averaging the per-image loss across all N images gives the to-

tal loss. In addition, RMSEy; = \/ ¥ Znei RMSE

requires
taking the square root.
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