

000 001 002 003 004 005 ELECTROSTATICS FROM LAPLACIAN EIGENBASIS FOR 006 NEURAL NETWORK INTERATOMIC POTENTIALS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

011 In this work, we introduce Φ -Module, a universal plugin module that enforces
012 Poisson’s equation within the message-passing framework to learn electrostatic
013 interactions in a self-supervised manner. Specifically, each atom-wise representa-
014 tion is encouraged to satisfy a discretized Poisson’s equation, making it possible
015 to acquire a potential ϕ and a corresponding charges ρ linked to the learnable
016 Laplacian eigenbasis coefficients of a given molecular graph. We then derive an
017 electrostatic energy term, crucial for improved total energy predictions. This ap-
018 proach integrates seamlessly into any existing neural potential with insignificant
019 computational overhead. Our results underscore how embedding a first-principles
020 constraint in neural interatomic potentials can significantly improve performance
021 while remaining hyperparameter-friendly, memory-efficient and lightweight in
022 training.
023

1 INTRODUCTION

024 In quantum chemistry, the task of correct prediction of atomic energies is paramount, but stands
025 a great challenge due to extensive computational requirements of *ab-initio* methods like Density
026 Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965). Modern deep learning
027 presents a way to solve this problem with geometric graph neural networks (GNN). GNNs oper-
028 ate on molecular graphs by exchanging messages between nodes and edges, learning meaningful
029 representations in the process. In recent years, a series of molecular modeling methods have been
030 developed (Gasteiger et al., 2021; Wang et al., 2022; Passaro & Zitnick, 2023; Musaelian et al.,
031 2023).
032

033 While those models and their alternatives demonstrate competitive performance, they rely on mes-
034 sage passing which is local in nature (Dwivedi et al., 2022). The issue arises as molecular in-
035 teractions are described using both local and non-local interatomic interactions. Local interactions
036 include bond stretching, bending and torsional twists. They can be easily captured by message prop-
037 agation in modern GNNs for molecular graphs (Zhang et al., 2023). At the same time, non-local
038 interactions like electrostatics or van der Waals forces can span long distances and have cumulative
039 effect (Stone, 2013). The main drawbacks of representations learned by GNNs are over-smoothing
040 (Rusch et al., 2023) and over-squashing (Alon & Yahav, 2020) interfere the precise modeling of
041 non-local interactions.
042

043 To tackle the problem of learning non-local interactions, a number of customizations have been
044 proposed for molecular GNNs. Some of those require prior data in the form of partial charges or
045 dipole moments, which is costly to retrieve using DFT (Unke & Meuwly, 2019; Ko et al., 2021), or
046 carry inaccurate information derived from pre-defined empirical rules (Gasteiger & Marsili, 1978).
047 Another distinct direction of research proposes merging of message passing and Ewald summation
048 (Ewald, 1921) to approximate electrostatic interactions (Kosmala et al., 2023; Cheng, 2024).
049

050 In this paper, we explore a new viewpoint on the problem of learning non-local atomistic and molec-
051 ular interactions. Our aim is to learn electrostatic energy in a completely self-supervised manner
052 without any external labeled data. To fulfill this goal, we propose Φ -Module, a universal augmen-
053 tation module, which can be embedded into any GNN. Φ -Module relies on the connection between
the Laplacian of a molecular graph and partial charges to improve the quality of the neural network
interatomic potentials.
054

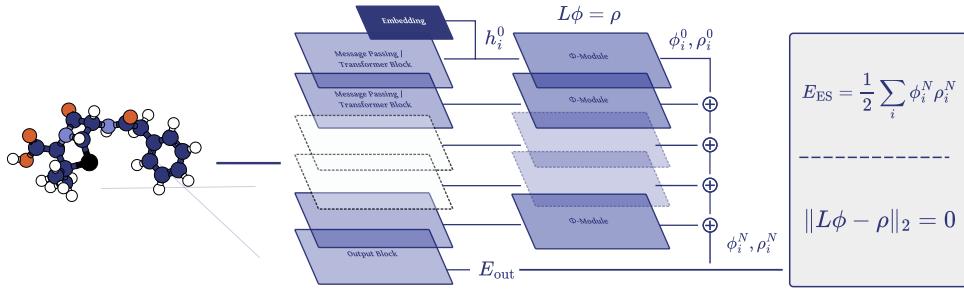
054
055
056
057
058
059
060
061
062
063
064
065

Figure 1: Overview of the proposed Φ -Module. Φ -Module encodes electrostatic constraints based on Poisson’s equation into hidden representations of any neural network interatomic potential. Φ -Module is integrated at each step of message passing. It uses lightweight convolutional submodule which we refer to as α -Net to estimate coefficients of Laplacian eigenbasis directly from constantly updated atomic representations. Those eigenbasis coefficients are then used to optimize Poisson’s equation residual $\|\mathbf{L}\phi - \rho\|_2 = 0$ and compute electrostatic energy term \mathbf{E}^{ES} making an important contribution to predictions and leading to improved performance on computational chemistry problems. See Section 3.

Our contributions are highlighted as follows:

- We propose Φ -Module, a plugin module for GNNs on molecular graphs, which learns electrostatic information from atomic embeddings with estimation of Laplacian eigenbasis coefficients. See Section 3.
- We demonstrate how Φ -Module improves wide variety of baselines on challenging OE62 and MD22 benchmarks for energy prediction and molecular dynamics respectively. On OE62 addition of Φ -Module results in error reductions from 5%. For MD22, the proposed solution improves baseline, which achieves best results among other models in 5 out of 14 cases and improves the baseline in 12 out of 14. See Section 4
- We provide valuable insights on the appealing properties of Φ -Module. Namely, its hyperparameter stability, physically informative formulation, stability under data scarcity and memory-efficiency crucial to molecular modeling. See Section 4

2 BACKGROUND

Message Passing Neural Network Potentials. Geometric graph neural networks (GNN) function on molecular graphs with atoms as nodes $V \in \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ and atomic bonds as edges $E \in \{(i, j) \mid i \neq j\}$. Each node and edge may include additional features $\mathbf{z}_i \in \mathbb{R}^{d_x}$ and $\mathbf{e}_{ij} \in \mathbb{R}^{d_e}$, which commonly are nuclear charge numbers and distances between nodes. The edges are constructed as a radius graph with a specific cutoff radius r_c as a hyperparameter, such that $i \in \mathcal{N}(j)$ if $\|\mathbf{x}_j - \mathbf{x}_i\|_2 \leq r_c$. GNN initially encodes atoms solely on the basis of local properties producing $\mathbf{h}^0 \in \mathbb{R}^F$ features.

In the following steps, GNN refines the initial node representations by applying several iterations of message $\mathbf{m}_i^{(l)}$ aggregations and updates:

$$\mathbf{m}_i^{(l)} = \bigoplus_{j \in \mathcal{N}(i)} \left(\mathcal{M}^l \left(\mathbf{h}_i^{(l)}, \mathbf{h}_j^{(l)}, \mathbf{e}_{ij} \right) \right)$$

$$\mathbf{h}_i^{(l+1)} = \mathcal{U}^l \left(\mathbf{h}_i^{(l)}, \mathbf{m}_i^{(l)} \right),$$

where \mathcal{M}^l is a learnable function, which constructs the message, \mathcal{U}^l is another learnable function to update the representations of nodes with aggregated messages and \bigoplus is the message aggregation operator, which is typically *sum* or *mean*. Finally, the resulting representations are processed to output the energy $\hat{\mathbf{E}}$. Neural network potentials are commonly optimized to approximate target

108 energy \mathbf{E} of a given structure using L1 loss:
 109

$$110 \quad \mathcal{L}_{\text{model}} = \frac{1}{N} \sum_{i=1}^N \left| \mathbf{E}_i - \hat{\mathbf{E}}_i \right|. \\ 111 \quad 112$$

113 **Poisson’s Equation for Electrostatics.** Electrostatic interactions contribute a significant component
 114 of molecular energy, but they are not directly encoded in $\mathbf{E}^{\text{model}}$. To incorporate them, we begin
 115 from the classical definition of electrostatic energy in terms of charges ρ and potential ϕ :
 116

$$117 \quad \mathbf{E}^{\text{ES}} = \frac{1}{2} \sum_i \rho_i \phi_i. \quad (1) \\ 118$$

119 This expression reflects the work required to assemble the system of charges under their mutual
 120 Coulomb interactions. The potential ϕ characterizes how a unit charge at node i is influenced by all
 121 other charges in the system, and thus mediates central phenomena such as bond formation, molecular
 122 geometry stabilization, and long-range protein–ligand recognition.

