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ABSTRACT

Implicit neural representations (INRs) have recently surged in popularity as a class
of neural networks capable of encoding signals as compact, differentiable entities.
To capture high-frequency content, INRs often employ techniques such as Fourier
positional encodings or non-traditional activation functions like Gaussian, sinu-
soid, or wavelets. Despite the impressive results achieved with these activations,
there has been limited exploration of their properties within a unified theoretical
framework. To address this gap, we conduct a comprehensive analysis of these ac-
tivations from the perspective of sampling theory. Our investigation reveals that,
particularly in the context of shallow INRs, sinc activations—previously unused in
conjunction with INRs—are theoretically optimal for signal encoding. Addition-
ally, we establish a connection between dynamical systems and INRs and leverage
sampling theory to bridge these two paradigms. Notably, we showcase how the
implicit architectural regularization inherent to INRs allows for their application
in modeling such systems with minimal need for explicit regularizations.

1 INTRODUCTION
Recently, the concept of representing signals as Implicit Neural Representations (INRs) has gar-
nered widespread attention across various problem domains (Mildenhall et al., 2021; Li et al., 2023;
Büsching et al., 2023; Peng et al., 2021; Strümpler et al., 2022). This surge in popularity can be
attributed to the remarkable capability of INRs to encode high-frequency signals as continuous
representations. Unlike conventional neural networks, which typically process and convert sparse,
high-dimensional signals (such as images, videos, text) into label spaces (e.g., one-hot encodings,
segmentation masks, text corpora), INRs specialize in encoding and representing signals by con-
suming low-dimensional coordinates.

However, a significant challenge in representing signals using neural networks is the presence of
spectral bias (Rahaman et al., 2019). Neural networks inherently tend to favor learning functions
with lower frequencies, which can hinder their ability to capture high-frequency information. To
address this challenge, a common approach involves projecting low-dimensional coordinates into a
higher-dimensional space while preserving a specific Lipschitz structure through positional encod-
ings (Zheng et al., 2022; Tancik et al., 2020). Prior research has demonstrated that incorporating
positional encodings allows INRs to achieve high-rank representations, enabling them to capture
fine details (Zheng et al., 2022). Nevertheless, positional encodings have a critical limitation – they
struggle to maintain smooth gradients, which can be problematic for optimization (Ramasinghe &
Lucey, 2022; Chng et al., 2022). To overcome this limitation, non-traditional activations, such as si-
nusoids (Sitzmann et al., 2020), Gaussians (Ramasinghe & Lucey, 2022), and wavelets (Saragadam
et al., 2023), have emerged as effective alternatives. These unconventional activations facilitate en-
coding higher frequencies while preserving smooth gradients, and as shown in prior research (Chng
et al., 2022; Saratchandran et al., 2023), they are remarkably stable with respect to various optimiza-
tion algorithms (except for Sinusoid activations).

Until now, prior research that delved into the analysis of activations in INRs has primarily been
tied to the specific activations proposed in their respective studies. For instance, Sitzmann et al.
(2020) introduced sinusoidal activations and demonstrated their shift invariance and favorable prop-
erties for learning natural signals. Ramasinghe & Lucey (2022) explored activations derived from
the exponential family, showcasing their high Lipschitz constants that enable INRs to capture sharp
variations. More recently, wavelet-based activations Saragadam et al. (2023) were introduced, high-
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lighting their spatial-frequency concentration and suitability for representing images. However, this
fragmented approach has obscured the broader picture, making it difficult to draw connections and
conduct effective comparisons among these activations. In contrast, our research unveils a unified
theory of INR activations through the lens of Nyquist-Shannon sampling. Specifically, we show that,
under mild conditions, activations in INRs can be considered as generator functions that facilitate
the reconstruction of a given signal from sparse samples. Leveraging this insight, we demonstrate
that activations in the form of sin(x)

x (known as the sinc function) theoretically enable shallow INRs
to optimally reconstruct a given signal while preserving smooth gradients. Note that, to best of our
knowledge, sinc activations have not been used with INRs previously. Furthermore, we validate
these insights in practical scenarios using deeper INRs across tasks involving images and neural
radiance fields (NeRF).

The inspiring proficiency of sinc-activated INRs in signal reconstruction sparks an intriguing pos-
sibility: the effective modeling of more intricate signals through the utilization of these activations.
To explore this hypothesis, we turn our attention to chaotic dynamical systems. We observe that
both dynamical systems and INRs can be approached from a signal processing perspective. Dy-
namical systems can be regarded as multi-dimensional signals evolving over time, while modeling
such systems from limited measurements of physical quantities resembles the task of reconstructing
multi-dimensional signals from discrete samples. INRs, in their own right, share a similar objective,
aiming to encode and reconstruct a continuous signal from discrete coordinates and corresponding
samples. Drawing inspiration from this connection, we establish parallels between dynamical sys-
tems and INRs, leveraging sampling theory to bridge these two paradigms. Ultimately, our research
not only demonstrates the superior performance of sinc-activated INRs in modeling dynamical sys-
tems but also provides a theoretical explanation for this advantage.

2 A SAMPLING PERSPECTIVE ON INRS

In this section, we present our primary theoretical insights, showcasing how sampling theory offers
a fresh perspective on understanding the optimality of activations in INRs.

2.1 IMPLICIT NEURAL REPRESENTATIONS

We consider INRs of the following form: Consider an L-layer network, FL, with widths
{n0, . . . , nL}. The output at layer l, denoted fl, is given by

fl(x) =


x, if l = 0

ϕ(WlFl−1 + bl), if l ∈ [1, . . . , L− 1]

WL−1FL−1 + bL, if l = L

(1)

where Wl ∈ Rnl×nl−1 , bl ∈ Rnl are the weights and biases respectively of the network, and ϕ is a
non-linear activation function.

2.2 CLASSICAL SAMPLING THOERY

Sampling theory considers bandlimited signals, which are characterized by a limited frequency
range. Formally, for a continuous signal denoted as f , being bandlimited to a maximum frequency
of Ω implies that its Fourier transform, represented as f̂(s), equals zero for all |s| values greater
than Ω. If we have an Ω-bandlimited signal f belonging to the space L2(R), then the Nyquist-
Shannon sampling theorem (as referenced in Zayed (2018)) provides a way to represent this signal

as f(x) =
∑∞

n=−∞ f

(
n
2Ω

)
sinc

(
2Ω

(
x − n

2Ω

))
, where the equality means converges in the L2

sense. Essentially, by sampling the signal at regularly spaced points defined by n
2Ω for all integer

values of n, and using shifted sinc functions, we can reconstruct the original signal. However, this
requires us to sample at a rate of at least 2Ω-Hertz.

In theory, perfect reconstruction necessitates an infinite number of samples, which is impractical
in real-world scenarios. It’s crucial to acknowledge that the sampling theorem is an idealization,
not universally applicable to real signals due to their non-bandlimited nature. However, as natural
signals often exhibit dominant frequency components at lower energies, we can effectively approx-
imate the original signal by projecting it into a finite-dimensional space of bandlimited functions,
enabling robust reconstruction.
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2.3 OPTIMAL ACTIVATIONS VIA RIESZ SAMPLING
In the previous section, we discussed how an exact reconstruction of a bandlimited signal could be
achieved via a linear combination of shifted sinc functions. Thus, it is intriguing to explore if an
analogous connection can be drawn to coordinate networks. We will take a general approach and
consider spaces of the form

V (F ) =

{
s(x) =

∑
k∈Z

a(k)F (x− k) : a ∈ l2(R)
}
, (2)

where l2(R) denotes the Hilbert space of square summable sequences over the integers Z. The
space V (F ) should be seen as a generalisation of the space of bandlimited functions occurring in
the Shannon sampling theorem.
Definition 2.1. The family of translates {Fk = F (x − k)}k∈Z is a Riesz basis for V (F ) if the

following two conditions hold: 1) A||a||2l2 ≤
∣∣∣∣∣∣∣∣∑k∈Z a(k)Fk

∣∣∣∣∣∣∣∣2 ≤ B||a||2l2 , ∀a(k) ∈ l2(R). 2)∑
k∈Z F (x+ k) = 1, ∀x ∈ R (PUC).

