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Abstract

Learning with reduced labeling standards, such as noisy label, partial label, and
supplementary unlabeled data, which we generically refer to as imprecise label,
is a commonplace challenge in machine learning tasks. Previous methods tend
to propose specific designs for every emerging imprecise label configuration,
which is usually unsustainable when multiple configurations of imprecision co-
exist. In this paper, we introduce imprecise label learning (ILL), a framework
for the unification of learning with various imprecise label configurations. ILL
leverages expectation-maximization (EM) for modeling the imprecise label infor-
mation, treating the precise labels as latent variables. Instead of approximating
the correct labels for training, it considers the entire distribution of all possible
labeling entailed by the imprecise information. We demonstrate that ILL can
seamlessly adapt to partial label learning, semi-supervised learning, noisy label
learning, and, more importantly, a mixture of these settings, with closed-form
learning objectives derived from the unified EM modeling. Notably, ILL surpasses
the existing specified techniques for handling imprecise labels, marking the first
practical and unified framework with robust and effective performance across
various challenging settings. We hope our work will inspire further research on
this topic, unleashing the full potential of ILL in wider scenarios where precise
labels are expensive and complicated to obtain. Code is available at: https:
//github.com/Hhhhhhao/General-Framework-Weak-Supervision.

1 Introduction

One of the critical challenges in machine learning is the collection of annotated data for model
training [1–6]. Ideally, every data instance would be fully annotated with precise labels. However,
collecting such data can be expensive, time-consuming, and error-prone. Often, the labels can be
intrinsically difficult to ascertain precisely. Factors such as a lack of annotator expertise and privacy
concerns can also negatively affect the quality and completeness of the annotations.

In an attempt to circumvent this limitation, several methods have been proposed to permit model
learning from the data annotated with reduced labeling standards, which are generally easier to
obtain. We will refer to such labels as imprecise. Fig. 1 illustrates some typical mechanisms of label
imprecision that are commonly addressed in the literature. Label imprecision requires a modification
of the standard supervised training mechanism to build models for each specific case. For instance,
partial label learning (PLL) [7–13] allows instances to have a set of candidate labels, instead of a
single definitive one. Semi-supervised Learning (SSL) [14–23] seeks to enhance the generalization
ability when only a small set of labeled data is available, supplemented by a larger unlabeled set.
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Figure 1: Illustration of the full label and imprecise label configurations. We use an example dataset
of 4 training instances and 3 classes. (a) Full label, the annotation is a single true label; (b) Partial
label, the annotation is a label candidate set containing true label; (c) Semi-supervised, only part of
the dataset is labeled, and the others are unlabeled; (d) Noisy label, the annotation is mislabeled.

Noisy label learning (NLL) [24–37] deals with noisy scenarios where the labels are corrupted or
incorrect. There is a greater variety of other forms of label imprecision, including crowd-sourcing
[38, 39], programmable weak supervision [40, 41], and bag-level supervision [42–47], among others.

While prior arts have demonstrated success in handling individual configurations of label imprecision,
their approaches often differ substantially. They are tailored to a specific form of imprecision,
as depicted in Fig. 2. Such specificity not only imposes the necessity of devising a solution for
emerging types of label imprecision scenarios, but also complicates the deployment in practical
settings, where the annotations can be highly complex and may involve multiple coexisting and
interleaved imprecision configurations. For instance, considering a scenario where both noisy labels
and partial labels appear together, it might be challenging to adapt previous methods in NLL or PLL
to this scenario since they either rely on the assumption of definite labels [39] or the existence of the
correct label among label candidates [48], thus requiring additional algorithmic design. In fact, a
few recent works have attempted to address the combinations of imprecise labels in this way, such
as partial noisy label [49, 50] and semi-supervised partial label learning [51, 52]. However, simply
utilizing a more sophisticated or ad-hoc design can hardly scale to other settings. In addition, most of
these approaches attempt to infer the correct labels given the imprecise information (e.g. through
consistency with adjacent data [14, 53, 54], iterative refinement [55, 56], average over given labels
[57, 58], etc., to train the model, which inevitably accumulates error during training.

In this paper, we formulate the problem from a different perspective: rather than taking the imprecise
label information provided as a potentially noisy or incomplete attempt at assigning labels to instances,
we treat it generically as the information that imposes a deterministic or statistical restriction of the
actual applicable true labels. We then train the model over the distribution of all possible labeling
entailed by the given imprecise information. More specifically, for a dataset with samples X and
imprecise label information I , we treat the inaccessible full and precise labels Y as a latent variable.
The model is then trained to maximize the likelihood of the provided information I . Since the
likelihood computed over the joint probability P (X, I; θ) =

∑
Y P (X, I, Y ; θ) must marginalize out

Y , the actual information I provided could permit a potentially exponential number of labeling. To
deal with the resulting challenge of maximizing the logarithm of an expectation, we use the common
approach of expectation-maximization (EM) [59], where the E-step computes the expectation of
P (X, I, Y ; θ) given the posterior of current belief P (Y |X, I; θt) at time step t and the M-step
maximizes the tight variational lower bound over P (X, I; θ). The overall framework is thus largely
agnostic to the various nature of label imprecision, with the imprecise label only affecting the manner
in which the posterior P (Y |X, I; θt) is computed. In fact, current approaches designed for various
imprecise label scenarios can be treated as specific instances of our framework. Our approach can
serve as a solution towards a unified and generalized view for learning with various imprecise labels.

While there exist earlier attempts on generalized or EM solutions for different (other) imprecise
supervisions or fuzzy observations [60–64, 45, 65–67], they usually require additional assumptions
and approximations on the imprecise information for learnablility [48, 68], thus presenting limited
scalability on practical settings [62]. On the contrary, the unified framework we propose subsumes
all of these and naturally extends to the more practical “mixed” style of data, where different types of
imprecise labels coexist. Moreover, for noisy labels, our framework inherently enables the learning of
a noise model, as we will show in Section 3.2. Through comprehensive experiments, we demonstrate
that the proposed imprecise label learning (ILL) framework not only outperforms previous methods
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Figure 2: Baseline model pipelines for various imprecise label configurations. (a) PiCO [13] for
partial label learning. (b) FixMatch [18] for semi-supervised learning. (c) SOP [69] for noisy label
learning. (d) The proposed unified framework. It accommodates any imprecise label configurations
and also mixed imprecise labels with an EM formulation.

for dealing with single imprecise labels of PLL, NLL, and SSL, but also presents robustness and
effectiveness for mixed imprecise label learning (MILL) settings, leveraging the full potential to more
challenging scenarios. Our contributions are summarized as follows:

• We propose an EM framework towards the unification of learning from various imprecise labels.
• We establish scalable and consistent state-of-the-art (SOTA) performance with the proposed

method on partial label learning, semi-supervised learning, and noisy label learning, demon-
strating our method’s robustness in more diverse, complex label noise scenarios.

• To the best of our knowledge, our work is the first to show the robustness and effectiveness of a
single unified method for handling the mixture of various imprecise labels.

2 Preliminary

In this section, we illustrate the notations and baselines from different imprecise label settings that
adopt various solutions. We will show later how our proposed method generalize and subsumes these
prior arts. Let X denote the input space, and Y = [C] := {1, . . . , C} represent the label space with
C distinct labels. A fully annotated training dataset of size N is represented as D = {(xi, yi)}i∈[N ].
Learning with imprecise labels involves approximating the mapping function f ◦ g : X → Y from a
training dataset where the true label y is not fully revealed from the annotation process. Here f is the
backbone for feature extraction, g refers to the classifier built on top of the features, and the output
from f ◦ g is the predicted probability p(y|x; θ), where θ is the learnable parameter for f ◦ g. In this
study, we primarily consider three imprecise label configurations (as illustrated in Fig. 1) and their
corresponding representative learning paradigms (as shown in Fig. 2), namely partial label learning,
semi-supervised learning, and noisy label learning.

Partial label learning (PLL). PLL aims to learn with a candidate label set s ⊂ Y , where the
ground truth label y ∈ Y is concealed in s. The training data for partial labels thus becomes
DPLL = {(xi, si)}i∈[N ]. PiCO [13] is a recent contrastive method that employs class prototypes
to enhance label disambiguation (as shown in Fig. 2(a)). It optimizes the cross-entropy (CE)2 loss
between the prediction of the augmented training sample Aw(x) and the disambiguated labels ŝ.
PiCO learns a set of class prototypes from the features associated with the same pseudo-targets. A
contrastive loss, based on MOCO [70], is employed to better learn the feature space, drawing the
projected and normalized features zw and zs of the two augmented versions of data Aw(x) and As(x)
3 closer. The objective of PiCO is formulated as:

LPiCO = LCE (p(y|Aw(x); θ), ŝ) + LCont (zw, zs,M) . (1)

Semi-supervised learning (SSL). For SSL, we can define the labeled dataset as DL
SSL =

{(xl
i, y

l
i)}i∈[NL], and the unlabeled dataset as DU = {xu

j }j∈[NL+1,NL+NU], with NL ≪ NU.
A general confidence-thresholding based self-training [53, 18] pipeline for SSL is shown in Fig. 2(b).
Consider FixMatch [18] as an example; there are usually two loss components: the supervised
CE loss on labeled data and the unsupervised CE loss on unlabeled data. For the unsupervised
objective, the pseudo-labels ŷu from the network itself are used to train on the unlabeled data. A
“strong-weak” augmentation [53] is commonly adopted. To ensure the quality of the pseudo-labels,

2For simplicity, we use LCE for labels of the formats of class indices, one-hot vectors, and class probabilities.
3We use Aw to indicate the weaker data augmentation and As to indicate the stronger data augmentation.
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only the pseudo-labels whose confidence scores p̂u are greater than a threshold τ are selected to
participate in training:

LFix = LCE

(
p(y|Aw(x

l); θ), yl
)
+ 1 (p̂u ≥ τ)LCE (p(y|As(x

u); θ), ŷu) . (2)

Noisy label learning (NLL). NLL aims at learning with a dataset of corrupted labels, DNLL =
{(xi, ŷi)}i∈[N ]. We illustrate the NLL pipeline (in Fig. 2(c)) with the recent sparse over-
parameterization (SOP) model [69], where a sparse noise model consisting of parameters ui,vi ∈
[−1, 1]C for each sample is adopted. The noise model transforms the network prediction from the
true label distribution into the noisy label distribution. A CE loss and a mean-squared-error (MSE)
loss optimize parameter {ui} and {vi} respectively:

LSOP = LCE (ϕ (p(y|Aw(x); θ) +m) , ŷ) + LMSE (p(y|Aw(x); θ) +m, ŷ) , (3)

where ϕ denotes the L∞ normalization and mi = ui ⊙ ui ⊙ ŷoh
i − vi ⊙ vi ⊙

(
1− ŷoh

i

)
, with ŷoh

i
referring to the one-hot version of yi. Consistency regularization with strong-weak augmentation and
entropy class-balance regularization are additionally utilized for better performance in SOP [69].