123 In the continuous setting, ϕ and ρ are linked through Poisson’s equation $\nabla^2 \phi = -\rho/\varepsilon$, where ∇^2
 124 denotes the Laplace operator. For molecular graphs, the continuous Laplacian is naturally replaced
 125 by the graph Laplacian \mathbf{L} , which arises as a finite-difference approximation of the continuous operator
 126 on a discretized domain (Smola & Kondor, 2003). This yields the discrete Poisson equation

$$127 \quad \mathbf{L}\phi = \rho. \quad (2) \\ 128$$

129 Here, \mathbf{L} captures local connectivity and encodes how the potential at each atom deviates from the
 130 average of its neighbors, thus mirroring the curvature-based interpretation of the Laplacian in Eu-
 131 clidean space.

132 The proposed Φ -Module is designed to operate directly on Equation (2), enabling the model to learn
 133 consistent representations of ϕ and ρ from atomic messages. In doing so, it approximates the elec-
 134 trostatic potential field on the molecular graph and provides the corresponding contribution \mathbf{E}^{ES} to
 135 the total energy. This formulation tightly integrates graph-theoretic structure with physical inductive
 136 bias, bridging the gap between molecular electrostatics and message-passing neural architectures.

138 3 Φ -MODULE

140 In this section, we describe in detail how to encode electrostatic constraints coming from Poisson’s
 141 equation into representations learned by neural network potentials. Firstly, we explain the impor-
 142 tance of learning ϕ and ρ in the eigenbasis of \mathbf{L} . Next, α -Net is introduced to learn the spectral
 143 coefficients essential to obtain the solution of the equation. Finally, we theoretically prove the ap-
 144 pealing properties of the spectral decomposition approach in comparison with the direct learning of
 145 Poisson’s equation components.

146 **Spectral Decomposition of Laplacian.** To infuse physical knowledge, resulting in improved
 147 learning dynamics, we propose to derive potential ϕ and charges ρ in an eigenbasis of Laplacian
 148 \mathbf{L} . Note that \mathbf{L} is identical for different 3D compositions of the same molecule, therefore we weigh
 149 Laplacian values by interatomic instances $\mathbf{d}_{ij} = \|\mathbf{x}_j - \mathbf{x}_i\|_2$ to be able to differentiate between
 150 molecular conformations.

152 Recall that \mathbf{L} in Equation (2) is symmetric positive-semidefinite. Therefore, it can be decomposed
 153 as $\mathbf{L} = \mathbf{U}\Lambda\mathbf{U}^\top$, where $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ are orthonormal eigenvectors and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$
 154 with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$ is the diagonal matrix of eigenvalues of \mathbf{L} .

155 Any vector $v \in \mathbb{R}^N$ can be expanded in the basis of \mathbf{U} as $v = \mathbf{U}\alpha$, where α is the eigenbasis
 156 coefficients of \mathbf{L} . We expand the Poisson’s Equation with two distinct vectors α_ϕ and α_ρ using the
 157 spectral decomposition of \mathbf{L} given potential and charge eigenbasis projections as

$$158 \quad \phi = \mathbf{U}\alpha_\phi \quad (3) \\ 159$$

$$160 \quad \rho = \mathbf{U}\Lambda\alpha_\rho. \quad (4)$$

161 The exact formulation enables symmetric gradients of the residual, making optimization stable.
 162 Details on the theoretical difference between the two options are discussed in Appendix F.

162 **Self-Supervised Learning of Potential and Charges.** Equations 3 and 4 highlight that we need
 163 to estimate eigenbasis coefficients α to calculate Poisson’s equation residual. We propose learning
 164 α_ϕ and α_ρ from node representations \mathbf{h} using convolutional subnetwork called α -Net denoted α_θ .
 165 α -Net (Figure 2) consists of a pair of 1D convolutional layers combined with global pooling to map
 166 node embeddings to a distinct number of eigenvalues to have them processed by two separate heads.
 167

168 This lightweight architecture consistently computes the eigenbasis coefficients to update ϕ and ρ at
 169 each iteration of the message passing. The specific design allows us to operate on hidden dimensions
 170 of \mathbf{h} to compress the most essential information into a low-dimensional representation. We calculate
 171 ϕ and ρ using Equation (3) and Equation (4) and α coefficients obtained from α -Net separately
 172 for ϕ and ρ . In the initial step of message passing, α is computed from the node features after
 173 first message passing step \mathbf{h}^1 . In the subsequent steps potential and charges are aggregated via
 174 summation operation as $\phi^N = \phi^{N-1} + U\alpha_\theta(\mathbf{h}^N)$ and $\rho^N = \rho^{N-1} + U\Lambda\alpha_\theta(\mathbf{h}^N)$.
 175

176 We compute residual $\mathcal{L}_{\text{PDE}} = \beta\|\mathbf{L}\phi - \rho\|_2$ in order for
 177 ϕ and ρ to satisfy Equation (2), where β is a hyper-
 178 parameter controlling the impact of the Φ -Module. If
 179 a training dataset consists of neutral molecules, we ap-
 180 ply an additional constraint to enforce net zero charge
 181 $\mathcal{L}_{\text{net}} = \gamma|\sum_i \rho_i|$, where γ is a hyperparameter. The final
 182 training objective for energy prediction is $\mathcal{L} = \mathcal{L}_{\text{model}} +$
 183 $\beta\mathcal{L}_{\text{PDE}} + \gamma\mathcal{L}_{\text{net}}$.
 184

185 **Electrostatic Energy.** After final message passing step
 186 we calculate electrostatic term \mathbf{E}^{ES} using Equation (1).
 187 The complete energy is obtained as a combination of en-
 188 ergy $\mathbf{E}^{\text{model}}$ retrieved from the model and electrostatic
 189 term as $\hat{\mathbf{E}} = \mathbf{E}^{\text{model}} + \mathbf{E}^{\text{ES}}$.
 190

191 **Theoretical Justification.** We inspect theoretical prop-
 192 erties of Φ -Module below. In Theorem 3.1 we demon-
 193 strate the strict convexity of the optimization problem of
 194 ρ . Following this results, we prove monotone improve-
 195 ment relative to the error in Theorem 3.2. Proofs can be
 196 examined in Appendix H.
 197

198 **Theorem 3.1** (Exact inner minimizer over ρ). *Define $a =$
 199 $\mathbf{E} - \mathbf{E}_{\text{model}}$. Fix $\phi \in \text{span}(\mathbf{U}_k)$. The unique minimizer of
 200 $\rho \mapsto \mathcal{L}(\phi, \rho)$ over $\text{span}(\mathbf{U}_k)$ is*

$$201 \rho^*(\phi) = L\phi - t^*(\phi)\phi, \quad t^*(\phi) = \frac{a + \frac{1}{2}\phi^\top L\phi}{2\beta + \frac{1}{2}\|\phi\|^2}.$$

202 **Theorem 3.2** (Monotone objective decrease in optimiza-
 203 tion towards ρ^*). *Define $A(\phi) := a + \frac{1}{2}\phi^\top L\phi$. Then
 204 substituting $\rho^*(\phi)$ from Theorem 3.1 yields*

$$205 \tilde{\mathcal{L}}(\phi) := \mathcal{L}(\phi, \rho^*(\phi)) = A(\phi)^2 \frac{4\beta}{4\beta + \|\phi\|^2} \leq A(\phi)^2,$$

206 with equality if and only if $A(\phi) = 0$ or $\phi = 0$.
 207

208 **Intuition.** Theorem 3.1 tells us that optimization steps
 209 towards ρ^* are aligned with the potential field avoiding
 210 the usage of arbitrary modes. This couples changes in important frequency range to residual mini-
 211 mization. The true solution is recovered when the error is zero. Next, Theorem 3.2 shows provable
 212 improvements in the main objective resulting from optimization of Φ -Module. Additionally, factor
 213 denominator acts as a damping on the energy term given $\|\phi\|^2$ is large.
 214

215 **Implementation Details.** We implement spectral decomposition of \mathbf{L} using the "Locally Optimal
 216 Block Preconditioned Conjugate Gradient" method (LOBPCG) (Knyazev, 2001). LOBPCG

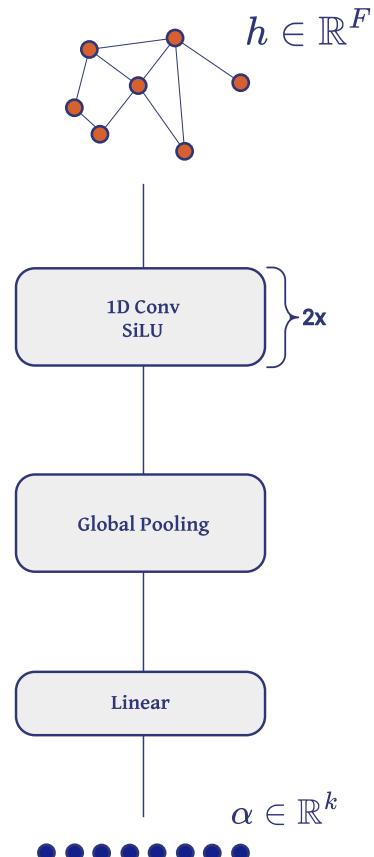


Figure 2: α -Net. It transforms dense atomic representations into sparser coefficients of Laplacian’s eigenbasis to acquire potentials and charges. See Section 3.

enables us to compute only a selected amount of eigenvalues and gives the opportunity to process large macromolecules with the Φ -Module. This decision also keeps us away from the ambiguity of invariance and sorting of eigenvalues and eigenvectors during their computations - we strictly get k selected eigenvalues and their corresponding eigenvectors without the need to sort them anyhow. Block-diagonal nature of \mathbf{L} and independence of its blocks allow us to compute eigendecomposition once for a single batch in an efficient vectorized manner without relying on any paddings.