Observe that if s =
∑

k a(k)Fk = 0 then the lower inequality in 1. implies a(k) = 0 for all k.
In other words, the basis functions Fk are linearly independent, which in turn implies each signal
s ∈ V (F ) is uniquely determined by its coefficient sequence a(k) ∈ l2(R). The upper inequality
in 1. implies that the L2 norm of a signal s ∈ V (F ) is finite, implying that V (F ) is a subspace of
L2(R).

The second condition is known as the partition of unity condition (PUC). It allows the capability of
approximating a signal s ∈ V (F ) as closely as possible by selecting a sample step that is sufficiently
small. This can be seen as a generalisation of the Nyquist criterion, where in order to reconstruct a
band-limited signal, a sampling step of less than π

2ωmax
must be chosen, where ωmax is the highest

frequency present in the signal s.
Definition 2.2. The family of translates {Fk = F (x − k)}k∈Z is a weak Riesz basis for V (F ) if
only condition 1. from defn. 2.1 holds.

The following proposition considers activations in INRs and the sinc function. Specifically, we
show that sinc forms a Riesz basis, Gaussian and wavelets form weak Reisz bases, and ReLU and
Sinusoid does not form Riesz/weak Riesz bases. The proof is given in appendix A.1.

Proposition 2.3. 1. Let F (x) = sinc(x) = sin(x)
x (defined to be 1 at x = 0), the family

{sinc(x−k)}k∈Z forms a Riesz basis where V (sinc) is the space of signals with frequency
bandlimited to [−1/2, 1/2].

2. Let F (x) = Gs(x) := e−x2/s2 , for some fixed s > 0, the family {Gs(x − k)}k∈Z forms
a weak Riesz basis for the space V (Gs) but not a Riesz basis. In this case V (Gs) can
be interpreted as signals whose Fourier transform has Gaussian decay, where the rate of
decay will depend on s.

3. Let F (x) = Ψ(x) denote a wavelet. In general wavelets form a weak Riesz basis but not
all form a Riesz basis.

4. Let F (x) = ReLU(x), the family {ReLU(x − k)}k∈Z does not form a Riesz/weak Riesz
basis as it violates condition 1. from defn. 2.1.

5. Let F (x) = sin(ωx), for ω a fixed frequency parameter, the family {sin(ω(x − k))}k∈Z
does not form a Riesz/weak Riesz basis as it violates condition 1. from defn. 2.1.

Interestingly, to fit INRs into the above picture, observe that the elements in V (F ) that are finite
sums can be represented by INRs with activation F (this is explicitly proved in the next theorem,
see also appendix A.1). Thus, it follows that signals in V (F ) that have an infinite number of non-
zero summands can be approximated by INRs, the proof can be found in app. A.2.1.
Theorem 2.4. Suppose the family of functions {F (x − k)}k∈Z forms a weak Riesz basis for the
space V (F ). Let g be a signal in V (F ) and let ϵ > 0 be given. Then there exists a 2-layer INR f ,
with a parameter set θ, F as the activation, and n(ϵ) neurons in the hidden layer, such that

||f(θ)− g||L2 < ϵ.
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The primary limitation of Theorem 2.4 lies in its applicability solely to signals within the domain of
V (F ). This prompts us to inquire whether Riesz bases can be employed to approximate arbitrary
L2-functions, even those outside the confines of V (F ). The significance of posing this question lies
in the potential revelation that, if affirmed, INRs can also approximate such signals. This would, in
turn, demonstrate the universality of F -activated INRs within the space of L2(R) functions.

We now show, in order to be able to approximate arbitrary signals in L2(R) the partition of unity
condition, condition 2 of defn. 2.1, plays a key role. To analyse this situation, we introduce the
scaled signal spaces.

Definition 2.5. For a fixed Ω > 0, let VΩ(F ) =
{
sΩ =

∑
k∈Z aΩ(k)F (

x
Ω − k) : a ∈ l2(R)

}
. We

call VΩ(F ) an Ω-scaled signal space.

Example 2.6. The canonical example of an Ω-scaled signal space is given by taking F (x) =
sinc(2Ωx). In this case VΩ(F ) is the space of Ω-bandlimited signals.

The difference between VΩ(F ) and V (F ) is that in the former the basis functions are scaled by Ω.
Previously, we remarked that one of the issues in applying thm. 2.4 is that it does not provide a
means for approximating general signals in L2(R) by INRs. What we wish to establish now is that
given an arbitrary signal s ∈ L2(R) and an approximation error ϵ > 0, if {F (x − k}k∈Z is a Riesz
basis then there exists a scale Ω(ϵ), that depends on ϵ, such that the scaled signal space VΩ(ϵ)(F )

can approximate s to within ϵ in the L2-norm. We will follow the approach taken by Unser (2000)
and give a brief overview of how to proceed. More details can be found in app. A.

In order to understand how we can reconstruct a signal to within a given error using VΩ(F ), we
define the approximation operator AΩ : L2(R) → VΩ(F ) by

AΩ(s(x)) =
∑
k∈Z

(∫
R
s(y)F̃ (

y

Ω
− k)

dy

Ω

)
F (

x

Ω
− k) (3)

where F̃ is a suitable analysis function from a fixed test space. We will not go into the details of
how to construct F̃ but for now will simply assume such a F̃ exists and remark that its definition
depends on F . For details on how to construct F̃ we refer the reader to app. A.1.1. The quantity∫
s(y)F̃ ( y

Ω − k)dyΩ is to be thought of as the coefficients aΩ(k) in reconstructing s.

The approximation error is defined as

ϵs(Ω) = ||s−AΩ(s)||L2 . (4)

The goal is to understand how we can make the approximation error as small as we like by choosing
Ω and the right analysis function F̃ .

The general approach to this problem via sampling theory, see Unser (2000) for details, is to go via
the average approximation error:

ϵs(Ω)
2 =

1

Ω

∫ Ω

0

||s(· − τ)−AΩ(s(· − τ))||2L2dτ. (5)

Using Fourier analysis, see (Blu & Unser, 1999), it can be shown that ϵs(Ω)
2 =∫ +∞

−∞ EF̃ ,F (Ωξ)|ŝ(ξ)|
2 dξ
2π where ŝ denotes the Fourier transform of s and EF̃ ,F is the error ker-

nel defined by

EF̃ ,F (ω) = |1− ˆ̃
F (ω)F̂ (ω)|2 + | ˆ̃F (ω)|2

∑
k ̸=0

|F̂ (ω + 2πk)|2 (6)

where F̂ and ˆ̃
F denote the Fourier transforms of F and F̃ respectively. Understanding the approxi-

mation properties of the shifted basis functions Fk = F (x − k) comes down to analysing the error
kernel EF̃ ,F . The reason being is that the average error ϵs(Ω)2 is a good predictor of the true error
ϵs(Ω)

2 as the following theorem, from Blu & Unser (1999), shows.
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Figure 1: Comparison of Image reconstruction across different INRs over DIVK dataset. We run a grid
search to find the optimal parameters for each INR. Note that a single optimal parameter setting is used for each
activation, across all the images in the dataset.

