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Abstract

Source-free domain adaptation (SFDA) aims to adapt a pre-trained source model
to an unlabeled target domain without requiring labeled source data. In a self-
supervised setting, relying on pseudo labels on target domain samples facilitates
the domain adaptation performance providing strong supervision. However, a crit-
ical problem of this approach is the inherent instability of the pre-trained source
model in the target domain, leading to unreliable pseudo labels for the target do-
main data. To tackle this, we propose a novel Dual-perspective pseudo labeling
strategy that jointly leverages a task-specific perspective and a domain-invariant
perspective, assigning pseudo labels only to target samples on which the target
model’s predictions and CLIP’s predictions agree. To further enhance representa-
tion learning without introducing noisy supervision, we apply consistency training
to uncertain samples. Additionally, we introduce a Tsallis mutual information
(TMI)-based vision optimization strategy guided by an Uncertainty-based adapta-
tion index (UAI), which dynamically modulates entropy sensitivity based on the
model’s adaptation uncertainty. The UAI-based training paradigm enables stable
and adaptive domain alignment by effectively balancing exploration and exploita-
tion processes during the optimization process. Our proposed method achieves
state-of-the-art performance on domain adaptation benchmark datasets, improving
adaptation accuracy by 1.6% on Office-Home, 1.4% on VisDA-C, and 2.9% on
DomainNet-126, demonstrating its effectiveness in SFDA. The code is publicly
available at https://github.com/l3umblee/duet-sfda.

1 Introduction

Unsupervised domain adaptation (UDA)[26, 3, 15, 6] explores training strategies or model architec-
tures that enable a model trained on labeled source domain data to achieve high task accuracy on the
unlabeled target domain data. Traditionally, UDA assumes access to both labeled source domain data
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and unlabeled target domain data. However, in practical scenarios, the application of UDA can be
limited due to privacy concerns, legal regulations, and data security issues associated with labeled
source domain data.

Figure 1: Limitations of the existing state-of-the-
art method[29] and comparison with the proposed
approach on Clipart (target domain) of the Office-
Home dataset. Comparison of (a) pseudo label ac-
curacy and (b) pseudo label assignment ratio. The
x-axis represents the training iterations.

To address these limitations, source-free domain
adaptation (SFDA)[12, 1, 28, 29, 30, 38, 11,
13, 27] has been proposed, allowing domain
adaptation without the use of labeled source do-
main data. SFDA relies solely on a pre-trained
source model and unlabeled target domain data
to achieve adaptation. SFDA can be broadly cat-
egorized into two main approaches. The data-
based approach[32, 10, 39, 8] focuses on con-
structing a virtual source domain using adversar-
ial learning techniques such as GANs[4, 9, 14]
or on extracting intrinsic feature information
from existing data to facilitate adaptation to
the target domain. In contrast, the model-driven
approach[12, 1, 29] operates in a self-supervised learning paradigm, where supervision is derived
from the target domain data based on the predictions (pseudo labels) generated by the pre-trained
source model. It generally outperforms data-based approaches and has become the most widely
adopted paradigm in SFDA. A representative method of the model-driven approach is SHOT[12],
which generates pseudo labels for target domain samples based on feature space analysis. These
pseudo labels are subsequently utilized for entropy minimization, enhancing the pre-trained source
model’s performance in the target domain. AdaContrast[1] performs batch-wise pseudo label genera-
tion and refinement for test-time adaptation. It identifies the nearest neighbors of each target sample
in the feature space based on cosine similarity and assigns pseudo labels by averaging the target
model’s predicted probabilities. The pre-trained source model is then trained using a combination of a
supervised loss calculated by using pseudo labels and contrastive learning. These approaches provide
strong supervision in unlabeled settings, facilitating domain adaptation. However, the pre-trained
source model (i.e., target model) exhibits instability in the target domain, which leads to unreliable
pseudo labels in the early training stages and makes it difficult for the target model to establish a clear
learning direction.

To mitigate this issue, DIFO[29] employs CLIP[23], a vision-language (ViL) model with strong
zero-shot capabilities, to enhance the quality of pseudo labels. Additionally, it introduces a mutual
information (MI)-based loss function that enables prompt learning in CLIP and knowledge distillation
between CLIP and the target model. Despite achieving state-of-the-art performance on multiple
benchmark datasets, DIFO still faces challenges in assigning accurate pseudo labels to target domain
samples, particularly in the initial training stages. Moreover, while MI-based prompt learning facili-
tates CLIP’s adaptation to the target domain, its effectiveness is inherently limited by the fixed vision
encoder extracting low-quality image features that lack clear inter-class separability.

Fig. 1 compares the proposed method with DIFO in terms of pseudo label accuracy and the pseudo-
labeled sample assignment ratio on the Office-Home[34] dataset. As shown in Fig. 1, DIFO suffers

Figure 2: Limitations of CLIP utilized in the existing method DIFO[29]. (a) and (b) show the t-SNE
visualization of image embeddings extracted by CLIP’s vision encoder before and after the proposed
vision encoder optimization, respectively. (c) represents comparison of Mutual information (MI) and
Tsallis mutual information (TMI) under varying noise levels (σ). The x-axis represents the decreasing
noise levels, while the y-axis denotes the computed loss.
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from low pseudo label accuracy across the entire set of training samples. This issue hinders model
convergence and introduces instability into the training process. Moreover, since CLIP is not pre-
trained for specific tasks but rather exhibits task-agnostic properties, its predictions tend to reflect
general and ambiguous patterns rather than task-specific distinctions. Therefore, a refinement process
that accounts for this limitation is necessary. To this end, we propose two key strategies: (1) A learning
framework that assigns pseudo labels only to samples whose predictions from the task-specific target
adaptation model and the domain-invariant CLIP model agree. The remaining samples, which lack
such agreement, are optimized using consistency-driven representation enhancement until sufficient
feature quality is achieved. (2) A Tsallis mutual information (TMI)-based adaptation uncertainty-
aware vision optimization strategy that dynamically adjusts training intensity based on the model’s
current adaptation uncertainty level, enabling robust adaptation even under large domain gaps.

In the first strategy, we refine the pseudo label generation process by assigning hard pseudo labels
only to samples where the task-specific target adaptation model and domain-invariant CLIP agree
in their predictions. This selective assignment allows us to extract highly reliable pseudo labels,
combining task relevance and domain generalizability. Meanwhile, instead of assigning noisy labels
to the remaining samples, we apply consistency training to boost the feature representation ability of
the target model. This approach enables effective use of unlabeled data while minimizing label noise,
thus improving overall adaptation performance.

