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Abstract

The main aim of this project was to conduct a reproducibility study on a paper that
was presented at the NeurIPS 2019 Conference. The paper chosen was Deconstruct-
ing Lottery Tickets: Zeros, Signs, and the Supermask, by Hattie Zhou, Janice Lan,
Rosanne Liu and Jason Yosinski [[I]. An ablation track was followed for this study
to determine whether the conclusions of the paper are still consistent when certain
modifications to the original experiments are introduced; these include the effect of
the sign with magnitude increase mask criterion. Additionally, the statement that
"masking is training" was tested by applying the masks on the models that did not
fully converged. Due to limited computational resources, the study was narrowed
down to reproducing only the fully connected neural network, excluding all the
convolutional architectures. The code for all the experiments and figures presented
in this report is available on GitHuH['}

1 Introduction

The motivation of the Deconstructing Lottery Tickets paper [1]] is to understand and investigate the
"Lottery Ticket Hypothesis" that was proposed by Frankle and Carbin in [2]]. The main takeaway from
their work was that it is possible to create new sparse networks that only retain the weights that ended
up having large final values in the original training procedure. Such networks can be successfully
trained from scratch to approximately the same accuracy as the unpruned network when having poor
weights masked and the remaining ones initialised to the starting values for the weights that converged
to large final ones. It was also found that the performance of these sparse models exceeds non-sparse
ones, with no clear intuitions and deeper reasoning behind it. The aim of the Deconstructing Lottery
Tickets paper was to build on top of the Lottery Ticket hypothesis and understand precisely which
components contribute to the results of the aforementioned hypothesis and what could potentially be
further adapted to improve the performance of the resulting network. The main components of their
paper are as follows:

1. The importance of pruning (the process of setting unimportant weights to zero)

2. The discovery that the sign of the weight is the most important factor in terms of retaining
information during retraining of a reinitialized network

3. The use of weight masks during training

4. The existence of novel "supermasks", that can be applied to an untrained network to create a
model with the performance significantly better than random

The authors conducted an ablation study on the original work [2], and analysed the variability in the
results by trying different masking criteria and masking actions (importance of the initial weights).

Uhttps://github.com/bmiselis/deconstructing-lottery-tickets
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Figure 1: Left: sample image from the MNIST dataset (zero digit). Right: sample image from the
CIFAR-10 dataset (frog class).

1.1 Databases Used

The two databases used to train and validate the analyzed network in this paper are the MNISTE| digit
recognition dataset, and the CIFAR-10 [5]], which is a dataset of 10 classes of images.

MNIST Dataset

The MNIST dataset is a collection of images of black and white handwritten digits, where the class
of the image is the digit. An example of the handwritten digit can be found on the left side of Figure
m The full dataset consists of 60,000 training and 10,000 test examples.

CIFAR-10 Dataset

The CIFAR-10 database contains 60,000 RGB images that are 32 x 32 pixels, labelled into 10 classes
depending on the object that is depicted in the image. An example of the image can be found on the
right side of Figure[I} The datasets consists of 50,000 and 10,000 test images.

1.2 Background

Pruning

Pruning is a technique used to prevent overfitting in various machine learning models, and generally
involves a parameter or weight being removed or set to zero from given type of network or graph. In
neural networks, pruning refers to setting weights to zero (weights signify how much an input impacts
the output). As a result of neural network pruning ,some of its paths do not need to be evaluated,
saving a lot of computation time. Additionally, overfitting tends to cause a decrease in validation
accuracy, so pruning a neural network should generally both speed up computation and increase
validation accuracy (if appropriate pruning strength applied). Neural networks with 50%-90% of
original parameters sometimes tend to outperform their unpruned counterparts, and in some cases
this can drop to as low as 99.5% of nodes pruned [2] with infinitesimal change in the accuracy.