Theorem 2.7. The L2 approximation error ϵs(Ω)2 can be written as

ϵs(Ω)
2 =

(∫ ∞

−∞
EF̃ ,F (Ωξ)|ŝ(ξ)|

2 dξ

2π

)1/2

+ ϵcorr (7)

where ϵcorr is a correction term negligible under most circumstances. Specifically, if f ∈ W r
2

(Sobolev space of order r, see appendix A) with r > 1
2 , then |ϵcorr| ≤ γΩr||s(r)||L2 where γ is a

known constant and Moreover, |ϵcorr| = 0 provided the signal s is band-limited to π
Ω .

Thm. 2.7 shows that the dominant part of the approximation error ϵs(Ω) is controlled by the average
error ϵs(Ω). This means that in order to show that there exists a scale Ω such that the scaled signal
space VΩ(F ) can be used to approximate s ∈ L2(R) up to any given error, it suffices to show that

lim
Ω→0

EF̃ ,F → 0. (8)

The following lemma gives the required condition to guarantee vanishing of the error kernel as
Ω → 0.

Lemma 2.8. If the family of shifted basis function {F (x− k)}k∈Z satisfies the condition∑
k∈Z

F (x+ k) = 1, ∀x ∈ R (9)

then limΩ→0EF̃ ,F → 0, for any F̃ ∈ S, where S is the space of Schwartz functions f whose Fourier

transform satisfies f̂(0) = 1.

The above lemma shows the importance of the partition of unity condition (PUC), condition 2, from
defn. 2.1. A sketch of the proof of lem. 2.8 is given in app. A.1.1 together with details on the space
S and its relevance to the error kernel EF̃ ,F .

From prop. 2.3, we see that the sinc function has vanishing error kernel as the scale Ω → 0.
However, a Gaussian does not necessarily have vanishing error kernel as Ω → 0.

Lem. 2.8 immediately implies the following approximation result, proof can be found in app. A.1.1

Proposition 2.9. Let s ∈ L2(R) and ϵ > 0. Assume the shifted functions {F (x − k)}k∈Z form a
Riesz basis for V (F ). Then there exists an Ω > 0 and an fΩ inVΩ(F ) such that

||s− fΩ||L2 < ϵ. (10)

Prop. 2.9 implies that the signal s can be approximated by basis functions given by shifts of F with
bandwidth 1/Ω.

Using prop. 2.9 we obtain a universal approximation result for neural networks employing Riesz
bases as their activation functions.
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Theorem 2.10. Let s ∈ L2(R) and ϵ > 0. Assume the shifted functions {F (x − k)}k∈Z form a
Riesz basis for V (F ). Then there exists a 2-layer INR N , with a parameter set θ, activation F , n(ϵ)
neurons in the hidden layer, and an Ω > 0 such that

||N (θ)− s||L2 < ϵ

where N (θ) employs FΩ as its activation in the hidden layer, where FΩ(x) = F ( 1
Ωx).

Remark 2.11. Thm. 2.10 shows why sinc being able to generate a Riesz basis is an optimal condi-
tion to satisfy for an activation function. Note that in general, any function in L2(R) that generates
a Riesz basis will be optimal in this sense. Furthermore, out of the activations that practitioners
in the ML community use, such as sinc, sin, Gaussian, tanh, ReLU, sigmoid, we find sinc is the
optimal.

Figure 2: Discovering the dynamics from partial observations. We use the Vanderpol system for this illustra-
tion. Top row: the original attractor and the diffeomorphism obtained by the SVD decomposition of the Hankel
matrix (see Sec. 3.3.1) without noise. Third row: The same procedure is used to obtain the reconstructions with
noisy, random, and sparse samples. Second row: First, a sinc-INR is used to obtain a continuous reconstruction
of the signal from discrete samples, which is then used as a surrogate signal to resample measurements. After-
wards, the diffeomorphisms are obtained using those measurements. As shown, sinc-INRs are able to recover
the dynamics more robustly with noisy, sparse, and random samples.

Theorem 2.10 underscores the significance of the activation function within an INR when it comes to
signal reconstruction in the L2(R). Specifically, as exemplified in prop 2.3, it becomes evident that
an INR equipped with a sinc activation function can achieve reconstructions of signals in L2(R)
up to any accuracy, rendering it the optimal choice for the INR architecture. See App. C for the
connection of the above analysis to the universal approximation theorem.

3 EXPERIMENTS
In this section, we aim to compare the performance of different INR activations. First, we focus on
image and NeRF reconstructions and later move on to dynamical systems.

3.1 IMAGE RECONSTRUCTION

A critical problem entailed with INRs is that they are sensitive to the hyperparameters in activation
functions (Ramasinghe & Lucey, 2022). That is, one has to tune the hyperparameters of the acti-
vations to match the spectral properties of the encoded signal. Here, we focus on the robustness of
activation parameters when encoding different signals. To this end, we do a grid search and find
the single best performing hyperparameter setting for all the images in a sub-sampled set of the
DIV2K dataset (Agustsson & Timofte, 2017) released by Tancik et al. (2020). For example, for
sinc activations, we experiment with different bandwidth parameters, each time fixing it across the
entire dataset. Then, we select the bandwidth parameter that produced the best results. Since all
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Rossler Lorenz

Activation n = 0.1 n = 0.5 n = 1. n = 0.1 n = 0.5 n = 1.

Baseline 42.1 29.8 22.3 43.8 28.2 20.3
Gaussian 46.6 37.1 33.6 45.7 39.1 35.7
Sinusoid 45.1 36.6 32.1 42.1 37.4 30.3
Wavelet 40.3 35.9 30.9 38.2 37.3 31.8

Sinc 48.9 42.8 38.5 46.2 40.9 39.3

Table 2: SINDy reconstructions (PSNR) with different noise levels (n =standard deviation of the Gaussian
noise) injected into samples.

the compared activations contain a tunable parameter, we perform the same for all the activations
and find the best parameters for each. This dataset contains images of varying spectral properties:
32 images of Text and Natural scenes, each. We train with different sampling rates and test against
the full ground truth image. The PSNR plots are shown in Fig. 1. As depicted, sinc activation
performs better or on-par with other activations. We use 4-layer networks with 256 width for these
experiments.

3.2 NEURAL RADIANCE FIELDS

NeRFs are one of the key applications of INRs, popularized by Mildenhall et al. (2021). Thus,
we evaluate the performance of sinc-INRs in this setting. Table. 1 demonstrates quantitative re-
sults. We observed that all the activations perform on-par with NeRF reconstructions with proper
hyperparameter tuning, where sinc outperformed the rest marginally.

3.3 DYNAMICAL SYSTEMS

Activation PSNR SSIM
Gaussian 31.13 0.947
Sinusoid 28.96 0.933
Wavelet 30.33 0.941
Sinc 31.37 0.947

Table 1: Quantitative com-
parison in novel view synthe-
sis on the real synthetic dataset
(Mildenhall et al., 2021). sinc-
INRs perform on-par with other
activations.

It is intriguing to see if the superior signal encoding properties of
sinc-INRs (as predicted by the theory) would translate to a clear ad-
vantage in a challenging setting. To this end, we choose dynamical
(chaotic) systems as a test bed.

Dynamical systems can be defined in terms of a time dependant
state space x(t) ∈ RD where the time evolution of x(t) can be
described via a differential equation,

dx(t)

dt
= f(x(t), α), (11)

where f is a non-linear function and α are a set of system param-
eters. The solution to the differential equation 11 gives the time
dynamics of the state space x(t). In practice, we only have access to discrete measurements
[y(t1), y(t2), . . . y(tQ)] where y(t) = g(x(t)) + η and {tn}Qn=1 are discrete instances in time. Here,
g(·) can be the identity or any other non-linear function, and η is noise. Thus, the central challenge
in modeling dynamical systems can be considered as recovering the characteristics of the state space
from such discrete observations.

