
SGD with Weight Decay Secretly Minimizes the Ranks
of Your Neural Networks

Tomer Galanti1, Zachary Siegel2, Aparna Gupte3, Tomaso Poggio3
1Texas A&M University, 2Princeton University, 3Massachusetts Institute of Technology
galanti@tamu.edu, zss@princeton.edu, agupte@mit.edu, tp@csail.mit.edu

We explore the implicit bias of Stochastic Gradient Descent (SGD) toward learning
low-rank weight matrices during the training of deep neural networks. Through the-
oretical analysis and empirical validation, we demonstrate that this rank-minimizing
bias becomes more pronounced with smaller batch sizes, higher learning rates, or
stronger weight decay. Unlike previous studies, our analysis does not rely on restric-
tive assumptions about data, convergence, optimality of the learned weight matrices,
network architecture, making it applicable to a wide range of neural network archi-
tectures of any width or depth. We further show that weight decay is essential for
inducing this low-rank bias. Finally, we empirically explore the connection between
this bias and generalization, finding that it has a noticeable, yet marginal, effect on
the test performance.

1. Introduction
Stochastic gradient descent (SGD) is one of themost widely used optimization techniques for training
deep learning models [1]. While initially developed to mitigate the computational challenges of
traditional gradient descent, recent studies suggest that SGD also plays a crucial role in regularization,
helping prevent overparameterizedmodels from converging tominima that do not generalize well [2–
5]. Empirical research has shown, for example, that SGD can outperform gradient descent [5],
with smaller batch sizes leading to better generalization [4, 6]. However, the full extent of SGD’s
regularization effects is not yet fully understood.

(a) B = 8 (b) B = 16 (c) µ = 0.5 (d) λ = 6e−3

Figure 1: Higher weight decay (λ) and learning rate (µ), or smaller batch sizes (B), lead to a lower
average rank across the network layers. We plot the average rank at end of training for ResNet-18
trained on CIFAR10 when varying a pair of hyperparameters.

Various studies have shown that when training large neural networks using gradient-based op-
timization, the networks tend to become highly compressible. For example, many papers have
demonstrated that a significant portion of the weights can be pruned post-training [7–12], large pre-
trained models can be distilled into smaller models [13–16], and in some cases, the learned weight
matrices can be approximated using low-rank matrices without a significant loss in accuracy [17–22].
Beyond compressibility, the inherent low-rank biases of weight matrices has been leveraged for
computationally efficient fine-tuning methods, such as LoRA and its variants [23–27], to adapt large
pre-trained models at reduced cost. For instance, in [27] they showed that deep overparameterized
networks’ training dynamics remain confined to low-dimensional subspaces, enabling compressed

Second Conference on Parsimony and Learning (CPAL 2025).

Table 1: The assumptions and results of various papers on low-rank bias in deep learning. The last
column shows the result of each paper. The notation LinL denotes a composition of L linear layers,
and σ represents the ReLU activation. N/A is used when the paper does not specify a constraint.
Our paper considers a much more realistic setting than all of the previous papers.
Paper Architecture Data Objective function Optimizer Convergence Result
[31] LinL Linearly separable Exponential/logistic loss GF N/A Each layer has rank ≤ 1

[33] Lin1 ◦ σ ◦ Lin1 1-dimensional Min L2 regularization s.t. data fitting N/A Global optimum First layer has rank ≤ 1

[29] Lin1 ◦ σ ◦ LinL d-dimensional Min L2 regularization s.t. data fitting N/A Global optimum Bottom linear transformation has rank ≤ d

[32] LinK ◦ σ ◦ Lin1 ◦ . . . σ ◦ Lin1 Linearly separable Exponential/logistic loss GF N/A Top K layers have rank ≤ 1

[30] Lin1 ◦ σ ◦ Lin1 ◦ . . . σ ◦ Lin1 Separable by a depth L′ network Min L2 regularization s.t. fitting the data N/A Global optimum Harmonic mean of
√
stable ranks ≤ O(exp(c/L))

Ours Res, Conv, Lin, Activation N/A Differentiable loss + L2 regularization SGD N/A Each layer has rank O(1) (w.r.t the width)

factorizations that preserve the benefits of overparameterization and yield improved efficiency in
both matrix completion and a refined version of LoRA method (Deep LoRA) for LLM adaptation.
While these empirical and recent theoretical results are promising, effectively controlling compression
still requires deeper insights into how hyperparameters, data, and architectural choices drive the
low-rank bias. To address this gap, several attempts have been made to explore the origins of the
low-rank bias. For instance, in [28–30], researchers examined the rank of weight matrices in neural
networks that globally minimize L2 regularization while fitting the training data. Specifically, [28]
demonstrated that for data on a 1-dimensional manifold, the weight matrices of a two-layer network
become rank-1 at the global minimum. This result was later extended in [29], showing that the
weight matrix has rank ≤ dwhen the data lies in a d-dimensional space. Additionally, [30] found
that in sufficiently deep ReLU networks (of depth L), the harmonic mean of the square roots of
the stable ranks of the weight matrices decays at a rate of exp(c/L) at the global minimum of L2

regularization, subject to fitting the training data. Similarly, [31] showed that gradient flow (GF)
training of univariate linear networks with exponentially-tailed classification losses learns rank-1
weight matrices when the data is linearly separable. A more recent study [32] extended this result,
demonstrating that when training a ReLU network with multiple linear layers at the top using GF,
the top layers converge to rank-1 weight matrices.
While these analyses offer valuable insights, each one makes strong assumptions about the structure
of the data (e.g., linear separability, low-dimensionality), the network architecture, the optimization
method, or the objective function, and they only apply to specific layers of the network. More-
over, these analyses reveal little about the relationship between the low-rank bias and the training
hyperparameters or the model architecture, which limits the practical utility of these results.
Contributions. In this paper, we show that using mini-batch Stochastic Gradient Descent (SGD)
and weight decay implicitly minimizes the rank of the learned weight matrices during the training
of neural networks, particularly encouraging the learning of low-dimensional feature manifolds.
Within the active field that investigates these properties [30–34], our analysis is the first to char-
acterize how SGD and weight decay induce a low-rank bias in all of the weight matrices of a wide range
of neural network architectures (e.g., with residual connections [35], self-attention layers [36] and
convolutional layers [37]), without making assumptions about the data (e.g., linear separability
or low-dimensionality) or strong assumptions about the convergence of the training process. Our
theoretical analysis predicts that smaller batch sizes, higher learning rates, or increased weight decay results
in a decrease in the rank of the learned matrices, and that weight decay is necessary for this bias to emerge.
Our results are compared with the previous literature in Table 1.
To validate our theory, we provide a comprehensive empirical analysis in which we examine the
regularization effects of different hyperparameters on the rank of weight matrices for various network
architectures. Additionally, we carried out several experiments to examine the connection between
low-rank bias and generalization. Our findings suggest that although low-rank bias is not crucial for
good generalization, it is correlated with a slight improvement in performance.