3 Imprecise Label Learning

Although current techniques demonstrate potential in addressing particular forms of imprecise labels,
they frequently fall short in adaptability and transferability to more complicated and more realistic
scenarios where multiple imprecise label types coexist and interleave. This section first defines the
proposed expectation-maximization (EM) formulation for learning with various imprecise labels.
Then, we demonstrate that our unified framework seamlessly extends to partial label learning, semi-
supervised label learning, noisy label learning, and the more challenging setting of mixed imprecise
label learning. Connections and generalization to previous pipelines can also be drawn clearly under
the proposed EM framework.

3.1 A Unified Framework for Learning with Imprecise Labels

Exploiting information from imprecise labels. The challenge of learning with imprecise labels lies
in learning effectively with inaccurate or incomplete annotation information. Per the analysis above,
prior works catering to specific individual imprecise labels either explicitly or implicitly attempt to
infer the precise labels from the imprecise label information. For example, partial label learning
concentrates on the disambiguation of the ground truth label from the label candidates [13, 71, 50]
or averaging equally over the label candidates [72]. In semi-supervised learning, after the model
initially learns from the labeled data, the pseudo-labels are treated as correct labels and utilized to
conduct self-training on the unlabeled data [73, 18]. Similarly, for noisy label learning, an integral
part that helps mitigate overfitting to random noise is the implementation of an accurate noise model
capable of identifying and rectifying the incorrect labels [33, 69], thereby ensuring the reliability
of the learning process. However, inferring the correct labels from the imprecise labels or utilizing
the imprecise labels directly can be very challenging and usually leads to errors accumulated during
training [73, 74], which is also known as the confirmation bias. In this work, we take a different
approach: we consider all possible labeling along with their likelihood that the imprecise labels fulfill
to train the model, rather than using a single rectified label from the imprecise information. Such
an approach also eliminates the requirements for designing different methods for various imprecise
labels and provides a unified formulation instead, where closed-form solutions can be derived.

A unified framework for learning with imprecise labels (ILL). Let {xi}i∈[N ] represent the features
as realizations from X and {yi}i∈[N ] represent their precise labels as realizations from Y for the
training data. Ideally, Y would be fully specified for X . In the imprecise label scenario, however,
Y is not provided; instead we obtain imprecise label information I . We view I not as labels, but
more abstractly as a variable representing the information about the labels. From this perspective,
the actual labels Y would have a distribution P (Y |I), and I can present in various forms. When the
information I provided is the precise true label of the data, P (Y |I) would be a delta distribution,
taking a value 1 at the true label, and 0 elsewhere. If I represents partial labels, then P (Y |I) would
have non-zero value over the candidate labels, and be 0 elsewhere. When I represents a set of noisy
labels, P (Y |I) would represent the distribution of the true labels, given the noisy labels. When I
does not contain any information, i.e., unlabeled data, Y can take any value.
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By the maximum likelihood estimation (MLE) principle, we must estimate the model to maximize the
likelihood of the data/information we have been provided, namely X and I . Let P (X, I; θ) represent
a parametric form for the joint distribution of X and I4 Explicitly considering the labels Y , we have
P (X, I; θ) =

∑
Y P (X,Y, I; θ). The maximum likelihood principle requires us to find:

θ∗ = argmax
θ

logP (X, I; θ) = argmax
θ

log
∑
Y

P (X,Y, I; θ), (4)

with θ∗ denotes the optimal value of θ. Eq. (4) features the log of an expectation and cannot generally
be solved in closed-form, and requires iterative hill-climbing solutions. Of these, arguably the most
popular is the expectation-maximization (EM) algorithm [59], which iteratively maximizes a tight
variational lower bound on the log-likelihood. In our case, applying it becomes:

θt+1 = argmax
θ

EY |X,I;θt [logP (X,Y, I; θ)]

= argmax
θ

EY |X,I;θt [logP (Y |X; θ) + logP (I|X,Y ; θ)] ,
(5)

where θt is the tth estimate of the optimal θ. Note that P (X; θ) is omitted from Eq. (5) since P (X)
does not rely on θ. The detailed derivation of the variational lower bound is shown in Appendix C.1.
There are several implications from Eq. (5). (i) The expectation over the posterior P (Y |X, I; θt)
equates to considering all labeling entailed by the imprecise label information I , rather than any
single (possibly corrected) choice of label. For independent instances setting mostly studied in this
paper, we can derive closed-form training objectives from this formulation as shown in Section 3.2.
(ii) The property of the second term logP (I|X,Y ; θ) is dependent on the nature of imprecise label I .
If I is derivable from true labels Y , such as the actual labels or the label candidates, it can be reduced
to P (I|Y ), i.e., the probability of I is no longer dependent on X or θ and thus can be ignored from
Eq. (5). If I represents the noisy labels, P (I|X,Y ; θ) instead includes a potentially learnable noise
model. (iii) It is a general framework towards the unification of any label configuration, including full
labels, partial labels, low-resource labels, noisy labels, etc. In this work, we specialize the proposed
EM framework to PLL, SSL, NLL, and the mixture of them in the following.

3.2 Instantiating the Unified EM Formulation

We illustrate how to seamlessly expand the formulation from Eq. (5) to partial label learning, semi-
supervised learning, noisy label learning, and mixture settings, with derived closed-form loss function5

for each setting here. The actual imprecise labels only affect the manner in which the posterior
P (Y |X, I; θt) is computed for each setting. We show that all learning objectives derived from Eq. (5)
naturally include a consistency term with the posterior as the soft target. We also demonstrate that
the proposed unified EM framework closely connects with the prior arts, which reveals the potential
reason behind the success of these techniques. Note that while we only demonstrate the application
of the proposed framework to four settings here, it can also be flexibly extended to other settings.
More details of derivation below are shown in Appendix C.

Partial label learning (PLL). The imprecise label I for partial labels is defined as the label candidate
sets S containing the true labels. These partial labels indicate that the posterior P (Y |X,S; θt)
can only assign its masses on the candidate labels. Since S can be derived from true labels Y ,
P (S|X,Y ; θ) reduces to P (S|Y ), and thus can be ignored. We also demonstrate with instance
dependent partial labels that maintains P (S|X,Y ; θ) in Appendix D.2.2. Defining the label candidates
as {si}i∈[N ] and substituting it in Eq. (5), we have the loss function of PLL derived using ILL
framework:

LPLL
ILL = −

∑
Y ∈[C]

P (Y |X,S; θt) logP (Y |X; θ) ≡ LCE

(
p(y|As(x); θ),p(y|Aw(x), s; θ

t)
)
, (6)

where p(y|Aw(x), s; θ
t) is the normalized probability that

∑
k∈C pk = 1, and pk = 0,∀k ∈

s. Eq. (6) corresponds exactly to consistency regularization [53], with the normalized predicted
probability as the soft pseudo-targets. We use As and Aw to denote the strong and weak augmentation

4The actual parameters θ may apply only to some component such as P (Y |X; θ) of the overall distribution;
we will nonetheless tag the entire distribution P (X, I; θ) with θ to indicate that it is dependent on θ overall.

5To formulate the loss function, we convert the problem to minimization of the negative log-likelihood.
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as stated earlier. This realization on PLL shares similar insights as [12] which exploits a gradually
induced loss weight for PLL on multiple augmentations of the data. However, our framework is much
simpler and more concise as shown in Appendix D.2.2, which does not require additional techniques.

Semi-supervised learning (SSL) In SSL, the input X consists of the labeled data XL and the
unlabeled data XU. The imprecise label for SSL is realized as the limited number of full labels
Y L for XL. The labels Y U for unlabeled XU are unknown and become the latent variable. Inter-
estingly, for the unlabeled data, there is no constraint on possible labels it can take. The posterior
P (Y U|XL, XU, Y L; θ), which is the actual prediction from the network, can be directly utilized as
soft targets for self-training. Since Y L is conditionally independent with Y U given X , the second
term of Eq. (5): P (Y L|XL, XU, Y U; θ), is reduced to P (Y L|XL; θ), which corresponds to the
supervised objective on labeled data. The loss function for SSL thus becomes:

LSSL
ILL = −

∑
Y ∈[C]

P (Y U|XU, XL, Y L; θt) logP (Y U|XU, XL; θ)− logP (Y L|XL; θ)

≡ LCE

(
p(y|As(x

u); θ),p(y|Aw(x
u); θt)

)
+ LCE

(
p(y|Aw(x

l); θ), yl
) (7)

The first term corresponds to the unsupervised consistency regularization usually employed in SSL,
and the second term refers to the supervised CE loss only on labeled data. Eq. (7) has several
advantages over the previous methods. It adopts the prediction as soft-targets of all possible labeling
on unlabeled data, potentially circumventing the confirmation bias caused by pseudo-labeling and
naturally utilizing all unlabeled data which resolves the quantity-quality trade-off commonly existing
in SSL [18, 23]. It also indicates that previous pseudo-labeling with confidence threshold implicitly
conducts the EM optimization, where the maximal probable prediction approximates the expectation,
and the degree of the approximation is determined by the threshold τ , rationalizing the effectiveness
of dynamic thresholding.