We note that modeling dynamical systems and encoding signals using INRs are analogous tasks.
That is, modeling dynamical systems can be interpreted as recovering characteristics of a particular
system via measured physical quantities over time intervals. Similarly, coordinate networks are used
to recover a signal given discrete samples.

3.3.1 DISCOVERING THE DYNAMICS OF LATENT VARIABLES
In practical scenarios, we often encounter limitations in measuring all the variables influencing a
system’s dynamics. When only partial measurements are available, deriving a closed-form model
for the system becomes challenging. However, Takens’ Theorem (refer to App. B) offers a signifi-
cant insight. It suggests that under certain conditions, augmenting partial measurements with delay
embeddings can produce an attractor diffeomorphic to the original one. This approach is remarkably
powerful, allowing for the discovery of complex system dynamics from a limited set of variables.
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Figure 3: Quantitative comparison on discovering the dynamics of latent variables using INRs vs classical
methods.

Time Delay Embedding. To implement this, we start with discrete time samples of an observable
variable y(t). We construct a Hankel matrix H by augmenting these samples as delay embeddings
in each row:

H =


y1(t1) y1(t2) . . . y1(tn)
y1(t2) y1(t3) . . . y1(tn+1)

...
...

. . .
...

y1(tm) y1(tm+1) . . . y1(tm+n+1)

 . (12)

According to Takens’ Theorem, the dominant eigenvectors of this Hankel matrix encapsulate dy-
namics that are diffeomorphic to the original attractor. For our experiment, we utilize systems such
as the Vanderpol, Limit cycle attractor, Lorenz, and Duffing equations (see D). We generate 5000
samples, spanning from 0 to 100, to form the Hankel matrix. Subsequently, we extract its eigenvec-
tors and plot them to visualize the surrogate attractor that mirrors the original attractor. To assess
the method’s robustness against noise, we introduce noise into the y(t) samples from a uniform
distribution η ∼ U(−n, n), varying n.

To demonstrate the efficacy of Implicit Neural Representations (INRs) in this context, we employ a
sinc-INR to encode the original measurements as a continuous signal. Initially, we train a sinc-INR
using discrete pairs of t and y(t) as inputs and labels. Then, we use the sampled values from the
INR as a surrogate signal to create the Hankel matrix, which yields robust results. Interestingly,
the continuous reconstruction from the sinc-INR requires sparser samples (with nτ = 0.2)), thus
overcoming a restrictive condition typically encountered in this methodology.

The results, as depicted in Fig.2 and Fig.3, clearly demonstrate that sinc-INRs can accurately recover
the dynamics of a system from partial, noisy, random, and sparse observations. In contrast, the
performance of classical methods deteriorates under these conditions, underscoring the advantage
of the sinc-INR approach in handling incomplete and imperfect data.

4 DISCOVERING GOVERNING EQUATIONS

The SINDy algorithm is designed to deduce the governing equations of a dynamical system from
discrete observations of its variables. Consider observing the time dynamics of a D-dimensional
variable y(t) = [y1(t), . . . , yd(t)]. For observations at N time stamps, we construct the ma-
trix Y = [y(t1),y(t2), . . .y(tN )]T ∈ RN×D. The initial step in SINDy involves computing
Ẏ = [ ˙y(t1), ˙y(t2), . . . ˙y(tN )]T ∈ RN×D, achieved either through finite difference or continu-
ous approximation techniques. Subsequently, an augmented library Θ(Y) is constructed, composed
of predefined candidate nonlinear functions of Y’s columns, encompassing constants, polynomials,
and trigonometric terms, as illustrated below:

Θ(Y) =


y21(t1) y22(t1) . . . sin(y1(t1)) cos(y2(t1)) . . . yd(t1)y

2
2(t1)

y21(t2) y22(t2) . . . sin(y1(t2)) cos(y2(t2)) . . . yd(t2)y
2
2(t2)

...
... . . .

... . . .
...

y21(tN ) y22(tN ) . . . sin(y1(tN )) cos(y2(tN )) . . . yd(tN )y22(tN )


SINDy then seeks to minimize the loss function:
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LS = ||Ẏ −Θ(Y)Γ||22 + λ||Γ||21, (13)

where Γ is a sparsity matrix initialized randomly that enforces sparsity.

INRs introduce two significant architectural biases here. When we train an INR using {tn}Nn=1 and
{y(tn)}Nn=1 as inputs and labels, it allows us to reconstruct a continuous representation of y(t).
By controlling the frequency parameter ω of sinc functions during training, we can filter out high-
frequency noise in y. Additionally, ẏ measurements can be obtained by calculating the Jacobian of
the network, taking advantage of the smooth derivatives of sinc-INRs. We then replace Ẏ and Y in
Eq. 13 with values obtained from the INR, keeping the rest of the SINDY algorithm unchanged.

For our experiment, we employ the Lorenz and Rossler systems (refer to D), generating 1000 sam-
ples from 0 to 100 at intervals of 0.1 to create Y. We introduce noise from a uniform distribu-
tion η ∼ U(−n, n), varying n. As a baseline, we compute Ẏ using spectral derivatives, a com-
mon method in numerical analysis and signal processing for computing derivatives through spectral
methods. This involves translating the function’s derivative in the time or space domain to a multi-
plication by iω in the frequency domain. The reason for choosing spectral derivatives is empirical;
After evaluating various methods to compute Ẏ, including finite difference methods and polynomial
approximations, we empirically selected spectral derivatives for the best baseline. As a competing
method, for each noise scale, we use a sinc-INR to compute both Ẏ and Y as described. Utilizing
the SINDy algorithm for both scenarios, we obtain the governing equations for each system. The
dynamics recovered from these equations are compared in Fig. 7 (Appendix) and Table 2. Remark-
ably, the sinc-INR approach demonstrates robust results at each noise level, surpassing the baseline.
For this experiment, we use 4-layer INRs with each layer having a width of 256.

5 RELATED WORK

INRs. INRs, pioneered by Mildenhall et al. (2021), have gained prominence as an effective architec-
ture for signal reconstruction. Traditionally, such architectures employed activations such as ReLU
and Sigmoid. However, these activations suffer from spectral bias, limiting their effectiveness in
capturing high-frequency content (Rahaman et al., 2019). To overcome this limitation, Mildenhall
et al. (2021) introduced a positional embedding layer to enhance high-frequency modeling. Mean-
while, Sitzmann et al. (2020) proposed SIREN, a sinusoidal activation that eliminates the need for
positional embeddings but exhibits instability with random initializations. In contrast, Ramasinghe
& Lucey (2022) introduced Gaussian-activated INRs, showcasing robustness to various initializa-
tion schemes. More recently, wavelet activations were proposed by Saragadam et al. (2023) with
impressive performance. Yet, the theoretical optimality of these activation functions in the context
of signal reconstruction has largely eluded investigation. In this study, we aim to address this gap by
examining the selection of activation functions through the lens of sampling theory.

