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Abstract

Diffusion models have demonstrated excellent performance for real-world image
super-resolution (Real-ISR), albeit at high computational costs. Most existing meth-
ods are trying to derive one-step diffusion models from multi-step counterparts
through knowledge distillation (KD) or variational score distillation (VSD). How-
ever, these methods are limited by the capabilities of the teacher model, especially
if the teacher model itself is not sufficiently strong. To tackle these issues, we pro-
pose a new One-Step Diffusion model with a larger-scale Diffusion Discriminator
for SR, called D3SR. Our discriminator is able to distill noisy features from any
time step of diffusion models in the latent space. In this way, our diffusion dis-
criminator breaks through the potential limitations imposed by the presence of
a teacher model.Additionally, we improve the perceptual loss with edge-aware
DISTS (EA-DISTS) to enhance the model’s ability to generate fine details. Our
experiments demonstrate that, compared with previous diffusion-based methods
requiring dozens or even hundreds of steps, our D3SR attains comparable or even
superior results in both quantitative metrics and qualitative evaluations. Moreover,
compared with other methods, D3SR achieves at least 3× faster inference speed
and reduces parameters by at least 30%.

1 Introduction

Real-world image super-resolution (Real-ISR) is a challenging task that aims to reconstruct high-
resolution (HR) images from their low-resolution (LR) counterparts in real-world settings [1]. Most
image super-resolution (SR) methods [2, 3, 4, 5, 6] use Bicubic downsampling of HR images
to generate LR samples. These methods achieve good results in reconstructing simple degraded
images. However, they struggle with the complex and unknown degradations widely existing in
real-world scenarios. Previous research has predominantly employed generative adversarial networks
(GANs) [7, 8, 9, 10] for Real-ISR task. In recent developments, diffusion models (DMs) [11, 12, 13]
have emerged as a promising alternative. Recent Real-ISR methods have achieved outstanding
performance by using diffusion models. In particular, some methods [14, 15, 16, 17, 18] leverage
powerful pre-trained diffusion models, such as large-scale text-to-image (T2I) diffusion models
like Stable Diffusion [12, 19]. These pre-trained T2I models provide extensive priors and powerful
generative abilities. Most Diffusion model based methods generate HR images by employing
ControlNet models [20], conditioning on the LR inputs. However, these methods typically require
tens to hundreds of diffusion steps to produce high-quality HR images. The introduction of ControlNet
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not only increases the number of model parameters but also further exacerbates inference latency.
Consequently, Diffusion model based multi-step diffusion methods often incur delays of tens of
seconds when processing a single image, which significantly limits their practical application in
real-world scenarios for low-level image reconstruction tasks.

To accelerate the generation process of diffusion models, recent research has introduced numerous
one-step diffusion methods [21, 22, 23, 24, 25, 26, 27, 28]. These methods are known as diffusion
distillation, which distill multi-step pre-trained diffusion models into one-step counterparts. Most of
these approaches employ a knowledge distillation strategy, using the multi-step diffusion model as a
teacher to train a one-step diffusion student model. These methods significantly reduce inference
latency, and the quality of the generated images can be comparable to that of multi-step diffusion
models. Real-ISR methods based on one-step diffusion models have become an increasingly popular
research direction [29, 30, 31, 32, 33, 34]. These methods employ pre-trained multi-step diffusion
models as teachers to guide the training process. They achieve promising results, with performance
comparable to that of multi-step models. However, further performance improvement remains a
challenging task. Existing methods rely on a multi-step teacher to conduct distillation. Nevertheless,
this paradigm would inevitably come with several limitations. First, the multi-step teacher may
hamper the effectiveness of distillation if the teacher itself is not strong enough. For example,
variational score distillation (VSD) [35, 36, 32] is a one-step diffusion distillation method. It
enhances the realism of generated images by optimizing the KL divergence between the scores of
the teacher and student models. This approach heavily relies on the prior knowledge of the teacher
diffusion model. The limitations of the multi-step diffusion model impose an upper bound on the
performance of the aforementioned methods. Second, the widely used VSD approach does not exploit
any high resolution (HR) data for training but merely depend on the prior knowledge embedded in the
pre-trained parameters. If the distribution fitted by the multi-step diffusion model (teacher in VSD)
deviates from the high-quality image distribution, it may lead to a loss of realism or the generation of
fake textures in the student model’s images.