The pseudocode for integration of the Φ -Module can be seen in Section B. The proposed augmentation fits into any neural network that iteratively operates on atomic representations.

4 EXPERIMENTS

In this section, we conduct diverse experiments to establish the importance of Φ -Module. Firstly, performance of networks injected with the proposed module are tested against corresponding baselines on popular quantum chemical datasets and molecular dynamics. Next, we demonstrate that the Φ -Module exhibits robust hyperparameter stability, requiring minimal tuning to achieve improved performance. Additionally, we show clear benefits from the memory-scaling dynamics of the Φ -Module and provide evidence that current architectural choices encode physically meaningful priors. Finally, we evaluate the model in data-scarce regimes and show that it outperforms baselines even with limited supervision.

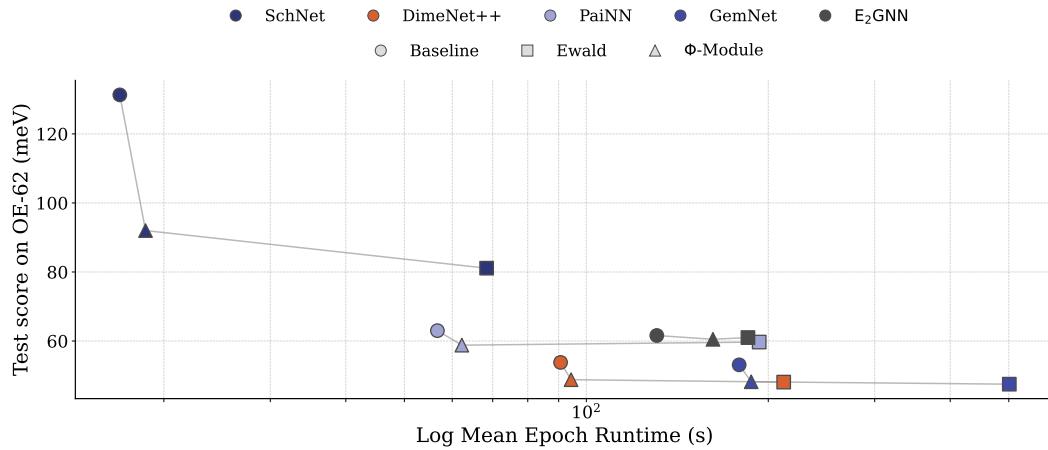


Figure 3: Energy MAEs and computation time of baselines and their alternatives with Φ -Module on OE62. Φ -Module achieves comparable error to Ewald summation at the same time being almost as fast as clean baseline. See Section 4.

In the following experiments, we modify various baseline models by integrating the Φ -Module and denote the resulting models with the prefix " Φ -". The Φ -Module introduces four tunable hyperparameters: k — the number of eigenvalues; β — the weight of the PDE loss \mathcal{L}_{PDE} and γ — the weight of the charge neutrality loss \mathcal{L}_{net} . For a detailed overview of the hyperparameter configurations, please refer to Section D.

OE62. We start our analysis with the challenging OE62 (Stuke et al., 2020) dataset to demonstrate how Φ -Module enhances neural network interatomic potentials. OE62 features about 62,000 large organic molecules with the energies calculated using Density Functional Theory (DFT). The molecules within OE62 have around 41 atoms on average and may exceed the size of 20 Å. Dataset is divided into training, validation and testing parts and preprocessed according to the previous studies (Kosmala et al., 2023).

Common baselines namely SchNet (Schütt et al., 2017), DimeNet++ (Gasteiger et al., 2020), PaiNN (Schütt et al., 2021), GemNet-T (Gasteiger et al., 2021) and E₂GNN (Yang et al., 2025) are trained on OE62. Their counterparts with Φ -Module are named accordingly as Φ -SchNet, Φ -DimeNet++, Φ -PaiNN, Φ -GemNet-T and Φ -E₂GNN. Φ -Module is compared against the baselines and models

270 with the Ewald message passing block (Kosmala et al., 2023). The computational cost is computed
 271 as the average time for one epoch given selected hyperparameters in Appendix D.
 272

273 The results in Figure 3 demonstrate that Φ -Module improves performance for each baseline by a
 274 distinct margin ($\geq 5\%$) and for around 3% for E_2 GNN outperforming the Ewald block in 2 out 5
 275 cases with an evidently smaller computational overhead. The exact results can be found in Table 3
 276 in Appendix E.

277 **MD22.** The MD22 (Chmiela et al.,
 278 2019) dataset is a comprehensive collec-
 279 tion of molecular dynamics (MD) trajec-
 280 tories of biomolecules and supramolecules.
 281 It covers a wide range of molecular sizes,
 282 with atom counts spanning from 42 to 370
 283 atoms per system. Each dataset repre-
 284 sents a single molecule’s dynamic behav-
 285 ior, comprising between 5,032 and 85,109
 286 structural snapshots captured over time.
 287 The MD22 is split into training, valida-
 288 tion and testing sets according to sGMLL
 289 (Chmiela et al., 2019).

290 We benchmark the ViSNet (Wang et al.,
 291 2022) model and its Φ -ViSNet modifi-
 292 cation on seven presented molecule in Ta-
 293 ble 1 and demonstrate that our method
 294 achieves consistent improvements over the
 295 baseline in both energy and force predic-
 296 tions for most of the cases.

297 Original ViSNet achieves the best results
 298 only in 2 out of 14 cases, while Φ -ViSNet sets the best results for the 5 metrics of the measured
 299 setups. Additionally, Φ -ViSNet outperforms basic ViSNet in 11 out of 14 cases. The average com-
 300 putational overhead for the insertion of the Φ -Module is only 9%. Note, that no hyperparameter
 301 search was performed for MD22 due to limited available resources, hence the results may be im-
 302 proved in practice.

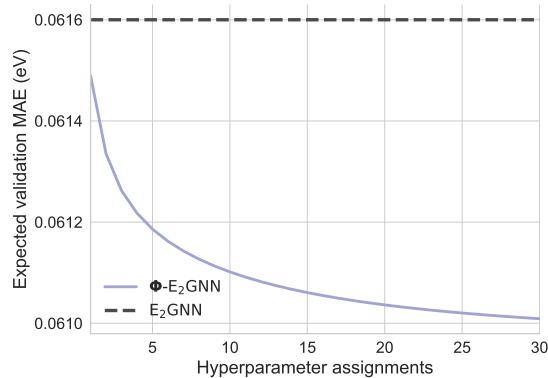


Figure 4: Test expected validation MAE for Φ - E_2 GNN against the baseline model on OE62. Any choice of selected hyperparameters leads to improved performance, underlining tuning stability of the Φ -Module. See Section 4.

Original ViSNet achieves the best results only in 2 out of 14 cases, while Φ -ViSNet sets the best results for the 5 metrics of the measured setups. Additionally, Φ -ViSNet outperforms basic ViSNet in 11 out of 14 cases. The average computational overhead for the insertion of the Φ -Module is only 9%. Note, that no hyperparameter search was performed for MD22 due to limited available resources, hence the results may be improved in practice.

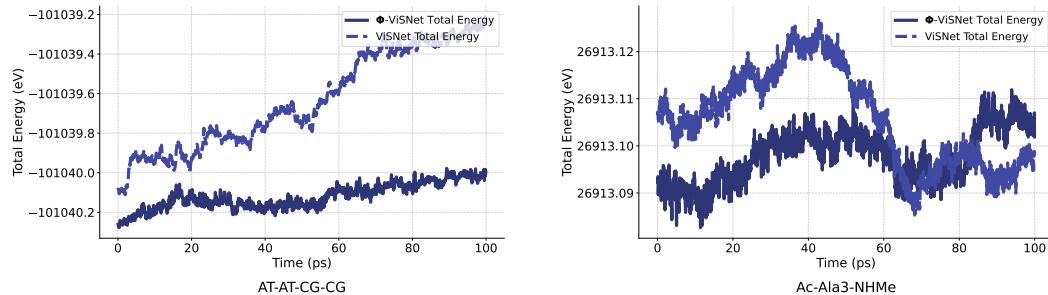


Figure 5: Total energy over 100 ps NVE simulation for (Left) AT-AT-CG-CG and (Right) Ac-Ala3-NHMe molecules obtained from baseline ViSNet and Φ -ViSNet. Energy drift is bounded at 0.0001% over the full trajectory for Φ -ViSNet in both cases. Moreover, it attains x4 and x2 smaller total magnitude of energy drift respectively compared to the baseline model. See Section 4.