Data driven dynamical systems modeling. Numerous approaches have been explored for the
data-driven discovery of dynamical systems, employing various techniques. These methodologies
include nonlinear regression (Voss et al., 1999), empirical dynamical modeling (Ye et al., 2015),
normal form methods (Majda et al., 2009), spectral analysis (Giannakis & Majda, 2012), Dynamic
Mode Decomposition (DMD) (Schmid, 2010; Kutz et al., 2016), as well as compressed sensing and
sparse regression within a library of candidate models (Reinbold et al., 2021; Wang et al., 2011; Naik
& Cochran, 2012; Brunton et al., 2016). Additionally, reduced modeling techniques like Proper Or-
thogonal Decomposition (POD) (Holmes et al., 2012; Kirby, 2001; Sirovich, 1987; Lumley, 1967),
both local and global POD methods (Schmit & Glauser, 2004; Sahyoun & Djouadi, 2013), and adap-
tive POD methods (Singer & Green, 2009; Peherstorfer & Willcox, 2015) have been widely applied
in dynamical system analysis. Koopman operator theory in conjunction with DMD methods has
also been utilized for system identification (Budišić et al., 2012; Mezić, 2013).

6 CONCLUSION

In this work, we offer a fresh view-point on INRs using sampling theory. In this vein, we show
that sinc activations are optimal for encoding signals in the context of shallow networks. We con-
duct experiments with image reconstructions, NeRFs and dynamical systems to showcase that these
theoretical predictions hold at a practical level with deeper networks.
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A PROOFS OF RESULTS IN SECTION 2.3

A.1 PRELIMINARIES

We recall the definition of the space of square integrable functions on R, which we denote by L2(R),
and is defined as the vector space of equivalence classes of Lebesgue measurable functions on R with
the following inner product

⟨f, g⟩L2 =

∫
R
f · g. (14)

We will also need to make use of the Sobolev spaces of order r, denoted by W r
2 (R). We define this

space as the space of L2-functions that have r weak derivatives that are also in L2(R).

Proof of prop. 2.3. The function sinc(x) is in L2(R) and furthermore the translates sinc(x−k), for
k ∈ Z, form an orthonormal basis of L2(R). Hence sinc(x) satisfies the first condition of a Riesz
basis with A = B = 1.

The next step is to check that the partition of unity condition holds. In order to do this we will
make use of the Poisson summation formula (Stein & Shakarchi, 2011) that states that for a function
f ∈ L2(R) we have ∑

k∈Z
f(x+ k) =

∑
n∈Z

f̂(2πn)e2πinx. (15)

Using the Poisson summation formula, we can rewrite the partition of unity condition, see cond. 2
in defn. 2.1, as ∑

n∈Z
f̂(2πn)e2πinx = ‘1. (16)

We then observe that the Fourier transform of sinc(x) is given by the characteristic function χ
[−1,1]

on the set [−1, 1]. I.e. χ
[−1,1]

takes the value 1 on [−1, 1] and 0 elsewhere (Stein & Shakarchi,
2011). The proof now follows by observing that χ

[−1,1]
(2πn) = 1 for n = 0 and 0 for n ̸= 0. We

then see that equation 16 is true for sinc(x) and thus sinc(x) forms a Riesz basis.

The proof that the Gaussian ϕ = e−x2/2s2 does not form a Riesz basis and only a weak Riesz
basis follows the same strategy as above. The first step is to note that translates of the Gaussian:
ϕk = e−(x−k)2/2s2 all lie in L2(R) for any k ∈ Z. This establishes the upper bound in condition
1 of the Riesz basis definition. To prove the lower bound in condition 1, we use an equivalent
definition of condition 1 in the Fourier domain given by

A ≤
∑
k∈Z

|ϕ̂(ξ + 2kπ)|2 ≤ B (17)

where ϕ̂ denotes the Fourier transform of ϕ and ξ the frequency variable in the Fourier domain. The
equivalence of equation 17 with the Riesz basis definition given in defn. 2.1 follows by noting that
defn. 2.1 is translation invariant, see Aldroubi et al. (1994) for explicit details. We then observe that
in the case of a Gaussian the term ϕ̂(ξ + 2kπ) is given by e−(ξ+2kπ)2s2/2, which follows from the
fact that the Fourier transform of a Gaussian is another Gaussian, see Stein & Shakarchi (2011). The
final observation to make is that the sum∑

k∈Z
|ϕ̂(ξ + 2kπ)|2 ≥ |ϕ̂(ξ)|2 (18)

for any ξ ∈ R and that we only need to consider ξ ∈ [0, 2π] from the symmetry of the Gaussian about
the y-axis and the fact that for any ξ outside of [0, 2π], there exists some k ∈ Z such that the translate
ξ + 2kπ lies in [0, 2π]. The lower bound in equation 17 then follows by taking 0 < A ≤ e−(2πs)2 .

In order to show that the Gaussian ϕ does not satisfy the partition of unity condition. We go through
the formulation equation 16. In this case this formula reads∑

n∈Z
e−(2πn)2s2/2e2πinx = 1. (19)
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We now observe it is impossible for this equality to hold due to the gaussian decay of the function
e−(2πn)2s2/2. In particular for x = 0 the condition becomes∑

n∈Z
e−(2πn)2s2/2 = 1. (20)

The left hand side is clearly greater than 1, and thus we see that the condition cannot hold. This
proves that a Gaussian e−x2/2s2 can only define a weak Riesz basis.

In general, the Fourier transform of a wavelet is localized in phase and frequency, hence as in the
case of the Gaussian above, they will be in L2(R) and form a weak Riesz basis but in general they
might not form a Riesz basis. Conditions have been given for a wavelet to form a Riesz basis, see
Sun & Zhou (2002), though this is outside the scope of this work.

In order to form a Riesz basis ReLU would have to be in L2(R), which it is not. On the other hand,
given x ∈ R we have that∑

k∈Z
ReLU(x+ k) =

∑
k≥−x,k∈Z

ReLU(x+ k) =
∑

k≥−x,k∈Z
(x+ k) = ∞

showing that there is no way ReLU could satisfy the partition of unity condition.

A similar proof shows that translates of sine cannot form a Riesz/weak Riesz basis.

A.1.1 RESULTS ON THE ERROR KERNEL AND PUC CONDITION

We recall from sec. 2.3 that the understanding of the sampling properties of the shifted basis func-
tions Fk comes down to analysing the error kernel EF̃ ,F . The reason being was that the average
error ϵs(T )2 is a good predictor of the true error ϵs(T )2.

We sketch a proof showing that the vanishing of the error kernel in the limit T → 0 for a suitable
test function F̃ is equivalent to F satisfying the partition of unity condition. We will do this under
two assumptions:

A1. The Fourier transform of F is continuous at 0.
A2. The Fourier transform of F̃ is continuous at 0.
A3. The sampled signal s we wish to reconstruct is contained in W r

2 for some r > 1
2 . This

assumption is needed so that the quantity ϵcorr goes to zero as T → 0.

We remark that an explicit construction of F̃ will be given after the proof as during the course of the
proof we will see what conditions we need to impose for the construction of F̃ from F .

From the definition of the approximation operator, equation 3, we have that

lim
T→0

||f −AT (f)||2L2 = lim
T→0

∫ ∞

−∞
EF̃ ,F (Tω)|ŝ(ω)|

2 dω

2ω
(21)

where we remind the reader that the error kernel EF̃ ,F is given by equation equation 6. We now

observe that if F̃ is a function such that ˆ̃
F is bounded and F satisfies the first Riesz condition,

condition 1 from defn. 2.1, then by definition it follows that EF̃ ,F is bounded. Therefore in the
above integral we can apply the dominated convergence theorem and compute

lim
T→0

||s−AT (s)||2L2 =

∫ ∞

−∞
lim
T→0

EF̃ ,F (Tω)|ŝ(ω)|
2 dω

2ω
(22)

= EF̃ ,F (0)

∫ ∞

−∞
|ŝ(ω)|2 dω

2ω
(23)

= EF̃ ,F (0)||s||
2 (24)

where to get the second equality we have used assumptions A1 and A2 above and to get the third
equality we have used the fact that the Fourier transform is an isometry from L2(R) to itself.
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We thus see that the statement limT→0 ||s − QT (s)||2L2 = 0 is equivalent to EF̃ ,F (0) = 0. From
equation 6 this is equivalent to

EF̃ ,F (0) = |1− ˆ̃
F (0)F̂ (0)|2 + | ˆ̃F (0)|2

∑
k ̸=0

|F̂ (2πk)|2 = 0. (25)

We see thatEF̃ ,F (0) is a sum of positive terms and hence will vanish if and only if all the terms in the

summands vanish. Looking at the first summand we see that we need ˆ̃
F (0)F̂ (0) = 1, which can hold

if and only if both factors are not zero. We normalise the function F so that F̂ (0) =
∫
F (x)dx = 1.