To overcome the aforementioned challenges, we propose a novel one-step diffusion model with a large-
scale diffusion discriminator. Different from existing one-step diffusion models using distillation
techniques with teacher models, we use a larger-scale diffusion model, SDXL [19], as a discriminator
to leverage the powerful priors. Specifically, our diffusion discriminator aims to distill latent features
with different noises from true data. At the same time, it enables us to perceive the true data
distribution of high-quality super-resolution datasets. As a result, we overcome the performance
limitations imposed by the teacher model’s upper bound. Additionally, we propose a simple and
effective improvement to the perceptual loss, edge-aware DISTS (EA-DISTS), by capturing high-
frequency details from extracted edges. Our comprehensive experiments indicate that D3SR achieves
superior performance and less inference time among one-step DM-based Real-ISR models.

Our main contributions are summarized as follows:

• We propose a simple but effective one-step diffusion distillation method, D3SR, which uses
a large-scale diffusion model as a discriminator for adversarial training. Unlike previous
one-step diffusion ISR methods, we do not use a pre-trained multi-step diffusion model as a
teacher to guide the training. Instead, we employ a larger-scale diffusion model to guide
the training process. This breaks through the performance limitations of teacher models in
previous distillation methods.

• We improve the perceptual loss by proposing the edge-aware DISTS (EA-DISTS) loss.
Our EA-DISTS leverages image edges to enhance the model’s ability and improve the
authenticity of reconstructed details.

• Experiments show that our method outperforms previous one-step diffusion distillation
methods, such as VSD and knowledge distillation. When compared with multi-step DM-
based models, D3SR obtains comparable or even better performance with over 7× speedup
in inference time. Moreover, our method offers a 3× inference speed advantage over
one-step DM-based methods and reduces parameters by at least 30%.
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2 Related Work
2.1 Real-World Image Super-Resolution

Real-world image super-resolution (Real-ISR) aims to recover high-resolution (HR) images from low-
resolution (LR) observations in real-world scenarios. The complex and unknown degradation patterns
in such scenarios make Real-ISR a challenging problem [37, 38, 39, 40]. To address this problem,
a variety of methods have been proposed. Early image super-resolution models [2, 41, 42, 5, 6]
typically rely on simple synthetic degradations like Bicubic downsampling for generating LR-HR
pairs. Although these methods perform well under simple degradation settings, they struggle to
achieve satisfactory results in real-world scenarios. Later, GAN-based methods such as BSRGAN [9],
Real-ESRGAN [8], and SwinIR-GAN [10] introduce more complex degradation processes. These
methods achieve promising perceptual quality but encounter issues such as training instability.
Additionally, they have limitations in preserving fine natural details. Recently, Stable Diffusion
(SD) [12] is considered for addressing Real-ISR tasks due to its strong ability to capture complex data
distributions and provide robust generative priors. Approaches such as StableSR [43], DiffBIR [16],
and SeeSR [14] leverage pre-trained diffusion priors and ControlNet models [20] to enhance HR
image generation. One-step diffusion models have gained widespread attention from researchers.
Methods such as YONOS-SR [29], SinSR [30], OESEDiff [32], AddSR [31], TAD-SR [44], and
TSD-SR [45] have achieved Real-ISR with diffusion models in a single sampling step.