2

2. Problem Setup
We study the influence of using mini-batch SGD in conjunction with weight decay on the ranks of
the learned weight matrices of neural networks in standard learning settings. Namely, we consider
a parametric model F ⊂ {f ′ : X → Rq}, where each function fW ∈ F is specified by a vector of
parametersW ∈ RN . The goal is to learn a function from a training dataset S = {xi}mi=1. For each
sample we have a loss function measuring the performance on that sample ℓi : Rq → R which is
simply a differentiable function. For example, in supervised learning we have ℓi(u, yi), where yi is
the label of the ith sample. The model is trained to minimize the regularized empirical risk,

Lλ
S(fW) :=

1

m

m∑
i=1

ℓi(fW (xi)) + λ∥W∥2F , (1)

where λ > 0 is a predefined hyperparameter and ∥ · ∥F is the Frobenius norm. To accomplish this
task, we typically use mini-batch SGD, as outlined in the following paragraph.
Model architecture. In this paper, we consider a broad set of neural network architectures, including
but not limited to neural networks with fully-connected layers, residual connections, convolutional
layers, pooling layers, sub-differentiable activation functions (e.g., sigmoid, tanh, ReLU, Leaky ReLU),
self-attention layers and siamese layers.
In this framework, the model fW (x) := h(x;W 1, . . . ,W k) is a function that takes a sequence of
weight matrices W 1, . . . ,W k and an input vector x. Throughout the paper, we assume that for each
layer l ∈ [k], we can write

fW (x) = gl(W
lul

1(x,W|l), . . . ,W
lul

ml
(x,W|l),W|l, x), (2)

where gl is a sub-differentiable function accepting vectors W lul
j(x,W|l), the parameters W|l =

{W j}j ̸=l and x as input. Here, ul
j(x,W|l) are functions of x and the weight matricesW|l, viewed as a

layer precedingW l.
For example, a neural network with a fully-connected layer can be written as follows:

fW (x) = gl(W
lul(x,W|l),W|l, x), (3)

where ul(x,W|l) is the input to the fully-connected layer and gl(z,W|l, x) takes the output
z = W lul(x,W|l) of the fully-connected layer and returns the output of the neural network
(e.g., by composing multiple layers on top of it). More specifically, a fully-connected net-
work fW (x) = WLσ(WL−1 · · ·W 2σ(W 1x) · · ·) can be written as gl(W

lul(x,W|l)), where gl(z) =

WLσ(WL−1 · · ·W l+1σ(z) · · ·) and ul(x,W|l) = σ(W l−1 · · ·W 2σ(W 1x) · · ·). We can also represent
convolutional layers within this framework. We can think of a convolutional layer as a transfor-
mation that takes some input u and applies the same linear transformation to multiple ‘patches’
independently, W lul

1, . . . ,W
lul

ml
, where each ul

j denotes a patch in the input u (a patch in this case
is a subset of the coordinates in u), ml is the number of patches and W l ∈ Rcl×cl−1dl−1 is a matrix
representation of the kernel. In this case, ul(x,W|l) is the output of the layer below the convolutional
layer and ul

j(x,W|l) is the jth patch that the convolutional layer is applied to. Furthermore, gl is
simple the composition of the layers following the given convolutional layer. In similar ways, we can
also express neural networks with residual connections, self-attention layers, hypernetwork layers,
pooling layers, etc’.
Optimization. We employ stochastic sub-gradient descent (SGD) to minimize the regularized
empirical risk Lλ

S(fW) over a specified number of iterations T . We begin by initializingW1 at some
point. We split the dataS into r = |S|

B batches of sizeB (for simplicitywe assume that |S| is divisible by
B) and at iteration t, we take batch S̃t′ with t′ = (t mod r) and updateWt+1 = Wt−µ∇WLλ

S̃t′
(fWt

),
where µ > 0 is the predefined learning rate and ∇W g(W) represents a sub-gradient of g : Rn → R.
We use sub-gradient descent when dealing with models that are only sub-differentiable, such as
ReLU neural networks (for more details, see section 14.2 in [38]). It is worth noting that when the
model is differentiable, sub-gradient descent aligns with gradient descent.

3

3. Theoretical Results
In this section, we prove that when training neural networks with regularized SGD for a long time,
the weight matrices can be approximated with matrices of bounded ranks. We begin by making
a simple observation that the rank of∇W lℓ(fW (x)) is bounded byml (see ‘Model architecture’ in
section 2) for any l and any sample x. Then, by recursively unrolling the optimization process, we
express the weight matrix W l

T as a sum of (1 − µλ)nW l
T−n and nB gradients of the loss function

with respect to W l for different samples at different iterations. Since each one of these terms is a
matrix of rank≤ ml, we conclude that the distance betweenW l

T and a matrix of rank≤ mlBn decays
exponentially fast when increasing n.

Lemma 3.1. Let ℓ be a differentiable loss function, and let fW be a model as described in section 2.
For any weight matrixW l in fW and any sample x ∈ Rd, the following inequality holds:

rank (∇W lℓ(fW (x))) ≤ ml,

whereml is a constant depending on the structure of the layer l (defined in Equation 2).

Proof. Let uj = ul
j(x,W|l), and let fW (x)r denote the r-th coordinate of fW (x). By applying the chain

rule, we have the following identity for the gradient:

∇W lℓ(fW (x)) =

q∑
r=1

∂ℓ(fW (x))

∂fW (x)r
· ∂fW (x)r

∂W l
.

Next, observe that:
∂fW (x)r
∂W l

=

ml∑
j=1

∂fW (x)r
∂W luj

· ∂W
luj

∂W l
=

ml∑
j=1

∂fW (x)r
∂W luj

· u⊤
j .

Substituting this into the previous expression and reordering the sums, we get:

∇W lℓ(fW (x)) =

q∑
r=1

∂ℓ(fW (x))

∂fW (x)r
·

ml∑
j=1

∂fW (x)r
∂W luj

· u⊤
j = ∇W lℓ(fW (x)) =

ml∑
j=1

(
q∑

r=1

∂ℓ(fW (x))

∂fW (x)r
· ∂fW (x)r

∂W luj

)
u⊤
j .

This represents a sum of ml outer products of vectors, implying that the resulting matrix has a rank
of at mostml.