In the second strategy, unlike DIFO—which adapts CLIP to downstream tasks via text prompt
tuning—we directly fine-tune the CLIP vision encoder. Existing prompt tuning[24, 35, 42] can
be limited when the image features extracted by the frozen vision encoder exhibit low clustering
quality due to a large domain gap, as illustrated in Fig. 2(a). In this case, the text embeddings are
forced to adapt to low-quality image representations, limiting performance. This problem becomes
even more severe in SFDA, where no source data is available and the domain gap is large. To
overcome this issue, we propose an alternative strategy: a TMI-based adaptation uncertainty-aware
optimization method that enables effective feature alignment between the pre-trained CLIP knowledge
and the target domain, thereby mitigating the limitations of prompt tuning. Specifically, existing
prompt tuning is guided by a MI-based loss function between the target model and CLIP predictions.
While this encourages aligned predictions between the two models, the standard MI loss does not
sufficiently reflect the model’s current training state. We demonstrate this limitation with a simple
toy example in Fig. 2(c). This toy example simulates the training process of a model optimized
using MI loss. In particular, we measure the MI between two probability vectors: one is a randomly
generated probability vector (considered as ground truth, p), and the other is a noisy version of this
probability vector (considered as the model prediction, p̂). The detailed settings are provided in
Appendix A. As the noise is gradually reduced, we observe how MI changes between these two
distributions. As observed in Fig. 2(c), MI struggles to capture the overall changes in the probability
distribution as the noise level decreases, making flexible loss measurement challenging (i.e., MI
shows little meaningful variation despite gradual noise reduction). To address this limitation, we
propose an approach that adaptively considers the model’s adaptation uncertainty during CLIP’s
vision optimization. Specifically, we introduce a TMI loss function based on Tsallis entropy [33],
which leverages our uncertainty-based adaptation index (UAI) to dynamically control the entropy
curvature depending on the model’s adaptation uncertainty. This UAI is used to compute TMI,
allowing the model to adjust the strength of training based on its current adaptation uncertainty
level and guiding the optimization process in a stage-aware manner. As shown in Fig. 2(c), the UAI
enables TMI to encourage the utilization of diverse samples during the early unstable training phase
(exploration), and to shift toward a stable optimization strategy (exploitation) for SFDA scenarios
with large domain gaps. Consequently, TMI provides an effective optimization strategy in SFDA
scenarios where a significant domain gap exists, balancing exploration and exploitation to achieve
robust domain adaptation. Our contributions are summarized as follows:

• We propose a Dual-perspective pseudo labeling strategy that integrates a task-specific
perspective, which emphasizes class-discriminative semantics, and a domain-invariant per-
spective, which focuses on robust generalization, thereby enabling more reliable supervision
and structurally enriched representation learning.

• We introduce a Tsallis mutual information-based vision optimization strategy that leverages
an Uncertainty-based adaptation index to dynamically regulate the optimization process
by separating it into exploration and exploitation stages depending on the model’s adaptation
uncertainty level.
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• Our method achieves performance improvements over state-of-the-art methods on Office-
Home (+1.6%), VisDA-C (+1.4%), and DomainNet (+2.9%) datasets.

2 Preliminary

Consistency training Consistency training[31, 25, 36, 20] is a widely used technique in semi-
supervised learning that ensures the model produces consistent predictions when different augmen-
tations are applied to the same input sample. This technique is particularly effective in scenarios
with limited labeled data, as it provides a strong regularization effect, thereby improving model
performance. In source-free domain adaptation (SFDA), where adaptation must be performed on
an unlabeled target domain without access to labeled source domain data, the reliance on pseudo
labels can introduce instability during training. By progressively aligning the model’s predictions on
augmented target samples, this approach mitigates the impact of pseudo label noise and enhances the
model’s ability to generalize to the target distribution.

Tsallis entropy The conventional Shannon entropy-based model training process can lead to over-
confidence in the presence of label noise[41, 17]. Tsallis entropy[33] offers a broader representational
capacity in entropy computation compared to Shannon entropy, providing a potential solution to this
issue. Tsallis entropy is defined as follows:

lnq(x) =
x1−q − 1

1− q
, Sq(pi) = −

∑
i

pilnq(pi). (1)

Here, lnq(·) and Sq(·) denote Tsallis logarithm and Tsallis entropy, respectively. pi represents
the probability of event i in a given discrete probability distribution. q is known as the entropy
index, controlling the degree of non-extensivity in the entropy formulation. As the entropy index q
approaches one, Tsallis entropy asymptotically converges to Shannon entropy. If q is greater than one,
the variation in entropy values with respect to probability changes is smaller than in Shannon entropy.
For an intuitive understanding of how different values of entropy index q affect the shape of the
entropy function, please refer to the visualization in Appendix B. From a model training perspective,
a Tsallis entropy-based loss function with q larger than one reduces the model’s sensitivity to high-
confidence predictions and promotes exploration of uncertain samples. Conversely, when q is less
than one, the entropy values change more sharply with the probability variations, leading to increase
sensitivity to confident predictions, encouraging exploitation. This characteristic highlights that a loss
function utilizing Tsallis entropy can effectively regulate the model’s learning pace. By adjusting
the entropy index q, the model can emphasize exploratory learning under high uncertainty and shift
toward stable optimization (exploitation) as confidence increases.

3 Methodology

Overview As shown in Fig. 3, the proposed method is built upon three core components: 1)
Calibrated pseudo label generation (CPG), which generates two types of pseudo labels (soft and hard)
for target domain samples whose predictions from the target model and CLIP agree. 2) Dynamic
entropy-guided vision optimization (DVO), in which the soft pseudo labels produced by CPG are
used within the proposed Tsallis mutual information (TMI) to optimize CLIP’s vision encoder for the
target domain. 3) Pseudo label matching (PLMatch) framework, which trains the target model by
incorporating hard pseudo labels.

These core components are then devided into two hierarchical processes, a cycle-level process and an
iteration-level process in consideration of computational cost and training stability. In the cycle-level
process, components with high computational cost, such as CPG and DVO are executed, enabling
the generation of reliable pseudo labels and the adaptation of CLIP’s vision encoder. In contrast, the
iteration-level process consists of PLMatch framework, which repeatedly trains the target model with
fixed hard pseudo labels from the current cycle. Specifically, our training framework is organized into
multiple cycles, each consisting of several iteration-level processes. Each cycle first generates pseudo
labels and optimizes the CLIP vision encoder, followed by several iteration-level processes that train
the target model with the fixed hard pseudo labels.
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Figure 3: Overall structure of the proposed method.

3.1 Cycle-level process

3.1.1 Calibrated pseudo label generation (CPG)

In the cycle-level process, CPG generates pseudo labels for training both the CLIP vision encoder
and the target model (pre-trained source model) by combining their prediction probabilities. Note
that we obtain two types of pseudo label (p̂, ŷ) in CPG, performing prediction mixture (soft label,
p̂) and dual-perspective pseudo labeling (hard label, ŷ). Soft pseudo label obtained from prediction
mixture will be used in DVO for performing vision optimization of CLIP. Hard pseudo label acquired
from dual-perspective pseudo labeling will be employed in PLMatch which is represented in Fig. 3
for training the target model.