2.2 Acceleration of Diffusion Models

Acceleration of diffusion models can reduce computational costs and inference time. Therefore,
various strategies have been developed to enhance the efficiency of diffusion models in image
generation tasks. Fast diffusion samplers [13, 46, 47, 48, 49, 50] have significantly reduced the
number of sampling steps from 1,000 to 15∼100 without requiring model retraining. However,
further reducing the steps below 10 often leads to a performance drop. Under these circumstances,
distillation techniques have made considerable progress in speeding up inference [21, 51, 23, 24,
25, 52, 26, 27, 53, 36]. For instance, Progressive Distillation (PD) methods [23, 24] have distilled
pre-trained diffusion models to under 10 steps. Consistency models [25] have further reduced the
steps to 2∼4 with promising results. Instaflow [27] further achieves one-step generation through
reflow [51] and distillation. Recent score distillation-based methods, such as Distribution Matching
Distillation (DMD) [54, 55] and Variational Score Distillation (VSD) [56, 36], aim to achieve one-
step text-to-image generation. They minimize the Kullback–Leibler (KL) divergence between the
generated data distribution and the real data distribution. Although these approaches have made
notable progress, they still face challenges, like high training costs and dependence on teacher models.

3 Method

In this section, we present our real-world image super-resolution (Real-ISR) model D3SR. First,
in section 3.1, we review the basics of diffusion models and introduce the D3SR generator. In sec-
tion 3.2, we introduce the diffusion distillation method using a large-scale diffusion discriminator.
In section 3.3, we introduce the edge-aware DISTS (EA-DISTS) perceptual loss. This loss improves
texture details and enhances visual quality. Finally, in section 3.4, we describe the training process
for D3SR.

3.1 Preliminaries: Diffusion Models

Diffusion models include forward and reverse processes. During the forward diffusion process,
Gaussian noise with variance βt ∈ (0, 1) is gradually injected into the latent variable z: zt =√
ᾱt z +

√
1− ᾱt ϵ, where ϵ∼N (0, I), αt = 1− βt, and ᾱt =

∏t
s=1 αs. In the reverse process, we

can directly predict the clean latent variable ẑ0 from the model’s predicted noise ϵ̂: ẑ0 = zt−
√
1−ᾱt ϵ̂√
ᾱt

,
where ϵ̂ is the prediction of the network ϵθ given zt and t: ϵ̂ = ϵθ(zt; t).

As illustrated in Fig. 1, we first employ the encoder Eθ to map the low-resolution (LR) image xL

into the latent space, yielding zL: zL = Eθ(xL). Next, we perform a one denoising step to obtain the
predicted noise ϵ̂ and compute the high-resolution (HR) latent representation ẑH :

ẑH =
zL −

√
1− ᾱTL

ϵθ(zL;TL)√
ᾱTL

, (1)
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Figure 1: Training framework of D3SR. The left side represents the generator Gθ, which includes the
pre-trained VAE and UNet from Stable Diffusion. Only the UNet is fine-tuned using LoRA, while
other parameters remain frozen. The right side depicts the diffusion discriminator , which guides the
training process without participating in inference. The discriminator extracts the UNet Mid-block
outputs and processes them through an MLP to generate realism scores for different image regions.
Both the downsample and middle blocks of the UNet in the discriminator are fine-tuned with LoRA,
whereas the MLP is randomly initialized.
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Figure 2: Visualization of features dimensionality reduction for the first 100 channels from the middle
block outputs of the Stable Diffusion (SD) UNet. The distributions of the two types of image features
are distinctly different.

where ϵθ denotes the denoising network parameterized by θ, and TL is the diffusion time step. Unlike
one-step text-to-image (T2I) diffusion models [25, 54], the input to the UNet of the Real-ISR diffusion
models is not pure Gaussian noise. We set TL to an intermediate time step within the range [0, T ],
where T is the total number of diffusion time steps. In Stable Diffusion (SD), T = 1, 000. Finally,
we decode ẑH using the decoder Dθ to reconstruct the HR image x̂H : x̂H = Dθ(ẑH). The entire
computation process of the generator can be expressed as x̂H = Gθ(xL).