The above lemma shows the rank of the gradient with respect to any weight matrix W l is bounded
by≤ ml. In particular, for a fully-connected layer with weight matrixW l, the sub-gradient of the loss
function with respect to W l is at most 1 and for a convolutional layer it is bounded by the number of
patches upon which the kernel is being applied.
The following lemma provides an upper bound on the minimal distance between the network’s
weight matrices and matrices of bounded rank.

Lemma 3.2. Let ∥ · ∥ be any matrix norm and ℓ any differentiable loss function. Consider a model
fW as described in section 2 andW l be a weight matrix within fW . Suppose we train fW using SGD
with batch size B ∈ [m], learning rate µ > 0 and weight decay λ > 0, where m is the total number of
training samples. Then, for any integer T > n, the following inequality holds:

min
W̄ l: rank(W̄ l)≤mlBn

∥∥∥ W l
T

∥W l
T ∥ − W̄ l

∥∥∥ ≤ (1− 2µλ)n ·
∥W l

T−n∥
∥W l

T ∥
.

Proof. Let S̃t ⊂ S the mini-batch that was used by SGD at iteration t. We have
W l

T = W l
T−1 − µ∇W lLS̃T−1

(fWT−1
)− 2µλW l

T−1

= (1− 2µλ)W l
T−1 − µ∇W lLS̃T−1

(fWT−1
).

4

Similarly, we can write
W l

T−1 = (1− 2µλ)W l
T−2 − µ∇W lLS̃T−2

(fWT−2
).

This gives us
W l

T = (1− 2µλ)2W l
T−2 − µ∇W lLS̃T−1

(fWT−1
)− µ(1− 2µλ)∇W lLS̃T−2

(fWT−2
).

By recursively applying this process n times, we have

W l
T = (1− 2µλ)nW l

T−n − µ

n∑
j=1

(1− 2µλ)j−1∇W lLS̃T−j
(fWT−j

) =: (1− 2µλ)nW l
T−n + U l

T,n.

We notice that,
∇W lLS̃T−j

(fWT−j
) = 1

B

∑
xi∈S̃T−j

∇W lℓi(fWT−j
(xi)).

According to Lemma 3.1, we have rank(∇W lℓi(fWT−j
(xi))) ≤ ml. Therefore,

rank(∇W lLS̃T−j
(fWT−j

)) ≤ Bml since ∇W lLS̃T−j
(fWT−j

) is an average of B matrices of rank
at most ml. In particular, rank(U l

T,n) ≤ mlBn since U l
T,n is a sum of n matrices of rank at most mlB.

Therefore, we obtain that
min

W̄ l: rank(W̄ l)≤mlBn

∥∥W l
T − W̄ l

∥∥ ≤
∥∥W l

T − U l
T,n

∥∥ = (1− 2µλ)n∥W l
T−n∥.

Finally, by dividing both sides by ∥W l
T ∥ we obtain the desired inequality.

The lemma above provides an upper bound on the minimal distance between the parameters matrix
W ij

T and a matrix of rank ≤ mlBn. The parameter t is a parameter of our choice that controls the
looseness of the bound and is independent of the optimization process. The bound is proportional to
(1− 2µλ)n

∥W l
T−n∥

∥W ij
T ∥

, which decreases exponentially with n as long as ∥W l
T ∥ converges to a non-zero

value. As a next step, we tune t to ensure that the bound would be smaller than ϵ. This result is
formalized in the following theorem.

Theorem 3.3. Let ∥ · ∥ be any matrix norm and ℓ a differentiable loss function and µ, λ > 0 such
that µλ < 0.5, B ∈ [m], and ϵ > 0. Consider a model fW as described in section 2 and W l be
a weight matrix within fW . Suppose we train fW using SGD with batch size B ∈ [m], learning
rate µ > 0 and weight decay λ > 0, where m is the total number of training samples. Assume that
lim

T→∞
(∥W l

T−1∥/∥W l
T ∥) = 1. Then, for sufficiently large T ,

min
W̄ l: rank(W̄ l)≤

mlB log(2/ϵ)
2µλ

∥∥∥ W l
T

∥W l
T ∥ − W̄ l

∥∥∥ ≤ ϵ.

Proof. We pick n = ⌈ log(ϵ/2)
log(1−2µλ)⌉. Since n is independent of T , we have

lim
T→∞

∥W l
T−n∥

∥W l
T ∥ = lim

T→∞

n∏
j=1

∥W l
T−j∥

∥W l
T−j+1∥

=

n∏
j=1

lim
T→∞

∥W l
T−i∥

∥W l
T−i+1∥

= 1.

Then, for any sufficiently large T , we have ∥W l
T−n∥

∥W l
T ∥ ≤ 2.

We notice that for the selected T , we have (1− µλ)n ≤ ϵ/2. Hence, for any large T , we have,

(1− µλ)n
∥W l

T−n∥
∥W l

T ∥ ≤ ϵ

Furthermore, since µλ < 0.5, we also have n ≤ log(2/ϵ)
2µλ and mlBn ≤ mlB log(2/ϵ)

2µλ . Therefore, by
Lemma 3.2, we have the desired inequality.

5

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

B = 4 B = 8 B = 16

Figure 2: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying µ.
The top row shows the average rank across layers, while the bottom row shows the train and test
accuracy rates for each setting. In this experiment, λ = 5e−4 and ϵ = 1e−3.

The above theorem provides an upper bound on the rank of the learnedweightmatrices. It shows that
when training the model, the normalized weight matrices W l

T

∥W l
T ∥ become approximately matrices of

rank at most mlB log(2/ϵ)
2µλ . While mlB log(2/ϵ)

2µλ is not necessarily a small number, this bound is still non-
trivial since mlB log(2/ϵ)

2µλ = O(1) with respect to the iteration t and the size of the network (its width,
depth, etc’). This result is particularly striking as it reveals a mechanism that encourages learning
low-rank weight matrices that exclusively depends on the optimization process of SGD with weight
decay, regardless of the weight initialization, geometric properties of the data, or dimensionality
of the data, which are largely irrelevant to the analysis. The assumption lim

T→∞
(∥W l

T−1∥/∥W l
T ∥) = 1

generally occurs in practice and is validated in Appendix B. As a special case, it holds when ∥W l
T ∥

converges to a non-zero value.

4. Experiments
In the previous section, we have seen that one can approximate the learned weight matrices using
matrices of bounded rank. Since the bound becomes smaller as we increase λ, µ, or decrease B, we
make the following prediction:

Prediction 4.1. When training a neural network using SGD with weight decay, the effective rank
of the learned weight matrices tends to decrease as the batch size decreases, or as the weight decay or
learning rate increases.

