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ABSTRACT

In this work, we introduce Φ-Module, a universal plugin module that enforces
Poisson’s equation within the message-passing framework to learn electrostatic
interactions in a self-supervised manner. Specifically, each atom-wise representa-
tion is encouraged to satisfy a discretized Poisson’s equation, making it possible
to acquire a potential ϕ and a corresponding charges ρ linked to the learnable
Laplacian eigenbasis coefficients of a given molecular graph. We then derive an
electrostatic energy term, crucial for improved total energy predictions. This ap-
proach integrates seamlessly into any existing neural potential with insignificant
computational overhead. Our results underscore how embedding a first-principles
constraint in neural interatomic potentials can significantly improve performance
while remaining hyperparameter-friendly, memory-efficient and lightweight in
training.

1 INTRODUCTION

In quantum chemistry, the task of correct prediction of atomic energies is paramount, but stands
a great challenge due to extensive computational requirements of ab-initio methods like Density
Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965). Modern deep learning
presents a way to solve this problem with geometric graph neural networks (GNN). GNNs oper-
ate on molecular graphs by exchanging messages between nodes and edges, learning meaningful
representations in the process. In recent years, a series of molecular modeling methods have been
developed (Gasteiger et al., 2021; Wang et al., 2022; Passaro & Zitnick, 2023; Musaelian et al.,
2023).

While those models and their alternatives demonstrate competitive performance, they rely on mes-
sage passing which is local in nature (Dwivedi et al., 2022). The issue arises as molecular in-
teractions are described using both local and non-local interatomic interactions. Local interactions
include bond stretching, bending and torsional twists. They can be easily captured by message prop-
agation in modern GNNs for molecular graphs (Zhang et al., 2023). At the same time, non-local
interactions like electrostatics or van der Waals forces can span long distances and have cumulative
effect (Stone, 2013). The main drawbacks of representations learned by GNNs are over-smoothing
(Rusch et al., 2023) and over-squashing (Alon & Yahav, 2020) interfere the precise modeling of
non-local interactions.

To tackle the problem of learning non-local interactions, a number of customizations have been
proposed for molecular GNNs. Some of those require prior data in the form of partial charges or
dipole moments, which is costly to retrieve using DFT (Unke & Meuwly, 2019; Ko et al., 2021), or
carry inaccurate information derived from pre-defined empirical rules (Gasteiger & Marsili, 1978).
Another distinct direction of research proposes merging of message passing and Ewald summation
(Ewald, 1921) to approximate electrostatic interactions (Kosmala et al., 2023; Cheng, 2024).

In this paper, we explore a new viewpoint on the problem of learning non-local atomistic and molec-
ular interactions. Our aim is to learn electrostatic energy in a completely self-supervised manner
without any external labeled data. To fulfill this goal, we propose Φ-Module, a universal augmen-
tation module, which can be embedded into any GNN. Φ-Module relies on the connection between
the Laplacian of a molecular graph and partial charges to improve the quality of the neural network
interatomic potentials.
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Figure 1: Overview of the proposed Φ-Module. Φ-Module encodes electrostatic constraints based
on Poisson’s equation into hidden representations of any neural network interatomic potential. Φ-
Module is integrated at each step of message passing. It uses lightweight convolutional submodule
which we refer to as α-Net to estimate coefficients of Laplacian eigenbasis directly from constantly
updated atomic representations. Those eigenbasis coefficients are then used to optimize Poisson’s
equation residual ∥Lϕ − ρ∥2 = 0 and compute electrostatic energy term EES making an important
contribution to predictions and leading to improved performance on computational chemistry prob-
lems. See Section 3.

Our contributions are highlighted as follows:

• We propose Φ-Module, a plugin module for GNNs on molecular graphs, which learns
electrostatic information from atomic embeddings with estimation of Laplacian eigenbasis
coefficients. See Section 3.

• We demonstrate how Φ-Module improves wide variety of baselines on challenging OE62
and MD22 benchmarks for energy prediction and molecular dynamics respectively. On
OE62 addition of Φ-Module results in error reductions from 5%. For MD22, the proposed
solution improves baseline, which achieves best results among other models in 5 out of 14
cases and improves the baseline in 12 out of 14. See Section 4

• We provide valuable insights on the appealing properties of Φ-Module. Namely, its hy-
perparameter stability, physically informative formulation, stability under data scarsity and
memory-efficiency crucial to molecular modeling. See Section 4

2 BACKGROUND

Message Passing Neural Network Potentials. Geometric graph neural networks (GNN) function
on molecular graphs with atoms as nodes V ∈ {x1, . . . , xN} and atomic bonds as edges E ∈
{(i, j) | i ̸= j}. Each node and edge may include additional features zi ∈ Rdx and eij ∈ Rde , which
commonly are nuclear charge numbers and distances between nodes. The edges are constructed as a
radius graph with a specific cutoff radius rc as a hyperparameter, such that i ∈ N (j) if ∥xj−xi∥2 ≤
rc. GNN initially encodes atoms solely on the basis of local properties producing h0 ∈ RF features.