3.2 Distillation with Large Diffusion Discriminator

Currently successful one-step diffusion distillation methods applied in image super-resolution include
knowledge distillation (KD), variational score distillation (VSD), and others. Among them, VSD
stands out due to its interesting principles and excellent performance. VSD works by training an
additional diffusion network to fit the fake score sfake of the generated image, while using a frozen
pre-trained diffusion model to obtain the real score sreal based on its prior. The method then aligns
the two scores’ differences using the Kullback-Leibler (KL) divergence, thus enhancing the realism
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of the generated image. However, in VSD, the absence of real image datasets implies that the upper
bound of VSD is limited by the prior of the pre-trained diffusion model. The teacher model in VSD
restricts the generative capacity of the student model, making further performance improvements
challenging.
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Figure 3: Comparison of the performance of SD models
with different scales as discriminators. As the model
size increases, the performance of the generator im-
proves accordingly.

To address the issue incurred by a weak
multi-step teacher, we propose to use
a large-scale diffusion model to provide
stronger guidance for one-step distillation.
Figure 2 shows the distributions of real and
generated images’ latent code at the mid-
dle block output of the UNet in the Stable
Diffusion (SD) model. There is a clear dif-
ference in their distribution patterns. This
suggests that using a pre-trained diffusion
model as a discriminator has great potential.
It can also avoid instability issues during
the early stages of training. Figure 1 illus-
trates our training framework. We append
an MLP block after the SD UNet middle
block as a classifier to output the authentic-
ity score for each patch.

During training, we input the forward dif-
fusion results of both the generator’s pre-
dicted latent code ẑH , and the ground truth
latent code zH = Eθ(xH). The adversarial losses for updating the generator and discriminator are
defined as:

LG = −ExL∼pdata, t∼[0,T ] [logDθ (F (ẑH , t))] , (2)

LD = −ExL∼pdata, t∼[0,T ] [log (1−Dθ (F (ẑH , t)))]

− ExH∼pdata, t∼[0,T ] [logDθ (F (zH , t))] , (3)

where F (·, t) denotes the forward diffusion process of · at time step t ∈ [0, T ], specifically,

F (z, t) =
√
ᾱt z +

√
1− ᾱt ϵ, with ϵ∼N (0, I). (4)

Relation to Diffusion GAN Methods. Recently, many methods have combined GANs and Diffusion
models, achieving success in image generation and other fields. Diffusion-GAN [57] uses a timestep-
dependent discriminator to guide the generator’s training. DDGAN [58] employs a multimodal
conditional GAN to achieve large-step denoising. ADD [22] and LADD [59] both introduce discrimi-
nators to enhance the generative quality of one-step student diffusion models. These discriminators
operate in pixel space and latent space, respectively. Both our method and existing Diffusion GAN
methods demonstrate the potential of adversarial training in diffusion models. However, there are
several essential differences. First, we use a pre-trained multi-step diffusion model as the discrimi-
nator, leveraging the prior of large-scale models to guide the training process. Second, we explore
the impact of scaling. Figure 3 shows the performance of different SD models as discriminators. It
reveals that large-scale diffusion discriminators break through the performance limits of pre-trained
diffusion models, achieving superior results.

3.3 Edge-Aware DISTS

To further enhance the quality of the generated images, we aim to incorporate perceptual loss. Most
image reconstruction methods utilize LPIPS [60] as the perceptual loss. However, to better preserve
image texture details and alleviate pseudo-textures in the reconstruction under higher noise levels,
we need to focus on the textures on HR images. DISTS [61] can compute the structural and textural
similarity of images, aligning with human subjective perception of image quality. Furthermore,
regions with rich textures or details often exhibit strong edge information. Leveraging image edge
information effectively enhances texture quality. Based on this, we propose a novel perceptual loss,
termed Edge-Aware DISTS (EA-DISTS). This perceptual loss simultaneously evaluates the structure
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and texture similarity of the reconstructed and HR images and their edges, thereby enhancing texture
detail restoration.