Noisy label learning (NLL). Things become more complicated here since the noisy labels Ŷ do not
directly reveal the true information about Y , thus P (Ŷ |Y,X; θ) inherently involves a noise model that
needs to be learned. We define a simplified instance-independent6 noise transition model T (Ŷ |Y ;ω)
with parameters ω, and take a slightly different way to formulate the loss function for NLL from the
ILL framework:

LNLL
ILL = −

∑
Y ∈[C]

P (Y |X, Ŷ ; θt, ωt) logP (Y |X, Ŷ ; θ, ωt)− logP (Ŷ |X; θ, ω)

≡ LCE

(
p(y|As(x), ŷ; θ, ω

t),p(y|Aw(x), ŷ; θ
t, ωt)

)
+ LCE (p(ŷ|Aw(x); θ, ω), ŷ) ,

(8)

where the parameters ω and θ are learned end-to-end. The first term corresponds to the consistency
regularization of prediction conditioned on noisy labels and the second term corresponds to the
supervised loss on noisy predictions that are converted from the ground truth predictions. Both
quantities are computed using the noise transition model given the noisy label ŷ:

p(y|x, ŷ; θ, ωt) ∝ p(y|x; θ)T (ŷ|y;ωt), and p(ŷ|x; θ, ω) =
∑
y∈[C]

p(y|x; θ)T (ŷ|y;ω). (9)

Mixture imprecise label learning (MILL). We additionally consider a more practical setting, mixture
of imprecise label learning, with partial labels, noisy labels, and unlabeled data interleaved together.
On the unlabeled data, the unsupervised objective is the same as the unsupervised consistency
regularization of SSL as shown in Eq. (7). The labeled data here present partial and noisy labels ŝ.
Thus the noisy supervised objective in Eq. (9) becomes the supervised consistency regularization
as in Eq. (6) of partial label setting to train the noise transition model, and the noisy unsupervised
objective becomes the consistency regularization of the prediction conditioned on noisy partial labels.
Thus we have the loss function for MILL derived as:

LMILL
ILL = LCE

(
p
(
y | As(x

l), ŝl; θ, ωt
)
,p

(
y | Aw(x

l), ŝl; θt, ωt
))

+ LCE

(
p
(
ŷ | Aw(x

l); θ, ω
)
, ŝl

)
+ LCE

(
p(y|As(x

u); θ),p(y|Aw(x
u); θt)

) (10)

6A more complicated instance-dependent noise model T (Ŷ |Y,X;ω) can also be formulated under our
unified framework, but not considered in this work. Also, since we use T both in forward fashion and backward
fashion, it is unidentifiable in this work.
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Table 1: Accuracy of different partial ratio q on CIFAR-10, CIFAR-100, and CUB-200 for partial
label learning. The best and the second best results are indicated in bold and underline respectively.

Dataset CIFAR-10 CIFAR-100 CUB-200

Partial Ratio q 0.1 0.3 0.5 0.01 0.05 0.1 0.05

Fully-Supervised 94.91±0.07 73.56±0.10 -

LWS [11] 90.30±0.60 88.99±1.43 86.16±0.85 65.78±0.02 59.56±0.33 53.53±0.08 39.74±0.47

PRODEN [55] 90.24±0.32 89.38±0.31 87.78±0.07 62.60±0.02 60.73±0.03 56.80±0.29 62.56±0.10

CC [9] 82.30±0.21 79.08±0.07 74.05±0.35 49.76±0.45 47.62±0.08 35.72±0.47 55.61±0.02

MSE [79] 79.97±0.45 75.65±0.28 67.09±0.66 49.17±0.05 46.02±1.82 43.81±0.49 22.07±2.36

EXP [79] 79.23±0.10 75.79±0.21 70.34±1.32 44.45±1.50 41.05±1.40 29.27±2.81 9.44±2.32

PiCO [13] 94.39±0.18 94.18±0.12 93.58±0.06 73.09±0.34 72.74±0.30 69.91±0.24 72.17±0.72

Ours 96.37±0.08 96.26±0.03 95.91±0.05 75.31±0.19 74.58±0.03 74.00±0.02 70.77±0.29

We can compute both quantity through the noise transition model:

p(y|x, ŝ; θ, ωt) ∝ p(y|x; θ)
∏
ŷ∈ŝ

T (y|ŷ;ωt), and p(ŷ|x; θ, ω) =
∑
y∈[C]

p(y|x; θ)T (ŷ|y;ω). (11)

4 Experiments

In this section, we conduct extensive experiments to evaluate ILL. Albeit simple, the ILL framework
achieves comparable state-of-the-art performance regarding previous methods on partial label learning,
semi-supervised learning, and noisy label learning. Moreover, our experiments show that ILL could
be easily extended to a more practical setting with a mixture of various imprecise label configurations.
For all settings, we additionally adopt an entropy loss for balancing learned cluster sizes [75, 76],
similarly as [69, 22]. Experiments are conducted with three runs using NVIDIA V100 GPUs.

4.1 Partial Label Learning

Setup. Following [13], we evaluate our method on partial label learning setting using CIFAR-10
[77], CIFAR-100 [77], and CUB-200 [78]. We generate partially labeled datasets by flipping negative
labels to false positive labels with a probability q, denoted as a partial ratio. The C − 1 negative
labels are then uniformly aggregated into the ground truth label to form a set of label candidates. We
consider q ∈ {0.1, 0.3, 0.5} for CIFAR-10, q ∈ {0.01, 0.05, 0.1} for CIFAR-100, and q = 0.05 for
CUB-200. We choose six baselines for PLL using ResNet-18 [1]: LWS [11], PRODEN [55], CC
[9], MSE and EXP [79], and PiCO [13]. The detailed hyper-parameters, comparison with the more
recent method R-CR [12] that utilizes a different training recipe and model [80], and comparison
with instance-dependent partial labels [81] are shown in Appendix D.2.2.

Results. The results for PLL are shown in Table 1. Our method achieves the best performance
compared to the baseline methods. Perhaps more surprisingly, on CIFAR-10 and CIFAR-100, our
method even outperforms the fully-supervised reference, indicating the potential better generalization
capability using the proposed framework, sharing similar insights as in Wu et al. [12]. While PiCO
adopts a contrastive learning objective, our method still surpasses PiCO by an average of 2.13%
on CIFAR-10 and 2.72% on CIFAR-100. Our approach can be further enhanced by incorporating
contrastive learning objectives, potentially leading to more significant performance.

4.2 Semi-Supervised Learning

Setup. For experiments of SSL, we follow the training and evaluation protocols of USB [82] on image
and text classification. To construct the labeled dataset for semi-supervised learning, we uniformly
select l/C samples from each class and treat the remaining samples as the unlabeled dataset. We
present the results on CIFAR-100 and STL-10 [77] for image classification, and IMDB [83] and
Amazon Review [84] for text classification. We compare with the current methods with confidence
thresholding, such as FixMatch [18], AdaMatch [85], FlexMatch [20], FreeMatch [22], and SoftMatch
[23]. We also compare with methods with the contrastive loss, CoMatch [86] and SimMatch [87]. A
full comparison of the USB datasets and hyper-parameters is shown in Appendix D.3.

Results. We present the results for SSL on Table 2. Although no individual SSL algorithm dominates
the USB benchmark [82], our method still shows competitive performance. Notably, our method
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Table 2: Error rate of different number of labels l on CIFAR-100, STL-10, IMDB, and Amazon
Review datasets for semi-supervised learning.

Datasets CIFAR-100 STL-10 IMDB Amazon Review

# Labels l 200 400 40 100 20 100 250 1000

AdaMatch [85] 22.32±1.73 16.66±0.62 13.64±2.49 7.62±1.90 8.09±0.99 7.11±0.20 45.40±0.96 40.16±0.49
FixMatch [18] 29.60±0.90 19.56±0.52 16.15±1.89 8.11±0.68 7.72±0.33 7.33±0.13 47.61±0.83 43.05±0.54

FlexMatch [20] 26.76±1.12 18.24±0.36 14.40±3.11 8.17±0.78 7.82±0.77 7.41±0.38 45.73±1.60 42.25±0.33

CoMatch [86] 35.08±0.69 25.35±0.50 15.12±1.88 9.56±1.35 7.44±0.30 7.72±1.14 48.76±0.90 43.36±0.21

SimMatch [87] 23.78±1.08 17.06±0.78 11.77±3.20 7.55±1.86 7.93±0.55 7.08±0.33 45.91±0.95 42.21±0.30

FreeMatch [22] 21.40±0.30 15.65±0.26 12.73±3.22 8.52±0.53 8.94±0.21 7.95±0.45 46.41±0.60 42.64±0.06

SoftMatch [23] 22.67±1.32 16.84±0.66 13.55±3.16 7.84±1.72 7.76±0.58 7.97±0.72 45.29±0.95 42.21±0.20

Ours 22.06±1.06 16.40±0.54 11.09±0.71 8.10±1.02 7.32±0.12 7.64±0.67 43.96±0.32 42.32±0.02

Table 3: Accuracy of synthetic noise on CIFAR-10 and CIFAR-100 and instance noise on Clothing1M
and WebVision for noisy label learning. We use noise ratio of {0.2, 0.5, 0.8} for synthetic symmetric
noise and 0.4 for asymmetric label noise. The instance noise ratio is unknown.