Although the effective rank of a given matrix can be measured in various ways, in the experiments
we will focus on counting how many singular values of the normalized version of the matrix exceed
a predefined threshold ϵ > 0 (we use ϵ = 1e−3 unless otherwise stated). In order to validate this
prediction, we empirically study how batch size, weight decay, and learning rate affect the rank of
matrices in deep networks. We conduct separate experiments in which we vary one hyperparameter
while keeping the others constant to isolate its effect on the average rank. Additional experiments
with a variety of architectures (e.g. ViT, ResNet-18 and VGG-16), data sets (e.g., CIFAR10, MNIST,

6

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y
Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

B = 8 B = 16 B = 32

Figure 3: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying λ. In
this experiment, µ = 1.5 and ϵ = 1e−3.

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0

50

100

150

200

250

300

Fin
al

 R
an

k
Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

(a) (b) (c)

Figure 4: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying B. In
(a)we used µ = 1e−3 and λ = 6e−3, in (b)we used µ = 5e−3 and λ = 6e−3, and in (c)we used
µ = 1e−2 and λ = 4e−4. We used a threshold of ϵ = 1e−3.

FashionMNIST, SVHN, Food101 and Imagenette), and visualizations of singular values of the weight
matrices are provided in Appendix B. The plots are best viewed when zooming in on the pictures.
Each of the runs was done using a single GPU for at most 60 hours on a computing cluster with
several available GPU types (e.g., GeForce RTX 2080, Tesla V-100).

7

100 200 300 400 500
Epoch

100

8 × 10 1

9 × 10 1

layer 0
layer 2
layer 4
layer 6
layer 8
layer 10
layer 12
layer 14
layer 16

100 200 300 400 500
Epoch

100

6 × 10 1

layer 0
layer 2
layer 4
layer 6
layer 8
layer 10
layer 12
layer 14
layer 16

µ = 0.01 µ = 0.1

100 200 300 400 500
Epoch

100

6 × 10 1

layer 0
layer 2
layer 4
layer 6
layer 8
layer 10
layer 12
layer 14
layer 16

100 200 300 400 500
Epoch

100

6 × 10 1

2 × 100

layer 0
layer 2
layer 4
layer 6
layer 8
layer 10
layer 12
layer 14
layer 16

µ = 0.5 µ = 1

Figure 5: Convergence of the weights for ResNet-18 trained on CIFAR10. In this experiment,B = 8,
λ = 5e−4 and ϵ = 0.01 (see Figure 2(mid) in the main text for the weight ranks and accuracy rates).

4.1. Setup

Architectures. We consider four types of network architectures. (i) The first architecture is a
multi-layer perceptron (MLP), denoted as MLP-BN-L-H , which comprises L hidden layers, each
containing a fully-connected layer with width H , followed by batch normalization and ReLU activa-
tions. This architecture ends with a fully-connected output layer. (ii) The second architecture is the
convolutional network (VGG-16) proposed by [39], with dropout replaced by batch normalization
layers to improve training performance, and a single fully-connected layer at the end. (iv) The
fourth architecture is the residual network (ResNet-18) proposed in [35]. (v) The fifth architecture
is a small visual transformer (ViT) [40]. We used a standard ViT that splits the input images into
patches of size 4× 4, and includes 8 self-attention heads, each composed of 6 self-attention layers.
The self-attention layers are followed by two fully-connected layers with a dropout probability of 0.1,
and a GELU activation in between them.
Training. To study the hyperparameters’ influence on the rank of the weight matrices, we trained
models while varying one hyperparameter at a time, while keeping other hyperparameters constant.
We trained each model for classification using Cross-Entropy loss minimization between its logits
and the one-hot encodings of the labels. The training was carried out by SGD with batch size B,
initial learning rate µ, and weight decay λ. The MLP-BN-L-H , ResNet-18, and VGG-16 models were
trained with a decreasing learning rate of 0.1 at epochs 60, 100, and 200, and the training was stopped
after 500 epochs. The ViT models were trained using SGD with a learning rate that was decreased
by a factor of 0.2 at epochs 60 and 100 and training was stopped after 200 epochs. During training,
we applied random cropping, random horizontal flips, and random rotations (by 15k degrees for k
uniformly sampled from [24]) and standardized the data.

8

Evaluation of the rank. After each epoch, we compute the average rank across the network’s weight
matrices and its train and test accuracy rates. For a convolutional layer, we represent its kernel
parameters as a matrix, whose rows are vectorized versions of its kernels.
To estimate the rank of a given matrix W , we count how many of the singular values of W

∥W∥2
are

greater than ϵ (namely, #
{
i | σi

(
W

∥W∥2

)
> ϵ

}
), where ϵ is a small tolerance value (we use ϵ = 1e−3

by default). We note that the number of singular values greater than ϵ is closely related to the bound
described in Theorem 3.3. Namely, by the Eckart-Young-Mirsky theorem, we have:

r = #
{
i | σi

(
W

∥W∥2

)
> ϵ

}
⇐⇒ min

r∈N
min

W̄ :rank(W̄)≤r

∥∥∥ W
∥W∥2

− W̄
∥∥∥
2
≤ ϵ,

where σi(A) is the ith singular value of the matrix A.

4.2. Results
Validating prediction 4.1. As shown in Figures 1-4, a smaller batch size or higher learning rate and
weight decay leads to a smaller effective ranks across the network layers. These results align with
prediction 4.1. For additional validation of this prediction, see all of the experiments in Appendix B.
Verifying that lim

T→∞
(∥W l

T−1∥/∥W l
T ∥) = 1. In Theorem 3.3 we made the assumption that

lim
T→∞

(∥W l
T−1∥/∥W l

T ∥) = 1. In order to validate this assumption, we trained various models and
monitored the ratio between the norms of each layer at consecutive epochs. In each Figure 5 we
report the ratios across different layers for a neural network with a certain learning rate. As can be
seen, the ratios consistently converge to 1 during training. For a similar experiment with VGG-16 [39]
see Figure 17 in Appendix B.
Low-rank bias and generalization. We investigated the relationship between low-rank bias and
generalization by training ResNet-18 models on CIFAR10 with varying batch sizes, while keeping λ
and µ constant. To provide a fair comparison, we selected λ and µ to ensure all models perfectly fit
the training data. Our results, shown in Figure 4, indicate that models trained with smaller batch
sizes (and as a result with matrices of lower ranks) tend to have a better test performance. Based on
these findings, we predict that when altering a certain hyperparameter, a neural network with a lower
average rank will have better test performance than a network with the same architecture but higher
rank matrices, assuming both networks perfectly fit the training data. For a similar experiment with
VGG-16 [39] see Figure 13 in Appendix B.