Our proposed EA-DISTS is defined as:

LEA-DISTS(Gθ(xL), xH) =

LDISTS(Gθ(xL), xH) + LDISTS(S(Gθ(xL)),S(xH)), (5)

where S(·) represents the Sobel operator used to extract edge information from the images. It consists
of two convolution kernels, Gx and Gy , which detect horizontal and vertical edges, respectively:

Gx =

[−1 0 1
−2 0 2
−1 0 1

]
, Gy =

[−1 −2 −1
0 0 0
1 2 1

]
. (6)

The Sobel operator is applied to an image x as follows:

S(x) =
√

(Gx ∗ x)2 + (Gy ∗ x)2, (7)

where ∗ denotes the convolution operation.

0.0

0.2

1.0

0.8

0.6

0.4

(a) DISTS (b) EA-DISTS

Figure 4: Feature visualization associated with DISTS
and EA-DISTS. Our EA-DISTS captures more high-
frequency information, like texture and edges.

To intuitively demonstrate the effective-
ness of EA-DISTS, we visualize the fea-
ture maps during the DISTS computation
process. Figure 4 presents the visualization
results of VGG-16 feature maps. As shown
in Fig. 4, in areas rich with image details,
such as the building windows, the feature
maps associated with EA-DISTS exhibit
more high-frequency information. Com-
pared to DISTS, EA-DISTS demonstrates
higher contrast in textured and smooth re-
gions, further emphasizing the textural de-
tails within the images. Our EA-DISTS
places greater emphasis on texture details within images, guiding the model to generate realistic and
rich details.

3.4 Overall Training Scheme

Here, we summarize the whole one-step diffusion model training process. As described in section 3.1,
within the generator component, D3SR obtains ẑH and the decoded high-resolution image x̂H through
one-step sampling. The generator then updates its parameters by computing the spatial loss Lspatial
in pixel space between the generated image and the ground truth, as well as the adversarial loss LG
derived from the discriminator in the latent space (Eq. 2). The loss function for updating the generator
is defined as Lspatial + λ1LG . Specifically, we employ a weighted sum of Mean Squared Error (MSE)
loss and perceptual loss to define the spatial loss:

Lspatial(Gθ(xL), xH) =

LMSE(Gθ(xL), xH) + λ2LEA-DISTS(Gθ(xL), xH), (8)

where λ1 and λ2 are hyperparameters used to balance the contributions of each loss component. The
supplementary material provide a detailed description of the algorithm’s pseudocode and the values
of the hyperparameters.

For discriminator training, we utilize paired training features, where each pair consists of a negative
sample feature ẑH and the corresponding real image’s latent representation zH as a positive one. Using
Eq. 3, we compute the adversarial loss LD to update the discriminator’s parameters. Furthermore,
the discriminator can be initialized with weights from more powerful pre-trained models, such as
SDXL [19], to achieve superior performance.

This training approach allows our D3SR to overcome the limitations imposed by teacher models,
enhancing generator performance without increasing its parameter count or compromising efficiency.
Additionally, the integration of a robust discriminator initialized with advanced pre-trained models
ensures that the generator receives high-quality feedback, facilitating the production of more realistic
and detailed high-resolution images.

6



Table 1: Quantitative results (×4) on the Real-ISR testset with ground truth. The best and second-best
results are colored red and blue. In the one-step diffusion models, the best metric is bolded.

Dataset Method PSNR↑ SSIM↑ LPIPS↓ DISTS↓ NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑

StableSR-s200 26.28 0.7733 0.2622 0.1583 4.892 60.53 0.5570 0.4310
DiffBIR-s50 24.87 0.6486 0.3834 0.2015 3.947 68.02 0.6309 0.6042
SeeSR-s50 26.20 0.7555 0.2806 0.1784 4.540 66.37 0.6118 0.5483

ResShift-s15 25.45 0.7246 0.3727 0.2344 7.349 56.18 0.5004 0.4307
ADDSR-s4 23.15 0.6662 0.3769 0.2353 5.256 66.54 0.6581 0.5390