Dataset CIFAR-10 CIFAR-100 Clothing1M WebVision

Noise Type Sym. Asym. Sym. Asym. Ins. Ins.

Noise Ratio η 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4 - -

CE 87.20 80.70 65.80 82.20 58.10 47.10 23.80 43.30 69.10 -
Mixup [90] 93.50 87.90 72.30 - 69.90 57.30 33.60 - - -
DivideMix [33] 96.10 94.60 93.20 93.40 77.10 74.60 60.20 72.10 74.26 77.32
ELR [32] 95.80 94.80 93.30 93.00 77.70 73.80 60.80 77.50 72.90 76.20
SOP [69] 96.30 95.50 94.00 93.80 78.80 75.90 63.30 78.00 73.50 76.60

Ours 96.78±0.11 96.60±0.15 94.31±0.07 94.75±0.81 77.49±0.28 75.51±0.52 66.46±0.72 75.82±1.89 74.02±0.12 79.37±0.09

performs best on STL-10 with 40 labels and Amazon Review with 250 labels, outperforming the
previous best by 0.68% and 1.33%. In the other settings, the performance of our method is also
very close to the best-performing methods. More remarkably, our method does not employ any
thresholding, re-weighting, or contrastive techniques to achieve current results, demonstrating a
significant potential to be further explored.

4.3 Noisy Label Learning

Setup. We conduct the experiments of NLL following SOP [69] on both synthetic symmet-
ric/asymmetric noise on CIFAR-10 and CIFAR-100, and more realistic and larger-scale instance noise
on Clothing1M [88], and WebVision [89]. To introduce the synthetic symmetric noise to CIFAR-10
and CIFAR-100, we uniformly flip labels for a probability η into other classes. For asymmetric noise,
we only randomly flip the labels for particular pairs of classes. The introduced noise is then treated as
ground truth labels to train the model. We mainly select three previous best methods as baselines:
DivideMix [33]; ELR [32]; and SOP [69]. We also include the normal cross-entropy (CE) training
and mixup [90] as baselines. More comparisons of other methods [91, 28] and on CIFAR-10N [92]
with training details and more baselines [93, 28] are shown in Appendix D.4.

Results. We present the noisy label learning results in Table 3. The proposed method is comparable
to the previous best methods. On synthetic noise of CIFAR-10, our method demonstrates the
best performance on both symmetric noise and asymmetric noise. On CIFAR-100, our method
generally produces similar results comparable to SOP. One may notice that our method shows inferior
performance on asymmetric noise of CIFAR-100; we argue this is mainly due to the oversimplification
of the noise transition model. Our method also achieves the best results on WebVision, outperforming
the previous best by 2.05%. On Clothing1M, our results are also very close to DivideMix, which
trains for 80 epochs compared to 10 epochs in ours.

4.4 Mixed Imprecise Label Learning

Setup. We evaluate on CIFAR-10 and CIFAR-100 in a more challenging and realistic setting, the
mixture of various imprecise label configurations, with unlabeled, partially labeled, and noisy labeled
data existing simultaneously. We first sample the labeled dataset and treat other samples as the
unlabeled. On the labeled dataset, we generate partial labels and randomly corrupt the true label of
the partial labels. We set l ∈ {1000, 5000, 50000} for CIFAR-10, and l ∈ {5000, 10000, 50000} for
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Table 4: Accuracy comparison of mixture of different imprecise labels. We report results of full
labels, partial ratio q of 0.1 (0.01) and 0.3 (0.05) for CIFAR-10 (CIFAR-100), and noise ratio η of
0.1, 0.2, and 0.3 for CIFAR-10 and CIFAR-100.

Method q
CIFAR-10, l=50000

q
CIFAR-100, l=50000

η=0.1 η=0.2 η=0.3 η=0.1 η=0.2 η=0.3

PiCO+ [94]

0.1

93.64 93.13 92.18

0.01

71.42 70.22 66.14
IRNet [71] 93.44 92.57 92.38 71.17 70.10 68.77
DALI [50] 94.15 94.04 93.77 72.26 71.98 71.04
PiCO+ Mixup [50] 94.58 94.74 94.43 75.04 74.31 71.79
DALI Mixup [50] 95.83 95.86 95.75 76.52 76.55 76.09
Ours 96.47±0.11 96.09±0.20 95.83±0.05 77.53±0.24 76.96±0.02 76.43±0.27

PiCO+ [94]

0.3

92.32 92.22 89.95

0.05

69.40 66.67 62.24
IRNet [71] 92.81 92.18 91.35 70.73 69.33 68.09
DALI [50] 93.44 93.25 92.42 72.28 71.35 70.05
PiCO+ Mixup [50] 94.02 94.03 92.94 73.06 71.37 67.56
DALI Mixup [50] 95.52 95.41 94.67 76.87 75.23 74.49
Ours 96.2±0.02 95.87±0.14 95.22±0.06 77.07±0.16 76.34±0.08 75.13±0.63

Table 5: Robust test accuracy results of our method on more mixture of imprecise label configura-
tions. l, q and η are the number of labels, partial, and noise ratio.

l q
CIFAR10

l q
CIFAR100

η=0.0 η=0.1 η=0.2 η=0.3 η=0.0 η=0.1 η=0.2 η=0.3

5,000
0.1 95.29±0.18 93.90±0.11 92.02±0.22 89.02±0.63

10,000
0.01 69.90±0.23 68.74±0.15 66.87±0.34 65.34±0.02

0.3 95.13±0.16 92.95±0.37 90.14±0.61 87.31±0.27 0.05 69.85±0.20 68.08±0.28 66.78±0.43 64.83±0.17

0.5 95.04±0.10 92.18±0.52 88.39±0.62 83.09±0.56 0.10 68.92±0.45 67.15±0.63 64.44±1.29 60.26±1.96

1,000
0.1 94.48±0.09 91.68±0.17 87.17±0.51 81.04±1.13

5,000
0.01 65.66±0.27 63.13±0.27 60.93±0.17 58.36±0.56

0.3 94.35±0.05 89.94±1.90 82.06±1.52 69.20±2.16 0.05 65.06±0.04 62.28±0.47 58.92±0.34 53.24±1.69

0.5 93.92±0.29 86.34±2.37 70.86±2.78 38.19±6.55 0.10 63.32±0.55 58.73±1.33 53.27±1.57 46.19±1.04

CIFAR-100. For partial labels, we set q ∈ {0.1, 0.3, 0.5} for CIFAR-10, and q ∈ {0.01, 0.05, 0.1} for
CIFAR-100. For noisy labels, we set η ∈ {0, 0.1, 0.2, 0.3} for both datasets. Since there is no prior
work that can handle all settings all at once, we compare on partial noisy label learning with PiCO+
[94], IRNet [71], and DALI [50]. Although there are also prior efforts on partial semi-supervised
learning [51, 52], they do not scale on simple dataset even on CIFAR-10. Thus, we did not include
them in comparison. We conduct additional validation of our method on more complex settings for
partial noisy labels with unlabeled data to demonstrate its robustness to various imprecise labels.

Results. We report the comparison with partial noisy label learning methods in Table 4. Compared
to previous methods, the proposed method achieves the best performance. Despite the simplicity,
our method outperforms PiCO+ and DALI with mixup, showing the effectiveness of dealing with
mixed imprecise labels. We also report the results of our methods on more mixed imprecise label
configurations in Table 5. Our method demonstrates significant robustness against various settings of
the size of labeled data, partial ratio, and noise ratio. Note that this is the first work that naturally
deals with all three imprecise label configurations simultaneously, with superior performance than
previous methods handling specific types or combinations of label configurations. This indicates the
enormous potential of our work in realistic applications for handling more practical and complicated
data annotations common in real world applications.

5 Conclusion

We present the imprecise label learning (ILL) framework, a unified and consolidated solution for
learning from all types of imprecise labels. ILL effectively employs an expectation-maximization
(EM) algorithm for maximum likelihood estimation (MLE) of the distribution over the latent ground
truth labels Y , imprecise label information I , and data X . It naturally extends and encompasses
previous formulations for various imprecise label settings, achieving promising results. Notably, in
scenarios where mixed configurations of imprecise labels coexist, our method exhibits substantial
robustness against diverse forms of label imprecision. The potential broader impact of the ILL
framework is substantial. It stands poised to transform domains where obtaining precise labels poses
a challenge, offering a simple, unified, and effective approach to such contexts. Beyond the three
imprecise label configurations we have demonstrated in this study, the ILL framework shows promise
for an extension to more intricate scenarios such as multi-instance learning [42] and multi-label
crowd-sourcing learning [38]. However, it is also crucial to acknowledge the limitations of the ILL
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framework. Although its effectiveness has been substantiated on relatively smaller-scale datasets,
additional empirical validation is necessary to assess its scalability to larger datasets. Furthermore,
our study only considers balanced datasets; thus, the performance of the ILL framework when dealing
with imbalanced data and open-set data still remains an open area for future exploration. We hope
that our study will constitute a significant stride towards a comprehensive solution for imprecise label
learning and catalyze further research in this crucial field.
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Appendix

A Notation

We present the notation table for each symbol used in this paper in Table 6.