Prediction mixture To obtain the prediction mixture (p̂) which will be utilized in DVO as a target
label, the prediction probabilities for a target domain sample from CLIP (pclip) and the target model
(pt) can be obtained as follows:

pclipi = ϕ

(
sim(fV (α(xi)), θ

T )

τ

)
, pti = ϕ(gt(f t(α(xi))), (2)

where fV (α(xi)) and θT (∈ R(K×D)) represent the weak augmented image feature which is the
output of CLIP vision encoder fV (·) and the text feature which is the output of CLIP’s text encoder
with a sentence in the format of “a photo of [class]”[23], respectively. f t(·) and gt(·) are the feature
encoder and classifier of the target model, respectively. ϕ(·) and sim(·, ·) denote the softmax function
and the cosine similarity function, respectively. τ is a pre-trained temperature parameter[23]. pclipi and
pti denote the prediction vector (∈ RK ) for the i-th weakly augmented target sample α(xi) from CLIP
and target model, respectively.K is the number of classes andD is the latent dimension. Subsequently,
the mixed prediction for a target domain sample is obtained by averaging the predictions as follows:

p̂i = (pclipi + pti)/2, (3)

where p̂i ∈ RK represents a soft pseudo label. Note that the soft pseudo label p̂i is utilized in DVO,
which is the cycle-level process.

Dual-perspective pseudo labeling To ensure high-confidence pseudo labels and mitigate the risk
of noisy supervision, we employ a dual-perspective pseudo labeling strategy that selectively assigns
pseudo labels only to samples where the predictions of CLIP (pclip) and the target model (pt) are
aligned. Formally, we implement this selection mechanism using a binary mask mi, where samples
meeting the alignment criteria are assigned to pseudo labels, while others remain unlabeled:

ŷi = δ(p̂i),mi = 1
[
argmax

c
(pclipi ) = argmax

c
(pti)

]
. (4)
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Here, δ(·) and 1[·] are a one-hot encoding function and indicator function, respectively. mi = 1 if the
predictions of both models are identical, and mi = 0 otherwise. Note that the hard pseudo label ŷi is
utilized in PLMatch which is the iteration-level process.

3.1.2 Dynamic entropy-guided vision optimization (DVO)

Uncertainty-based adaptation index We define the uncertainty-based adaptation index ψ to
dynamically control the entropy behavior of TMI in response to the model’s adaptation uncertainty.
The ψ allows balancing flexibility (ψ > 1) and convergence (ψ < 1) throughout training, and is
directly incorporated into the computation of Tsallis mutual information. Specifically, likely with the
entropy index q in Eq. 1, when the model exhibits high adaptation uncertainty, the adaptation index ψ
is adjusted above one, resulting in a flatter curvature of the entropy function and encouraging learning
from low-confidence samples (exploration process). Conversely, as the model’s uncertainty decreases,
the adaptation index ψ is reduced below one, which sharpens the curvature of the entropy function
and promotes stable learning centered on high-confidence samples (exploitation process). For this,
to comprehensively reflect the model’s uncertainty, the batch-wise normalized entropy H̃(p̃clip) is
firstly computed as follows:

p̃clip =
1

N

N∑
i=1

pclipi , H̃(p̃clip) =

(
−

K∑
j=1

p̃clipj log (p̃clipj )

)
/ logK, (5)

where p̃clip denotes the averaged prediction vector of CLIP across a batch of size N . p̃clipj denotes
the j-th class probability of the averaged prediction vector p̃clip, and K is the number of classes. By
quantifying the model’s predictive uncertainty through this approach, we utilize EMA to dynamically
adjust the adaptation index ψ. During the early training phase, when a higher learning rate is beneficial,
ψ is set to be greater than one to encourage exploration. As training progresses, the model requires
more stable optimization, leading adaptation index ψ to gradually decrease below one, with its
variations being smoothly regulated:

ψ = µψ + (1− µ)H̃(p̃clip), (6)

where µ acts as a momentum parameter that combines the previously computed ψ with the current
H̃(p̃clip).

Tsallis mutual information (TMI) Subsequently, the standard MI loss[7] is replaced with Tsallis
mutual information (TMI), where the adaptation index ψ dynamically adjusts the entropy behavior
based on the model’s uncertainty. To optimize the CLIP vision encoder, the TMI Iψ(pclip, p̂) between
the CLIP prediction pclip and the soft pseudo label p̂ is defined as follows:

lnψ(x) =
x1−ψ − 1

1− ψ
, Iψ(p

clip, p̂) =

K∑
k=1

K∑
k′=1

Pkk′ · lnψ
(
Pkk′

PkPk′

)
, (7)

where Pkk′ denotes the joint probability of the k-th class probability from CLIP prediction pclip, and
the k′-th class from the soft pseudo label p̂. Pk and Pk′ are the marginal probabilities, representing the
probability vectors of pclip and p̂, respectively. For details on how the joint and marginal probabilities
are computed for TMI, please refer to Appendix C.

CLIP vision encoder optimization Tsallis mutual information (negative term) is used as a loss
function to optimize the CLIP vision encoder, encouraging the model to maximize the mutual
information between the CLIP prediction (pclip) and the soft pseudo label (p̂). This is formulated as:

LTMI = −min
fV

Iψ(p
clip, p̂). (8)

By minimizing LTMI , the CLIP vision encoder is trained to enhance the alignment between the
CLIP prediction pclip and the soft pseudo label p̂, while simultaneously adapting the adaptation index
ψ to regulate the balance between exploration and exploitation during training.
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3.2 Iteration-level process

3.2.1 Pseudo label matching framework (PLMatch)

PLMatch, which belongs to the iteration level process effectively (1) performs supervised learning
using hard pseudo labels, (2) leverages unlabeled samples through consistency training, and (3)
conducts CLIP-guided knowledge distillation.

Pseudo supervision The target model is trained by minimizing the cross-entropy loss over the
unlabeled set, using the hard pseudo label ŷi and the mask mi obtained from dual-perspective pseudo
labeling in CPG (Eq. 4). The corresponding formulation is as follows:

zti = gt
(
f t(α(xi))

)
, pti = ϕ(zti),

Lsup = − 1

Nl

N∑
i=1

K∑
j=1

ŷi,j log(p
t
i,j) ·mi,

(9)

where zti is the logit output of the target model for α(xi). Nl is the number of pseudo labeled samples.

Consistency training In addition to pseudo supervision, we apply consistency training to all target
domain samples encouraging the target model to learn more robust feature representations rather
than being overly confident in misclassifying samples that have not been assigned pseudo labels.
As illustrated in Fig. 3, consistency training leverages both weakly augmented (α(xi)) and strongly
augmented (A(xi)) versions of the same image (xi). The training process is formulated as follows:

Lcon = − 1

N

N∑
i=1

KL
(
pt(α(xi))

∥∥pt(A(xi))
)
, (10)

where pt(α(xi)) and pt(A(xi)) represent the prediction vectors of α(xi) and A(xi) through the target
model. KL(·||·) denotes the Kullback-Leibler (KL) divergence between the two input distributions.