5. Conclusions
Mathematically characterizing the inductive biases of neural networks trained with SGD remains
a significant open problem in the theory of deep learning [41]. In this work, we address one of
the key inductive biases observed in empirical studies: the implicit minimization of the rank of
learnedweight matrices during training. Through our theoretical analysis of the training dynamics of
regularized SGD, we identify a forgettingmechanism, where past updates are forgotten exponentially
fast, resulting in learned weights that can be approximated by a mixture of recent training updates.
This process leads to a rank minimization mechanism influenced by batch size, learning rate, and
weight decay. Notably, this behavior appears largely independent of the geometry of the training
data or its intrinsic dimensionality.
A promising direction for future work is to explore whether this theoretical framework can shed light
on other empirical phenomena, such as emergent sparsity in neural networks [10], Neural Collapse
in intermediate layers [42, 43], and Grokking [44]. Additionally, it would be valuable to investigate
how other factors, such as momentum, affect the rank of the learned matrices and whether our
findings can inspire new algorithms for compressing neural networks. Lastly, it would be interesting
to study the relationship between this inductive bias and generalization, which seems plausible
based on our empirical observations.

9

Acknowledgements
This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF
STC award CCF - 1231216.

10

References
[1] Léon Bottou. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nîmes 91,

Nimes, France, 1991. EC2. URL http://leon.bottou.org/papers/bottou-91c.
[2] Chiyuan Zhang, Samy Bengio, MoritzHardt, Benjamin Recht, andOriol Vinyals. Understanding

deep learning requires rethinking generalization. CoRR, abs/1611.03530, 2016. URL http:
//arxiv.org/abs/1611.03530.

[3] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd, 2017. URL https:
//arxiv.org/abs/1711.04623.

[4] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. In International Conference on Learning Representations (ICLR), 2017.

[5] Zhanxing Zhu, JingfengWu, Bing Yu, LeiWu, and JinwenMa. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
Proceedings of the 36th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research. PMLR, 2019.

[6] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the gener-
alization gap in large batch training of neural networks. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf.

[7] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touret-
zky, editor, Advances in Neural Information Processing Systems, volume 2. Morgan-
Kaufmann, 1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper.pdf.

[8] B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network pruning. In
IEEE International Conference on Neural Networks, pages 293–299 vol.1, 1993. doi: 10.1109/ICNN.
1993.298572.

[9] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/
ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

[10] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

[11] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=B1VZqjAcYX.

[12] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good
subnetworks provably exist: pruning via greedy forward selection. In Proceedings of the 37th
International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

[13] Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Pro-
ceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’06), KDD ’06, pages 535–541, New York, NY, USA, 2006. Association for
Computing Machinery. ISBN 1595933395. doi: 10.1145/1150402.1150464. URL https:
//doi.org/10.1145/1150402.1150464.

11

http://leon.bottou.org/papers/bottou-91c
http://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a5e0ff62be0b08456fc7f1e88812af3d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=B1VZqjAcYX
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015. URL https://arxiv.org/abs/1503.02531.

[15] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing
help? In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
f1748d6b0fd9d439f71450117eba2725-Paper.pdf.

[16] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge transfer via distilla-
tion of activation boundaries formed by hidden neurons. In AAAI, AAAI’19/IAAI’19/EAAI’19.
AAAI Press, 2019. ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33013779. URL https:
//doi.org/10.1609/aaai.v33i01.33013779.

[17] Jian Xue, Jinyu Li, and Yifan Gong. Restructuring of deep neural network acoustic models with
singular value decomposition. In Interspeech, 2013. URL https://api.semanticscholar.org/
CorpusID:7833953.

[18] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/
paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf.

[19] Jose M. Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
page 856–867, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[20] Murad Tukan, Alaa Maalouf, Matan Weksler, and Dan Feldman. No fine-tuning, no cry:
Robust svd for compressing deep networks. Sensors, 21(16), 2021. ISSN 1424-8220. doi:
10.3390/s21165599. URL https://www.mdpi.com/1424-8220/21/16/5599.

[21] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by
low rank and sparse decomposition. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 67–76, 2017. doi: 10.1109/CVPR.2017.15.

[22] Meng Zhang, Fei Liu, and Dongpeng Weng. Speeding-up and compression convolutional
neural networks by low-rank decomposition without fine-tuning. J. Real-Time Image Process., 20
(4), may 2023. ISSN 1861-8200. doi: 10.1007/s11554-023-01274-y. URL https://doi.org/10.
1007/s11554-023-01274-y.

[23] Edward JHu, yelong shen, PhillipWallis, ZeyuanAllen-Zhu, Yuanzhi Li, SheanWang, LuWang,
andWeizhu Chen. LoRA: Low-rank adaptation of large languagemodels. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

[24] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=lq62uWRJjiY.

[25] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuan-
dong Tian. GaLore: Memory-efficient LLM training by gradient low-rank projection. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp, editors, Proceedings of the 41st International Conference onMachine Learning,
volume 235 of Proceedings of Machine Learning Research, pages 61121–61143. PMLR, 21–27 Jul
2024.

12

https://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper_files/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33013779
https://doi.org/10.1609/aaai.v33i01.33013779
https://api.semanticscholar.org/CorpusID:7833953
https://api.semanticscholar.org/CorpusID:7833953
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf
https://www.mdpi.com/1424-8220/21/16/5599
https://doi.org/10.1007/s11554-023-01274-y
https://doi.org/10.1007/s11554-023-01274-y
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

[26] Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei Zhao, Yuandong Tian, and Zhangyang
Wang. From galore to welore: How low-rank weights non-uniformly emerge from low-rank
gradients, 2024. URL https://arxiv.org/abs/2407.11239.

[27] Can Yaras, Peng Wang, Laura Balzano, and Qing Qu. Compressible dynamics in deep overpa-
rameterized low-rank learning & adaptation. ICML’24. JMLR.org, 2024.

[28] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex
duality. arXiv preprint arXiv:2002.09773, 2020.

[29] Greg Ongie and Rebecca Willett. The role of linear layers in nonlinear interpolating networks,
2022. URL https://arxiv.org/abs/2202.00856.

[30] Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization
in relu networks. CoRR, abs/2201.12760, 2022. URL https://arxiv.org/abs/2201.12760.

[31] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. CoRR,
abs/2006.06657, 2020. URL https://arxiv.org/abs/2006.06657.

[32] Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond
linear networks. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=XEW8CQgArno.

[33] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex
duality. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 3004–3014.
PMLR, 18–24 Jul 2021.

[34] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. In Proceedings of the 33rd International Conference on Neural Information Processing
Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016. doi: 10.1109/CVPR.2016.90.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

[37] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

[38] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, USA, 2014. ISBN 1107057132.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[40] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[41] Behnam Neyshabur, Srinadh Bhojanapalli, David Mcallester, and Nati Srebro. Exploring
generalization in deep learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/
2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf.