Table 6: Notation Table

Notation Definition

x A training instance
y A class index label
{xi}i∈[N ] A set of data instances x of size N
{yi}i∈[N ] A set of precise label indices y of size N
[ι] An imprecise label, which might contain multiple class indices
{[ι]i}i∈[N ] A set of imprecise labels [ι] of size N
X Random variable of training instance
X Input space where x is drawn from
Y Random variable of ground-truth labels
Y Label space where y is drawn from
I Random variable of imprecise labels
f Model backbone
g Model classifier
h Model multi-layer perceptron
f ◦ g Model mapping X → Y
θ Learnable parameters of f ◦ g
p(y|x; θ) Output probability from model f ◦ g
f ◦ h Model mapping X → Z , where Z is a projected feature space
D Dataset
L Loss function
Aw Weak data augmentation, usually is HorizontalFlip
As Strong data augmentation, usually is RandAugment [95]
zw Projected features from f ◦ h on weakly-augmented data
zs Projected features from f ◦ h on strongly-augmented data
M Memory queue in MoCo [70]
s A partial label, with ground-truth label contained
{si}i∈[N ] A set partial labels, with ground-truth label contained of size N
S Random variable of partial label
xl A labeled training example
yl A labeled class index
xu A unlabeled training example
yu A unknown class index for unlabeled data
XL A set of labeled data instances
Y L A set of labels for labeled data instances
XU A set of unlabeled data instances
Y U A set of unknown labels for unlabeled data instances
p̂u The maximum predicted probability on unlabeled data max(p(y|xu; θ))
ŷu The pseudo-label from the predicted probability on unlabeled data argmax(p(y|xu; θ))
τ The threshold for confidence thresholding
ŷ A corrupted/noisy label
ŷoh An one-hot version of the corrupted/noisy label
Ŷ Random variable of noisy labels
u,v,m Noise model related parameters in SOP [69]
T (ŷ|y;ω) The simplified noise transition model in ILL
ω The parameters in the simplified noise model

B Related Work

Many previous methods have been proposed for dealing with the specific types and some combinations
of imprecise label configurations. We revisit the relevant work in this section, especially the state-of-
the-art popular baselines for learning with individual and mixture imprecise label configurations.

Partial label learning (PLL). The prior arts can be roughly divided into identification-based for
label disambiguation [96–99] or average-based for utilizing all candidate labels [72, 7, 58]. The
traditional average-based methods usually treat all candidate labels equally, which may involve
the misleading false positive labels into training. To overcome these limitations, researchers have
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explored identification-based methods, viewing the ground-truth label as a latent variable. They
seek to maximize its estimated probability using either the maximum margin criterion [100, 101] or
the maximum likelihood criterion [102]. Deep learning techniques have recently been incorporated
into identification-based methods, yielding promising results across multiple datasets. For example,
PRODEN [55] proposed a self-training strategy that disambiguates candidate labels using model
outputs. CC [9] introduced classifier-consistent and risk-consistent algorithms, assuming uniform
candidate label generation. LWS [11] relaxed this assumption and proposed a family of loss functions
for label disambiguation. More recently, Wangt et al. [13] incorporated contrastive learning into PLL,
enabling the model to learn discriminative representations and show promising results under various
levels of ambiguity. RCR involves consistency regularization into PLL recently [12].

Semi-supervised learning (SSL). SSL is a paradigm for learning with a limited labeled dataset
supplemented by a much larger unlabeled dataset. Consistency regularization and self-training,
inspired by clusterness and smoothness assumptions, have been proposed to encourage the network
to generate similar predictions for inputs under varying perturbations [103, 15, 104]. Self-training
[14, 73, 18] is a widely-used approach for leveraging unlabeled data. Pseudo Label [14, 73], a
well-known self-training technique, iteratively creates pseudo labels that are then used within the
same model. Recent studies focus largely on generating high-quality pseudo-labels. MixMatch
[16], for instance, generates pseudo labels by averaging predictions from multiple augmentations.
Other methods like ReMixMatch [17], UDA [53], and FixMatch [18] adopt confidence thresholds
to generate pseudo labels for weakly augmented samples, which are then used to annotate strongly
augmented samples. Methods such as Dash [105], FlexMatch [20], and FreeMatch [22] dynamically
adjust these thresholds following a curriculum learning approach. SoftMatch [23] introduces a novel
utilization of pseudo-labels through Gaussian re-weighting. SSL has also seen improvements through
the incorporation of label propagation, contrastive loss, and meta learning [106, 107, 86, 87, 82].

Noisy label learning (NLL). Overfitting to the noisy labels could result in poor generalization
performance, even if the training error is optimized towards zero [108, 109]. Several strategies to
address the noisy labels have been proposed [110]. Designing loss functions that are robust to noise
is a well-explored strategy for tackling the label noise problem [29, 31, 111, 112]. Additionally,
methods that re-weight loss [113] have also been explored for learning with noisy labels. Another
common strategy to handle label noise involves assuming that the noisy label originates from
a probability distribution that depends on the actual label. Early works [26] incorporated these
transition probabilities into a noise adaptation layer that is stacked over a classification network and
trained in an end-to-end fashion. More recent work, such as Forward [91], prefers to estimate these
transition probabilities using separate procedures. However, the success of this method is contingent
upon the availability of clean validation data [114] or additional assumptions about the data [115].
Noise correction has shown promising results in noisy label learning recently [116–118, 69]. During
the early learning phase, the model can accurately predict a subset of the mislabeled examples [32].
This observation suggests a potential strategy of correcting the corresponding labels. This could
be accomplished by generating new labels equivalent to soft or hard pseudo-labels estimated by
the model [119, 120]. Co-Teaching uses multiple differently trained networks for correcting noisy
labels [28]. SELFIE [121] corrects a subset of labels by replacing them based on past model outputs.
Another study in [122] uses a two-component mixture model for sample selection, and then corrects
labels using a convex combination. Similarly, DivideMix [33] employs two networks for sample
selection using a mixture model and Mixup [90].

Mixture imprecise label settings. Various previous works have explored dealing with distinct
types of imprecise labels. However, they have yet to tackle a combination of partial labels, limited
labels, and noisy labels, which is a highly realistic scenario. For instance, recent attention has been
paid to the issue of partial noisy label learning. PiCO+ [94], an extended version of PiCO [13], is
tailored specifically for partial noisy labels. IRNet [71] uses two modules: noisy sample detection
and label correction, transforming the scenario of noisy PLL into a more traditional PLL. DALI [50]
is another framework designed to reduce the negative impact of detection errors by creating a balance
between the initial candidate set and model outputs, with theoretical assurances of its effectiveness.
Additionally, some work has focused on semi-supervised partial label learning [51, 52]. No existing
research can effectively address the challenge of handling a combination of partial, limited, and noisy
labels simultaneously, which underscores the novelty and significance of our work.

Previous attempts towards unification of learning from imprecise labels. There are earlier
attempts for the generalized solutions of different kinds of imprecise labels/observations. Denœux
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[60] proposed an EM algorithm for the likelihood estimation of fuzzy data and verified the algorithm
on linear regression and uni-variate normal mixture estimation. Van Rooyen et al. [63] developed
an abstract framework that generically tackles label corruption via the Markov transition. Quost et
al. [62] further extended the EM algorithm of fuzzy data on the finite mixture of Gaussians. Gong
et al. [64] proposed a general framework with centroid estimation for imprecise supervision. A
unified partial AUC optimization approach was also proposed earlier [67]. Zhang et al. [45] and Wei.
et al. [66] proposed generalized solutions for aggregate observations. A unified solution based on
dynamic programming for count-based weak supervision was also proposed [123] While relating
to these works on the surface, ILL does not require any assumption on the imprecise information
and generalizes well to more practical settings with noisy labels. Some other works for individual
settings also related EM framework, but usually involved the approximation on the EM [124, 25, 13].

C Methods

C.1 Derivation of Variational Lower Bound

Evidence lower bound (ELBO), or equivalently variational lower bound [59], is the core quantity in
EM. From Eq. (5), to model logP (X, I; θ), we have:

logP (X, I; θ) =

∫
Q(Y ) logP (X, I; θ)dY

=

∫
Q(Y ) logP (X, I; θ)

P (Y |X, I; θ)

P (Y |X, I; θ)
dY

=

∫
Q(Y ) log

P (X, I, Y ; θ)Q(Y )

P (Y |X, I; θ)Q(Y )
dY

=

∫
Q(Y ) log

P (X, I, Y ; θ)

Q(Y )
dY −

∫
Q(Y ) log

P (Y |X, I; θ)

Q(Y )
dY

(12)

where the first term is the ELBO and the second term is the KL divergence
DKL(Q(Y )||P (Y |X, I; θ)). Replacing Q(Y ) with P (Y |X, I; θt) at each iteration will ob-
tain Eq. (5).

C.2 Instantiations to Partial Label Learning

The imprecise label I for partial labels is defined as the label candidate sets S with {si}i∈[N ]

containing the true labels. Now we can derive Eq. (6) by replacing I with S in Eq. (5):
EY |X,I;θt [logP (Y |X; θ) + logP (I|X,Y ; θ)]

= EY |X,S;θt [logP (Y |X; θ) + logP (I|X,Y ; θ)]

=
∑
Y

P (Y |X,S; θt) [logP (Y |X; θ) + logP (I|X,Y ; θ)]

=
∑
Y

P (Y |X,S; θt) [logP (Y |X; θ)] + logP (I|X,Y ; θ)

(13)

Note that P (I|Y,X; θ) can be moved out of the expectation because it is a fixed quantity to any Y .
Now we replace Y , X , and S to y, x, and s for each instance, and converting the maximization
problem to negative log-likelihood minimization problem to drive the loss function:

LPLL
ILL = − 1

N

N∑
i

p(yi|xi, si; θ
t) logp(yi|xi; θ)−

1

N

N∑
i

logp(si|xi, yi; θ). (14)

The first term is the Cross-Entropy loss we derived in Eq. (6). If S is not instance-dependent,
then knowing Y also knows S, the second term thus can be ignored in Eq. (6). If S becomes
instance-dependent, the second term can be maintained as a supervised term as in [12] to optimize θ.