CLIP-guided knowledge distillation We further perform consistency training by minimizing the
KL divergence between the prediction vectors from CLIP (pclip) and the target model (pt). The loss
function for aligning the predictions of both models is formulated as follows:

LKL = − 1

N

N∑
i=1

KL
(
pt(α(xi))

∥∥pclip(α(xi))), (11)

This alignment stabilizes the target model’s feature representation, leading to more reliable predictions
and improved generalization in the target domain.

Target model training The three previously described loss functions are utilized for training the
target model. These loss functions are combined with different weighting factors to formulate the
final loss function, as defined below:

Ltarget = αLsup + βLcon + γLKL. (12)

Here, α, β, and γ control the balance between losses, as further described in the experiments.

4 Experiments

Datasets To evaluate the effectiveness of our proposed method, we conducted experiments on three
widely used benchmark datasets for source-free domain adaptation: Office-Home[34], VisDA-C[22],
and DomainNet-126[21]. These datasets encompass diverse domains and category scales. Detailed
descriptions of each dataset are provided in Appendix D.1.

Implementation details For reproducibility and clarity, detailed implementation set-
tings—including backbone architectures, optimizer configurations, data augmentation strategies,
and hyperparameters for each dataset—are thoroughly described in Appendix D.2.
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Table 1: Accuracies (%) on Office-Home dataset for ResNet50-based methods and VisDA-C for
ResNet101-based methods. “SF” denotes source-free methods, while domain notation are as follows:
A (Art), C (Clipart), R (Real-world), P (Product), Sy (Synthesis), and Re (Real). Bold text highlights
improvements over prior methods.

Method Venue SF A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg. Sy → Re

Source – 43.7 67.0 73.9 49.9 60.1 62.5 51.7 40.9 72.6 64.2 46.3 78.1 59.2 49.1

SHOT ICML20 ✓ 55.0 78.8 81.3 69.1 79.1 79.0 68.0 54.8 81.8 73.6 58.9 83.5 71.9 82.2
NRC NIPS21 ✓ 53.8 76.6 78.6 64.0 73.9 73.1 61.9 52.2 77.5 70.3 56.6 81.9 69.8 82.1
GKD IROS21 ✓ 56.6 78.3 82.2 69.4 80.5 78.6 67.2 55.3 82.5 74.3 59.7 84.1 72.4 82.6
AdaCon CVPR22 ✓ 47.2 75.1 75.5 60.7 73.3 73.2 60.2 45.2 76.6 65.6 48.3 79.1 65.0 86.8
CoWA ICML22 ✓ 56.4 79.2 80.9 68.6 78.6 75.8 68.0 55.9 82.5 69.0 65.8 79.9 68.6 84.3
SCLM CVPR23 ✓ 58.2 80.3 81.5 69.3 79.0 80.7 61.6 65.9 53.8 67.5 64.3 76.0 64.7 -
TPDS IJCV23 ✓ 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5 87.6
DIFO CVPR24 ✓ 70.6 90.6 88.8 82.5 90.6 88.8 80.9 70.1 88.9 83.4 70.5 91.2 83.1 90.0

Ours – ✓ 73.6 90.4 91.0 83.6 90.7 90.9 82.7 73.7 91.2 83.6 74.0 91.2 84.7 91.4

Table 2: Accuracies (%) on DomainNet-126 for methods with ResNet50. Domain indentation are as
follows: C(Clipart), P(Painting), R(Real), and S(Sketch).

Method Venue SF C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source – 44.6 59.8 47.5 53.3 75.3 46.2 55.3 62.7 46.4 55.1 50.7 59.5 54.7

SHOT ICML20 ✓ 63.5 78.2 59.5 67.9 81.3 61.7 67.7 67.6 57.8 70.2 64.0 78.0 68.1
NRC NIPS21 ✓ 62.6 77.1 58.3 62.9 81.3 60.7 64.7 69.4 58.7 69.4 65.8 78.7 67.5
GKD IROS21 ✓ 61.4 77.4 60.3 69.6 81.4 63.2 68.3 68.4 59.5 71.5 65.2 77.6 68.7
AdaCon CVPR22 ✓ 60.8 74.8 55.9 62.2 78.3 58.2 63.1 68.1 55.6 67.1 66.0 75.4 65.4
CoWA ICML22 ✓ 64.6 80.6 60.6 66.2 79.8 60.8 69.0 67.2 60.0 69.0 65.8 79.9 68.6
PLUE CVPR23 ✓ 59.8 74.0 56.0 61.6 78.5 57.9 61.6 65.9 53.8 67.5 64.3 76.0 64.7
TPDS IJCV23 ✓ 62.9 77.1 59.8 65.6 79.0 61.5 66.4 67.0 58.2 68.6 64.3 75.3 67.1
DIFO CVPR24 ✓ 76.6 87.2 74.9 80.0 87.4 75.6 80.8 77.3 75.5 80.5 76.7 87.3 80.0

Ours – ✓ 80.1 89.6 79.0 82.4 89.8 79.2 82.8 80.6 78.8 83.0 80.3 89.6 82.9

Table 3: Unified evaluation of component configurations and loss weight ablation on Office-Home
and VisDA-C datasets.

Component Weights Office-Home VisDA-C
Lsup Lcon LKL α β γ →A →C →P →R Avg. Sy→Re

✓ 0.4 0.2 0.4 76.5 67.5 86.8 86.2 79.2 90.2
✓ ✓ 0.4 0.2 0.4 77.0 68.3 87.2 86.4 79.7 90.4
✓ ✓ 0.4 0.2 0.4 82.9 73.2 90.8 90.9 84.4 91.0
✓ ✓ ✓ 0.4 0.2 0.4 83.3 73.8 90.8 91.0 84.7 91.4
✓ ✓ ✓ 0.5 0.1 0.4 83.2 73.5 90.8 90.9 84.6 91.4
✓ ✓ ✓ 0.5 0.2 0.3 82.7 73.4 90.9 90.9 84.5 91.4
✓ ✓ ✓ 0.3 0.1 0.6 82.9 73.5 90.8 90.9 84.5 91.3
✓ ✓ ✓ 0.4 0.1 0.5 83.2 73.4 90.8 91.0 84.6 91.4
✓ ✓ ✓ 0.3 0.4 0.3 83.0 73.2 90.8 90.7 84.4 91.2

Fine-tune w/ KL 0.4 0.2 0.4 79.9 67.0 87.9 88.8 80.9 89.3
Fine-tune w/ MI 0.4 0.2 0.4 83.2 73.1 90.7 90.9 84.5 91.4
Fine-tune w/ TMI 0.4 0.2 0.4 83.3 73.8 90.8 91.0 84.7 91.4

4.1 Main results

As shown in Tabs. 1 and 2, our method consistently surpasses prior state-of-the-art approaches across
all benchmarks, with improvements of 1.6% on Office-Home, 1.4% on VisDA-C, and 3.0% on
DomainNet-126. The gains are especially notable in challenging domains such as Clipart and Sketch,
where large domain gaps and stylistic differences hinder existing methods. These results highlight
the robustness of our method in handling severe domain shifts and improving generalizable feature
adaptation.