13

https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/2202.00856
https://arxiv.org/abs/2201.12760
https://arxiv.org/abs/2006.06657
https://openreview.net/forum?id=XEW8CQgArno
https://openreview.net/forum?id=XEW8CQgArno
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/10ce03a1ed01077e3e289f3e53c72813-Paper.pdf

[42] Vardan Papyan, X. Y. Han, and David L. Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of Sciences, 117
(40):24652–24663, 2020.

[43] Tomer Galanti, Liane Galanti, and Ido Ben-Shaul. Comparative generalization bounds for
deep neural networks. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=162TqkUNPO.

[44] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets, 2022.

14

https://openreview.net/forum?id=162TqkUNPO

A. Analyzing the Gradient Rank for Self-Attention Layers
We begin by defining a multi-head self-attention layer with h heads, embedding dimension dmodel =
hdk, per head key dimension dk, and sequence length T . Denote

WQ = [WQ1 , ...,WQh
] ∈ Rdmodel×dmodel

WK = [WK1 , ...,WKh
] ∈ Rdmodel×dmodel

WV = [WV1
, ...,WVh

] ∈ Rdmodel×dmodel

(4)

In multi-head self-attention, the input matrix Z ∈ RT×dmodel is projected into keys, queries, and
values for each head: Ki = ZWKi

, Qi = ZWQi
and Vi = ZWVi

. The output of the layer is then

MHA(Z) =

[
softmax

(
Q1K

⊤
1√

dk

)
V1, . . . , softmax

(
QhK

⊤
h√

dk

)
Vh

]
∈ RT×dmodel (5)

where the softmax is applied row-wise.
A typical architecture whose lth layer is a self-attention layer can be written as follows fW (X) =
g(ul(X)W l

Q, u(X)W l
K , ul(X)W l

V , X,W|l), where ul : RT×din → RT×dmodel is a sub-differentiable
function that computes the input matrix Z = ul(X) to the self-attention layer, W l = (W l

Q,W
l
K ,W l

V)

are the parameters of the lth layer,W|l contains all of the model’s trainable parameters excludingW l

and g is a sub-differentiable function (the composition of the layers above the lth layer).
The reason why we can represent common architectures this way, is because the MHA layer can
be written as a differentiable function applied to the ul(X)W l

Q, u(X)W l
K , ul(X)W l

V and the layers
g on top of the MHA are using sub-differentiable functions using the MHA’s output and residual
connections. For example, g may include the full self-attention block, which is computed as follows:

Z1 = LayerNorm(MHA(Z)W l+1
O + ul(X)), W l+1

O ∈ Rdmodel×dmodel

Z2 = ReLU(Z1W
l+1
1 + 1T · (bl+1

1)⊤), W l+1
1 ∈ Rdmodel×d, bl+1

1 ∈ Rd

Z3 = Z2W
l+1
2 + 1T · (bl+1

2)⊤, bl+1
2 ∈ Rd

Output = LayerNorm(Z1 + Z3).

where 1T is a vector of 1s of length T . The reason why such a function g can implement this
block is because the block can be written as B(Z,W l+1

O ,W l+1
1 ,W l+1

2 , bl+1
1 , bl+1

2 , ul(X)), where
W l+1

O ,W l+1
1 ,W l+1

2 , bl+1
1 , bl+1

2 are parameters withinW|l independent of the parameters of the self-
attention layer, ul(X) can be computed using X and W|l and all of the involved functions are
sub-differentiable.
Lemma A.1. Let ℓ be a differentiable loss function, fW (X) = g(ul(X)W l

Q, u
l(X)W l

K , ul(X)W l
V , X,W|l),

where ul : RT×din → RT×dmodel is a sub-differentiable function that computes the input matrix to the self-
attention layer, W l = (W l

Q,W
l
K ,W l

V) are the parameters of the lth layer, W|l contains all of the model’s
trainable parameters excluding W l and g is a sub-differentiable function (the composition of the layers above
the lth layer). Then,

rank
(
∇WQ

ℓ(fW (X))
)
, rank (∇WK

ℓ(fW (X))) , rank (∇WV
ℓ(fW (X))) ≤ T.

Proof. Let X ∈ RT×din be the input to the network (of sequence length T), and let Z = ul(X) ∈
RT×dmodel , where ul is the composition of all layers below layer l. By construction, ul does not depend
on W l. By the chain rule:

∂ℓ(fW (X))

∂W l
Q

=
∂ℓ(g(ul(X)W l

Q, u(X)W l
K , ul(X)W l

V , X,W|l))

∂W l
Q

=
∂ℓ(g(ul(X)W l

Q, u(X)W l
K , ul(X)W l

V , X,W|l))

∂ul(X)W l
Q

·
∂ul(X)W l

Q

∂W l
Q

=
∂ℓ(g(ul(X)W l

Q, u(X)W l
K , ul(X)W l

V , X,W|l))

∂ul(X)W l
Q

· ul(X).

(6)

15

Since ul(X) ∈ RT×dmodel , its rank is at most T . Since the rank of a product of two matrices is bounded
by the minimal rank of the two matrices, the rank of ∂ℓ(fW (X))

∂W l
Q

is bounded by T . The same argument
applies toWK andWV .

B. Additional Experiments
We conducted additional experiments with various learning settings, including training on different
datasets and using different architectures, to provide additional evidence for the bias of SGD with
weight decay toward rank minimization. The experimental setup and results are described below.