RealSR SinSR-s1 25.83 0.7183 0.3641 0.2193 5.746 61.62 0.5362 0.4691
OSEDiff-s1 24.57 0.7202 0.3036 0.1808 4.344 67.31 0.6148 0.5524
ADDSR-s1 25.23 0.7295 0.2990 0.1852 5.223 63.08 0.5457 0.4498

D3SR-s1 24.11 0.7152 0.2961 0.1782 3.899 68.23 0.6383 0.5647

StableSR-s200 23.68 0.6270 0.4167 0.2023 4.602 49.51 0.4774 0.3775
DiffBIR-s50 22.33 0.5133 0.4681 0.1889 3.156 70.07 0.6307 0.6352
SeeSR-s50 23.21 0.6114 0.3477 0.1706 3.591 67.99 0.5959 0.5842

ResShift-s15 23.55 0.6023 0.4088 0.2228 6.870 56.07 0.4791 0.4269
ADDSR-s4 22.08 0.5578 0.4169 0.2145 4.738 68.26 0.5998 0.6007

DIV2K-val SinSR-s1 22.55 0.5405 0.4390 0.2033 5.620 62.25 0.5011 0.5206
OSEDiff-s1 23.10 0.6127 0.3447 0.1750 3.583 66.62 0.5530 0.5330
ADDSR-s1 22.74 0.6007 0.3961 0.1974 4.270 62.08 0.5118 0.4868

D3SR-s1 22.05 0.6031 0.3556 0.1500 3.295 68.51 0.5795 0.5370

4 Experiments
We conduct comprehensive experiments to validate the effectiveness of D3SR in real-world image
super-resolution (Real-ISR). We provide a detailed introduction of our experimental setup in sec-
tion 4.1. In section 4.2, we evaluate our method and compare it against the current state-of-the-art
methods. In section 4.3, we carry out comprehensive ablation studies to validate the effectiveness and
robustness of our proposed approach.

4.1 Experimental Settings
Datasets. We train D3SR on LSDIR [62] and the first 10k images from FFHQ [63], totaling 95k
images. During training, we randomly crop patches of size 512×512 pixels from these images. To
get low-resolution (LR) and high-resolution (HR) pairs for training, we apply the Real-ESRGAN [64]
degradation pipeline. We conduct extensive evaluations of D3SR on a synthetic dataset DIV2K-
val [65] and two real-world datasets, including RealSR [66] and RealSet65 [67]. In DIV2K-val, we
use the Real-ESRGAN degradation pipeline to synthesize the corresponding LR images. We evaluate
our model and all other methods by using the whole images from each dataset.

Compared Methods. We compare our D3SR with state-of-the-art DM-based methods for real
image super-resolution (Real-ISR), as well as other prominent approaches, including GAN-based and
Transformer-based methods. The DM-based methods include multi-step diffusion models, such as
StableSR [43], ResShift [67], DiffBIR [16], and SeeSR [14], alongside recently proposed one-step
diffusion models like SinSR [30], OSEDiff [32], and AddSR [31]. Other methods include GAN-
based approaches, such as BSRGAN [9], RealSR-JPEG [39], Real-ESRGAN [64], LDL [68], and
FeMASR [69], as well as Transformer-based method SwinIR [10].

Evaluation Metrics. To assess the performance of each method, we employ four full-reference (FR)
and four no-reference (NR) image quality metrics. The FR metrics include PSNR, SSIM, LPIPS [60],
and DISTS [61]. Both PSNR and SSIM are computed on the Y channel in the YCbCr color space.
The NR metrics include NIQE [70], MUSIQ [71], ManIQA [72], and CLIPIQA [73].

Implementation Details. We initialize the generator network with the SD 2.1-base parameters and
the discriminator network with partial parameters from SDXL. We set both the rank and scaling
factor α of LoRA to 16 in the generator and discriminator. We use the AdamW optimizer and set the
learning rate for both the generator and discriminator to 5e-5. Training is performed with a batch size
of 8 over 100K iterations with 4 NVIDIA A100-40GB GPUs.