Stability of Molecular Dynamics Simulations One of the crucial quantities of neural network interatomic potentials is the ability to show stable molecular dynamics simulation trajectories. It is regarded that low force errors do not directly guarantee stable simulations (Fu et al., 2022). For this purpose we conduct long molecular dynamics simulation for large molecules from MD22 with Φ -ViSNet. To demonstrate stability, we choose AT-AT-CG-CG and Ac-Ala3-NHMe. We perform microcanonical ensemble (NVE) simulation of 100 picoseconds (ps) duration with the Verlet integrator. One step is 0.5 femtoseconds (fs).

324
 325 Table 1: Mean absolute errors (MAE) of energy (kcal/mol) and forces (kcal/mol/Å) for seven large
 326 molecules on MD22. The best one in each category is highlighted in bold, the second best is under-
 327 lined. The runs where Φ -ViSNet outperforms baseline are also underlined. See Section 4.
 328

MOLECULE	TYPE	DIAMETER	sGDML	SO3KRATES	ALLEGRO	EQUIFORMER	MACE	ViSNET	Φ -ViSNET
AC-ALA3-NHME	ENERGY	10.75	0.390	0.337	0.102	<u>0.083</u>	0.062	0.102	0.091
	FORCES		0.797	0.244	0.107	0.080	0.088	0.086	<u>0.082</u>
DHA	ENERGY	14.58	1.312	0.379	0.115	0.179	0.132	<u>0.072</u>	0.010
	FORCES		0.747	0.242	0.073	0.051	<u>0.065</u>	0.099	0.075
STACHYOSE	ENERGY	13.87	4.050	0.442	0.249	0.140	0.124	0.017	<u>0.040</u>
	FORCES		0.674	0.435	0.097	<u>0.064</u>	0.088	0.107	0.011
AT-AT	ENERGY	17.63	0.724	0.178	0.143	0.131	<u>0.109</u>	0.008	0.008
	FORCES		0.691	0.216	<u>0.095</u>	0.096	0.099	0.086	0.111
AT-AT-CG-CG	ENERGY	21.29	1.389	0.345	0.393	0.151	0.158	<u>0.149</u>	0.074
	FORCES		0.703	0.332	<u>0.128</u>	0.125	0.115	0.199	0.182
BUCKYBALL CATCHER	ENERGY	15.89	1.196	0.381	0.526	<u>0.398</u>	0.481	0.937	0.741
	FORCES		0.682	0.237	0.089	0.111	0.085	0.690	0.631
DOUBLE-WALLED NANOTUBE	ENERGY	32.39	4.012	<u>0.993</u>	2.210	1.195	1.655	1.023	0.506
	FORCES		0.523	0.727	<u>0.343</u>	0.275	0.396	0.680	0.593

342
 343 We aim to achieve minimal energy drift as NVE’s total energy remains constant up to small numeri-
 344 cal fluctuations (see background in Appendix G). In this sense we can expose any non-conservative
 345 force field behavior. In Figure 5, total energy drift is bounded at 0.0001% relative to the base-
 346 line energy, which indicates that Φ -Module can be used for stable long-range molecular dynamics
 347 simulations.

348
 349 **Hyperparameter Stability.** In this section, we study the hyperparameter stability of the Φ -
 350 Module. We employ *Expected Validation Performance* (EVP) (Dodge et al., 2019) which measures
 351 how performance of Φ -E₂GNN trained on OE62 changes with the increasing number of hyperpa-
 352 rameter assignments.

353
 354 The hyperparameter search includes k , β . In Figure 10 EVP curve for Φ -E₂GNN is below E₂GNN
 355 baseline performance line after hyperparameter search. The plot demonstrates that any configuration
 356 of hyperparameters results in improved performance against the baseline. This highlights the practi-
 357 cal convenience of Φ -Module in terms of hyperparameter choice. Detailed information on EVP and
 358 plots for other models can be examined in Section G.

359
 360 **Φ -Module Memory Scaling in Comparison with Ewald Summation.** To access one of the cru-
 361 cial benefits of the Φ -Module - *memory efficiency*, we set up experiment to run SchNet, Φ -SchNet,
 362 SchNet with Ewald message passing block (Kosmala et al., 2023), and SchNet with Neural P3M
 363 block (Cheng, 2024) on linear carbyne chains (Liu et al., 2013) of variable sizes from 10^3 to 10^5
 364 atoms. We measure CUDA memory consumption on an NVIDIA 80GB H100 GPU in MBs.

365
 366 The results can be seen in Figure 7. Ewald and Neural P3M quickly result in out-of-memory (OOM)
 367 error and do not scale favorably to large systems. This is an essential problem as electrostatic
 368 interactions die off much slower than other forms of long-range forces and are more evident in
 369 large systems. On the other hand, Φ -Module demonstrates the same scaling as the baseline model
 370 showcasing its potential for extremely large molecules.

371
 372 **Design Choices.** In this section, we elaborate on the main design choices made for Φ -Module.
 373 We take models used for OE62 and train them while gradually disabling main parts of the proposed
 374 method. Firstly, we replace \mathbf{L} with a random matrix to eliminate any physical grounding. Secondly,
 375 we remove the optimization of the residual of Poisson’s equation as in Section 3 to test if uncon-
 376 strained addition of trainable parameters is helpful. In the Figure 8, a distinct trend can be seen of
 377 the complete solution for Φ -Module outperforming the version lacking physical grounding. This
 378 experiment supports the formulation proposed in this work.

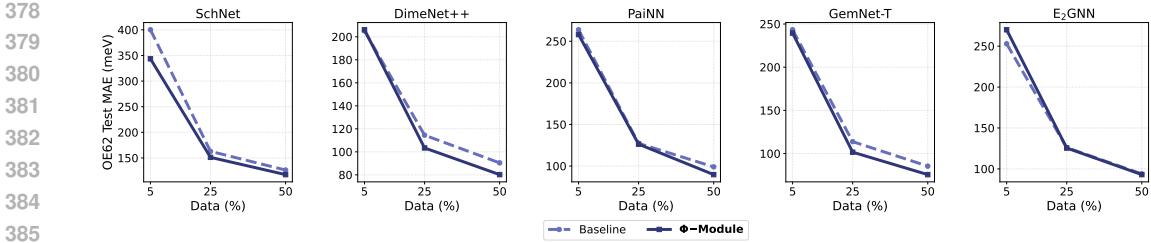


Figure 6: Performance of baseline models and models with Φ -Module in data-scarce setups. Φ -Module outperforms baseline in almost any case for all of the tested setups (5%, 25% and 50% of the initial training data). See Section 4.

Data Scarcity Configurations. In this experiment, we demonstrate that Φ -Module achieves performance gains over baselines even in data-scarce cases. We train OE62 baselines and their versions with Φ -Module on 5%, 25%, 50% of initial training data. Results show that usage of Φ -Module leads to improved performance on nearly every setup and model highlighting stability under various data configurations. Refer to Figure 6 for more details.

5 RELATED WORK

Electrostatic Constraints for Neural Network Potentials. There are a number of attempts to utilize electrostatic interactions with neural network potentials. Some of them rely on effective partial charges of atomic nuclei (Xie et al., 2020; Niblett et al., 2021) or incorporate precomputed electronegativities as a starting point (Ko et al., 2023). An alternative approach involves multipole expansion to express electrostatic potentials without reliance on fixed partial-charge approximation (Thürlemann et al., 2021). Although the approach brings performance benefits, it requires expensive training data with information at electronic level.

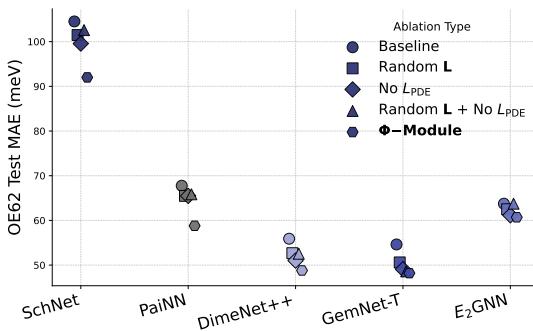


Figure 8: Ablation study on the main design choices for the Φ -Module. We remove structural information from \mathbf{L} and the optimization of the PDE residual. These “non-physical” variants underperform compared to the baseline and full Φ -Module, highlighting the value of physical priors. See Section 4.