4.2 Contribution of investigated components

The ablation study presented in Tab. 3 evaluates the effectiveness of the proposed components in
our framework, incorporating results on the Office-Home and VisDA-C datasets. First, when using
only the pseudo supervision loss (Lsup) with hard pseudo labels, the proposed model achieves 79.2%
average accuracy on the Office-Home dataset, already surpassing existing source-free methods except
DIFO[29]. On VisDA-C, our model achieves 90.2% accuracy, outperforming the state-of-the-art
method DIFO by +0.2%. This strong performance of pseudo supervision highlights the superiority of
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the proposed pseudo labeling strategy, and a more detailed analysis of our pseudo labeling strategy is
provided in Appendix D.3.

Incorporating Lcon and LKL boosts accuracy by 5.5% (84.7%), highlighting their role in enhancing
adaptation stability. Additionally, optimizing the CLIP vision encoder with Tsallis mutual information
(TMI) results in the best overall performance, outperforming both KL-based and mutual information
(MI)-based approaches. Notably, TMI-based vision optimization yields a larger performance gain in
the Clipart domain (→ C), indicating its effectiveness in mitigating domain shift when adapting to
visually diverse domains.

4.3 Variations depending on the loss weighting

We conducted an ablation study on the Office-Home and VisDA-C datasets to investigate the effect
of weights α, β, and γ corresponding to Lsup, Lcon, and LKL, respectively. As shown in Tab. 3,
the optimal configuration (α = 0.4, β = 0.2, γ = 0.4) achieved the best overall accuracy of 84.7%
on Office-Home and 91.4% on VisDA-C. Notably, the model maintains robust performance despite
variations in loss weight settings. This setting also showed strong performance on → R (91.0%),
but slightly reduced accuracy was observed when β was lowered or γ was increased, indicating the
importance of consistency regularization and balanced loss combination.

4.4 Analysis of Tsallis mutual information

Figure 4: Visualization of the adapta-
tion index ψ (top) and the correspond-
ing losses (bottom) for TMI and MI dur-
ing adaptation from A→C in the Office-
Home dataset.

Figure 4 analyzes the optimization dynamics of Tsallis
mutual information (TMI) and standard mutual informa-
tion (MI) losses during domain adaptation from Art to
Clipart in the Office-Home dataset. The top plot shows
the adaptation index ψ decreasing over iterations, adap-
tively adjusting the sharpness of the TMI. The bottom
plot compares TMI and MI losses before and after the
adaptation index ψ approaches one. The shaded regions in
both plots divide the training process into two stages: the
early stage encourages exploration, allowing the model
to learn from diverse and uncertain samples, while the
later stage favors exploitation, focusing on confident and
stable predictions. As shown in Fig. 4, TMI effectively
regulates loss oscillations, likely due to its entropy index-
controlled structure. The loss patterns indicate that TMI
promotes an effective exploration-exploitation balance, as-
signing greater importance to uncertain samples early in
training. This structured learning improves model stability
and makes DVO a more robust solution for source-free do-
main adaptation than standard MI-based training. The impact of TMI-based CLIP vision optimization
on our framework is further analyzed in detail in AppendixD.3.

4.5 Analysis of Pseudo label matching framework

In all cases, PLMatch reduces the gap between confidence and classification accuracy more effectively
than DIFO. Even in challenging domain shifts like R to A, PLMatch maintains relatively low
expected calibration error (ECE)[19] (0.02) compared to DIFO (0.10). The superior calibration
of PLMatch can be attributed to its dual-perspective pseudo labeling strategy, which prioritizes
high-confidence samples initially and progressively refines pseudo labels over time. Additionally,
consistency training enforces alignment between different augmented views, preventing the model
from becoming overconfident in noisy pseudo labels. Additional results for other adaptation scenarios
are provided in Appendix D.5.
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Figure 5: Reliability diagrams[19] comparing the proposed PLMatch and the existing state-of-the-art
method, DIFO, on the Office-Home dataset. The source domain is Real-world (R), and the target
domains are Art (A) and Product (P).

5 Conclusion and limitations

To address pseudo label noise in source-free domain adaptation (SFDA) and facilitate ViL model adap-
tation to the target domain, we introduce a novel pseudo labeling strategy that integrates task-specific
perspectives and domain-invariant characteristics, along with an uncertainty-aware optimization
strategy for the CLIP vision encoder. By leveraging domain-generalized CLIP predictions and task-
specific model outputs, we selectively assign high-quality pseudo labels. Additionally, consistency
training refines feature representations for samples awaiting pseudo labeling, enhancing robustness.
Our uncertainty-based optimization approach balances exploration and exploitation, allowing the
CLIP vision encoder to self-regulate its learning intensity. Empirical results demonstrate that our
method outperforms prior approaches, particularly under challenging domain shifts with significant
domain gaps. While our method requires optimizing the CLIP vision encoder, this introduces non-
trivial computational overhead. Although we limit this process to fewer than eight update steps in our
method, the added cost may still be a concern in resource-constrained settings, suggesting the need
for lightweight adaptation strategies or parameter-efficient tuning methods in future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline our main contributions. These con-
tributions are consistently developed and validated throughout the paper in both methodology
and experimental sections (Section 3 and 4).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 5 (Conclusion and limitations), we briefly discuss the limitations
of our approach, acknowledging potential directions for future improvement and broader
applicability.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix D.1 and D.2 provide detailed information on dataset setup, model
architecture, training configuration to ensure reproducibility of the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the full source code and instructions as a zip file in the supplemen-
tary material to faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full training and test details, including hyparparameters, optimizer settings,
and training strategies are provided in Section 4.2, 4.3, Appendix D.1 and D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Hyperparameter tuning and multiple experimental trials were conducted to
ensure the reliability of the results. These details are discussed in Section 4.2 and Section
4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: The computational resources used in our experiments, including GPU specifi-
cations, are detailed in Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We use publicly available datasets with proper licensing, avoid any identifiable
personal data, and our method poses no foreseeable harm or misuse.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not observe any potential negative societal impacts from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide new pretrained models or datasets that pose a high risk of
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets, including CLIP models and benchmark datasets are properly
cited in the main paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce new code for the proposed framework and loss functions, and
provide appropriate documentation in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the method, model, or experimental pipeline.
Any LLM usage was limited to grammar correction or writing support.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation detail of toy example

Figure 6: Visualization of class probabilities from a toy example designed to analyze mutual infor-
mation (MI) sensitivity under different noise levels. The noise level refers to the weight applied to
Gaussian noise with mean 0 and standard deviation 1, which is added to the soft pseudo label to
simulate prediction. For each noise level, three sample predictions are shown. Each subplot compares
a soft pseudo label (purple) against its noisy version (orange). As the noise level decreases from top
to bottom, the noisy predictions become more similar to the pseudo labels. The x-axis represents the
class index.