Masking

While the reason for pruning was made very clear in [2]] (it lowers computation time and increases
validation accuracy), it was not the case for which weights to actually remove. It might seem intuitive
that the weights that are "bad" or "poor performing" would be set to zero, but these definitions are
not rigorous. Much of the purpose of the Deconstruction Lottery Tickets paper [1] was to investigate
this question in detail, with the idea of various masks criteria arising. Masks are rules that say which
weights to prune and which ones to keep. These rules can be applied to any mathematical concept
related to the weights. This means that the value, magnitude, and change of weights before and
after the training can be used as the rules. The most straightforward one is probably the one saying
that "weights with small magnitudes should be pruned" (large final magnitude implies that the input
either increases or decreases the output significantly, having a large influence on the results). In
the Deconstructing Lottery Tickets paper [[1], multiple masking criteria were investigated, with vast
majority of them being analyzed in this report. The masking criteria with short descriptions can be
found in Table[Tl

*http://yann.lecun.com/exdb/mnist/



Mask Criterion Formula Description
large_final [we] Large final magnitude
small_final —|wy] Small final magnitude
large_init Jw;] Large initial magnitude
small_init —|w;| Small initial magnitude
large_init_large_final man(ajwy|, |w;l) Large Initial or final magnitude
small_init_small_final —maz(a|wy|, |w;]) Small initial or final magnitude
movement |wp — w;]| Magnitude of difference
magnitude_increase lwg| — |ws] Difference in magnitudes
large_final_same_sign lwe] * sz’gn(%) Large final magnitude (same sign)
large_final_diff_sign |we| * fsign(w—f) Large final magnitude (different sign)
magnitude_increase_same_sign | (Jwy| — |w;|) * sign(=L) Difference in magnitudes (same sign)
magnitude_increase_diff_sign | (jwy| — |w;|) * —sign(ﬁf ) | Difference in magnitudes (different sign)
random 0 Random

Table 1: The variety of masks were analyzed in this report and the Deconstructing Lottery Tickets
paper [1]]. In the first column are the names of the masks that were used across all the figures. In the
second column is the mathematical formula of the criterion (the larger this value is, the less likely it
is to be pruned). In the final column is a verbal description of the criterion (which weights to keep).

1.3 Related Works

The Lottery Ticket Hypothesis

As mentioned in the introduction, the original idea analyzed in this report comes from the "Lottery
Ticket Hypothesis" paper by Frankle and Carbin [2]. In the past, many neural network pruning
methods were developed, in an attempt to reduce memory requirements while at the same time
improving computational performance without compromising on accuracy. The issue was that highly
pruned networks were hard to retrain from the initial values, and the retrained networks suffered great
reductions in performance. In [2]] the authors found an algorithm that reveals a subnetwork inside a
trained network, whose initial weights are enough to train the entire network from scratch, achieving
a comparable accuracy. In other words the "Lottery Ticket Hypothesis" can be stated as follows:

"A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—-
when trained in isolation—-it can match the test accuracy of the original network after training for
at most the same number of iterations" [2]).

The work that was accomplished in this paper had multiple contributions and implications. After
successfully proving the above stated hypothesis, the authors concluded that the subnetworks can
be trained much faster and reach test accuracies comparable to the original networks. The winning
ticket (or the best subnetwork) can not only be trained fast but also reach higher test accuracy when
compared to the original network. This finding can help researchers understand the underlying
working of these complex algorithms and lead to even better network design [2]].

Deep Compression

With increasingly more complicated machine learning models, there is a growing need for model
compression to fit complex models into the available hardware. In 2016, Han et al. released a
paper on the method called deep compression [3]]. Deep compression is a three step procedure for
compressing neural networks. The three steps are: pruning, quantization, and Huffman coding.
This compression method was applied to two different image classification models and was able to
decrease the model memory footprint by the factors of 35x and 49x. The first step in this procedure is
a straightforward pruning of weights (reducing the number of connections between nodes) as has
been explained earlier in this report. The second step includes weights sharing and quantization. Here,
the number of effective weights is decreased by having multiple connections share the same weights.
Additionally, this reduces the number of bits necessary to store all of the weights, decreasing the
memory consumption further. Finally, Huffman coding is applied; this involves an optimal variable
length encoder (if a variable is used more commonly, it gets encoded with a smaller number of bits so
that less memory is used). Most importantly though, each of the three steps does not decrease the
accuracy of the model, yet reduces the memory footprint by as high as ~ 50x [3]. Potentially, the
masks investigated in [ 1]] could further reduce the storage requirements if applied as the pruning step.