In the following steps, GNN refines the initial node representations by applying several iterations of
message m(l)

i aggregations and updates:

m(l)
i =

⊕
j∈N (i)

(
Ml

(
h(l)
i , h(l)

j , eij
))

h(l+1)
i = U l

(
h(l)
i ,m(l)

i

)
,

whereMl is a learnable function, which constructs the message, U l is another learnable function
to update the representations of nodes with aggregated messages and

⊕
is the message aggregation

operator, which is typically sum or mean. Finally, the resulting representations are processed to
output the energy Ê. Neural network potentials are commonly optimized to approximate target

2
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energy E of a given structure using L1 loss:

Lmodel =
1

N

N∑
i=1

∣∣∣Ei − Êi

∣∣∣ .
Poisson’s Equation for Electrostatics. Electrostatic interactions contribute a significant compo-
nent of molecular energy, but they are not directly encoded in Emodel. To incorporate them, we begin
from the classical definition of electrostatic energy in terms of charges ρ and potential ϕ:

EES = 1
2

∑
i

ρiϕi. (1)

This expression reflects the work required to assemble the system of charges under their mutual
Coulomb interactions. The potential ϕ characterizes how a unit charge at node i is influenced by all
other charges in the system, and thus mediates central phenomena such as bond formation, molecular
geometry stabilization, and long-range protein–ligand recognition.

In the continuous setting, ϕ and ρ are linked through Poisson’s equation ∇2ϕ = −ρ/ε, where ∇2

denotes the Laplace operator. For molecular graphs, the continuous Laplacian is naturally replaced
by the graph Laplacian L, which arises as a finite-difference approximation of the continuous oper-
ator on a discretized domain (Smola & Kondor, 2003). This yields the discrete Poisson equation

Lϕ = ρ. (2)

Here, L captures local connectivity and encodes how the potential at each atom deviates from the
average of its neighbors, thus mirroring the curvature-based interpretation of the Laplacian in Eu-
clidean space.

The proposed Φ-Module is designed to operate directly on Equation (2), enabling the model to learn
consistent representations of ϕ and ρ from atomic messages. In doing so, it approximates the elec-
trostatic potential field on the molecular graph and provides the corresponding contribution EES to
the total energy. This formulation tightly integrates graph-theoretic structure with physical inductive
bias, bridging the gap between molecular electrostatics and message-passing neural architectures.

3 Φ-MODULE

In this section, we describe in detail how to encode electrostatic constraints coming from Poisson’s
equation into representations learned by neural network potentials. Firstly, we explain the impor-
tance of learning ϕ and ρ in the eigenbasis of L. Next, α-Net is introduced to learn the spectral
coefficients essential to obtain the solution of the equation. Finally, we theoretically prove the ap-
pealing properties of the spectral decomposition approach in comparison with the direct learning of
Poisson’s equation components.

Spectral Decomposition of Laplacian. To infuse physical knowledge, resulting in improved
learning dynamics, we propose to derive potential ϕ and charges ρ in an eigenbasis of Laplacian
L. Note that L is identical for different 3D compositions of the same molecule, therefore we weigh
Laplacian values by interatomic instances dij = ∥xj − xi∥2 to be able to differentiate between
molecular conformations.

Recall that L in Equation (2) is symmetric positive-semidefinite. Therefore, it can be decomposed
as L = UΛU⊤, where U = [u1, . . . ,un] are orthonormal eigenvectors and Λ = diag(λ1, . . . , λn)
with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 is the diagonal matrix of eigenvalues of L.

Any vector v ∈ RN can be expanded in the basis of U as v = Uα, where α is the eigenbasis
coefficients of L. We expand the Poisson’s Equation with two distinct vectors αϕ and αρ using the
spectral decomposition of L given potential and charge eigenbasis projections as

ϕ = Uαϕ (3)
ρ = UΛαρ. (4)

The exact formulation enables symmetric gradients of the residual, making optimization stable.
Details on the theoretical difference between the two options are discussed in Appendix F.
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Self-Supervised Learning of Potential and Charges. Equations 3 and 4 highlight that we need
to estimate eigenbasis coefficients α to calculate Poisson’s equation residual. We propose learning
αϕ and αρ from node representations h using convolutional subnetwork called α-Net denoted αθ.
α-Net (Figure 2) consists of a pair of 1D convolutional layers combined with global pooling to map
node embeddings to a distinct number of eigenvalues to have them processed by two separate heads.

This lightweight architecture consistently computes the eigenbasis coefficients to update ϕ and ρ at
each iteration of the message passing. The specific design allows us to operate on hidden dimensions
of h to compress the most essential information into a low-dimensional representation. We calculate
ϕ and ρ using Equation (3) and Equation (4) and α coefficients obtained from α-Net separetely
for ϕ and ρ. In the initial step of message passing, α is computed from the node features after
first message passing step h1. In the subsequent steps potential and charges are aggregated via
summation operation as ϕN = ϕN−1 + Uαθ(hN ) and ρN = ρN−1 + UΛαθ(hN ).

Figure 2: α-Net. It transforms dense
atomic representations into sparser co-
efficients of Laplacian’s eigenbasis to
acquire potentials and charges. See Sec-
tion 3.

We compute residual LPDE = β∥Lϕ − ρ∥2 in order for
ϕ and ρ to satisfy Equation (2), where β is a hyper-
parameter controlling the impact of the Φ-Module. If
a training dataset consists of neutral molecules, we ap-
ply an additional constraint to enforce net zero charge
Lnet = γ|

∑
i ρi|, where γ is a hyperparameter. The final

training objective for energy prediction is L = Lmodel +
βLPDE + γLnet.

Electrostatic Energy. After final message passing step
we calculate electrostatic term EES using Equation (1).
The complete energy is obtained as a combination of en-
ergy Emodel retrieved from the model and electrostatic
term as Ê = Emodel + EES.