Thus the conditions that need to be satisfied are

ˆ̃
F (0) = 1 and

∑
k ̸=0

|F̂ (2πk)|2 = 0. (26)

We can rewrite the second condition in equation 26 as

F̂ (2πk) = δk (27)

where δ denotes the Dirac delta distribution. From this viewpoint we then immediately have that the
second condition can be written in the form∑

k

F (x+ k) = 1 (28)

which is precisely the partition of unity condition.

The function F̃ is easy to choose. Let S denote Schwartz space of Schwartz functions in L2(R). It
is well known that this space is dense in L2(R) and that the Fourier transform maps S onto itself.
Therefore, in the Fourier domain let S̃ denote the set of Schwartz functions f such that f̂(0) ̸= 0.
Note that S̃ is dense in L2(R) and elements in S̃ are continuous at the origin. In order to define F̃
we simply take any element f ∈ S̃ and let F̃ = 1

f̂(0)
f . In fact, if we denote the space S to consist of

those Schwartz functions f whose Fourier transform satisfies f̂(0) = 1, then it is easy to see that S
is dense in L2(R). Thus the space S can be used as a test space for F̃ and is the defining test space
for the approximation operator AT .

A.2 WHAT DOES THE PARTITION OF UNITY CONDITION MEAN?

In the previous sec. A.1.1 we saw that the vanishing of the error kernel EF̃ ,F in the limit T → 0

was equivalent to the function F ∈ L2(R) satisfying the partition of unity condition. In this section
we want to explain in a more qualitative manner what the partition of unity condition means for
reconstruction in the space L2(R).

Fix a function F ∈ L2(R), we have seen we can create the subspace V (F ) ⊆ L2(R). For the time
being let us only assume F satisfies the first condition of being a Riesz basis. Recall this means that:

A||a||2l2 ≤
∣∣∣∣∣∣∣∣∑

k∈Z
a(k)Fk

∣∣∣∣∣∣∣∣2 ≤ B||a||2l2 , ∀a(k) ∈ l2(R) (29)

Given an arbitrary function g ∈ V (F ) the above condition 29 means that when we express

g =

∞∑
k=−∞

a(k)F (x− k), (30)

the coefficients a(k) are uniquely determined. This follows because condition 29 implies that the
translates F (x− k) form a linearly independent set inside V (F ). Thus condition 1 is there to tell us
how to approximate functions within V (F ). It states that we can perfectly reconstruct any function
in V (F ) using the translates {F (x− k}.
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However, let us now assume that we are given a function g ∈ L2(R) − V (F ), that is g is a square
integrable function that does not reside in the space V (F ). A natural question that arises is can we
we still use elements in the space V (F ) to approximate g? Mathematically, what this question is
asking is if we are given a very small ϵ > 0 can we find a function G ∈ V (F ) such that

||G− g||L2 < ϵ? (31)
This is precisely where the partition of unity condition comes in:∑

k∈Z

F (x+ k) = 1, ∀x ∈ R(PUC) (32)

Mathematically, the reason the partition of unity condition is able to bridge the gap between V (F )
and L2(R) is that if we have an arbitrary function g ∈ L2(R)− V (F ), then we can write

g = g −G+G (33)

for any function G ∈ V (F ). The question now is does there exist a G ∈ V (F ) that makes the
quantity g − G very small in the L2-norm? In other words, given a very small ϵ > 0 can we make
g −G smaller than ϵ in the L2-norm.

The way to answer this question is to first note that there is a simple way to try to construct such a
G. Namely, project g onto the subspace V (F ) forming the function P(g) ∈ V (F ). Then look at the
difference

g − P(g) (34)
and ask can it be made very small? In general this technique does not work. However, there is
another projection. Namely, we can project g onto the Ω-scaled signal space VΩ(F ) for Ω > 0
forming PΩ(g) and ask if the difference g − PΩ(g) can be made very small. For the definition of
the Ω-scaled signal space VΩ(F ) please see sec. 2.3.

The partition of unity condition says that there exists a Ω > 0 such that the difference

g − PΩ(g) (35)
can be made very small.

Thus the second condition from the Riesz basis definition, the partition of unity condition, is telling
us how to approximate functions outside of V (F ) using the translates {F (x − k} and the scaled
signal spaces VΩ. It says that we cannot necessarily perfectly reconstruct a function outside of
V (F ) but we can reconstruct it up to a very small error using the Ω-scaled signal space VΩ(F ). The
partition of unity condition bridges the gap between V (F ) and L2(R) via the scaled signal spaces
VΩ(F ) telling us that reconstruction is possible only in VΩ(F ) for some Ω > 0.

For a full mathematical proof of how the partition of unity does this we kindly ask the reader to
consult sec. A.1.1.

Let us summarize what we have discussed:

1. The first condition of a Riesz basis is there so that we know that translates of F namely
{F (x − k} can be used to uniquely approximate functions in the signal space V (F ). In
this case, theoretically the translates {F (x− k} provide a perfect reconstruction.

2. The second condition of a Riesz basis, namely the partition of unity condition, is there so
that we know how to approximate functions that do not lie in V (F ). It says that in order to
bridge the gap between V (F ) and L2(R) we need to do so by going through an Ω-scaled
signal space VΩ(F ) for a Ω > 0. In the scaled signal space perfect reconstruction is not
possible but we can reconstruct up to a very small error.

A.2.1 PROOFS OF MAIN RESULTS IN SECTION 2.3

Proof of theorem 2.4. We first note that by condition 1 in defn. 2.1. The space V (F ) is a subspace
of L2(R). Therefore, the space V (F ) with the induced L2-norm forms a well-defined normed vector
space.
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Since g ∈ V (F ) we can write g =
∑∞

k=−∞ a(k)F (x−k) in L2(R). This means that the difference

g −
∞∑

k=−∞

a(k)F (x− k) = 0 ∈ L2(R) (36)

and in particular that the partial sums

Sn :=

n∑
k=−n

a(k)F (x− k) (37)

converge in L2 to g as n → ∞. Writing this out, this means that given any ϵ > 0, there exists an
integer k(ϵ) such that ∣∣∣∣∣∣∣∣g − k(ϵ)∑

k=−k(ϵ)

a(k)F (x− k)

∣∣∣∣∣∣∣∣
L2

< ϵ. (38)

We can then define a 2-layer neural network f with n(ϵ) = 2k(ϵ) neurons as follows: Let the
weights in the first layer be the constant vector [1, · · · , 1]T and the associated bias to be the vec-
tor [−k(ϵ),−k(ϵ) + 1, . . . , k(ϵ)]T . Let the weights associated to the second layer be the vector
[a(−k(ϵ)), a(−k(ϵ) + 1), · · · , a(k(ϵ))] and the associated bias be 0. These weights and biases will
make up the parameters for the neural network f and in the hidden layer we take F as the non-
linearity.