B.1. Results

Comparing our bound with the averaged rank. As mentioned in the main text, our bound
mlB log(2/ϵ)/(2µλ) is generally loose, but not trivial, as it scales as O(1) relative to the actual dimen-
sions of the weight matrices. To demonstrate that our bound is non-trivial for wide neural networks,
we trained an MLP-BN-2-10000 on CIFAR10 using B = 6, µ = 0.1, and λ = 8e−3. As shown in
Figure 6, the network is able to train (achieves a non-trivial training accuracy), and at the same time,
the bound is strictly smaller than the width of 10000 for any ϵ ≥ 0.3.
Training with different architectures. In the main text, we validated our predictions using the
ResNet-18 architecture. For a more comprehensive analysis, we conducted similar experiments with
additional architectures. Similar to the results in the main text, Figures 7, 8,9, 11, 10, 14 and 15 show
that, as we increase weight decay or learning rate or decrease batch size, the effective rank of the
learned weight matrices tends to decrease.
Rank minimization bias during training. To complement our results, we trained ViT models and
plotted the ranks during training in Figures 10 and 11. As shown, the training proceeds in two
phases: in the first, the rank decreases monotonically, and in the second, it becomes relatively stable
and does not change much.
Training with momentum. To ensure that our observations are applicable beyond just SGD with
weight decay, we conducted an experiment to test whether they also hold for SGD with both weight
decay and momentum. As shown in Figure 7, our predictions regarding the regularization effects of
hyperparameters remain consistent, even when momentum is included in the training process.
Training on different datasets. In Figures 14-15, we trained ResNet-18 instances on the SVHN,
Food101, Imagenette, MNIST, Fashion MNIST and Places365 datasets, varying the learning rate
while keeping the batch size (B = 16) and weight decay (λ = 5e−4) constant. Since the training on
Places365 computationally heavy, we only used 100k samples for training. The observed behavior,
previously noted for CIFAR-10, is also replicated for these different datasets.
Validating the role of positive weight decay for enabling the low-rank bias. Our theory demon-
strates that the low-rank bias emerges when training a model with SGD combined with weight decay.
This raises the question of whether weight decay is necessary in practice to achieve the low-rank bias.
In Figures 7, 8, 11, and 12, we observe that when λ = 0, the influence of the batch size or learning
rate on the rank of the weight matrices is minimal.
Comparing the rank of convolutional and fully-connected layers. In Theorem 3.3, the bound on
the rank of the weight matrix of the lth layer scales with ml. For a convolutional layer, ml equals the
number of patches on which the convolutional kernel is applied. In contrast, for a fully connected
linear layer, ml = 1. This raises the question of whether the rank of the parameter matrix of the
convolutional layer tends to be higher than that of fully connected layers.
To investigate this, we designed a residual network with mixed layers, consisting of residual blocks
of convolutional layers followed by residual blocks of fully connected layers. The architecture begins
with an initial convolutional layer with C = 256 channels, a kernel size of 3x3, stride 1, padding 1,
and no bias, followed by batch normalization and an activation function. This is followed by a stack of

16

k = 5 convolutional residual blocks, each with C = 256 channels and consisting of two convolutional
layers (kernel size 3x3, stride 1, padding 1, no bias), each followed by batch normalization and a
ReLU activation, with skip connections for residual learning. The output is then flattened and passed
through a fully connected layer that adjusts the dimensions (input: 64× 32× 32, output: C = 256),
followed by layer normalization and an activation function. Finally, k = 5 linear residual blocks refine
the features. Each block contains two fully connected layers (input and output dimensions: C = 256),
layer normalization, non-linear activation, and skip connections. A fully connected classification
layer maps the features to the number of output classes. We note that the minimal dimension of
the weight matrix for both the convolutional layers within the residual connections and the fully
connected layers is C = 256, so their ranks are always bounded by C = 256.
We trained this architecture on CIFAR10 with µ = 0.01 and varying values of λ and B. In Figure 16,
we plot the terminal averaged rank of the convolutional layers within the residual connections and
the averaged rank of the fully connected layers at the end of training, along with the effective ranks
of selected individual matrices.
As shown in the figure, the averaged effective rank of both the convolutional layers and the fully
connected layers, as well as the effective ranks of individual layers, decrease as λ increases. Although
the smaller dimension of the weight matrices is C = 256, the effective rank of all layers is smaller
than 256 for both convolutional and fully connected layers. Interestingly, the effective ranks of the
convolutional layers tend to be higher than those of the fully connected layers which aligns with the
fact that the rank bound is higher for the convolutional layers.
Singular values. In our previous experiments, wemeasured the average rank of the weight matrices
across different layers. To further investigate the rank of the learned weight matrices, we created
visualizations displaying the singular values of the weight matrices for each layer as a function of
batch size.
For instance, in Figures 18-19 we plotted the singular values of various layers for models that were
trained in the setting of Figure 4(b) (main text) and Figure 13(c). Our results indicate that as
a general tendency the singular values of each layer can be partitioned into two distinct groups:
“small” singular values and “large” singular values (see the intersection point of all curves in the
plots). Interestingly, the number of “small” singular values and “large” singular values is generally
independent of the batch size. Moreover, “large” singular values decrease with the batch size and
the “small” singular values increase with the batch size. This behavior provides additional evidence
that when training with smaller batch sizes, the matrices have fewer large singular values compared
to training with larger batch sizes.

17

100 200 300 400 500
Epoch

4.52e + 03

2.60e + 03

1.34e + 03

1.00e + 02

1.00e + 03

1.00e + 04

Av
er

ag
e

Ra
nk

Rank Bound, = 0.3
Rank Bound, = 0.5
Rank Bound, = 0.7
rank

100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

train
test

Figure 6: Comparing our boundwith the averaged rank. We trained aMLP-BN-2-10000 on CIFAR10
with B = 6, µ = 0.1, λ = 8e−3. We plot our bound for different choices of ϵ.

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

B = 32 B = 64 B = 128

Figure 7: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 when varying
λ. In this experiment, µ = 0.1, momentum 0.9 and ϵ = 1e−3.

18

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

20

40

60

80

100
Fin

al
 R

an
k

Layer 1
Layer 3
Layer 5
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

B = 4 B = 8 B = 16

Figure 8: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 when varying
λ. In this experiment, µ = 0.1 and ϵ = 1e−3.

20 40 60 80 100 120
Batch Size

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

20 40 60 80 100 120
Batch Size

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

20 40 60 80 100 120
Batch Size

0

20

40

60

80

100

Fin
al

 R
an

k

Layer 1
Layer 3
Layer 5
Average Rank

20 40 60 80 100 120
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

20 40 60 80 100 120
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

20 40 60 80 100 120
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

µ = 0.01 µ = 0.1 µ = 0.5

Figure 9: Average ranks and accuracy rates of MLP-BN-10-100 trained on CIFAR10 when varying
B. In this experiment, λ = 5e−4 and ϵ = 1e−3.

19

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

Av
er

ag
e

Ra
nk

batch size 2
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

µ = 0.004 µ = 0.008 µ = 0.04

Figure 10: Average ranks of ViT trained on CIFAR10 when varyingB. In this experiment, λ = 5e−4
and ϵ = 1e−3.

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

25 50 75 100 125 150 175 200
Epoch

0

100

200

300

400

500

Av
er

ag
e

Ra
nk

weight decay 0.0
weight decay 1e-5
weight decay 5e-5
weight decay 1e-4
weight decay 5e-4
weight decay 1e-3
weight decay 5e-3

B = 32 B = 64 B = 128

Figure 11: Average ranks of ViT trained on CIFAR10 when varying λ. In this experiment, µ = 4e−2
and ϵ = 1e−3.