Theoretical Justification. We inspect theoretical prop-
erties of Φ-Module below. In Theorem 3.1 we demon-
strate the strict convexity of the optimization problem of
ρ. Following this results, we prove monotone improve-
ment relative to the error in Theorem 3.2. Proofs can be
examined in Appendix H.
Theorem 3.1 (Exact inner minimizer over ρ). Define a =
E − Emodel. Fix ϕ ∈ span(Uk). The unique minimizer of
ρ 7→ L(ϕ, ρ) over span(Uk) is

ρ⋆(ϕ) = Lϕ − t⋆(ϕ)ϕ, t⋆(ϕ) =
a+ 1

2 ϕ
⊤Lϕ

2β + 1
2 ∥ϕ∥2

.

Theorem 3.2 (Monotone objective decrease in optimiza-
tion towards ρ⋆). Define A(ϕ) := a + 1

2ϕ
⊤Lϕ. Then

substituting ρ⋆(ϕ) from Theorem 3.1 yields

L̃(ϕ) := L
(
ϕ, ρ⋆(ϕ)

)
= A(ϕ)2

4β

4β + ∥ϕ∥2
≤ A(ϕ)2,

with equality if and only if A(ϕ) = 0 or ϕ = 0.

Intuition. Theorem 3.1 tells us that optimization steps
towards ρ⋆ are aligned with the potential field avoiding
the usage of arbitrary modes. This couples changes in important frequency range to residual mini-
mization. The true solution is recovered when the error is zero. Next, Theorem 3.2 shows provable
improvements in the main objective resulting from optimization of Φ-Module. Additionally, factor
denominator acts as a damping on the energy term given ∥ϕ∥2 is large.

Implementation Details. We implement spectral decomposition of L using the ”Locally Op-
timal Block Preconditioned Conjugate Gradient” method (LOBPCG) (Knyazev, 2001). LOBPCG
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enables us to compute only a selected amount of eigenvalues and gives the opportunity to process
large macromolecules with the Φ-Module. This decision also keeps us away from the ambiguity of
invariance and sorting of eigenvalues and eigenvectors during their computations - we strictly get
k selected eigenvalues and their corresponding eigenvectors without the need to sort them anyhow.
Block-diagonal nature of L and independence of its blocks allow us to compute eigendecomposition
once for a single batch in an efficient vectorized manner without relying on any paddings.

The pseudocode for integration of the Φ-Module can be seen in Section B. The proposed augmen-
tation fits into any neural network that iteratively operates on atomic representations.

4 EXPERIMENTS

In this section, we conduct diverse experiments to establish the importance of Φ-Module. Firstly,
performance of networks injected with the proposed module are tested against corresponding base-
lines on popular quantum chemical datasets and molecular dynamics. Next, we demonstrate that
the Φ-Module exhibits robust hyperparameter stability, requiring minimal tuning to achieve im-
proved performance. Additionally, we show clear benefits from the memory-scaling dynamics of
the Φ-Module and provide evidence that current architectural choices encode physically meaningful
priors. Finally, we evaluate the model in data-scarce regimes and show that it outperforms baselines
even with limited supervision.
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Figure 3: Energy MAEs and computation time of baselines and their alternatives with Φ-Module on
OE62. Φ-Module achieves comparable error to Ewald summation at the same time being almost as
fast as clean baseline. See Section 4.

In the following experiments, we modify various baseline models by integrating the Φ-Module and
denote the resulting models with the prefix ”Φ-”. The Φ-Module introduces four tunable hyper-
parameters: k — the number of eigenvalues; β — the weight of the PDE loss LPDE and γ — the
weight of the charge neutrality loss Lnet. For a detailed overview of the hyperparameter configura-
tions, please refer to Section D.

OE62. We start our analysis with the challenging OE62 (Stuke et al., 2020) dataset to demon-
strate how Φ-Module enhances neural network interatomic potentials. OE62 features about 62,000
large organic molecules with the energies calculated using Density Functional Theory (DFT). The
molecules within OE62 have around 41 atoms on average and may exceed the size of 20 Å. Dataset is
divided into training, validation and testing parts and preprocessed according to the previous studies
(Kosmala et al., 2023).

Common baselines namely SchNet (Schütt et al., 2017), DimeNet++ (Gasteiger et al., 2020), PaiNN
(Schütt et al., 2021), GemNet-T (Gasteiger et al., 2021) and E2GNN (Yang et al., 2025) are trained
on OE62. Their counterparts with Φ-Module are named accordingly as Φ-SchNet, Φ-DimeNet++,
Φ-PaiNN, Φ-GemNet-T and Φ-E2GNN. Φ-Module is compared against the baselines and models
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with the Ewald message passing block (Kosmala et al., 2023). The computational cost is computed
as the average time for one epoch given selected hyperparameters in Appendix D.

The results in Figure 3 demonstrate that Φ-Module improves performance for each baseline by a
distinct margin (≥ 5%) and for around 3% for E2GNN outperforming the Ewald block in 2 out 5
cases with an evidently smaller computational overhead. The exact results can be found in Table 3
in Appendix E.
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Figure 4: Test expected validation MAE for Φ-E2GNN
against the baseline model on OE62. Any choice
of selected hyperparameters leads to improved perfor-
mance, underlining tuning stability of the Φ-Module.
See Section 4.

MD22. The MD22 (Chmiela et al.,
2019) dataset is a comprehensive collec-
tion of molecular dynamics (MD) trajecto-
ries of biomolecules and supramolecules.
It covers a wide range of molecular sizes,
with atom counts spanning from 42 to 370
atoms per system. Each dataset repre-
sents a single molecule’s dynamic behav-
ior, comprising between 5,032 and 85,109
structural snapshots captured over time.
The MD22 is split into training, valida-
tion and testing sets according to sGDML
(Chmiela et al., 2019).