4.2 Comparison with State-of-the-Art Methods
Quantitative Results. Tables 1 and 2 provide quantitative comparisons of the methods across the
three datasets. D3SR achieves the best performance among all no-reference (NR) metrics in one-step
diffusion methods. These NR metrics reflect the details and realism of the images. This indicates that
D3SR outperforms all one-step methods and most multi-step methods. Recently, some studies [18]
have pointed out that reference-based metrics such as PSNR and SSIM cannot accurately reflect the

7



Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff D3SR (ours)

Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff D3SR (ours)

Bicubic Real-ESRGAN SwinIR StableSR DiffBIR

ResShift SeeSR SinSR OSEDiff D3SR (ours)

Figure 5: Visual comparisons (×4) on Real-ISR task (RealSR [66] dataset).
performance of diffusion-based Real-ISR methods. We discuss this in the supplementary materials.
We compare the quantitative and qualitative results, including those of GAN-based methods. We find
that, compared to diffusion-based methods, GAN-based methods generally achieve higher PSNR and
SSIM. However, the image quality of these methods is not as high.

Table 2: Quantitative results (×4) on RealSet65
testset. The best and second-best results are col-
ored red and blue. In the one-step diffusion models,
the best metric is bolded.

Method NIQE↓ MUSIQ↑ MANIQA↑ CLIPIQA↑

StableSR-s200 4.985 58.89 0.5269 0.4421
DiffBIR-s50 4.122 71.23 0.6371 0.5260
SeeSR-s50 4.689 69.79 0.6018 0.5657
ResShift-s15 6.730 59.36 0.5071 0.4416
ADDSR-s4 5.390 68.97 0.6075 0.5272
SinSR-s1 5.664 64.22 0.5338 0.5083
OSEDiff-s1 4.224 69.04 0.6024 0.5234
ADDSR-s1 5.207 64.22 0.5258 0.4718

D3SR-s1 3.998 70.25 0.6298 0.5481

Visual Results. Figure 5 presents a visual
comparison of various diffusion-based Real-ISR
methods. As observed, most existing methods
struggle to generate realistic details and often
produce incorrect content in certain regions of
the image due to noise artifacts. Notably, our
D3SR demonstrates a significant advantage over
others, particularly in the restoration of textual
content. Additional visual comparison results
are provided in the supplementary material.

Complexity Analysis. Table 3 presents a com-
plexity comparison of Stable Diffusion (SD)-
based Real-ISR methods, including the number
of inference steps, inference time, parameter numbers, and MACs (Multiply-Accumulate Operations).
All methods are evaluated on an NVIDIA A100 GPU. D3SR achieves the fastest inference speed
among all SD-based methods. Furthermore, our method supports using a fixed text embedding as
the generation condition. Therefore, we do not require CLIP and other additional modules (such
as DAPE used by OSEDiff and SeeSR, and ControlNet used by DiffBIR) for inference. Our D3SR
has the smallest number of model parameters during inference among Stable Diffusion (SD)-based
methods, reducing the parameters by 33% compared to OSEDiff.

In this section, we validate the effectiveness of two key components in D3SR. More ablation experi-
ments can be found in the supplementary materials.

4.3 Ablation Study
Perceptual Loss. Table 4a presents the impact of different perceptual loss functions, as well as only
mean squared error (MSE) is applied as the spatial loss. Figure 6 showcases the visual outcomes of
these experiments. The results indicate that incorporating perceptual loss is crucial for training SR
models, as it facilitates the generation of more realistic details and enhances overall visual quality.
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Table 3: Complexity comparison (×4) among different methods, including sampling steps during
inference, inference time, parameter count, and MACs. Inference time and MACs are tested for an
output size of 512×512 with a single A100-40GB GPU.