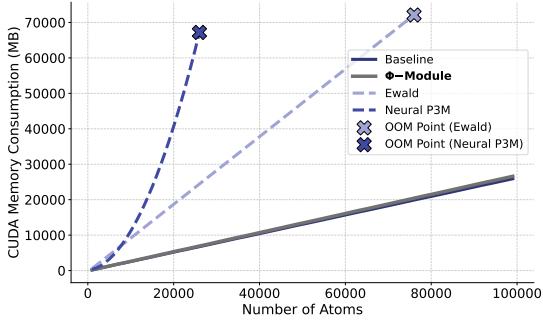


Figure 7: Memory consumption of baseline SchNet, Φ -SchNet, Ewald message passing, and Neural P3M on a carbyne chain with gradually increasing size. Out-of-memory (OOM) points are shown as crosses. Ewald and Neural P3M quickly result in OOM, while the Φ -Module demonstrates strong memory efficiency. See Section 4.

In contrast to mentioned methods, Φ -Module does not require any difficult-to-obtain prior information to deliver valuable improvements for neural networks potentials. Electrostatics are learned in the self-supervised manner using lightweight message passing submodule.

Ewald Summation. A separate track of research equips neural network potentials with the electrostatic knowledge via operations related to Ewald summation (Ewald, 1921). For instance, Kosmala et al. (2023) develops Ewald Message Passing, an augmentation to neural message passing with Fourier space interactions and the cutoff in frequency range. Later, Cheng (2024) extrapolated the idea of Particle-Particle-Particle-Mesh (P3M)

432 (Hockney & Eastwood, 2021) to neural
 433 message passing setup, resulting in improved speed compared to regular Ewald Message Passing.
 434

435 Those approaches focus on the incorporation of the Ewald summation into neural network inter-
 436 atomic potentials, which is an orthogonal line of work. Moreover, originally Ewald summation is
 437 constrained to periodic crystals and its usage on non-periodic systems relies on the definition of sin-
 438 gle large supercell, which serves only as an artificial workaround for such data types. In this paper,
 439 we discover a different route of efficient self-supervised learning of electrostatics from Poisson’s
 440 equation formulation itself.
 441

442 **General Poisson Learning.** The use of neural networks for solving the Poisson equation began
 443 in the mid-1990s, marked by early implementations of multilayer perceptrons to handle the two-
 444 dimensional case with Dirichlet boundary conditions (Dissanayake & Phan-Thien, 1994).
 445

446 In subsequent years, physics-informed neural networks (PINNs) emerged as a powerful approach
 447 by embedding the governing differential equations directly into the loss function (Hafezianzade
 448 et al., 2023). This methodology has proven especially effective for challenging problems such as the
 449 nonlinear Poisson–Boltzmann equation, where traditional numerical methods often struggle with
 450 nonlinearity and complex geometries (Mills & Pozdnyakov, 2022).
 451

452 Recent studies have investigated error correction strategies in neural network-based solvers for dif-
 453 ferential equations, often using Poisson’s equation as a testbed due to its fundamental role as a
 454 second-order linear PDE and its broad relevance in theoretical physics (Wright, 2022).
 455

456 Our work does not aim to solve Poisson’s equation explicitly. Instead, we investigate how it can
 457 be used to enhance the learning dynamics and performance precision of neural network interatomic
 458 potentials.
 459

460 6 CONCLUSION AND FUTURE WORK

461 We introduced the Φ -Module, a universal and physically grounded framework for incorporating
 462 electrostatics into neural interatomic potentials. Our method integrates seamlessly with a wide range
 463 of deep learning architectures in computational chemistry, offering stable improvements in energy
 464 prediction and molecular dynamics tasks. It also demonstrates favorable memory and computa-
 465 tional efficiency, with minimal need for hyperparameter tuning. Despite its strengths, the current
 466 implementation relies on partial charge approximations and does not yet account for more expres-
 467 sive electrostatic descriptors, such as multipole expansions or polarizability tensors. Additionally,
 468 the method is still influenced by a graph connectivity as like any graph-based neural network inter-
 469 atomic potential. Extending the Φ -Module to capture higher-order effects presents a promising
 470 direction for advancing self-supervised learning in quantum chemistry.
 471

472 REFERENCES

473 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
 474 *arXiv preprint arXiv:2006.05205*, 2020.

475 Bingqing Cheng. Latent ewald summation for machine learning of long-range interac-
 476 tions. *ArXiv*, abs/2408.15165, 2024. URL <https://api.semanticscholar.org/CorpusID:271963371>.

477 Stefan Chmiela, Huziel E Sauceda, Igor Poltavsky, Klaus-Robert Müller, and Alexandre
 478 Tkatchenko. sgmdl: Constructing accurate and data efficient molecular force fields using ma-
 479 chine learning. *Computer Physics Communications*, 240:38–45, 2019.

480 Mahesh Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving par-
 481 tial differential equations. *Communications in Numerical Methods in Engineering*, 10:195–201,
 482 1994. URL <https://api.semanticscholar.org/CorpusID:120328171>.

483 Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A Smith. Show your work:
 484 Improved reporting of experimental results. *arXiv preprint arXiv:1909.03004*, 2019.

486 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan
 487 Luu, and Dominique Beaini. Long range graph benchmark. *Advances in Neural Information
 488 Processing Systems*, 35:22326–22340, 2022.

489

490 Paul P Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale. *Annalen der physik*,
 491 369(3):253–287, 1921.

492

493 Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, and
 494 Tommi Jaakkola. Forces are not enough: Benchmark and critical evaluation for machine learning
 495 force fields with molecular simulations. *arXiv preprint arXiv:2210.07237*, 2022.

496

497 Johann Gasteiger and Mario Marsili. A new model for calculating atomic charges in molecules.
 498 *Tetrahedron letters*, 19(34):3181–3184, 1978.

499

500 Johannes Gasteiger, Shankari Giri, Johannes T Margraf, and Stephan Günnemann. Fast and
 501 uncertainty-aware directional message passing for non-equilibrium molecules. *arXiv preprint
 502 arXiv:2011.14115*, 2020.

503

504 Johannes Gasteiger, Florian Becker, and Stephan Günnemann. Gemnet: Universal directional graph
 505 neural networks for molecules. *Advances in Neural Information Processing Systems*, 34:6790–
 506 6802, 2021.

507

508 Fatemeh Hafezianzade, Morad Biagooi, and Seyedehsan Nedaaee Oskoee. Physics informed neural
 509 network for charged particles surrounded by conductive boundaries. *Scientific Reports*, 13, 2023.
 510 URL <https://api.semanticscholar.org/CorpusID:255440511>.

511

512 Roger W Hockney and James W Eastwood. *Computer simulation using particles*. crc Press, 2021.

513

514 Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. *Physical review*, 136(3B):B864,
 515 1964.

516

517 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
 518 arXiv:1412.6980*, 2014.

519

520 Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
 521 conditioned conjugate gradient method. *SIAM journal on scientific computing*, 23(2):517–541,
 522 2001.

523

524 Tsz Wai Ko, Jonas A Finkler, Stefan Goedecker, and Jörg Behler. General-purpose machine learning
 525 potentials capturing nonlocal charge transfer. *Accounts of Chemical Research*, 54(4):808–817,
 526 2021.

527

528 Tsz Wai Ko, Jonas A. Finkler, Stefan Goedecker, and Jörg Behler. Accurate fourth-generation
 529 machine learning potentials by electrostatic embedding. *Journal of chemical theory and computa-
 530 tion*, 2023. URL <https://api.semanticscholar.org/CorpusID:258762588>.

531

532 Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects.
 533 *Physical review*, 140(4A):A1133, 1965.

534

535 Arthur Kosmala, Johannes Gasteiger, Nicholas Gao, and Stephan Günnemann. Ewald-based long-
 536 range message passing for molecular graphs. In *International Conference on Machine Learning*,
 537 pp. 17544–17563. PMLR, 2023.

538

539 Mingjie Liu, Vasilii I Artyukhov, Hoonyoung Lee, Fangbo Xu, and Boris I Yakobson. Carbyne from
 540 first principles: chain of c atoms, a nanorod or a nanorope. *ACS nano*, 7(11):10075–10082, 2013.

541

542 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
 543 preprint arXiv:1608.03983*, 2016.

544

545 Ethan A Mills and Alexey Pozdnyakov. Stochastic scaling in loss functions for physics-informed
 546 neural networks. *ArXiv*, abs/2208.03776, 2022. URL <https://api.semanticscholar.org/CorpusID:251402739>.

540 Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J Owen, Mordechai Ko-
 541 rnbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
 542 dynamics. *Nature Communications*, 14(1):579, 2023.

543

544 Samuel P Niblett, Mirza Galib, and David T Limmer. Learning intermolecular forces at liquid–vapor
 545 interfaces. *The Journal of chemical physics*, 155(16), 2021.