We benchmark the ViSNet (Wang et al.,
2022) model and its Φ-ViSNet modifica-
tion on seven presented molecule in Ta-
ble 1 and demonstrate that our method
achieves consistent improvements over the
baseline in both energy and force predic-
tions for most of the cases.

Original ViSNet achieves the best results
only in 2 out of 14 cases, while Φ-ViSNet sets the best results for the 5 metrics of the measured
setups. Additionally, Φ-ViSNet outperforms basic ViSNet in 11 out of 14 cases. The average com-
putational overhead for the insertion of the Φ-Module is only 9%. Note, that no hyperparameter
search was performed for MD22 due to limited available resources, hence the results may be im-
proved in practice.

0 20 40 60 80 100
Time (ps)

101040.2

101040.0

101039.8

101039.6

101039.4

101039.2

To
ta

l E
ne

rg
y 

(e
V)

AT-AT-CG-CG

-ViSNet Total Energy
ViSNet Total Energy

0 20 40 60 80 100
Time (ps)

26913.09

26913.10

26913.11

26913.12

To
ta

l E
ne

rg
y 

(e
V)

Ac-Ala3-NHMe

-ViSNet Total Energy
ViSNet Total Energy

Figure 5: Total energy over 100 ps NVE simulation for (Left) AT-AT-CG-CG and (Right) Ac-
Ala3-NHMe molecules obtained from baseline ViSNet and Φ-ViSNet. Energy drift is bounded at
0.0001% over the full trajectory for Φ-ViSNet in both cases. Moreover, it attains x4 and x2 smaller
total magntitude of energy drift respectively compared to the baseline model. See Section 4.

Stability of Molecular Dynamics Simulations One of the crucial quantities of neural network
interatomic potentials is the ability to show stable molecular dynamics simulation trajectories. It
is regarded that low force errors do not directly guarantee stable simulations (Fu et al., 2022). For
this purpose we conduct long molecular dynamics simulation for large molecules from MD22 with
Φ-ViSNet. To demonstrate stability, we choose AT-AT-CG-CG and Ac-Ala3-NHMe. We perform
microcanonical ensemble (NVE) simulation of 100 picoseconds (ps) duration with the Verlet inte-
grator. One step is 0.5 femtoseconds (fs).
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Table 1: Mean absolute errors (MAE) of energy (kcal/mol) and forces (kcal/mol/Å) for seven large
molecules on MD22. The best one in each category is highlighted in bold, the second best is under-
lined. The runs where Φ-ViSNet outperforms baseline are also underlined. See Section 4.

MOLECULE TYPE DIAMETER SGDML SO3KRATES ALLEGRO EQUIFORMER MACE VISNET Φ-VISNET

AC-ALA3-NHME
ENERGY 10.75 0.390 0.337 0.102 0.083 0.062 0.102 0.091
FORCES 0.797 0.244 0.107 0.080 0.088 0.086 0.082

DHA ENERGY 14.58 1.312 0.379 0.115 0.179 0.132 0.072 0.010
FORCES 0.747 0.242 0.073 0.051 0.065 0.099 0.075

STACHYOSE
ENERGY 13.87 4.050 0.442 0.249 0.140 0.124 0.017 0.040
FORCES 0.674 0.435 0.097 0.064 0.088 0.107 0.011

AT-AT ENERGY 17.63 0.724 0.178 0.143 0.131 0.109 0.008 0.008
FORCES 0.691 0.216 0.095 0.096 0.099 0.086 0.111

AT-AT-CG-CG ENERGY 21.29 1.389 0.345 0.393 0.151 0.158 0.149 0.074
FORCES 0.703 0.332 0.128 0.125 0.115 0.199 0.182

BUCKYBALL CATCHER
ENERGY 15.89 1.196 0.381 0.526 0.398 0.481 0.937 0.741
FORCES 0.682 0.237 0.089 0.111 0.085 0.690 0.631

DOUBLE-WALLED NANOTUBE
ENERGY 32.39 4.012 0.993 2.210 1.195 1.655 1.023 0.506
FORCES 0.523 0.727 0.343 0.275 0.396 0.680 0.593

We aim to achieve minimal energy drift as NVE’s total energy remains constant up to small numeri-
cal fluctuations (see background in Appendix G). In this sense we can expose any non-conservative
force field behavior. In Figure 5, total energy drift is bounded at 0.0001% relative to the base-
line energy, which indicates that Φ-Module can be used for stable long-range molecular dynamics
simulations.

Hyperparameter Stability. In this section, we study the hyperparameter stability of the Φ-
Module. We employ Expected Validation Performance (EVP) (Dodge et al., 2019) which measures
how performance of Φ-E2GNN trained on OE62 changes with the increasing number of hyperpa-
rameter assignments.

The hyperparameter search includes k, β. In Figure 10 EVP curve for Φ-E2GNN is below E2GNN
baseline performance line after hyperparameter search. The plot demonstrates that any configuration
of hyperparameters results in improved performance against the baseline. This highlights the practi-
cal convenience of Φ-Module in terms of hyperparameter choice. Detailed information on EVP and
plots for other models can be examined in Section G.

Φ-Module Memory Scaling in Comparison with Ewald Summation. To access one of the cru-
cial benefits of the Φ-Module - memory efficiency, we set up experiment to run SchNet, Φ-SchNet,
SchNet with Ewald message passing block (Kosmala et al., 2023), and SchNet with Neural P3M
block (Cheng, 2024) on linear carbyne chains (Liu et al., 2013) of variable sizes from 103 to 105

atoms. We measure CUDA memory consumption on an NVIDIA 80GB H100 GPU in MBs.