C.3 Instantiations to Semi-Supervised Learning

In SSL, the input X consists of the labeled data XL and the unlabeled data XU. The imprecise label
for SSL is realized as the limited number of full labels Y L for XL. The labels Y U for unlabeled XU

21



are unknown and become the latent variable. Thus we can write:

EY |X,I;θt [logP (Y |X; θ) + logP (I|X,Y ; θ)]

= EY U|XU,XL,Y L;θt

[
logP (Y U|XU, XL; θ) + logP (Y L|XL, XU, Y U; θ)

]
=

∑
Y U

P (Y U|XU; θt)
[
logP (Y U|XU; θ)

]
+ logP (Y L|XL; θ).

(15)

The negative log-likelihood loss function for {xl
i, y

l
i}i∈[NL] and {xu}i∈[NU ] thus becomes:

LSSL
ILL = LCE

(
p(y|xu; θ),p(y|xu; θt)

)
+ LCE

(
p(y|xL; θ), yL

)
(16)

C.4 Instantiations to Noisy Label Learning

We denote the given noisy labels as Ŷ . For noisy label learning, our method naturally supports a
noise transition model T (Ŷ |Y ;ω) with learnable parameter ω, as we will show in the following:

EY |X,I;θt [logP (Y |X; θ) + logP (I|X,Y ; θ)]

= EY |X,Ŷ ;θt

[
logP (Y, Ŷ |X; θ)

]
= EY |X,Ŷ ;θt

[
logP (Y |Ŷ , X; θ) + logP (Ŷ |X; θ)

]
=

∑
Y

P (Y |Ŷ , X; θt) logP (Y |Ŷ , X; θ) + logP (Ŷ |X; θ).

(17)

The loss function is:

LNLL
ILL = LCE

(
p(y|x, ŷ; θ, ωt),p(y|x, ŷ; θt, ωt)

)
+ LCE (p(ŷ|x; θ, ω), ŷ) (18)

Note that both term is computed from the noise transition matrix as mentioned in Eq. (9).

C.5 Instantiations to Mixed Imprecise Label Learning

In this setting, we have both labeled data and unlabeled data, where the labels for the labeled data
are both partial and noisy. On the unlabeled data, the unsupervised objective is the same as the
unsupervised consistency regularization of semi-supervised learning shown in Eq. (7). On the labeled
data, it mainly follows the Eq. (9) of noisy label learning, with the noisy single label becoming the
noisy partial labels ŝ. For noisy partial labels, the noisy supervised objective in Eq. 8 becomes the
supervised consistency regularization as in Eq. 6 of partial label setting to train the noise transition
model, and the noisy unsupervised objective becomes the consistency regularization of the prediction
conditioned on noisy partial labels:

LCE

(
p
(
y | As(x), ŝ; θ, ω

t
)
,p

(
y | Aw(x), ŷ; θ

t, ωt
))

+ LCE (p (ŷ | Aw(x); θ, ω) , ŝ) (19)

We can compute both quantity through the noise transition model:

p(y|x, ŝ; θ, ωt) ∝ p(y|x; θ)
∏
ŷ∈ŝ

T (y|ŷ;ωt), and p(ŷ|x; θ, ω) =
∑
y∈[C]

p(y|x; θ)T (ŷ|y;ω). (20)

D Experiments

D.1 Additional Training Details

We adopt two additional training strategies for the ILL framework. The first is the “strong-weak”
augmentation strategy [53]. Since there is a consistency regularization term in each imprecise label
formulation of ILL, we use the soft pseudo-targets of the weakly-augmented data to train the strongly-
augmented data. The second is the entropy loss [75] for class balancing, which is also adopted in SOP
[69] and FreeMatch [22]. We set the loss weight for the entropy loss uniformly for all experiments as
0.1.
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D.2 Partial Label Learning

D.2.1 Setup

Following previous work [125, 11, 13], we evaluate our method on partial label learning setting
using CIFAR-10, CIFAR-100, and CUB-200 [78]. We generate partially labeled datasets by flipping
negative labels to false positive labels with a probability q, which is also denoted as a partial ratio.
Specifically, the C − 1 negative labels are uniformly aggregated into the ground truth label to form
a set of label candidates. We consider q ∈ {0.1, 0.3, 0.5} for CIFAR-10, q ∈ {0.01, 0.05, 0.1} for
CIFAR-100, and q = 0.05 for CUB-200. For CIFAR-10 and CIFAR-100, we use ResNet-18 [1] as
backbone. We use SGD as an optimizer with a learning rate of 0.01, a momentum of 0.9, and a weight
decay of 1e−3. For CUB-200, we initialize the ResNet-18 [1] with ImageNet-1K [126] pre-trained
weights. We train 800 epochs for CIFAR-10 and CIFAR-100 [77], and 300 epochs for CUB-200,
with a cosine learning rate scheduler. For CIFAR-10 and CIFAR-100, we use an input image size of
32. For CUB-200, we use an input image size of 224. A batch size of 256 is used for all datasets.
The choice of these parameters mainly follows PiCO [13]. We present the full hyper-parameters
systematically in Table 7.

Table 7: Hyper-parameters for partial label learning used in experiments.

Hyper-parameter CIFAR-10 CIFAR-100 CUB-200

Image Size 32 32 224

Model ResNet-18 ResNet-18 ResNet-18
(ImageNet-1K Pretrained)

Batch Size 256 256 256
Learning Rate 0.01 0.01 0.01
Weight Decay 1e-3 1e-3 1e-5
LR Scheduler Cosine Cosine Cosine

Training Epochs 800 800 300
Classes 10 100 200

D.2.2 Discussion

We additionally compare our method with R-CR [12], which uses a different architecture as the
results in Table 1. R-CR uses Wide-ResNet34x10 as backbone, and adopts multiple strong data
augmentations. It also adjusts the loss weight along training. For fair comparison, we use the same
architecture without multiple augmentation and the curriculum adjust on loss. The results are shown
in Table 8, where our method outperforms R-CR on CIFAR-10 and is comparable on CIFAR-100.

Table 8: Comparison with R-CR in partial label learning

Method CIFAR-10 CIFAR-100
0.3 0.5 0.05 0.10

R-CR 97.28±0.02 97.05±0.05 82.77±0.10 82.24±0.07

Ours 97.55±0.07 97.17±0.11 82.46±0.08 82.22±0.05

We also provide the comparison of our method on instance-dependent partial label learning as
proposed by Xu et al. [81, 125]. Due to the nature of instance-dependence, we maintain the term
P (S|Y,X; θ) from Eq. (5) as a supervised term for optimization. We compare our method with
VALEN [81], RCR [12], PiCO [13], and POP [125] on MNIST, Kuzushiji-MNIST, Fashion-MNIST,
CIFAR-10, and CIFAR-100, with synthetic instance-dependent partial labels generated according to
Xu et al. [125]. From the results in Table 9, we proposed method demonstrate the best performance
across different datasets evaluated.

A recent work on PLL discussed and analyzed the robustness performance of different loss functions,
especially the average-based methods [58]. We perform a similar analysis here for the derived loss
function in ILL. Following the notation in [58], let s denote the candidate label set, x as the training
instance, g as the probability score from the model, and f as the classifier f(x) = argmax

i∈Y
gi(x),

the average-based PLL can be formulated as:

Lavg−PLL(f(x), s) =
1

|s|
∑
i∈s

ℓ(f(x), i) (21)
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Table 9: Comparison on instance-dependent partial label learning

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 CIFAR-100

VALEN [81] 99.03 90.15 96.31 92.01 71.48
RCR [12] 98.81 90.62 96.64 86.11 71.07
PiCO [13] 98.76 88.87 94.83 89.35 66.30
POP [125] 99.28 91.09 96.93 93.00 71.82

Ours 99.19 91.35 97.01 93.86 72.43

Lv et al. [58] compared different loss functions ℓ on both noise-free and noisy PLL settings, where
they find both theoretically and empirically that average-based PLL with bounded loss are robust under
mild assumptions. Empirical study in [58] suggests that both Mean Absolute Error and Generalized
Cross-Entropy loss [29] that proposed for noisy label learning achieves the best performance and
robustness for average-based PLL.

Our solution for PLL can be viewed as an instantiation of the average-based PLL as in [58] with:

ℓ(f(x), i) = −ḡi(x) log gi(x) (22)

where ḡ is normalized probability over s with detached gradient. We can further show that the above
loss function is bounded for 0 < ℓ ≤ 1

e and thus bounded for summation of all classes, which
demonstrates robustness, as we show in Table 4.

D.3 Semi-Supervised Learning

D.3.1 Setup

For experiments of SSL, we follow the training and evaluation protocols of USB [82] on image and
text classification. To construct the labeled dataset for semi-supervised learning, we uniformly select
l/C samples from each class and treat the remaining samples as the unlabeled dataset. For image
classification tasks, ImageNet-1K [126] Vision Transformers [4] are used, including CIFAR-100 [77],
EuroSAT [127], STL-10 [128], TissueMNIST [129, 130], Semi-Aves [131]. For text classification
tasks, we adopt BERT [3] as backbone, including IMDB [83], Amazon Review [84], Yelp Review
[132], AG News [133] , Yahoo Answer [134]. The hyper-parameters strictly follow USB, and are
shown in Table 10 and Table 11.

Table 10: Hyper-parameters of semi-supervised learning used in vision experiments of USB.