546

547 Saro Passaro and C Lawrence Zitnick. Reducing $so(3)$ convolutions to $so(2)$ for efficient equivariant
 548 gnns. In *International conference on machine learning*, pp. 27420–27438. PMLR, 2023.

549

550 T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
 551 graph neural networks. *arXiv preprint arXiv:2303.10993*, 2023.

552

553 Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
 554 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 555 for modeling quantum interactions. *Advances in neural information processing systems*, 30, 2017.

556

557 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
 558 of tensorial properties and molecular spectra. In *International Conference on Machine Learning*,
 559 pp. 9377–9388. PMLR, 2021.

560

561 Alexander J Smola and Risi Kondor. Kernels and regularization on graphs. In *Learning The-
 562 ory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Work-
 563 shop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings*, pp. 144–158.
 564 Springer, 2003.

565

566 Anthony Stone. *The theory of intermolecular forces*. oUP oxford, 2013.

567

568 Annika Stuke, Christian Kunkel, Dorothea Golze, Milica Todorović, Johannes T Margraf, Karsten
 569 Reuter, Patrick Rinke, and Harald Oberhofer. Atomic structures and orbital energies of 61,489
 570 crystal-forming organic molecules. *Scientific data*, 7(1):58, 2020.

571

572 Moritz Thürlemann, Lennard Bösel, and Sereina Riniker. Learning atomic multipoles: Prediction
 573 of the electrostatic potential with equivariant graph neural networks. *Journal of chemical the-
 574 ory and computation*, 2021. URL <https://api.semanticscholar.org/CorpusID:238582889>.

575

576 Oliver T Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces,
 577 dipole moments, and partial charges. *Journal of chemical theory and computation*, 15(6):3678–
 578 3693, 2019.

579

580 Yusong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng, Bin Shao, Tie-
 581 Yan Liu, and Tong Wang. Visnet: an equivariant geometry-enhanced graph neural network with
 582 vector-scalar interactive message passing for molecules. *arXiv preprint arXiv:2210.16518*, 2022.

583

584 Matthew J. H. Wright. Enhancing neural network differential equation solvers. *ArXiv*,
 585 abs/2301.13146, 2022. URL <https://api.semanticscholar.org/CorpusID:256390579>.

586

587 Xiaowei Xie, Kristin A Persson, and David W Small. Incorporating electronic information into
 588 machine learning potential energy surfaces via approaching the ground-state electronic energy as
 589 a function of atom-based electronic populations. *Journal of chemical theory and computation*, 16
 590 (7):4256–4270, 2020.

591

592 Ziduo Yang, Xian Wang, Yifan Li, Qiujie Lv, Calvin Yu-Chian Chen, and Lei Shen. Efficient
 593 equivariant model for machine learning interatomic potentials. *npj Computational Materials*, 11
 594 (1):49, 2025.

595

596 Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
 597 Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
 598 continuum systems. *arXiv preprint arXiv:2307.08423*, 2023.

599

594 **Algorithm 1** Message Passing with Φ -Module

595

596 **Require:** Mini-batch $\mathcal{B} = \{G_i = (V_i, E_i)\}_{i=1}^B$, # message-passing layers T , modes k

597 **Ensure:** Total loss \mathcal{L} for back-propagation

598 1: $L \leftarrow \text{BLOCKDIAG}(\{\text{GRAPHLAPLACIAN}(G_i)\}_{i=1}^B)$

599 2: $(U, \Lambda) \leftarrow \text{LOBPCG}(L, k)$ ▷ batched eigendecomposition

600 3: $\{h_v^0\}_{v \in V} \leftarrow \text{EMBEDDING}(\mathcal{B})$

601 4: $\phi^0 \leftarrow \mathbf{0}; \rho^0 \leftarrow \mathbf{0}$

602 5: **for** $t = 0$ **to** $T - 1$ **do**

603 6: $\{h_v^{t+1}\} \leftarrow \text{MESSAGEPASSING}(\{h_v^t\}, \mathcal{B})$

604 7: **if** $t == 0$ **then**

605 8: $\alpha_\phi^0, \alpha_\rho^0 \leftarrow \text{ALPHANET}(\{h_v^{t+1}\})$

606 9: $\phi^1 \leftarrow U \alpha_\phi^0; \rho^1 \leftarrow U \Lambda \alpha_\rho^0$

607 10: **else**

608 11: $\alpha_\phi^t, \alpha_\rho^t \leftarrow \text{ALPHANET}(\{h_v^{t+1}\})$

609 12: $\phi^{t+1} \leftarrow \phi^t + U \alpha_\phi^t$

610 13: $\rho^{t+1} \leftarrow \rho^t + U \Lambda \alpha_\rho^t$

611 14: **end if**

612 15: **end for**

613 16: $\mathbf{E}_{\text{model}} \leftarrow \text{READOUTENERGY}(\{h_v^T\}, \mathcal{B})$

614 17: $\mathbf{E}^{\text{ES}} \leftarrow \frac{1}{2} \sum_{v \in V_i} (\phi_v \rho_v)$ ▷ electrostatic energy term

615 18: $\mathbf{r} \leftarrow L \phi^T - \rho^T$ ▷ PDE residual

616 19: $\mathcal{L} \leftarrow \underbrace{\ell(\mathbf{E}_{\text{model}} + \mathbf{E}^{\text{ES}}, \mathbf{E}^{\text{target}})}_{\mathcal{L}_{\text{model}}} + \beta \underbrace{\|\mathbf{r}\|_2}_{\mathcal{L}_{\text{PDE}}} + \gamma \underbrace{\left| \sum_{v \in V_i} \rho_v^T \right|}_{\mathcal{L}_{\text{net}}}$

617

618 20: **return** \mathcal{L}

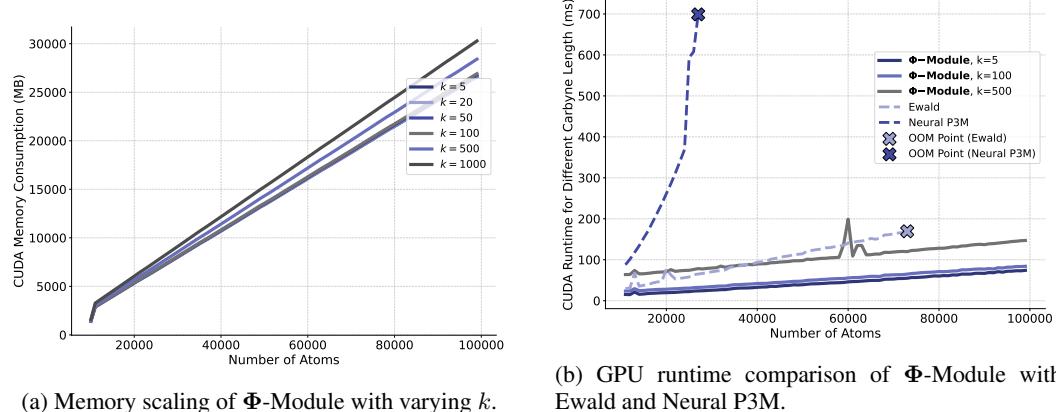


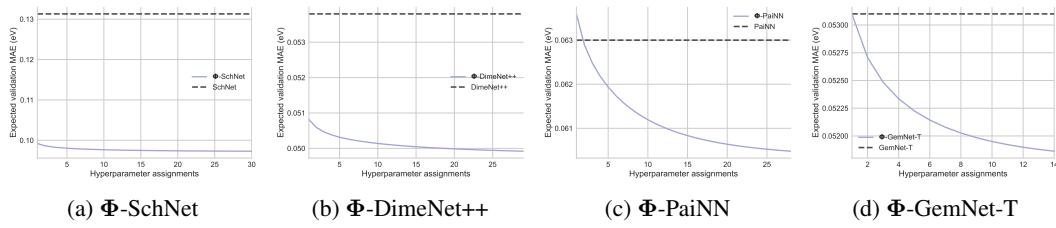
Figure 9: Additional memory and runtime scaling experiments.

A CODE AVAILABILITY

We provide the source code to reproduce the experiments in the supplementary material to the submission as a file archive. The code will be released to public upon acceptance.

B PSEUDOCODE FOR Φ -MODULE

Complete and detailed pseudocode for Φ -Module can be examined in Algorithm 1.

Figure 10: Energy–variance plots for Φ -variants.Table 2: Φ -Module hyperparameters for the reported models on OE62.

Model	Hyperparameters		
	k	β	γ
Φ -SchNet	9	10^{-4}	10^{-4}
Φ -DimeNet++	9	10^{-2}	10^{-4}
Φ -PaiNN	10	10^{-3}	10^{-1}
Φ -GemNet-T	3	$5 * 10^{-1}$	10^{-3}
Φ -E ₂ GNN	5	10^{-1}	0

C MEMORY AND RUNTIME SCALING WITH INCREASING k .