Applying equation 38 we obtain that

||f(θ)− g||2L < ϵ. (39)

Proof of prop. 2.9. The proof of this proposition will be in two steps. The reason for this is that we
need to use thm. 2.7 and in doing so we want to know that the error ϵcorr can be made arbitrarily
small. Thm. 2.7 shows that if we assume our signal s ∈W 1

2 (R), then we have the bound

ϵcorr ≤ γΩ||s(1)||L2 (40)

where s(1) denotes the first Sobolev derivative, which exists because of the assumption that s ∈W 1
2 .

We thus see that if we choose Ω > 0 sufficiently small we can make ϵcorr < ϵ
2 , by equation 40.

Furthermore, by lemma 2.8 we have that the average approximation error ϵ(Ω) < ϵ
2 for Ω sufficiently

small. Therefore, by taking fΩ = AΩ(s) ∈ VΩ(F ) the proposition follows for the signal s ∈W 1
2 .

As we have only proved the proposition for signals in s ∈ W 1
2 (R) we are not done. We want to

prove it for signals s ∈ L2(R). This is the second step, which proceeds as follows.

We start by observing that AΩ is a bounded operator from L2(R) into L2(R), see Blu & Unser
(1999). Let T = ||AΩ||op denote the operator norm of AΩ. We also use the fact that C∞

c (R) is
dense in L2(R), see Stein & Shakarchi (2011).

Then by density of C∞
c (R) in L2(R) we can find an f ∈ C∞

c (R) such that

||f − s||L2 < min

{
ϵ

3T
,
ϵ

3

}
(41)

||f − s||L2 < η
3T . Furthermore, since f ∈ C∞

c it lies in W 1
2 . By the above we have that there exists

Ω > 0 such that ||f −AΩ(f)||L2 < ϵ
3 . We then estimate:

||s−AΩ(s)|| = ||s− f + f −AΩ(f) +AΩ(f)−AΩ(s)||L2 (42)
≤ ||s− f ||L2 + ||f −AΩ(f)||L2 + ||AΩ(f)−AΩ(s)||L2 (43)
≤ ||s− f ||L2 + ||f −AΩ(f)||L2 + ||AΩ||op||s− f ||L2 (44)

≤ ϵ

3
+
ϵ

3
+
ϵ

3
(45)

= ϵ (46)

where equation 43 follows from the triangle inequality and equation 44 from equation 41. This
completes the proof.
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Proof of thm. 2.10. By prop. 2.9 there exists an Ω > 0 sufficiently small and an fΩ ∈ VΩ(F ) such
that

||s− fΩ||L2 <
ϵ

2
. (47)

As fΩ lies in VΩ(F ) we can write fΩ =
∑∞

k=−∞ aΩ(k)F (
1
Ω (x−Ωk). This implies that the partial

sums

Sn =

n∑
k=−n

aΩ(k)F (
1

Ω
(x− Ωk) (48)

converge under the L2-norm to fΩ as n → ∞. By definition of convergence this means given any
ϵ > 0 there exists an integer k(ϵ) > 0 such that∣∣∣∣∣∣∣∣fΩ −

k(ϵ)∑
k=−k(ϵ)

aΩ(k)F

(
1

Ω
(x− Ωk)

)∣∣∣∣∣∣∣∣ < ϵ

2
. (49)

We define a neural network N with n(ϵ) = 2k(ϵ) neurons in its hidden layer as follows. The
weights in the first layer will be the constant vector [1, . . . , 1]T and the associated bias will be
the vector [−Ωk(ϵ),−Ωk(ϵ) + 1, . . . ,Ωk(ϵ)]T . The weights associated to the second layer will be
[a(−k(ϵ)), . . . , a(k(ϵ))] and the bias for this layer will be 0. These weights and biases will make up
the parameters θ for the neural network. In the hidden layer we take as activation the function FΩ.
With these parameters and activation function, we see that

N (θ)(x) =

k(ϵ)∑
k=−k(ϵ)

aΩ(k)F

(
1

Ω
(x− Ωk)

)
. (50)

We then have that equation 49 implies that

||N (θ)− fΩ||L2 <
ϵ

2
. (51)

Combining this with equation 47 we have

||N (θ)− s||L2 = ||N (θ)− fΩ + fΩ − s||L2 (52)
≤ ||N (θ)− fΩ||L2 + ||fΩ − s||L2 (53)

≤ ϵ

2
+
ϵ

2
(54)

= ϵ (55)

where equation 53 follows from the triangle inequality and equation 54 follows by using equation 47
and equation 51. The theorem has been proved.

B ON TAKEN’S EMBEDDING THEOREM

Taken’s embedding theorem is a delay embedding theorem giving conditions under which the
strange attractor of a dynamical system can be reconstructed from a sequence of observations of
the phase space of that dynamical system.

The theorem constructs an embedding vector for each point in time

x(ti) = [x(ti), x(ti + n∆t), . . . , x(ti + (d− 1)n∆t)]

Where d is the embedding dimension and n is a fixed value. The theorem then states that in order to
reconstruct the dynamics in phase space for any n the following condition must be met

d ≥ 2D + l

where D is the box counting dimension of the strange attractor of the dynamical system which can
be thought of as the theoretical dimension of phase space for which the trajectories of the system do
not overlap.
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Drawbacks of the theorem: The theorem does not provide conditions as to what the best n is and
in practise when D is not known it does not provide conditions for the embedding dimension d. The
quantity n∆t is the amount of time delay that is being applied. Extremely short time delays cause
the values in the embedding vector to almost be the same, and extremely large time delays cause the
value to be uncorrelated random variables. The following papers show how one can find the time
delay in practise Kim et al. (1999); Small (2005). Furthermore, in practise estimating the embedding
dimension is often done by a false nearest neighbours algorithm Kennel et al. (1992).

Thus in practise time delay embeddings for the reconstruction of dynamics can require the need to
carry further experiments to find the best time delay length and embedding dimension.

C RELATION TO UNIVERSAL APPROXIMATION

Thms. 2.4 and 2.10 can be interpreted as universal approximation theorems for signals in L2(R).
The classic universal approximation theorems are generally for functions on bounded domains .
In 92’ W. A Light extended those results on bounded domains to a universal approximation for
continuous function on Rn by sigmoid activated networks Light (1992). His result can also be made
to hold for sinc activated networks, and since the space of continuous functions is dense in L2(R)
his proof easily extends to give a universal approximation result for sinc activated 2 layer networks
for signals in L2(R). Thus thm. 2.10 can be seen as giving a different proof of W.A. Light’s result.

Although it seems like such results have been known through classical methods, we would like to
emphasize that the importance of thm. 2.10 comes in how it relates to sampling theory. Given
a signal s ∈ L2(R) that is bandlimited, the Nyquist-Shannon sampling theorem. This classical
theorem, see Marks (2012), allows signal reconstruction using shifted sinc functions while explicitly
specifying the coefficients of these shifted sinc functions. These coefficients correspond to samples
of the signal, represented as s(n/2Ω). In cases where the signal is not bandlimited, prop. 2.9
still enables signal reconstruction via shifted sinc functions, albeit without a closed formula for the
coefficients involved. This is precisely where thm. 2.10 demonstrates its significance. The theorem
reveals that the shifted sinc functions constituting the approximation can be encoded using a two-
layer sinc-activated neural network. Notably, this implies that the coefficients can be learned as part
of the neural network’s weights, rendering such a sinc-activated network exceptionally suited for
signal reconstruction in the L2(R) space. In fact, thm. 2.10 shows that one does not need to restrict
to sinc functions and that any activation that forms a Riesz basis will be optimal.