The results can be seen in Figure 7. Ewald and Neural P3M quickly result in out-of-memory (OOM)
error and do not scale favorably to large systems. This is an essential problem as electrostatic
interactions die off much slower than other forms of long-range forces and are more evident in
large systems. On the other hand, Φ-Module demonstrates the same scaling as the baseline model
showcasing its potential for extremely large molecules.

Design Choices. In this section, we elaborate on the main design choices made for Φ-Module.
We take models used for OE62 and train them while gradually disabling main parts of the proposed
method. Firstly, we replace L with a random matrix to eliminate any physical grounding. Secondly,
we remove the optimization of the residual of Poisson’s equation as in Section 3 to test if uncon-
strained addition of trainable parameters is helpful. In the Figure 8, a distinct trend can be seen of
the complete solution for Φ-Module outperforming the version lacking physical grounding. This
experiment supports the formulation proposed in this work.
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Figure 6: Performance of baseline models and models with Φ-Module in data-scarce setups. Φ-
Module outperforms baseline in almost any case for all of the tested setups (5%, 25% and 50% of
the initial training data). See Section 4.
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Figure 7: Memory consumption of baseline SchNet,
Φ-SchNet, Ewald message passing, and Neural P3M
on a carbyne chain with gradually increasing size. Out-
of-memory (OOM) points are shown as crosses. Ewald
and Neural P3M quickly result in OOM, while the Φ-
Module demonstrates strong memory efficiency. See
Section 4.

Data Scarcity Configurations. In this
experiment, we demonstrate that Φ-
Module achieves performance gains over
baselines even in data-scarce cases. We
train OE62 baselines and their versions
with Φ-Module on 5%, 25%, 50% of ini-
tial training data. Results show that us-
age of Φ-Module leads to improved per-
formance on nearly every setup and model
highlighting stability under various data
configurations. Refer to Figure 6 for more
details.

5 RELATED WORK

Electrostatic Constraints for Neural
Network Potentials. There are a num-
ber of attempts to utilize electrostatic in-
teractions with neural network potentials.
Some of them rely on effective partial charges of atomic nuclei (Xie et al., 2020; Niblett et al., 2021)
or incorporate precomputed electronegativities as a starting point (Ko et al., 2023). An alternative
approach involves multipole expansion to express electrostatic potentials without reliance on fixed
partial-charge approximation (Thürlemann et al., 2021). Although the approach brings performance
benefits, it requires expensive training data with information at electronic level.

SchNet PaiNN
DimeNet++

GemNet-T E2GNN

50
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Figure 8: Ablation study on the main design choices for
the Φ-Module. We remove structural information from
L and the optimization of the PDE residual. These
“non-physical” variants underperform compared to the
baseline and full Φ-Module, highlighting the value of
physical priors. See Section 4.

In contrast to mentioned methods, Φ-
Module does not require any difficult-to-
obtain prior information to deliver valu-
able improvements for neural networks
potentials. Electrostatics are learned in the
self-supervised manner using lightweight
message passing submodule.

Ewald Summation. A separate track
of research equips neural network po-
tentials with the electrostatic knowledge
via operations related to Ewald summa-
tion (Ewald, 1921). For instance, Kos-
mala et al. (2023) develops Ewald Mes-
sage Passing, an augmentation to neural
message passing with Fourier space inter-
actions and the cutoff in frequency range.
Later, Cheng (2024) extrapolated the idea
of Particle-Particle-Particle-Mesh (P3M)
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(Hockney & Eastwood, 2021) to neural
message passing setup, resulting in improved speed compared to regular Ewald Message Passing.

Those approaches focus on the incorporation of the Ewald summation into neural network inter-
atomic potentials, which is an orthogonal line of work. Moreover, originally Ewald summation is
constrained to periodic crystals and its usage on non-periodic systems relies on the definition of sin-
gle large supercell, which serves only as an artificial workaround for such data types. In this paper,
we discover a different route of efficient self-supervised learning of electrostatics from Poisson’s
equation formulation itself.

General Poisson Learning. The use of neural networks for solving the Poisson equation began
in the mid-1990s, marked by early implementations of multilayer perceptrons to handle the two-
dimensional case with Dirichlet boundary conditions (Dissanayake & Phan-Thien, 1994).

In subsequent years, physics-informed neural networks (PINNs) emerged as a powerful approach
by embedding the governing differential equations directly into the loss function (Hafezianzade
et al., 2023). This methodology has proven especially effective for challenging problems such as the
nonlinear Poisson–Boltzmann equation, where traditional numerical methods often struggle with
nonlinearity and complex geometries (Mills & Pozdnyakov, 2022).

Recent studies have investigated error correction strategies in neural network-based solvers for dif-
ferential equations, often using Poisson’s equation as a testbed due to its fundamental role as a
second-order linear PDE and its broad relevance in theoretical physics (Wright, 2022).

Our work does not aim to solve Poisson’s equation explicitly. Instead, we investigate how it can
be used to enhance the learning dynamics and performance precision of neural network interatomic
potentials.