In this experiment, we follow the design of the task involving the linear carbyne chain in Section 4, but test the memory and runtime trends of Φ -Module with respect to the increasing number of estimated eigenvalues. In Figure 9a, you can see that memory consumption increases at a very slow rate which allows efficient processing of large systems. Moreover, Φ -Module scales favorably in terms of GPU runtime for large systems (starting from 10^4 atoms) in comparison to Ewald and Neural P3M based on Figure 9b.

D HYPERPARAMETERS

Hyperparameter Search. We run a hyperparameter search with random uniform sampling for the Φ -Module with the following configuration for each model in this study: k : $\{3, 5, 7, 9, 10, 15\}$, β : $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 5 * 10^{-1}\}$, γ : $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 5 * 10^{-1}\}$. All experiments were conducted on one NVIDIA 80G H100 GPU.

OE62. We follow the same hyperparameters for the baselines as in Kosmala et al. (2023) in most cases. The main difference are the usage of Adam (Kingma & Ba, 2014) optimizer and cosine learning rate schedule (Loshchilov & Hutter, 2016) without warm restarts as well as gradient clipping of 10^3 . For hyperparameters related to Φ -Module, refer to Table 2. For E₂GNN we use 256 hidden channels, 6 layers, 128 Gaussian RBFs, cutoff of 6.0 \AA with a maximum 50 neighbors. Batch size is set to 64 and the training of E₂GNN was performed for 400 epochs with the same optimizer and scheduler as for other models without gradient clipping.

MD22. For the baseline ViSNet, we employ the same hyperparameters as in (Wang et al., 2022). Optimizer and scheduler choice is the same as for OE62. The hyperparameters for Φ -ViSNet are the following: k - 9, β - 10^{-3} , γ - 10^{-4} .

E OE62 RESULTS

In Table 3 the exact numerical comparison for the Section 4 OE62 experiment is shown.

702 Table 3: Energy MAEs and computation time of baselines and their alternatives with Ewald module
 703 and Φ -Module on OE62. Lowest errors and fastest runtimes compared to baselines are highlighted
 704 in bold. See Section 4.

707 MODEL	708 VERSION	OE62-VAL		OE62-TEST		709 MEAN EPOCH	710 TIME
		711 MAE, MEV \downarrow	712 REL, % \downarrow	713 MAE, MEV \downarrow	714 REL, % \downarrow		
709 SCHNET	710 BASELINE	133.5	-	131.3	-	16.91	-
	711 EWALD	79.2	40.7	81.1	38.2	68.4	304.5
	712 Φ -SCHNET	92.2	30.9	92.0	29.9	18.65	10.3
711 DIMEINET++	712 BASELINE	51.2	-	53.8	-	90.66	-
	713 EWALD	46.5	9.2	48.1	10.6	212.1	134.0
	714 Φ -DIMEINET++	47.1	8.0	48.8	9.3	94.36	4.1
714 PAINN	715 BASELINE	61.4	-	63.0	-	56.70	-
	716 EWALD	57.9	5.7	59.7	5.2	193.2	240.9
	717 Φ -PAINN	57.7	6.0	58.8	6.7	62.24	9.8
716 GEMNET-T	717 BASELINE	51.2	-	53.1	-	179.01	-
	718 EWALD	46.5	9.2	47.5	10.5	501.0	179.9
	719 Φ -GEMNET-T	47.3	7.6	48.2	9.2	187.40	4.7
719 E ₂ GNN	720 BASELINE	60.9	-	61.6	-	130.8	-
	721 EWALD	60.3	1.0	61.0	1.0	185.1	41.5
	722 Φ -E ₂ GNN	59.2	2.8	60.7	1.5	162.0	23.9

721 The results show that the Φ -Module provides consistent performance improvements across all base-
 722 lines, with gains of at least 5% in most cases and around 3% for E₂GNN. In addition, it outperforms
 723 the Ewald block in 2 out of 5 settings while requiring noticeably less computational overhead.

725 F ARCHITECTURAL DETAILS OF α -NET

728 **Permutational Invariance.** The convolutions in the α -Net are applied over the node dimension.
 729 The permutational invariance is lost only given the kernel size is not 1. Convolutions with 1x1
 730 filter can also serve as a competitive option. Below (see Table 4) are results comparing SchNet
 731 and DimeNet++ with regular α -Net and the one with 1x1 convolutions preserving invariance. Both
 732 options show similar performance.

733 **Separate Eigenbasis Coefficients α_ϕ and α_ρ .** In this paragraph, we discuss the idea of learning
 734 separated Laplacian eigenbasis coefficients for potential and charges. Theorem F.1 describes the
 735 symmetric nature of residual gradient w.r.t α_ϕ and α_ρ , given the parametrization of $\rho = U\Lambda\alpha_\rho$
 736 aligned with the eigenbasis of $L\phi = U\Lambda U^\top U\alpha_\phi = U\Lambda\alpha_\phi$. We expect this parametrization to
 737 benefit training dynamics as such symmetries guarantee equal update rate for both α_ϕ and α_ρ . On
 738 the other hand, plain $\rho = U\alpha_\rho$ results in the dependence on λ_i making an optimization process
 739 dominated by specific modes and neglecting others.

740 **Proposition F.1** (Symmetric vs. asymmetric gradients for the Poisson residual). *Preserving the
 741 notations from Theorem 3.1, let the potential be $\phi = U\alpha_\phi$ and define the Poisson residual loss*

$$743 \quad 744 \quad \mathcal{L}(\alpha_\phi, \alpha_\rho) = \beta \|L\phi - \rho\|_2^2, \quad \beta > 0.$$

745 Then:

747 **Case (A):** ($\rho = U\Lambda\alpha_\rho$). Writing $r = L\phi - \rho = U\Lambda(\alpha_\phi - \alpha_\rho)$, the gradients are

$$749 \quad \nabla_{\alpha_\phi} \mathcal{L} = 2\beta \Lambda^2(\alpha_\phi - \alpha_\rho), \quad \nabla_{\alpha_\rho} \mathcal{L} = -2\beta \Lambda^2(\alpha_\phi - \alpha_\rho).$$

751 *Per mode i:*

$$752 \quad \frac{\partial \mathcal{L}}{\partial (\alpha_\phi)_i} = 2\beta \lambda_i^2((\alpha_\phi)_i - (\alpha_\rho)_i), \quad \frac{\partial \mathcal{L}}{\partial (\alpha_\rho)_i} = -2\beta \lambda_i^2((\alpha_\phi)_i - (\alpha_\rho)_i).$$

755 *Hence the updates are equal in magnitude and opposite in sign, with identical per-mode scaling
 λ_i^2 resulting in mode-wise symmetry.*

756 **Case (B):** ($\rho = U\alpha_\rho$). Writing $r = L\phi - \rho = U(\Lambda\alpha_\phi - \alpha_\rho)$, the gradients are
 757

$$758 \quad \nabla_{\alpha_\phi} \mathcal{L} = 2\beta \Lambda(\Lambda\alpha_\phi - \alpha_\rho), \quad \nabla_{\alpha_\rho} \mathcal{L} = -2\beta(\Lambda\alpha_\phi - \alpha_\rho).$$

759 *Per mode i:*

$$760 \quad \frac{\partial \mathcal{L}}{\partial (\alpha_\phi)_i} = 2\beta \lambda_i(\lambda_i(\alpha_\phi)_i - (\alpha_\rho)_i), \quad \frac{\partial \mathcal{L}}{\partial (\alpha_\rho)_i} = -2\beta(\lambda_i(\alpha_\phi)_i - (\alpha_\rho)_i).$$

763 *Thus the two updates differ by a factor λ_i resulting in mode-wise asymmetry.*

764

765 *Proof.* Let $r = L\phi - \rho$. Then, $\nabla_\phi \|r\|_2^2 = 2L^\top r = 2Lr$ and $\nabla_\rho \|r\|_2^2 = -2r$. Mapping to $\phi = U\alpha_\phi$
 766 and applying the chain rule we acquire $\nabla_{\alpha_\phi} \|r\|_2^2 = U^\top (2Lr)$.
 767

768 **Case (A).** If $\rho = U\Lambda\alpha_\rho$, then $r = U\Lambda(\alpha_\phi - \alpha_\rho)$ and
 769

$$770 \quad \nabla_{\alpha_\phi} \mathcal{L}_{\text{PDE}} = \beta(U\Lambda)^\top(2r) = 2\beta\Lambda U^\top U\Lambda(\alpha_\phi - \alpha_\rho) = 2\beta\Lambda^2(\alpha_\phi - \alpha_\rho),$$

$$771 \quad \nabla_{\alpha_\rho} \mathcal{L}_{\text{PDE}} = \beta(-U\Lambda)^\top(2r) = -2\beta\Lambda^2(\alpha_\phi - \alpha_\rho).$$