We further investigate the limitations of using standard mutual information (MI) as an optimization
objective by designing a toy example to simulate the MI-based training process under decreasing
uncertainty. As shown in Fig. 6, we generate soft pseudo labels by randomly sampling class probability
vectors from a uniform distribution and then normalizing them via the softmax function to ensure
they represent valid probability vectors. Controlled Gaussian noise is subsequently added to these
vectors to simulate noisy predictions. For each noise level, three random samples are visualized to
illustrate the distributional shift. Each subplot displays a pair of class probabilities: one representing
the ground truth (pseudo label) and the other a noisy version (prediction) of it. We use the soft label
as the ground truth to reflect the actual training setup, where mutual information (MI) is computed
based on the soft pseudo label. As the noise level gradually decreases (from top to bottom), the
noisy predictions become more concentrated and closely aligned with the pseudo label. However,
as discussed in Fig. 2(c), despite the noticeable distributional improvements, the MI value remains
relatively insensitive to these changes. This demonstrates that MI lacks the flexibility to dynamically
capture information changes across varying prediction quality levels, particularly in uncertain early-
stage adaptation scenarios. This observation supports the need for an alternative information measure
like TMI, which dynamically modulates sensitivity through the proposed adaptation index ψ. By
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doing so, TMI provides more meaningful optimization signals during the both high-uncertainty and
stable training phases, leading to more robust adaptation performance.

B Effect of entropy index q on Tsallis entropy

Figure 7: Effect of the entropy index q on the shape of Tsallis entropy. Each curve represents the
Tsallis entropy computed over probabilities ranging from 0 to 1, under different q settings.

To better understand how the entropy index q influences the behavior of Tsallis entropy[33], we
visualize the entropy values over a range of probabilities in Fig. 7. The shape of the entropy function
varies significantly with entropy index q. When q < 1, the entropy curve becomes sharper, increasing
sensitivity to high-confidence predictions and encouraging the model to focus on confident sam-
ples (exploitation). Conversely, when q > 1, the curve becomes flatter, reducing the sensitivity to
confidence and allowing the model to explore uncertain predictions more freely (exploration). This
property allows Tsallis entropy to flexibly control the trade-off between exploration and exploitation
during training by simply adjusting the entropy index q, which is especially beneficial in domain
adaptation scenarios with high uncertainty.

C Calculation of joint probabilities

To compute the Tsallis mutual information (TMI) between CLIP’s prediction (pclip) and the soft
pseudo label (p̂), we first construct a joint probability matrix P following the standard formulation
adopted in prior works[7]. This matrix Pkk′ captures how often each class prediction from CLIP
co-occurs with each class prediction from the soft pseudo label, across all samples in a mini-batch.
Specifically, for each sample in the batch, we calculate the outer product of the two probability
vectors (pclip, p̂) and then take the average across all samples. This gives us a matrix Pkk′ ∈ RK×K ,
where K and N are the number of classes and samples, respectively. The calculation of matrix P is
followed:

Pkk′ =
1

N

N∑
i=1

P
(i)
kk′ =

1

N
p
(i)
clip · (p̂

(i))T , (13)

The marginal probabilities Pk and Pk′ are then obtained by summing this joint matrix Pkk′ across
the rows and columns. The row sums represent the class probabilities from CLIP’s prediction (pclip),
and the column sums represent those from the soft pseudo labels (p̂). This is formulated as:

Pk =
∑
k′

Pkk′ , Pk′ =
∑
k

Pkk′ (14)

The joint probabilities and marginal probabilities are then jointly used in the computation of TMI, as
formulated in Eq. 7.
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D Experimental details

D.1 Benchmarks

To evaluate the source-free domain adaptation performance of our proposed method, we used
three benchmark datasets: Office-Home[34], VisDA-C[22], and DomainNet-126[21]. Office-Home
comprises 15,500 images across four domains (Art, Clipart, Product, and Real-world), each with 65
categories. VisDA-C is a large-scale simulation-to-real dataset with over 152k images spanning 12
categories, where training images are synthetically generated, and validation images are real-world
samples from MS-COCO. DomainNet-126 is a large-scale dataset derived from DomainNet. As a
refined subset, DomainNet-126 contains 145k images from 126 classes, samples from four domains
(Clipart, Painting, Real, and Sketch).

D.2 Implementation details

Table 4: Hyper-parameter settings of the proposed method. ηt and ηV represent the learning rates of
the target model and the CLIP vision encoder, respectively.

Hyper-parameters Office-Home VisDA-C DomainNet-126

Batch size 64 64 64
Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight-decay 0.001 0.001 0.001
ηt 0.01 0.001 0.001

Cycle 4 8 4
Iteration 4 4 4
Adaptation index ψ 1.05 1.05 1.1
Momentum µ 0.99 0.999 0.99
ηV 1e-7 1e-7 1e-7

We employed ResNet50[16] as the feature encoder for both the pre-trained source model and the target
model on the Office-Home and DomainNet-126 datasets, while ResNet101[37] was used for VisDA-
C. The target model was trained using stochastic gradient descent (SGD) as the optimizer with a
momentum of 0.9 and a weight decay of 0.001. The learning rate was set to 0.01 for Office-Home and
0.001 for both VisDA-C and DomainNet-126. In contrast, CLIP’s vision encoder (ViT/B-32[5]) was
optimized using the Adam optimizer with a fixed learning rate of 1× 10−7. For consistency training,
weak augmentation involves random cropping and horizontal flipping, while strong augmentation
included randomly sized cropping, Gaussian blurring, and horizontal flipping to introduce greater
variability. In terms of training schedule, the cycle was set to 4 for Office-Home and DomainNet-126,
and 8 for VisDA-C, with each cycle comprising 4 iterations. The entropy index q and momentum µ
were adjusted slightly for each dataset to stabilize training. The weights α, β, and γ of loss functions
were set to 0.4, 0.2, and 0.4 for all datasets, respectively. All experiments were conducted on an
NVIDIA GeForce RTX 3090 GPU.