6 CONCLUSION AND FUTURE WORK

We introduced the Φ-Module, a universal and physically grounded framework for incorporating
electrostatics into neural interatomic potentials. Our method integrates seamlessly with a wide range
of deep learning architectures in computational chemistry, offering stable improvements in energy
prediction and molecular dynamics tasks. It also demonstrates favorable memory and computa-
tional efficiency, with minimal need for hyperparameter tuning. Despite its strengths, the current
implementation relies on partial charge approximations and does not yet account for more expres-
sive electrostatic descriptors, such as multipole expansions or polarizability tensors. Additionally,
the method is still influenced by a graph connectivity as like any graph-based neural network in-
teratomic potential. Extending the Φ-Module to capture higher-order effects presents a promising
direction for advancing self-supervised learning in quantum chemistry.
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Algorithm 1 Message Passing with Φ-Module

Require: Mini-batch B = {Gi = (Vi, Ei)}Bi=1, # message-passing layers T , modes k
Ensure: Total loss L for back-propagation

1: L← BLOCKDIAG
(
{GRAPHLAPLACIAN(Gi)}Bi=1

)
2: (U,Λ)← LOBPCG(L, k) ▷ batched eigendecomposition
3: {h0

v}v∈V ← EMBEDDING(B)
4: ϕ0 ← 0; ρ0 ← 0
5: for t = 0 to T − 1 do
6: {ht+1

v } ← MESSAGEPASSING({ht
v},B)

7: if t == 0 then
8: α0

ϕ, α
0
ρ ← ALPHANET

(
{ht+1

v }
)

9: ϕ1 ← U α0
ϕ; ρ1 ← U Λα0

ρ
10: else
11: αt

ϕ, α
t
ρ ← ALPHANET

(
{ht+1

v }
)

12: ϕt+1 ← ϕt + U αt
ϕ

13: ρt+1 ← ρt + U Λαt
ρ

14: end if
15: end for
16: Emodel ← READOUTENERGY

(
{hT

v },B
)

17: EES ← 1
2

∑
v∈Vi

(ϕvρv) ▷ electrostatic energy term
18: r← LϕT − ρT ▷ PDE residual
19: L ← ℓ(Emodel + EES,Etarget)︸ ︷︷ ︸

Lmodel

+β ∥r∥2︸︷︷︸
LPDE

+γ |
∑
v∈Vi

ρTv |︸ ︷︷ ︸
Lnet

20: return L
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Figure 9: Additional memory and runtime scaling experiments.

A CODE AVAILABILITY

We provide the source code to reproduce the experiments in the supplementary material to the sub-
mission as a file archive. The code will be released to public upon acceptance.

B PSEUDOCODE FOR Φ-MODULE

Complete and detailed pseudocode for Φ-Module can be examined in Algorithm 1.
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Figure 10: Energy–variance plots for Φ-variants.

Table 2: Φ-Module hyperparameters for the reported models on OE62.

Model Hyperparameters

k β γ

Φ-SchNet 9 10−4 10−4

Φ-DimeNet++ 9 10−2 10−4

Φ-PaiNN 10 10−3 10−1

Φ-GemNet-T 3 5 ∗ 10−1 10−3

Φ-E2GNN 5 10−1 0

C MEMORY AND RUNTIME SCALING WITH INCREASING k.

In this experiment, we follow the design of the task involving the linear carbyne chain in Section 4,
but test the memory and runtime trends of Φ-Module with respect to the increasing number of
estimated eigenvalues. In Figure 9a, you can see that memory consumption increases at a very slow
rate which allows efficient processing of large systems. Moreover, Φ-Module scales favorably in
terms of GPU runtime for large systems (starting from 104 atoms) in comparison to Ewald and
Neural P3M based on Figure 9b.

D HYPERPARAMETERS

Hyperparameter Search. We run a hyperparameter search with random uniform sampling for the
Φ-Module with the following configuration for each model in this study: k: {3, 5, 7, 9, 10, 15}, β:
{10−4, 10−3, 10−2, 10−1, 5 ∗ 10−1}, γ: {10−4, 10−3, 10−2, 10−1, 5 ∗ 10−1}. All experiments were
conducted on one NVIDIA 80G H100 GPU.

OE62. We follow the same hyperparameters for the baselines as in Kosmala et al. (2023) in most
cases. The main difference are the usage of Adam (Kingma & Ba, 2014) optimizer and cosine learn-
ing rate schedule (Loshchilov & Hutter, 2016) without warm restarts as well as gradient clipping of
103. For hyperparameters related to Φ-Module, refer to Table 2. For E2GNN we use 256 hidden
channels, 6 layers, 128 Gaussian RBFs, cutoff of 6.0 Å with a maximum 50 neighbors. Batch size
is set to 64 and the training of E2GNN was performed for 400 epochs with the same optimizer and
scheduler as for other models without gradient clipping.

MD22. For the baseline ViSNet, we employ the same hyperparameters as in (Wang et al., 2022).
Optimizer and schduler choice is the same as for OE62. The hyperparameters for Φ-ViSNet are the
following: k - 9, β - 10−3, γ - 10−4.

E OE62 RESULTS

In Table 3 the exact numerical comparison for the Section 4 OE62 experiment is shown.
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Table 3: Energy MAEs and computation time of baselines and their alternatives with Ewald module
and Φ-Module on OE62. Lowest errors and fastest runtimes compared to baselines are highlighted
in bold. See Section 4.