D DYNAMICAL EQUATIONS

Lorentz System: For the Lorenz system we take the parameters, σ = 10, ρ = 28 and β = 8
3 . The

equations defining the system are:

dx

dt
= σ(−x+ y) (56)

dy

dt
= −xz + ρx− y (57)

dz

dt
= −xy − βz (58)

Van der Pol Oscillator: For the Van der Pol oscillator we take the parameter, µ = 1. The equations
defining the system are:

dx

dt
= µ(x− 1

3
x3 − y) (59)

dy

dt
=

1

µ
x (60)
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Chen System: For the Chen system we take the parameters, α = 5, β = −10 and δ = −0.38. The
equations defining the system are:

dx

dt
= αx− yz (61)

dy

dt
= βy + xz (62)

dz

dt
= δz +

xy

3
(63)

Rössler System: For the Rössler system we take the parameters, a = 0.2, b = 0.2 and c = 5.7. The
equations defining the system are:

dx

dt
= −(y + z) (64)

dy

dt
= x+ ay (65)

dz

dt
= b+ z(x− c) (66)
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Generalized Rank 14 Lorentz System: For the following system we take parameters a = 1√
2

,
R = 6.75r and r = 45.92. The equations defining the system are:

dψ11

dt
= −a

(
7

3
ψ13ψ22 +

17

6
ψ13ψ24 +

1

3
ψ31ψ22 +

9

2
ψ33ψ24

)
− σ

3

2
ψ11 + σa

2

3
θ11 (67)

dψ13

dt
= a

(
− 9

19
ψ11ψ22 +

33

38
ψ11ψ24 +

2

19
ψ31ψ22 −

125

38
ψ31ψ24

)
− σ

19

2
ψ13 + σa

2

19
θ13

(68)
dψ22

dt
= a

(
4

3
ψ11ψ13 −

2

3
ψ11ψ31 −

4

3
ψ13ψ31

)
− 6σψ22 +

1

3
σaθ22 (69)

dψ31

dt
= a

(
9

11
ψ11ψ22 +

14

11
ψ13ψ22 +

85

22
ψ13ψ24

)
− 11

2
σψ31 +

6

11
σaθ31 (70)

dψ33

dt
= a

(
11

6
ψ11ψ24

)
− 27

2
σψ33 +

2

9
σaθ33 (71)

dψ24

dt
= a

(
−2

9
ψ11ψ13 − ψ11ψ33 +

5

9
ψ13ψ31

)
− 18σψ24 +

1

9
σaθ24 (72)

dθ11
dt

= a

(
ψ11θ02 + ψ13θ22 −

1

2
ψ13θ24 − ψ13θ02 + 2ψ13θ04 + ψ22θ13 + ψ22θ31 + ψ31θ22

(73)

+
3

2
ψ33θ24 −

1

2
ψ24θ13 +

3

2
ψ24θ33

)
+Raψ11 −

3

2
θ11

dθ13
dt

= a

(
− ψ11θ22 +

1

2
ψ11θ24 − ψ11θ02 + 2ψ11θ04 − ψ22θ11 − 2ψ31θ22 (74)

+
5

2
ψ31θ24 +

1

2
ψ24θ11 +

5

2
ψ24θ31

)
+Raψ13 −

19

2
θ13

dθ22
dt

= a

(
ψ11θ13 − ψ11θ31 − ψ13θ11 + 2ψ13θ31 + 4ψ22θ04 − ψ33θ11 + 2ψ24θ02

)
+ 2Raψ22 − 6θ22

(75)
dθ31
dt

= a

(
ψ11θ22 − 2ψ13θ22 +

5

2
ψ13θ24 − ψ22θ11 + 2ψ22θ13 + 4ψ31θ02 − 4ψ33θ02 (76)

+ 8ψ33θ04 −
5

2
ψ24θ13

)
+ 3Raψ31 −

11

2
θ31

dθ33
dt

= a

(
3

2
ψ11θ24 − 4ψ31θ02 + 8ψ31θ04 −

3

2
ψ24θ11

)
+ 3Raψ33 −

27

2
θ33 (77)

dθ24
dt

= a

(
1

2
ψ11θ13 −

3

2
ψ11θ33 +

1

2
ψ13θ11 −

5

2
ψ13θ31 − 2ψ22θ02 (78)

− 5

2
ψ31θ13 −

3

2
ψ33θ11

)
+ 2Raψ24 − 18θ24

dθ02
dt

= a

(
− 1

2
ψ11θ11 +

1

2
ψ11θ11 +

1

2
ψ11θ13 +

1

2
ψ13θ11 + ψ22θ24 (79)

− 3

2
ψ31θ31 +

3

2
ψ31θ33 +

3

2
ψ33θ31 + ψ24θ24

)
− 4θ02

dθ04
dt

= −a
(
ψ11θ13 + ψ13θ11 + 2ψ22θ22 + 4ψ31θ33 + 4ψ33θ31

)
− 16θ04 (80)
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n = 1.0 n = 0.8 n = 0.6 n = 0.2 n = 0.1

Figure 4: Robust recovery of dynamical systems from partial observations (Lorenz system). Top
row: coordinate network. Bottom row: classical method.

n = 1.0 n = 0.8 n = 0.6 n = 0.2 n = 0.1

Figure 5: Robust recovery of dynamical systems from partial observations (Duffing system). Top
row: coordinate network. Bottom row: classical method.
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w = 0.3 w = 5

Figure 6: The top row and the bottom row depicts the SINDy reconstructions obtained for the Lorenz
system and the Rossler system, respectively, using coordinate networks. As ω is increased in the
sinc function, the coordinate network allows more higher frequencies to be captured, resulting in
noisy reconstructions.

Figure 7: We use sinc-INRs to improve the results of the SINDy algorithm. The top block and the bottom
block demonstrate experiments on the Lorenz system and the Rossler system, respectively. In each block, the
top row and the bottom row represent the results of the baseline SINDy algorithm and the improved version
(using coordinate networks). As evident, coordinate networks can be used to obtain significantly robust results.
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E SINC ACTIVATIONS FOR POSITIONAL EMBEDDINGS

Recent research, notably Zheng et al. (2022), has provided compelling evidence that the effective-
ness of positional encodings need not be exclusively tied to a Fourier perspective. They demonstrate
that non-Fourier embedding functions, such as shifted Gaussian functions, can be effectively uti-
lized for positional encoding. These functions are characterized by having a sufficiently high Lips-
chitz constant and the ability to generate high-rank embedding matrices, attributes that are shown to
achieve results comparable to Random Fourier Feature (RFF) encodings.

Building on this, research in Ramasinghe & Lucey (2023) further confirms that shifted Gaussian
functions with spatially varying variances can surpass the performance of RFF encodings. Given
that sinc functions also exhibit these desirable properties, they can be feasibly employed as shifted
basis functions for high-frequency signal encoding.

To explore this, we developed a sinc-based positional embedding layer. For a 2D coordinate (x1, x2),
each dimension is embedded using sinc functions:

ψ1(x1) = [sinc(∥t1 − x1∥), sinc(∥t2 − x1∥), . . . , sinc(∥tN − x1∥),

ψ1(x2) = [sinc(∥t1 − x2∥), sinc(∥t2 − x2∥), . . . , sinc(∥tN − x2∥),
where t1, . . . , tN are equidistant samples in [0, 1]. Then, these embeddings are concatenated to
create the final embedding as,

Ψ(x1, x2) = [ψ1(x1), ψ1(x2)]

In a comparative study using the DIV2K dataset for image reconstruction, our sinc-based positional
embedding layer demonstrated superior performance to an RFF-based layer, as shown Table 3:

PE layer PSNR
RFF 23.5
Sinc PE 26.4

Table 3: Comparison of the sinc psitional embedding layer against RFF positional embeddings.

This result indicates that sinc-based positional embeddings offer a promising alternative to RFF
encodings.
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