D.3 Ablation details

D.3.1 Comparison between Tsallis mutual information (TMI) and mutual information (MI)

To examine the effectiveness and robustness of the proposed Tsallis mutual information (TMI), we
conducted a comparison between mutual information (MI) and TMI across different random seeds,
and additionally evaluated performance when replacing the backbone of the CLIP vision encoder.
As shown in Tab. 5, the performance advantage of TMI over MI consistently appeared. Notably, the
performance gap was more pronounced when using lightweight backbones such as ResNet[16, 37]
variants, compared to the ViT-B/32[5] used in the final model.

Moreover, CLIP in our framework contributed in two major ways: knowledge distillation and pseudo
label refinement. To assess TMI’s contribution in these areas, we measured Expected Calibration
Error (ECE) of CLIP, CLIP accuracy, and pseudo label accuracy on tasks where the performance
improvement was most pronounced. As shown in Tab. 6, the results suggested that CLIP trained with
TMI achieved a more stable and well-calibrated learning state than with MI, which positively affected
the quality of the pseudo labels. These findings indicate that TMI-based training can be especially
useful in various tasks.
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Table 5: Comparison of mutual information (MI) and Tsallis mutual information (TMI) on the
Office-Home dataset. For ViT-B/32, results are averaged over multiple random seeds, while RN50
and RN101 rows show performance when replacing the CLIP vision encoder backbone.

Backbone Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

ViT-B/32 Ours (w/MI) 73.07
(±0.15)

90.47
(±0.21)

90.87
(±0.10)

83.27
(±0.06)

87.12
(±0.17)

90.93
(±0.12)

82.70
(±0.03)

90.73
(±0.12)

91.00
(±0.17)

83.70
(±0.32)

73.17
(±0.32)

91.13
(±0.06)

84.47
(±0.12)

Ours (w/TMI) 73.27
(±0.31)

90.43
(±0.06)

90.87
(±0.12)

83.43
(±0.15)

90.73
(±0.06)

90.83
(±0.26)

83.00
(±0.26)

90.73
(±0.35)

91.20
(±0.15)

83.73
(±0.25)

73.77
(±0.25)

91.20
(±0.10)

84.63
(±0.08)

RN50 Ours (w/MI) 59.0 84.8 84.6 78.7 85.5 86.8 78.7 60.3 87.2 78.7 60.4 85.2 77.6
Ours (w/TMI) 60.5 84.9 86.9 78.5 85.7 86.7 79.0 61.6 86.9 78.7 61.5 85.2 78.0

RN101 Ours (w/MI) 63.9 89.1 88.1 82.1 88.5 82.5 64.6 89.1 89.0 82.7 63.0 89.0 81.0
Ours (w/TMI) 64.2 89.3 88.8 82.8 89.7 88.8 81.7 65.2 89.0 82.7 65.3 89.7 81.4

Table 6: Comparison of MI and TMI in Dynamic entropy-guided vision optimization (DVO) across
different tasks. (ECE: Expected Calibration Error, CLIP Acc.: CLIP accuracy, PL Acc.: Pseudo label
accuracy.)

Task Loss in DVO ECE(↓) CLIP Acc.(↑) PL Acc.(↑)

A→C MI 0.20 77.0 71.8
TMI 0.18 77.4 72.2

P→C MI 0.20 76.9 71.6
TMI 0.18 77.7 72.4

R→C MI 0.19 77.6 71.6
TMI 0.17 77.7 72.4

D.3.2 Analysis on pseudo label

Table 7: Pseudo label accuracy(%) and its sampling ratio on Office-Home and DomainNet-126

Dataset Scenario Cycle 1 Cycle 2 Cycle 3 Cycle 4

Office-Home

A→C 87.05%(1722/4365) 81.50%(3125/4365) 79.04%(3679/4365) 77.48%(3948/4365)
A→P 94.20%(2913/4439) 92.62%(3997/4439) 92.52%(4237/4439) 92.03%(4315/4439)
A→R 95.74%(3101/4357) 94.13%(3835/4357) 93.35%(4075/4357) 92.71%(4182/4357)

C→A 94.68%(1090/2427) 90.79%(1878/2427) 88.66%(2107/2427) 87.57%(2213/2427)
C→P 94.75%(2631/4439) 93.44%(3978/4439) 92.46%(4228/4439) 92.17%(4306/4439)
C→R 95.72%(2665/4357) 94.08%(3834/4357) 93.29%(4070/4357) 92.49%(4196/4357)

P→A 93.47%(1149/2427) 90.55%(1862/2427) 88.89%(2089/2427) 87.29%(2203/2427)
P→C 87.85%(1605/4365) 81.56%(3118/4365) 79.44%(3667/4365) 78.22%(3930/4365)
P→R 95.85%(3014/4357) 94.02%(3877/4357) 93.27%(4084/4357) 92.77%(4190/4357)

R→A 93.58%(1449/2427) 90.71%(1926/2427) 88.91%(2119/2427) 87.62%(2213/2427)
R→C 84.60%(1916/4365) 80.92%(3191/4365) 78.90%(3721/4365) 77.91%(3965/4365)
R→P 94.44%(3382/4439) 92.95%(4058/4439) 92.54%(3382/4439) 92.18%(3382/4439)

Avg. 92.7 89.8 88.4 87.5

DomainNet-126

C→P 92.97% (12638/30042) 90.10% (22620/30042) 88.64% (24935/30042) 87.43% (26057/30042)
C→R 96.31% (40130/69622) 94.26% (60876/69622) 93.26% (64080/69622) 92.40% (65707/69622)
C→S 92.76% (10306/24147) 89.05% (17734/24147) 87.48% (19818/24147) 85.97% (20930/24147)

P→C 93.01% (9258/18523) 90.04% (14455/18523) 88.36% (15791/18523) 87.33% (16530/18523)
P→R 96.16% (50654/69622) 94.19% (61801/69622) 93.25% (64571/69622) 92.36% (66034/69622)
P→S 93.70% (10442/24147) 89.30% (17924/24147) 87.38% (19880/24147) 85.90% (21002/24147)

R→C 92.88% (9623/18523) 89.87% (14566/18523) 88.33% (15875/18523) 87.18% (16569/18523)
R→P 93.18% (17683/30042) 89.93% (23479/30042) 88.30% (25538/30042) 87.07% (26394/30042)
R→S 95.85% (10886/24147) 94.02% (17928/24147) 93.27% (19943/24147) 92.77% (21015/24147)

S→C 90.80% (9235/18523) 87.98% (14436/18523) 86.48% (15797/18523) 85.35% (16506/18523)
S→P 95.18% (14221/30042) 90.68% (22815/30042) 88.89% (24931/30042) 87.53% (26072/30042)
S→R 96.07% (40713/69622) 94.17% (60981/69622) 91.03% (64177/69622) 92.36% (65778/69622)

Avg. 94.1 91.1 89.6 88.6

We conducted a quantitative analysis of pseudo label accuracy and sampling ratio per cycle on the
Office-Home dataset [34]. As shown in Tab. 7, % values indicate pseudo label accuracy, and values
in parentheses show the sampling ratio. Pseudo label accuracy declined across cycles (92.7%, 89.8%,
88.4%, 87.5%) as more pseudo labels introduced inevitable noise. However, prior work[18, 40] shows
that such noise can improve generalization capability. This trade-off between pseudo label accuracy
and sampling ratio is analyzed in detail in the following section.
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D.3.3 Trade-off between accuracy and the number of pseudo labels

Table 8: Comparison of pseudo label accuracy(%) and sampling ratio across cycles for different
confidence thresholding (CT) strategies and our proposed pseudo labeling method on the Office-Home
dataset.