MODEL VERSION
OE62-VAL OE62-TEST MEAN EPOCH TIME

MAE, MEV ↓ REL, % ↓ MAE, MEV ↓ REL, % ↓ RUNTIME, S ↓ REL, % ↓

SCHNET
BASELINE 133.5 - 131.3 - 16.91 -

EWALD 79.2 40.7 81.1 38.2 68.4 304.5
Φ-SCHNET 92.2 30.9 92.0 29.9 18.65 10.3

DIMENET++
BASELINE 51.2 - 53.8 - 90.66 -

EWALD 46.5 9.2 48.1 10.6 212.1 134.0
Φ-DIMENET++ 47.1 8.0 48.8 9.3 94.36 4.1

PAINN
BASELINE 61.4 - 63.0 - 56.70 -

EWALD 57.9 5.7 59.7 5.2 193.2 240.9
Φ-PAINN 57.7 6.0 58.8 6.7 62.24 9.8

GEMNET-T
BASELINE 51.2 - 53.1 - 179.01 -

EWALD 46.5 9.2 47.5 10.5 501.0 179.9
Φ-GEMNET-T 47.3 7.6 48.2 9.2 187.40 4.7

E2GNN
BASELINE 60.9 - 61.6 - 130.8 -

EWALD 60.3 1.0 61.0 1.0 185.1 41.5
Φ-E2GNN 59.2 2.8 60.7 1.5 162.0 23.9

The results show that the Φ-Module provides consistent performance improvements across all base-
lines, with gains of at least 5% in most cases and around 3% for E2GNN. In addition, it outperforms
the Ewald block in 2 out of 5 settings while requiring noticeably less computational overhead.

F ARCHITECTURAL DETAILS OF α-NET

Permutational Invariance. The convolutions in the α-Net are applied over the node dimension.
The permutational invariance is lost only given the kernel size is not 1. Convolutions with 1x1
filter can also serve as a competitive option. Below (see Table 4) are results comparing SchNet
and DimeNet++ with regular α-Net and the one with 1x1 convolutions preserving invariance. Both
options show similar performance.

Separate Eigenbasis Coefficients αϕ and αρ. In this paragraph, we discuss the idea of learning
separated Laplacian eigenbasis coefficients for potential and charges. Theorem F.1 describes the
symmetric nature of residual gradient w.r.t αϕ and αρ, given the parametrization of ρ = UΛαρ

aligned with the eigenbasis of Lϕ = UΛU⊤Uαϕ = UΛαϕ. We expect this parametrization to
benefit training dynamics as such symmetries guarantee equal update rate for both αϕ and αρ. On
the other hand, plain ρ = Uαρ results in the dependence on λi making an optimization process
dominated by specific modes and neglecting others.

Proposition F.1 (Symmetric vs. asymmetric gradients for the Poisson residual). Preserving the
notations from Theorem 3.1, let the potential be ϕ = Uαϕ and define the Poisson residual loss

L(αϕ, αρ) = β ∥Lϕ− ρ∥22, β > 0.

Then:

Case (A): (ρ = UΛαρ). Writing r = Lϕ− ρ = UΛ(αϕ − αρ), the gradients are

∇αϕ
L = 2β Λ2(αϕ − αρ), ∇αρL = −2β Λ2(αϕ − αρ).

Per mode i:

∂L
∂(αϕ)i

= 2β λ2
i ((αϕ)i − (αρ)i) ,

∂L
∂(αρ)i

= −2β λ2
i ((αϕ)i − (αρ)i) .

Hence the updates are equal in magnitude and opposite in sign, with identical per-mode scaling
λ2
i resulting in mode-wise symmetry.
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Case (B): (ρ = Uαρ). Writing r = Lϕ− ρ = U(Λαϕ − αρ), the gradients are

∇αϕ
L = 2β Λ(Λαϕ − αρ), ∇αρL = −2β (Λαϕ − αρ).

Per mode i:
∂L

∂(αϕ)i
= 2β λi(λi(αϕ)i − (αρ)i) ,

∂L
∂(αρ)i

= −2β(λi(αϕ)i − (αρ)i) .

Thus the two updates differ by a factor λi resulting in mode-wise asymmetry.

Proof. Let r = Lϕ−ρ. Then,∇ϕ∥r∥22 = 2L⊤r = 2Lr and∇ρ∥r∥22 = −2r. Mapping to ϕ = Uαϕ

and applying the chain rule we acquire ∇αϕ
∥r∥22 = U⊤(2Lr).

Case (A). If ρ = UΛαρ, then r = UΛ(αϕ − αρ) and

∇αϕ
LPDE = β (UΛ)⊤(2r) = 2β ΛU⊤UΛ(αϕ − αρ) = 2β Λ2(αϕ − αρ),

∇αρ
LPDE = β (−UΛ)⊤(2r) = −2β Λ2(αϕ − αρ).

Case (B). If ρ = Uαρ, then r = U(Λαϕ − αρ) and

∇αϕ
LPDE = β (UΛ)⊤(2r) = 2β Λ(Λαϕ−αρ), ∇αρ

LPDE = β (−U)⊤(2r) = −2β (Λαϕ−αρ).

Nature of the Laplacian. For a molecular graph G = (V,E) with node set V and positive sym-
metric edge weights wij > 0, we employ the symmetric normalized Laplacian

L = I −D− 1
2WD− 1

2 ,

where W ∈ R|V |×|V | is the weighted adjacency matrix with entries Wij = wij if (i, j) ∈ E and
0 otherwise, and D = diag(d1, . . . , d|V |) is the diagonal degree matrix with di =

∑
j Wij . By

construction L is real, symmetric, and positive semidefinite. We use the edge weights wij = dij
given by the interatomic distances between atoms i and j, which preserves symmetry and ensures
that L encodes geometric information about molecular conformations.

G ADDITIONAL BACKGROUND.

Microcanonical Ensemble. In classical molecular dynamics, the microcaninical ensemble (NVE)
models an isolated system with constant particle number (N ), volume (V ), and total energy (E). The
dynamics follow Newton’s equations of motion:

mir̈i(t) = −∇riU(r1, . . . , rN ), (5)

where ri(t) denotes the position of particle i, mi its mass, and U the potential energy function. In
the absence of thermostats or external driving, this guarantees conservation of total energy.