Optimal Brain Surgeon

The optimal brain surgeon procedure [4] refers to a weight pruning approach that optimally removes
weights by looking at second order derivatives. Just like in [3]], the purpose of this method is to
minimize neural network complexity and reduce storage requirements. Hassibi et al. explored
the second order derivative of classification error with respect to the neural network weights. The
procedure of the optimal brain surgeon algorithm involves initially training a neural network to
minimal error. Then, the inverted Hessian is solved for; the Hessian can be defined by:

H! — <d2E>*1, 0

d2w

where F is the error, and w is the weight vector; the Hessian contains all second order derivatives. It
is used to find a value ¢ that minimizes the saliency L, where:

Ly=——%—. @)

The g value is then used to update the weights in the neural network. The key point of this paper is that
the usage of the second order error derivative performs much better than the standard magnitude-based
methods of weight pruning; the ordinary methods often remove the weights mistakenly while the
optimal brain surgeon (theoretically) does not [4].

2 Ablation Study

An ablation study on the "Deconstructing Lottery Tickets" paper [1]] was performed in order to
reproduce part of the presented results. Specifically, we focused on analysing the results from Figure
[2] which displays the results obtained after training four different networks (Fully-Connected, 2-layer,
4-layer and 6-layer CNN) with multiple masking criteria and various pruning rates. The remaining
weights for each iterative pruning step (defined as a percentage of the original number of weights of
the model) denote the horizontal axis, while the test accuracy (at early stopping iteration) denotes
the vertical axis. Each of the plot lines is a different masking criteria, and all the experiments were
performed 5 times to obtain an average value with the uncertainty bands around each line. The
various masking criteria form complimentary pairs, for instance large_final and small_final. It
was noticed in [[1] that such pairs result in one of the lines being above the random masking criterion,
with the other one below it.
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Figure 2: Original figure retrieved from [/1].



The FC network was trained on MNIST data, while all the CNNs were trained on CIFAR-10, a detail
that was not mentioned in the original figures clearly enough. The reasoning behind this could be that
a simple FC network is not good enough for the CIFAR-10 data, hence the use of simpler MNIST.

As the CNN networks used in this paper require significant amount of time to run all the experiments
(hardware available for this reproducibility study would require ~ 4 weeks to complete), we decided
to focus solely on the FC network that was feasible to run across all the experiments in the time given.

2.1 Masking Criteria with Ablated Random Seeds

In our first experiment (that served as a baseline), we decided to reproduce the experiment that
analyses the behavior of various masking criteria using the FC network, trained on the MNIST dataset.
We ran the code shared with [1]] paper, using arbitrary random seeds (the original paper does not
mention the seeds used), to see if we can get similar results to the ones reported in the paper.

099

0.984
-
. _ 0882
[&) =]
o g
= =
§ § 0.980
g E = (‘\'._
= = o7 RN
Ay N
0976 \ \.\
m
|
. . N 100% 41% 17% % 3% 1%
100% % 7% U e 1% Weights Remaining
Weights Remaining
.. b) Plot (a) zoomed in for a more detailed view
(a) Reproduced original plot () @)
magnitude_increase movement small_final small_init random
large_init_large_final small_init_small_final large_final large_init

Figure 3: Results obtained for the FC model experiment using various masking criteria were repro-
duced. Arbitrary random seeds were used compared to the ones used in the paper. As can be seen
from the above plots, they appear similar to the one reported by the authors. The masking criteria
exist in complimentary pairs, one of them performs better than random and the other one worse. (the
lines lie either above or below the random criterion one). The bands surrounding the plots depict the
standard deviation, and the solid line is the average obtained over 5 runs with different random seeds.

As can be observed, the obtained results are very similar to the ones presented in [1]]. All the
masking criteria have an accuracy of about 98% when all the weights are retained (no pruning) and
then either slightly increase for best-performing criteria (quite surprising effect that is probably the
result of iteratively pruning less useful weights, implicitly transferring more knowledge from the
original network) or gradually decreases for worse-performing ones. The best criteria appear to be
magnitude_increase , movement and large_final, with the accuracy of the model quite well
retained, even with strongly pruned weights. It suggests that these criteria successfully keep only the
most important weights, allowing the rest to be dropped without hurting the accuracy of the model.