Hyper-parameter CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves

Image Size 32 96 32 32 224
Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 ViT-T-P4-32 ViT-S-P16-224

Labeled Batch size 16
Unlabeled Batch size 16

Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-3
Weight Decay 5e-4

Layer Decay Rate 0.5 0.95 1.0 0.95 0.65
LR Scheduler η = η0 cos(

7πk
16K )

Training epochs 20
Classes 100 10 10 10 200

Model EMA Momentum 0.0
Prediction EMA Momentum 0.999

Weak Augmentation Random Crop, Random Horizontal Flip
Strong Augmentation RandAugment [95]

D.3.2 Results

In the main paper, we only provide the comparison on CIFAR-100, STL-10, IMDB, and Amazon
Review. Here we provide the full comparison in Table 12 and Table 13. From the full results,
similar conclusion can be drawn as in the main paper. Our ILL framework demonstrates comparable
performance as previous methods.
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Table 11: Hyper-parameters of semi-supervised learning NLP experiments in USB.

Hyper-parameter AG News Yahoo! Answer IMDB Amazom-5 Yelp-5

Max Length 512
Model Bert-Base

Labeled Batch size 4
Unlabeled Batch size 4

Learning Rate 5e-5 1e-4 5e-5 1e-5 5e-5
Weight Decay 1e-4

Layer Decay Rate 0.65 0.65 0.75 0.75 0.75
LR Scheduler η = η0 cos(

7πk
16K )

Training epochs 10
Classes 4 10 2 5 5

Model EMA Momentum 0.0
Prediction EMA Momentum 0.999

Weak Augmentation None
Strong Augmentation Back-Translation [53]

Table 12: Error rate comparison of different number of labels on CIFAR-100, STL-10, EuroSAT,
TissueMNIST, and SemiAves for semi-supervised learning. We use USB [82] image classification
task results. The best results are indicated in bold. Our results are averaged over 3 independent runs.

Datasets CIFAR-100 STL-10 EuroSat TissueMNIST SemiAves

# Labels 200 400 40 100 20 40 80 400 3959

Pseudo-Label [14] 33.99±0.95 25.32±0.29 19.14±1.33 10.77±0.60 25.46±1.36 15.70±2.12 56.92±4.54 50.86±1.79 40.35±0.30

Mean-Teacher [103] 35.47±0.40 26.03±0.30 18.67±1.69 24.19±10.15 26.83±1.46 15.85±1.66 62.06±3.43 55.12±2.53 38.55±0.21

VAT [104] 31.49±1.33 21.34±0.50 18.45±1.47 10.69±0.51 26.16±0.96 10.09±0.94 57.49±5.47 51.30±1.73 38.82±0.04

MixMatch [16] 38.22±0.71 26.72±0.72 58.77±1.98 36.74±1.24 24.85±4.85 17.28±2.67 55.53±1.51 49.64±2.28 37.25±0.08

ReMixMatch [17] 22.21±2.21 16.86±0.57 13.08±3.34 7.21±0.39 5.05±1.05 5.07±0.56 58.77±4.43 49.82±1.18 30.20±0.03
AdaMatch [85] 22.32±1.73 16.66±0.62 13.64±2.49 7.62±1.90 7.02±0.79 4.75±1.10 58.35±4.87 52.40±2.08 31.75±0.13

FixMatch [18] 29.60±0.90 19.56±0.52 16.15±1.89 8.11±0.68 13.44±3.53 5.91±2.02 55.37±4.50 51.24±1.56 31.90±0.06

FlexMatch [20] 26.76±1.12 18.24±0.36 14.40±3.11 8.17±0.78 5.17±0.57 5.58±0.81 58.36±3.80 51.89±3.21 32.48±0.15

Dash [105] 30.61±0.98 19.38±0.10 16.22±5.95 7.85±0.74 11.19±0.90 6.96±0.87 56.98±2.93 51.97±1.55 32.38±0.16

CoMatch [86] 35.08±0.69 25.35±0.50 15.12±1.88 9.56±1.35 5.75±0.43 4.81±1.05 59.04±4.90 52.92±1.04 38.65±0.18

SimMatch [87] 23.78±1.08 17.06±0.78 11.77±3.20 7.55±1.86 7.66±0.60 5.27±0.89 60.88±4.31 52.93±1.56 33.85±0.08

FreeMatch [22] 21.40±0.30 15.65±0.26 12.73±3.22 8.52±0.53 6.50±0.78 5.78±0.51 58.24±3.08 52.19±1.35 32.85±0.31

SoftMatch [23] 22.67±1.32 16.84±0.66 13.55±3.16 7.84±1.72 5.75±0.62 5.90±1.42 57.98±3.66 51.73±2.84 31.80±0.22

Ours 22.06±1.06 17.40±1.04 11.09±0.71 8.10±1.02 5.86±1.06 5.74±1.13 57.99±2.16 50.95±2.03 33.08±0.26

Table 13: Error rate comparison of different number of labels on IMDB, AG News, Amazon Review,
Yahoo Answers, and Yelp Review for semi-supervised learning. We use USB [82] text classification
task results. Best results are indicated in bold. Our results are averaged over 3 independent runs.

Datasets IMDB AG News Amazon Review Yahoo Answers Yelp Review

# Labels 20 100 40 200 250 1000 500 2000 250 1000

Pseudo-Label [14] 45.45±4.43 19.67±1.01 19.49±3.07 14.69±1.88 53.45±1.9 47.00±0.79 37.70±0.65 32.72±0.31 54.51±0.82 47.33±0.20

Mean-Teacher [103] 20.06±2.51 13.97±1.49 15.17±1.21 13.93±0.65 52.14±0.52 47.66±0.84 37.09±0.18 33.43±0.28 50.60±0.62 47.21±0.31

VAT [104] 25.93±2.58 11.61±1.79 14.70±1.19 11.71±0.84 49.83±0.46 46.54±0.31 34.87±0.41 31.50±0.35 52.97±1.41 45.30±0.32

MixMatch [16] 26.12±6.13 15.47±0.65 13.50±1.51 11.75±0.60 59.54±0.67 61.69±3.32 35.75±0.71 33.62±0.14 53.98±0.59 51.70±0.68

AdaMatch [85] 8.09±0.99 7.11±0.20 11.73±0.17 11.22±0.95 46.72±0.72 42.27±0.25 32.75±0.35 30.44±0.31 45.40±0.96 40.16±0.49

FixMatch [18] 7.72±0.33 7.33±0.13 30.17±1.87 11.71±1.95 47.61±0.83 43.05±0.54 33.03±0.49 30.51±0.53 46.52±0.94 40.65±0.46

FlexMatch [20] 7.82±0.77 7.41±0.38 16.38±3.94 12.08±0.73 45.73±1.60 42.25±0.33 35.61±1.08 31.13±0.18 43.35±0.69 40.51±0.34

Dash [105] 8.34±0.86 7.55±0.35 17.67±3.19 13.76±1.67 47.10±0.74 43.09±0.60 35.26±0.33 31.19±0.29 45.24±2.02 40.14±0.79

CoMatch [86] 7.44±0.30 7.72±1.14 11.95±0.76 10.75±0.35 48.76±0.90 43.36±0.21 33.48±0.51 30.25±0.35 45.40±1.12 40.27±0.51

SimMatch [87] 7.93±0.55 7.08±0.33 14.26±1.51 12.45±1.37 45.91±0.95 42.21±0.30 33.06±0.20 30.16±0.21 46.12±0.48 40.26±0.62

FreeMatch [22] 8.94±0.21 7.95±0.45 12.98±0.58 11.73±0.63 46.41±0.60 42.64±0.06 32.77±0.26 30.32±0.18 47.95±1.45 40.37±1.00

SoftMatch [23] 7.76±0.58 7.97±0.72 11.90±0.27 11.72±1.58 45.29±0.95 42.21±0.20 33.07±0.31 30.44±0.62 44.09±0.50 39.76±0.13

Ours 7.32±0.12 7.64±0.67 14.77±1.59 12.21±0.82 43.96±0.32 42.32±0.02 33.80±0.25 30.86±0.17 44.82±0.17 39.67±0.71

D.4 Noisy Label Learning

D.4.1 Setup

We conduct experiments of noisy label learning following SOP [69]. We evaluate the proposed
method on both synthetic symmetric/asymmetric noise on CIFAR-10 and CIFAR-100, and more
realistic and larger-scale instance noise on Clothing1M and WebVision. To introduce the synthetic
symmetric noise to CIFAR-10 and CIFAR-100, we uniformly flip labels for a probability η into other
classes. For asymmetric noise, we only randomly flip the labels for particular pairs of classes. For
CIFAR-10 and CIFAR-100, we train PreAct-ResNet-18 with SGD using a learning rate of 0.02, a
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weight decay of 1e− 3, and a momentum of 0.9. We train for 300 epochs with a cosine learning rate
schedule and a batch size of 128. For WebVision, we use InceptionResNet-v2 as the backbone and set
the batch size to 32. Other settings are similar to CIFAR-10. For Clothing1M, we use ImageNet-1K
pre trained ResNet-50 as the backbone. We train it using SGD with an initial learning rate of 2e-3 for
a total of 10 epochs, where the learning rate is reduced by 10 after 5 epochs. In addition, we also
conduct experiments on CIFAR-10N and CIFAR-100N. We present the detailed hyper-parameters in
Table 14.

Table 14: Hyper-parameters for noisy label learning used in experiments.