StableSR DiffBIR SeeSR ResShift SinSR OSEDiff D3SR

# Step 200 50 50 15 1 1 1
Inference Time / s 11.50 7.79 5.93 0.71 0.16 0.35 0.11
# Total Param / M 1.4×103 1.6×103 2.0×103 173.8 173.8 1.4×103 966.3
# MACs / G 75,812 24,528 32,336 4,903 2,059 2,269 2,132

Table 4: Ablation studys on the effects of perceptual losses and different discriminators.
(a) Ablation on different perceptual losses.

Loss Function LPIPS↓ NIQE↓ MUSIQ↑ ManIQA↑

MSE 0.3626 4.446 65.35 0.5457
LPIPS 0.3190 4.123 66.41 0.6383
EA-LPIPS 0.3173 4.046 67.47 0.6403
DISTS 0.3463 3.800 67.55 0.6406
EA-DISTS 0.3150 3.747 68.69 0.6436

(b) Ablation on different discriminators.

Discriminator LPIPS↓ NIQE↓ MUSIQ↑ ManIQA↑

None 0.3862 6.962 62.36 0.5597
CNN 0.3402 6.139 64.36 0.5666
Diffusion-GAN 0.3200 4.518 67.51 0.5800
SD 2.1 (ours) 0.3166 3.925 68.08 0.6198
SDXL (ours) 0.3150 3.747 68.69 0.6436

LPIPS DISTS

EA-LPIPS EA-DISTS

LPIPS DISTS

EA-LPIPS EA-DISTS

Figure 6: Visual results (×4) of DFOSD with different perceptual losses. The left side shows a
comparison of the checkerboard. The right one shows content about some numbers, i.e., ‘24, 26, 28’.

Our proposed edge-aware DISTS (EA-DISTS) achieves the best performance across various image
quality metrics and visual assessments. As shown in Fig. 6, EA-DISTS excels in producing highly
realistic details, demonstrating its advantage in perceptual quality. This highlights the effectiveness
of EA-DISTS in accurately restoring image textures and details, thereby significantly improving the
visual quality.

Diffusion Discriminator. We evaluate the impact of various discriminator modules on the training of
D3SR, including our used diffusion discriminator, vanilla discriminator (CNN), diffusion-GAN [57]
style discriminator, and training without any discriminator. The CNN discriminator operates in the
pixel space, while other discriminators operate in the latent space. The experimental results are shown
in Table 4b. The comparison between the Diffusion-GAN discriminator and the SD 2.1 discriminator
indicates that using a pre-trained Stable Diffusion (SD) model as the discriminator outperforms
randomly initialized parameters.

Next, we use SDXL 1.0-base as the discriminator while keeping the generator size unchanged to
verify the impact of scaling for diffusion discriminators. As shown in the last two rows of Table 4b,
the performance of the one-step diffusion model trained with SDXL as the discriminator outperforms
the model trained with SD 2.1 as the discriminator, without requiring any modifications to the
generator’s architecture. This suggests that D3SR can effectively leverage the strengths of more
powerful pre-trained models, and enhance the performance of generator without compromising its
efficiency. This breaks the upper bound imposed by the muti-step teacher diffusion model, making
further performance improvement simpler.

5 Conclusion
In this work, we propose D3SR, a One-Step Diffusion model for Real-ISR. Unlike previous methods
that use diffusion distillation, our method breaks the limitations of the teacher. We propose the edge-
aware DISTS (EA-DISTS) perceptual loss, which enhances the texture realism and visual quality
of the generated images. Our adversarial training strategy allows D3SR to outperform multi-step
diffusion models in visual quality. Experiments show that D3SR achieves superior performance and
improves image realism. This highlights its potential for efficient image restoration.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided implementation details in the experiments section.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided implementation details in experiments section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to the experiment part.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the experiment part.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the impacts in the supplementary material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have credited most previous works in the paper. The license and terms are
respected properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release code and models. In the paper, we have provided implementa-
tion details and other contents to reproduce our results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve those experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve those experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLMs usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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