10 4

2.0
×10

4

3.0
×10

4

Weight Decay

0

100

200

300

400

500

Fin
al

 R
an

k

Layer 3
Layer 7
Layer 15
Average Rank

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0

100

200

300

400

500

Fin
al

 R
an

k

Layer 3
Layer 7
Layer 15
Average Rank

B = 4 B = 8

10 4

2.0
×10

4

3.0
×10

4

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

10 4 10 3

2.0
×10

4

3.0
×10

4

2.0
×10

3

3.0
×10

3

Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

B = 16 B = 32

Figure 12: Average ranks and accuracy rates of ResNet-18 trained on CIFAR10 when varying λ. In
this experiment, µ = 1.5 and ϵ = 1e−3.

20

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0

50

100

150

200

250

300
Fin

al
 R

an
k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

101 102

2.0
×10

1

3.0
×10

1

Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

(a) µ = 1e−3, λ = 6e−3 (b) µ = 5e−3, λ = 5e−4 (c) µ = 1e−2, λ = 4e−4

Figure 13: Average ranks and accuracy rates of VGG-16 trained on CIFAR10 when varying B. We
used a threshold of ϵ = 1e−3.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

SVHN Food101 Imagenette
Figure 14: Average ranks and accuracy rates of ResNet-18 trained on SVHN, Food101, and SVHN
when varying µ. In this experiment, B = 16, λ = 5e−4 and ϵ = 1e−3.

21

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300
Fin

al
 R

an
k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0

50

100

150

200

250

300

Fin
al

 R
an

k

Layer 1
Layer 4
Layer 8
Layer 11
Average Rank

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

MNIST Fashion MNIST Places365
Figure 15: Average ranks and accuracy rates of ResNet-18 trained on MNIST, Fashion MNIST and
Places365 when varying µ. In this experiment, B = 16, λ = 5e−4 and ϵ = 1e−3.

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Weight Decay

0

50

100

150

200

250

Fin
al

 R
an

k

Conv Layer 1
Conv Layer 5
Conv Layer 10
Linear Layer 12
Linear Layer 16
Linear Layer 20
Avg Conv Rank
Avg Linear Rank

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Weight Decay

0

50

100

150

200

250

Fin
al

 R
an

k

Conv Layer 1
Conv Layer 5
Conv Layer 10
Linear Layer 12
Linear Layer 16
Linear Layer 20
Avg Conv Rank
Avg Linear Rank

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Weight Decay

0

50

100

150

200

250

Fin
al

 R
an

k

Conv Layer 1
Conv Layer 5
Conv Layer 10
Linear Layer 12
Linear Layer 16
Linear Layer 20
Avg Conv Rank
Avg Linear Rank

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008
Weight Decay

0.0

0.2

0.4

0.6

0.8

1.0

Fin
al

 A
cc

ur
ac

y

Train Accuracy
Test Accuracy

B = 16 B = 32 B = 64

Figure 16: Average ranks, individual layers’ ranks and accuracy rates of a mixed residual network
trained on CIFAR10 when varying λ. In this experiment, µ = 0.01 and ϵ = 1e−3.

22

100 200 300 400 500
Epoch

100

9 × 10 1

9.5 × 10 1

1.05 × 100
1.1 × 100

1.15 × 100
1.2 × 100

1.25 × 100 layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9
layer 10
layer 11
layer 12

100 200 300 400 500
Epoch

100

9.5 × 10 1

1.05 × 100

1.1 × 100

layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9
layer 10
layer 11
layer 12

B = 8 B = 16

100 200 300 400 500
Epoch

100

9.6 × 10 1

9.8 × 10 1

1.02 × 100

1.04 × 100

1.06 × 100

1.08 × 100 layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9
layer 10
layer 11
layer 12

100 200 300 400 500
Epoch

100

9.8 × 10 1

9.9 × 10 1

1.01 × 100

1.02 × 100

1.03 × 100

1.04 × 100

1.05 × 100 layer 0
layer 1
layer 2
layer 3
layer 4
layer 5
layer 6
layer 7
layer 8
layer 9
layer 10
layer 11
layer 12

B = 32 B = 64

Figure 17: Convergence of the weights for VGG-16 trained on CIFAR10. In this experiment,
µ = 5e−3, λ = 5e−4 and ϵ = 0.01 (see Figure 13(b) for the weight ranks and accuracy rates).

23

0 10 20 30 40 50 60
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 10 20 30 40 50 60
Index

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 10 20 30 40 50 60
Index

10 3

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 1 layer 2 layer 3

0 10 20 30 40 50 60
Index

10 3

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 20 40 60 80 100 120
Index

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 20 40 60 80 100 120
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 4 layer 5 layer 6

0 20 40 60 80 100 120
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 20 40 60 80 100 120
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 50 100 150 200 250
Index

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Si
ng

ul
ar

 V
al

ue
batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 7 layer 8 layer 9

0 50 100 150 200 250
Index

10 1

3 × 10 2

4 × 10 2

6 × 10 2

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 50 100 150 200 250
Index

10 1

3 × 10 2

4 × 10 2

6 × 10 2

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 50 100 150 200 250
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 10 layer 11 layer 12

0 100 200 300 400 500
Index

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Index

10 4

10 3

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Index

10 5

10 4

10 3

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 13 layer 14 layer 15
Figure 18: Singular values of the weight matrices of ResNet-18 trained on CIFAR10 when varying
B. Each model was trained with µ = 5e−3 and λ = 6e−3. Each plot reports the singular values of a
given layer (see Figure 4(b) in the main text for the averaged ranks and accuracy rates).

24

0 10 20 30 40 50 60
Index

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 20 40 60 80 100 120
Index

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 20 40 60 80 100 120
Index

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 1 layer 2 layer 3

0 50 100 150 200 250
Index

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 50 100 150 200 250
Index

10 1

3 × 10 2

4 × 10 2

6 × 10 2

2 × 10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 50 100 150 200 250
Index

10 1

3 × 10 2

4 × 10 2

6 × 10 2

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 4 layer 5 layer 6

0 100 200 300 400 500
Index

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 7 layer 8 layer 9

0 100 200 300 400 500
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

0 100 200 300 400 500
Index

10 2

10 1

Si
ng

ul
ar

 V
al

ue

batch size 4
batch size 8
batch size 16
batch size 32
batch size 64
batch size 128

layer 10 layer 11 layer 12
Figure 19: Singular values of the weight matrices of VGG-16 trained on CIFAR10 when varying
B. Each model was trained with µ = 1e−2 and λ = 4e−4. Each plot reports the singular values of a
given layer (see Figure 13(c) for the averaged ranks and accuracy rates).

25

	. Introduction
	. Problem Setup
	. Theoretical Results
	. Experiments
	. Setup
	. Results

	. Conclusions
	. Analyzing the Gradient Rank for Self-Attention Layers
	. Additional Experiments
	. Results