773 **Case (B).** If $\rho = U\alpha_\rho$, then $r = U(\Lambda\alpha_\phi - \alpha_\rho)$ and
 774

$$775 \quad \nabla_{\alpha_\phi} \mathcal{L}_{\text{PDE}} = \beta(U\Lambda)^\top(2r) = 2\beta\Lambda(\Lambda\alpha_\phi - \alpha_\rho), \quad \nabla_{\alpha_\rho} \mathcal{L}_{\text{PDE}} = \beta(-U)^\top(2r) = -2\beta(\Lambda\alpha_\phi - \alpha_\rho).$$

776

□

778 **Nature of the Laplacian.** For a molecular graph $G = (V, E)$ with node set V and positive symmetric edge weights $w_{ij} > 0$, we employ the *symmetric normalized Laplacian*

$$779 \quad L = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}},$$

780 where $W \in \mathbb{R}^{|V| \times |V|}$ is the weighted adjacency matrix with entries $W_{ij} = w_{ij}$ if $(i, j) \in E$ and 0 otherwise, and $D = \text{diag}(d_1, \dots, d_{|V|})$ is the diagonal degree matrix with $d_i = \sum_j W_{ij}$. By construction L is real, symmetric, and positive semidefinite. We use the edge weights $w_{ij} = d_{ij}$ given by the interatomic distances between atoms i and j , which preserves symmetry and ensures that L encodes geometric information about molecular conformations.

781

782 G ADDITIONAL BACKGROUND.

783

784 **Microcanonical Ensemble.** In classical molecular dynamics, the microcaninical ensemble (NVE)
 785 models an isolated system with constant particle number (N), volume (V), and total energy (E). The
 786 dynamics follow Newton's equations of motion:
 787

$$788 \quad m_i \ddot{\mathbf{r}}_i(t) = -\nabla_{\mathbf{r}_i} U(\mathbf{r}_1, \dots, \mathbf{r}_N), \quad (5)$$

789

790 where $\mathbf{r}_i(t)$ denotes the position of particle i , m_i its mass, and U the potential energy function. In
 791 the absence of thermostats or external driving, this guarantees conservation of total energy.
 792

793

794 To integrate trajectories numerically, Verlet-type schemes are widely adopted due to their symplec-
 795 ticity and time reversibility. The basic Verlet update is given by
 796

$$801 \quad \mathbf{r}_i(t + \Delta t) = 2\mathbf{r}_i(t) - \mathbf{r}_i(t - \Delta t) + \frac{\Delta t^2}{m_i} \mathbf{F}_i(t), \quad (6)$$

802

803 with forces $\mathbf{F}_i(t) = -\nabla_{\mathbf{r}_i} U$. A more practical variant is the velocity Verlet integrator:
 804

$$805 \quad \mathbf{r}_i(t + \Delta t) = \mathbf{r}_i(t) + \Delta t \mathbf{v}_i(t) + \frac{1}{2} \Delta t^2 \mathbf{a}_i(t), \quad (7)$$

806

$$807 \quad \mathbf{v}_i(t + \Delta t) = \mathbf{v}_i(t) + \frac{1}{2} \Delta t (\mathbf{a}_i(t) + \mathbf{a}_i(t + \Delta t)), \quad (8)$$

808

809 where $\mathbf{a}_i(t) = \mathbf{F}_i(t)/m_i$. These integrators achieve $\mathcal{O}(\Delta t^2)$ accuracy while requiring only a single
 810 force evaluation per timestep. Crucially, their symplectic structure ensures stable long-time energy
 811 behavior, making NVE with Verlet the de facto baseline.

Table 4: Comparison of α -net variants for SchNet and DimeNet++.

MODEL	DEFAULT α -NET	1×1 CONV α -NET
SCHNET	92.0	93.8
DIMEINET++	48.8	49.5

Expected Validation Performance. Expected Validation Performance (EVP) Dodge et al. (2019) curve represents how on average performance changes as the number of hyperparameter assignments increases during the random search. The X-axis represents the number of hyperparameter trials. The Y-axis represents the expected best performance for a given number of hyperparameter trials.

The expected best performance is computed as

$$\mathbb{E}[V_n^*|n] = \sum_v v \cdot (P(V_i \leq v)^n - P(V_i < v)^n),$$

where $V_n^* = \max_{i \in \{1, \dots, n\}} V_i$ is the maximum for model performance evaluations V_i given a series of n i.i.d. hyperparameter configurations, which are acquired empirically from the random hyperparameter search process and $P(V_n^*|n)$ is the probability mass function for the max-random variable.

The EVP curves for Φ -SchNet, Φ -DimeNet++, Φ -PaiNN and Φ -GemNet-T can be seen in ??.

Φ -Module demonstrates hyperparameter stability for all of the baseline models.

you removed all text completely. listen again, make it as close as possible to the initial version below
here are proofs for theorems, check briefly if they are correct

H PROOFS

In this part we restate Theorem 3.1 and Theorem 3.2 from the main body and proof them accordingly. Note that we prove theorems for the surrogate L2 objective for the tractability, and it is interchangeable.

Theorem H.1 (Exact inner minimizer over ρ). Define $a = E - E_{model}$. Fix $\phi \in \text{span}(U_k)$. The unique minimizer of $\rho \mapsto \mathcal{L}(\phi, \rho)$ over $\text{span}(U_k)$ is

$$\rho^*(\phi) = L\phi - t^*(\phi)\phi, \quad t^*(\phi) = \frac{a + \frac{1}{2}\phi^\top L\phi}{2\beta + \frac{1}{2}\|\phi\|^2}.$$

Proof. Let $e(\phi, \rho) := a + \frac{1}{2}\phi^\top \rho$. Using $\nabla_\rho \|L\phi - \rho\|^2 = -2(L\phi - \rho)$ and $\nabla_\rho e(\phi, \rho)^2 = 2e(\phi, \rho) \cdot \frac{1}{2}\phi = e(\phi, \rho)\phi$, the first-order condition is

$$\nabla_\rho \mathcal{L}(\phi, \rho) = 2\beta(\rho - L\phi) + e(\phi, \rho)\phi = 0.$$

Hence $\rho - L\phi$ is colinear with ϕ , then $\rho = L\phi - t\phi$ for some $t \in \mathbb{R}$. Substituting back gives

$$-2\beta t\phi + \left(a + \frac{1}{2}(\phi^\top L\phi - t\|\phi\|^2)\right)\phi = 0,$$

and we obtain $-2\beta t + a + \frac{1}{2}\phi^\top L\phi - \frac{1}{2}t\|\phi\|^2 = 0$, i.e.

$$t^*(\phi) = \frac{a + \frac{1}{2}\phi^\top L\phi}{2\beta + \frac{1}{2}\|\phi\|^2}.$$

Uniqueness follows because the Hessian w.r.t. ρ is $2\beta I + \frac{1}{2}\phi\phi^\top \succ 0$ for $\beta > 0$. \square

Theorem H.2 (Monotone objective decrease in optimization towards ρ^*). Define $A(\phi) := a + \frac{1}{2}\phi^\top L\phi$. Then substituting $\rho^*(\phi)$ from Theorem 3.1 yields

$$\tilde{\mathcal{L}}(\phi) := \mathcal{L}(\phi, \rho^*(\phi)) = A(\phi)^2 \frac{4\beta}{4\beta + \|\phi\|^2} \leq A(\phi)^2,$$

with equality if and only if $A(\phi) = 0$ or $\phi = 0$.

864 *Proof.* Along the affine line $\rho(t) = L\phi - t\phi$ we have
 865

866
$$\mathcal{L}(\phi, \rho(t)) = \beta \|t\phi\|^2 + \left(A(\phi) - \frac{1}{2}t\|\phi\|^2\right)^2 = \underbrace{\beta\|\phi\|^2}_p t^2 + \underbrace{\left(A(\phi) - \frac{1}{2}\|\phi\|^2 t\right)^2}_q.$$

 867
 868

869 This is a strictly convex quadratic in t (for $\|\phi\|^2 > 0$) with minimizer $t^* = \frac{A(\phi)q}{p+q^2}$ and minimum
 870 value
 871

872
$$\mathcal{L}(\phi, \rho^*(\phi)) = A(\phi)^2 \frac{p}{p+q^2} = A(\phi)^2 \frac{\beta\|\phi\|^2}{\beta\|\phi\|^2 + \frac{1}{4}\|\phi\|^4} = A(\phi)^2 \frac{4\beta}{4\beta + \|\phi\|^2}.$$

 873
 874

875 Since $\frac{4\beta}{4\beta + \|\phi\|^2} \in (0, 1]$, the inequality follows; equality holds exactly when $A(\phi) = 0$ or $s(\phi) = 0$.
 876 \square

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917