Threshold Scenario Cycle 1 Cycle 2 Cycle 3 Cycle 4

0.85 P→C 98.82% (0.03) 97.19% (0.20) 94.72% (0.37) 93.07% (0.47)
R→A 99.18% (0.15) 98.67% (0.34) 98.09% (0.45) 97.88% (0.52)

0.95 P→C 100% (0.007) 98.79% (0.09) 97.41% (0.19) 96.70% (0.28)
R→A 99.03% (0.04) 99.54% (0.18) 99.39% (0.27) 99.49% (0.32)

0.85 to 0.95 P→C 98.82% (0.04) 98.32% (0.18) 96.49% (0.29) 96.11% (0.34)
R→A 99.18% (0.15) 98.64% (0.30) 98.67% (0.37) 98.75% (0.40)

Ours P→C 87.85% (0.37) 81.56% (0.71) 79.44% (0.84) 78.22% (0.90)
R→A 93.58% (0.60) 90.71% (0.79) 88.91% (0.87) 87.62% (0.91)

Table 9: Comparison of target model classification performance between different CT strategies and
our proposed method on the Office-Home dataset.

Threshold A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

0.85 73.1 90.3 90.6 82.9 90.5 90.8 82.4 72.8 91.0 83.8 73.8 90.9 84.4
0.95 72.9 90.5 90.8 82.7 90.4 90.6 82.3 73.0 90.8 83.7 73.5 91.0 84.3

0.85 to 0.95 72.9 90.4 90.7 82.8 90.5 90.6 82.3 72.7 90.9 83.6 73.6 91.0 84.3
Ours 73.6 90.4 91.0 83.6 90.7 90.9 82.7 73.7 91.2 83.6 74.0 91.2 84.7

The drop in pseudo-label accuracy during later cycles is attributed to the increasing number of
assigned pseudo labels, which highlights a natural trade-off between label quality and coverage. To
further analyze this trade-off, we conducted additional experiments on the Office-Home dataset using
confidence thresholding (CT) to assign pseudo labels, controlling the balance between pseudo label
accuracy and quantity. As shown in Tab. 8, CT-based methods produced high-quality pseudo labels
but labeled fewer samples than ours. In contrast, our approach achieved better overall performance
and more stable training shown in Tab. 9. This aligns with the training strategy[2] of gradually incor-
porating lower confidence labels. This enables broader learning and mitigates overfitting, suggesting
that our method ensures practical and stable label quality without complex thresholds or strategies.

D.4 Effectiveness of CLIP for target model training

Table 10: Comparison of CLIP and the final target model on the Office-Home dataset. Each row
reports the performance of the model indicated in the first Model column.

Model Setting A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

CLIP w/o tuning 60.1 84.2 85.8 75.2 84.2 85.8 75.2 60.1 85.8 75.2 60.1 84.2 76.3
w tuning 72.2 89.8 90.1 82.2 89.9 90.1 81.6 72.4 90.3 82.2 72.4 90.0 83.6

Target w/o CLIP-tuning 65.8 87.9 89.2 80.7 88.1 89.1 80.4 66.4 89.0 81.1 66.4 88.3 81.0
w/ CLIP-tuning 73.6 90.4 91.0 83.6 90.7 90.9 82.7 73.7 91.2 83.6 74.0 91.2 84.7

The primary objective of the proposed framework is to train the target model, not to directly use CLIP
as the final model. The purpose of CLIP fine-tuning is therefore not to replace the target model, but
rather to help the target model training with pseudo label refinement and knowledge distillation.

As shown in Tab. 10, the final target model (Proposed) outperformed both the frozen (CLIP w/o
tuning) and fine-tuned CLIP models (CLIP w/ tuning), confirming that CLIP is best used as an
auxiliary module rather than the main predictor.

D.5 Expanded calibration analysis

As shown in Fig. 8, PLMatch consistently achieved a lower expected calibration error (ECE)[19]
compared to DIFO[29] across various domain adaptation scenarios, indicating better alignment
between confidence and accuracy.
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Figure 8: Calibration plots comparing DIFO and PLMatch across various domain adaptation scenarios
on the Office-Home dataset. Each plot illustrates the expected accuracy versus confidence, where the
gap represents the miscalibration.

D.6 Feature distribution analysis

Figure 9 represents the t-SNE visualizations of the target domain features produced by various
adaptation methods. Compared to existing approaches such as SHOT[12], GKD[28], NRC[38], and
DIFO[29], our method forms more compact and well-separated clusters with clearer boundaries.
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Figure 9: The t-SNE visualization of target domain features extracted by different domain adaptation
methods on the VisDA-C dataset.

Figure 10: Comparison of class-wise prediction results across different SFDA methods on the VisDA-
C dataset. Each matrix visualizes the classification accuracy between predicted (columns) and true
(rows) labels. Darker diagonal lines indicate higher classification accuracy.
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D.7 Confusion matrix comparison

Figure 10 presents the confusion matrices of various SFDA methods, including SHOT[12], GKD[28],
NRC[38], COWA[11], PLUE[13], TPDS[27], DIFO[29], and our proposed method on the VisDA-
C[22] dataset. Each matrix illustrates the classification performance across all 12 classes, where
diagonal elements indicate correctly predicted samples. Our method shows a clearly dominant
diagonal pattern with significantly fewer off-diagonal elements compared to other approaches,
indicating stronger class-wise discrimination and fewer misclassifications. This indicates the superior
feature alignment and inter-class discrimination.

D.8 Computational overhead

Table 11: Comparison of Computational Cost among SFDA Methods

Method TTB ↓ (s) IT ↓ (ms) GPU memory ↓ (GB)

SHOT 0.3621 0.608 7.759
DIFO 0.6576 0.608 8.340
Ours 0.5238 0.608 14.452

To provide a clearer analysis of computational limitations, we report training time per batch (TTB),
inference time (IT) per sample and GPU memory usage for the Art→Clipart task from the Office-
Home dataset[34]. Although our method requires higher GPU memory due to using both CLIP and the
target model, its hierarchical structure—with separate cycle- and iteration-level processes—enables
faster training than DIFO[29], which lacks such decomposition. Inference time per sample is identical
across methods, as it depends only on the target model.
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