Hyper-parameter CIFAR-10 (CIFAR-10N) CIFAR-100 (CIFAR-100N) Clothing1M WebVision

Image Size 32 32 224 299

Model PreAct-ResNet-18 (ResNet-34) PreAct-ResNet-18 (ResNet-34) ResNet-50
(ImageNet-1K Pretrained) Inception-ResNet-v2

Batch Size 128 128 64 32
Learning Rate 0.02 0.02 0.002 0.02
Weight Decay 1e-3 1e-3 1e-3 5e-4
LR Scheduler Cosine Cosine MultiStep MultiStep

Training Epochs 300 300 10 100
Classes 10 100 14 50

Noisy Matrix Scale 1.0 2.0 0.5 2.5

D.4.2 Results

In addition to the results regarding noisy label learning provided in the main paper, we also present
comparison results on CIFAR-10N and CIFAR-100N [92] in Table 15. We include a full comparison
on Clothing1M and WebVision, incorporating methods like Co-Teaching, Forward, and CORES, in
Table 16. As shown in Table 15, the proposed ILL framework achieves performance comparable to
the previous best method, SOP [69]. On CIFAR-10N, our method yields results very close to SOP in
the Random and Aggregate case noise scenarios and surpasses SOP in the Worst case noise scenario.
However, on CIFAR-100N, our method slightly underperforms previous methods, possibly due to the
oversimplified noise model utilized in ILL. We believe that a more realistic noise transition model
and further tuning of our method could lead to improved performance.

Table 15: Test accuracy comparison of instance independent label noise on CIFAR-10N and CIFAR-
100N for noisy label learning. The best results are indicated in bold, and the second best results are
indicated in underline. Our results are averaged over three independent runs with ResNet34 as the
backbone.

Dataset CIFAR-10N CIFAR-100N

Noisy Type Clean Random 1 Random 2 Random 3 Aggregate Worst Clean Noisy

CE 92.92±0.11 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 76.70±0.74 55.50±0.66

Forward [91] 93.02±0.12 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 76.18±0.37 57.01±1.03

Co-teaching [28] 93.35±0.14 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 73.46±0.09 60.37±0.27

DivideMix [33] - 95.16±0.19 95.23±0.07 95.21±0.14 95.01±0.71 92.56±0.42 - 71.13±0.48

ELR [32] 95.39±0.05 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 78.57±0.12 66.72±0.07

CORES [135] 94.16±0.11 94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 73.87±0.16 55.72±0.42

SOP [69] 96.38±0.31 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 78.91±0.43 67.81±0.23

Ours 96.21±0.29 96.06±0.07 95.98±0.12 96.10±0.05 96.40±0.03 93.55±0.14 78.53±0.21 68.07±0.33

D.5 Mixed Imprecise Label Learning

D.5.1 Setup

To create a mixture of various imprecise label configurations, we select CIFAR-10 and CIFAR-100 as
base datasets. We first uniformly sample l/C labeled samples from each class to form the labeled
dataset and treat the remaining samples as the unlabeled dataset. Based on the labeled dataset, we
generate partially labeled datasets by flipping negative labels to false positive labels with the partial
ratio q. After obtaining the partial labels, we randomly select η percentage of samples from each class,
and recreate the partial labels for them by flipping the ground truth label uniformly to another class.
In this setting, unlabeled data, partially labeled data, and noisy labeled data exist simultaneously,
which is very challenging and more closely resembles realistic situations. For CIFAR-10, we set
l ∈ {1000, 5000, 50000}, and for CIFAR-100, we set l ∈ {5000, 10000, 50000}. Similarly in
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Table 16: Test accuracy comparison of realistic noisy labels on Clothing1M and WebVision for noisy
label learning. The best results are indicated in bold and the second best results are indicated in
underline. Our results are averaged over 3 independent runs. For Clothing1M, we use ImageNet-1K
pre trained ResNet50 as the backbone. For WebVision, InceptionResNetv2 is used as the backbone.

Dataset Clothing1M WebVision

CE 69.10 -
Forward [91] 69.80 61.10
MentorNet [93] 66.17 63.00
Co-Teaching [28] 69.20 63.60
DivideMix [33] 74.76 77.32
ELR [32] 72.90 76.20
CORES [135] 73.20 -
SOP [69] 73.50 76.60

Ours 74.02±0.12 79.37±0.09

the partial label setting, we set q ∈ {0.1, 0.3, 0.5} for CIFAR-10, and q ∈ {0.01, 0.05, 0.1} for
CIFAR-100. For noisy labels, we set η ∈ {0.1, 0.2, 0.3} for both datasets.

D.5.2 Results

We provide a more complete version of Table 4 in Table 17. On partial noisy labels of CIFAR-10 with
partial ratio 0.5 and of CIFAR-100 with partial ratio 0.1, most baseline methods are more robust or
even fail to perform. However, our ILL still shows very robust performance with minor performance
degradation as increase of noise ratios.

D.6 Ablation on Strong-Augmentation and Entropy Loss

We provide the ablation study on the strong-augmentation and entropy loss components here, which
are common techniques in each setting [18, 13, 69]. For example, in SSL, strong-weak augmentation
is an important strategy for SSL algorithms widely used in existing works such as FixMatch [18]
and FlexMatch [20]. Thus, it is important to adopt strong-weak augmentation to achieve better
performance in SSL [22, 23, 82]. This is similar in PLL settings [13, 12]. PiCO [13, 12] also used
strong augmentation). Strong-weak augmentation and entropy loss are also adopted in SOP [69]
of NLL. However, we found these techniques are less important for our formulation of NLL. We
provide an ablation study on the entropy loss of SSL, and both techniques for NLL and PLL here to
demonstrate our discussions.

D.7 Runtime Analysis

We provide the runtime analysis on CIFAR-100 of our method on different settings, compared with
the SOTA baselines. We compute the average runtime from all training iterations on CIFAR-100.
The results are shown in Table 21. Our method in general present faster runtime without complex
design such as contrastive loss.
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Table 17: Test accuracy comparison of mixture of different imprecise labels. We report results of
full labels, partial ratio q of {0.1, 0.3, 0.5} for CIFAR-10 and {0.01, 0.05, 0.1} for CIFAR-100, and
noise ratio η of {0.1, 0.2, 0.3} for CIFAR-10 and CIFAR-100.

Dataset # Labels Partial Ratio q Noise Ratio η 0 0.1 0.2 0.3

PiCO+ [94] 95.99±0.03 93.64 93.13 92.18
IRNet [71] - 93.44 92.57 92.38
DALI [50] - 94.15 94.04 93.77
PiCO+ w/ Mixup [50] - 94.58 94.74 94.43
DALI w/ Mixup [50] - 95.83 95.86 95.75

0.1

Ours 96.55±0.08 96.47±0.11 96.09±0.20 95.83±0.05

PiCO+ [94] 95.73±0.10 92.32 92.22 89.95
IRNet [71] - 92.81 92.18 91.35
DALI [50] - 93.44 93.25 92.42
PiCO+ w/ Mixup [50] - 94.02 94.03 92.94
DALI w/ Mixup [50] - 95.52 95.41 94.67

0.3

Ours 96.52±0.12 96.2±0.02 95.87±0.14 95.22±0.06

PiCO+ [94] 95.33±0.06 91.07 89.68 84.08
IRNet [71] - 91.51 90.76 86.19
DALI [50] - 92.67 91.83 89.8
PiCO+ w/ Mixup [50] - 93.56 92.65 88.21
DALI w/ Mixup [50] - 95.19 93.89 92.26

CIFAR-10 50,000

0.5

Ours 96.28±0.13 95.82±0.07 95.28±0.08 94.35±0.08

PiCO+ [94] 76.29±0.42 71.42 70.22 66.14
IRNet [71] - 71.17 70.10 68.77
DALI [50] - 72.26 71.98 71.04
PiCO+ w/ Mixup [50] - 75.04 74.31 71.79
DALI w/ Mixup [50] - 76.52 76.55 76.09

0.01

Ours 78.08±0.26 77.53±0.24 76.96±0.02 76.43±0.27

PiCO+ [94] 76.17±0.18 69.40 66.67 62.24
IRNet [71] - 70.73 69.33 68.09
DALI [50] - 72.28 71.35 70.05
PiCO+ w/ Mixup [50] - 73.06 71.37 67.56
DALI w/ Mixup [50] - 76.87 75.23 74.49

0.05

Ours 76.95±0.46 77.07±0.16 76.34±0.08 75.13±0.63

PiCO+ [94] 75.55±0.21 - - -
IRNet [71] - - - -
DALI [50] - - - -
PiCO+ w/ Mixup [50] - - - -
DALI w/ Mixup [50] - - - -

CIFAR-100 50,000

0.1

Ours 76.41±1.02 75.50±0.54 74.67±0.30 73.88±0.60

Table 18: SSL ablation

CIFAR100
l=200

STL10
l=40

Ours 22.06 11.09
Ours
w/o
ent.

22.41 11.23

Table 19: PLL ablation

CIFAR10
q = 0.5

CIFAR100
q = 0.1

PiCO 93.58 69.91
Ours 95.91 74.00
PiCO
w/o
s. a.

91.78 66.43

Ours
w/o
s. a.

94.53 72.69

Ours
w/o
ent.

95.87 73.75

Table 20: NLL ablation

CIFAR10
η = 0.5

CIFAR100
η = 0.1

SOP 94.00 63.30
Ours 94.31 66.46
SOP
w/o
s. a.

66.85 36.60

Ours
w/o
s. a.

93.56 65.89

SOP
w/o
ent.

93.04 62.85

Ours
w/o
ent.

94.16 66.12

Table 21: Runtime Anal-
ysis on CIFAR-100

Setting Algorithm CIFAR-100 Avg.
Runtime (s/iter)

SSL FreeMatch 0.2157
SSL Ours 0.1146

PLL PiCO 0.3249
PLL Ours 0.2919

NLL SOP 0.1176
NLL Ours 0.1021
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We discussed our contribution in introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed our limitation in conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [Yes]
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Justification: All are stated in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We present all details in both main paper and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: We use publically available data and code will be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All results are obtained with 3 runs using different seeds and error bars are
reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation in the results, which are averaged over 3
independent runs across different experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We showed in experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All behaviors follows NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We discussed in conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer:[Yes]

Justification: We discussed in experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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