To integrate trajectories numerically, Verlet-type schemes are widely adopted due to their symplec-
ticity and time reversibility. The basic Verlet update is given by

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
∆t2

mi
Fi(t), (6)

with forces Fi(t) = −∇riU . A more practical variant is the velocity Verlet integrator:

ri(t+∆t) = ri(t) + ∆tvi(t) +
1
2∆t2 ai(t), (7)

vi(t+∆t) = vi(t) +
1
2∆t

(
ai(t) + ai(t+∆t)

)
, (8)

where ai(t) = Fi(t)/mi. These integrators achieve O(∆t2) accuracy while requiring only a single
force evaluation per timestep. Crucially, their symplectic structure ensures stable long-time energy
behavior, making NVE with Verlet the de facto baseline.
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Table 4: Comparison of α-net variants for SchNet and DimeNet++.

MODEL DEFAULT α-NET 1×1 CONV α-NET

SCHNET 92.0 93.8
DIMENET++ 48.8 49.5

Expected Validation Performance. Expected Validation Performance (EVP) Dodge et al. (2019)
curve represents how on average performance changes as the number of hyperparameter assignments
increases during the random search. The X-axis represents the number of hyperparameter trials. The
Y-axis represents the expected best performance for a given number of hyperparameter trials.

The expected best performance is computed as

E[V ∗
n |n] =

∑
v

v · (P (Vi ≤ v)n − P (Vi < v)n),

where V ∗
n = maxi∈{1,...,n} Vi is the maximum for model performance evaluations Vi given a series

of n i.i.d. hyperparameter configurations, which are acquired empirically from the random hyperpa-
rameter search process and P (V ∗

n |n) is the probability mass function for the max-random variable.

The EVP curves for Φ-SchNet, Φ-DimeNet++, Φ-PaiNN and Φ-GemNet-T can be seen in ??.
Φ-Module demonstrates hyperparameter stability for all of the baseline models.

you removed all text completely. listen again, make it as close as possible to the initial version below

here are proofs for theorems, check briefly if they are correct

H PROOFS

In this part we restate Theorem 3.1 and Theorem 3.2 from the main body and proof them accord-
ingly. Note that we prove theorems for the surrogate L2 objective for the tractability, and it is
interchangeable.
Theorem H.1 (Exact inner minimizer over ρ). Define a = E − Emodel. Fix ϕ ∈ span(Uk). The
unique minimizer of ρ 7→ L(ϕ, ρ) over span(Uk) is

ρ⋆(ϕ) = Lϕ − t⋆(ϕ)ϕ, t⋆(ϕ) =
a+ 1

2 ϕ
⊤Lϕ

2β + 1
2 ∥ϕ∥2

.

Proof. Let e(ϕ, ρ) := a+ 1
2 ϕ

⊤ρ. Using∇ρ∥Lϕ−ρ∥2 = −2(Lϕ−ρ) and∇ρ e(ϕ, ρ)
2 = 2e(ϕ, ρ) ·

1
2ϕ = e(ϕ, ρ)ϕ, the first-order condition is

∇ρL(ϕ, ρ) = 2β(ρ− Lϕ) + e(ϕ, ρ)ϕ = 0.

Hence ρ− Lϕ is colinear with ϕ, then ρ = Lϕ− tϕ for some t ∈ R. Substituting back gives

−2βtϕ+
(
a+ 1

2 (ϕ
⊤Lϕ− t∥ϕ∥2)

)
ϕ = 0,

and we obtain −2βt+ a+ 1
2ϕ

⊤Lϕ− 1
2 t∥ϕ∥

2 = 0, i.e.

t⋆(ϕ) =
a+ 1

2 ϕ
⊤Lϕ

2β + 1
2 ∥ϕ∥2

.

Uniqueness follows because the Hessian w.r.t. ρ is 2βI + 1
2 ϕϕ

⊤ ≻ 0 for β > 0.

Theorem H.2 (Monotone objective decrease in optimization towards ρ⋆). Define A(ϕ) := a +
1
2ϕ

⊤Lϕ. Then substituting ρ⋆(ϕ) from Theorem 3.1 yields

L̃(ϕ) := L
(
ϕ, ρ⋆(ϕ)

)
= A(ϕ)2

4β

4β + ∥ϕ∥2
≤ A(ϕ)2,

with equality if and only if A(ϕ) = 0 or ϕ = 0.
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Proof. Along the affine line ρ(t) = Lϕ− tϕ we have

L(ϕ, ρ(t)) = β ∥tϕ∥2 +
(
A(ϕ)− 1

2 t ∥ϕ∥
2
)2

= β∥ϕ∥2︸ ︷︷ ︸
p

t2 +
(
A(ϕ)− 1

2∥ϕ∥
2︸ ︷︷ ︸

q

t
)2
.

This is a strictly convex quadratic in t (for ∥ϕ∥2 > 0) with minimizer t⋆ = A(ϕ)q
p+q2 and minimum

value

L
(
ϕ, ρ⋆(ϕ)

)
= A(ϕ)2

p

p+ q2
= A(ϕ)2

β∥ϕ∥2

β∥ϕ∥2 + 1
4∥ϕ∥4

= A(ϕ)2
4β

4β + ∥ϕ∥2
.

Since 4β
4β+∥ϕ∥2 ∈ (0, 1], the inequality follows; equality holds exactly when A(ϕ) = 0 or s(ϕ) =

0.
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