2.2 Large Final Magnitude Criterion with Ablated Random Seeds and Sign Analysis

The three masking criteria studied in details in this section, namely large_final,
large_final_same_sign and large_final_diff_sign were compared to reproduce the results
presented in top-left subplot of Figure S5 from the original paper [1]]. These criteria examine if the
weights had large final values, and whether they retained their original sign or not. As can be seen
from the Figure[d] the large_final_diff_sign masking criteria performed quite poorly, with the
test accuracy dropping rapidly as the number of weights being pruned increased. The large_final
and large_final_same_sign performed relatively well, with the accuracy remaining quite high
between 96-98%, even as the number of the remaining weights dropped significantly.
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Figure 4: Test accuracy at early stopping iteration for large_final variants of masking criteria.

2.3 Magnitude Increase Criterion with Ablated Random Seeds and Sign Analysis

There were two masking criteria that were implemented in the original code, but not mentioned
in the paper at all: magnitude_increase_same_sign and magnitude_increase_diff_sign.
The focus here is on how the weights magnitudes change before and after the training. The
magnitude_increase_same_sign criteria keeps the weights that increased in magnitude and
retained their sign, while the magnitude_increase_diff_sign keeps the weights that increased
in magnitude but flipped their sign. We analyzed these masking criteria by training the models in the
same way as in the large_final case, visualizing the results in Figure[3]

It is worth noticing that the magnitude_increase_same_sign criterion performed very well, with
the performance similar to magnitude_increase, staying at a very high accuracy of about 98%
(even as the number of pruned weights gradually increased).

When applying magnitude_increase_diff_sign criterion, the accuracy of the model dropped
sharply as the number of weights remaining reduced (keeping only the ones with high final magnitude
and different sign), indicating that such weights do not carry valuable information for the future
model training. However, the weights that increase in magnitude and retain their sign seem to be very
informative: even with the majority of the weights being removed, it still maintains high accuracy.
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Figure 5: Test accuracy at early stopping iteration for magnitude_increase variants of masking
criteria.



2.4 Does Masking = Training when Models Trained Poorly?

For the ablation study, it was decided to look into the author’s following statement: "For certain
mask criteria, masking is training". In section 5 of the paper [1]] (called "Supermasks"), the authors
investigated the presence of so-called "supermasks", which are masking criteria that lead to better
than random accuracy at initialization when applied to an untrained network.

In the original study, the authors trained a base model until convergence and recorded its initial and
final weights to compute the pruning masks. Then, the model weights were rewound to their initial
values. Next, iterative pruning was performed using the aforementioned masks. No training was done
at this point—only the pruning and masking were performed to get the final model.
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Figure 6: Results of the ablation study. Different unpruned networks were used to produce individual
subfigures. Each line denotes different mask criterion applied to unpruned models that were trained
until convergence (top-left plot) or until the fixed validation accuracy (remaining plots). The test
accuracy (vertical axes of the plots) was calculated at the initialisation (none of the models in this
ablation study were trained). The figure is best seen digitally.

Figure[6] contains the results of the investigation on what the results would be if these masks were
applied to a model that did not fully converge (until 98% validation accuracy) but was instead early-
stopped at 25%, 50% and 75% validation accuracy. The various masking criteria were applied to
these three models and then pruned iteratively to see whether the pruning may improve the validation
accuracy of sub-optimal models.

The conducted experiments show that there exists a positive correlation between the performance of
the base and the reinitialized models. From the plots in Figure[6]it can be observed that the higher
the accuracy of the base model the better the performance of the model pruned with the top masking
criteria (large_final_same_sign and magnitude_increase_same_sign).



For the top masking criteria, the pruning procedure can be split into two phases: the one that results
in the model’s accuracy being improved (retaining information acquired while training the original
model) and the over-pruning (removing too many weights which starts to hurt the accuracy). It is
essential to stop pruning when it starts to hurt the validation accuracy. Potentially early-stopping for
the pruning process could be used to obtain the best results.

It is important to note that better convergence of the base model leads to smoother pruning results.
When the accuracy of the unpruned network is not high enough (the base model converged to noisy
final weights)—as can be seen in Figure [6]d)-the masking criteria are not able to keep informative
weights, which leads to poor overall performance.

To sum up, the conclusions are as follows: masking is training (when base model converged to
reasonable final weights) and the better the base model, the smoother the results.
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