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Abstract

Group fairness is a central research topic in
text classification, where reaching fair treat-
ment between sensitive groups (e.g. women
vs. men) remains an open challenge. This
paper presents a novel method for mitigating
biases in neural text classification, agnostic to
the model architecture. Considering the diffi-
culty to distinguish fair from unfair informa-
tion in a text encoder, we take inspiration from
adversarial training to induce Wasserstein in-
dependence between representations learned to
predict our target label and the ones learned to
predict some sensitive attribute. Our approach
provides two significant advantages. Firstly,
it does not require annotations of sensitive at-
tributes in both testing and training data. This is
more suitable for real-life scenarios compared
to existing methods that require annotations
of sensitive attributes at train time. Secondly,
our approach exhibits a comparable or better
fairness-accuracy trade-off compared to exist-
ing methods. Our implementation is available
on Github1.

1 Introduction

Machine learning algorithms have become increas-
ingly influential in decision-making processes that
significantly impact our daily lives. One of the
major challenges that has emerged in research,
both academic and industrial, concerns the fair-
ness of these models, i.e. their ability to prevent
predictions related to individuals to be based on
sensitive attributes such as gender or ethnicity. In
this article, we focus on the problem of fairness
in the domain of Natural Language Processing
(NLP) (Bender et al., 2021; Osoba and Welser IV,
2017; Schwemmer et al., 2020). While many stud-
ies already report biases in NLP systems (Sun et al.,
2019; Hutchinson et al., 2020; Tan and Celis, 2019;
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Figure 1: Our method, WFC, modifies the representation
space of documents such that it is fairer when training a
classifier on top. To do that, it makes it independent of
a ”demonic” model that predicts the sensitive attribute.

Liang et al., 2021; Bender et al., 2021), these is-
sues become even more significant with the advent
of public-ready AI-powered NLP systems such as
ChatGPT (OpenAI) or Google Bard (Pichai), mak-
ing the need for fair NLP solutions even more com-
pelling. As more researchers work to overcome
these shortcomings, the first problem is to define
what fairness is. Such a definition may hardly be
consensual or is at least difficult to establish, as it
depends on situational and cultural contexts (Fiske,
2017). In this work, we adopt the most common
definition of group fairness, and the one adopted
by laws in several countries, which is based on
the notion of disparate impact: a prediction model
is considered to have a disparate impact if its re-
sults disproportionately harm (or benefit) people
with certain sensitive attribute values (e.g., women,
black people).

In this work, we focus on group fairness for neu-
ral text classification as it is one of the most ubiqui-
tous tasks in our society, with prominent examples
in medical and legal domains (Demner-Fushman
et al., 2009) or human resources (Jatobá et al.,
2019), to name a few. Neural text classification
relies on text encoders, which are parameterized
and learned functions that map tokens (arbitrary
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text chunks) into a latent space of controllable di-
mension, usually followed by a classification layer.
Built upon the Transformers architecture (Vaswani
et al., 2017), popular Pre-trained Language Mod-
els (PLMs) such as BERT (Devlin et al., 2019),
GPT3 (Radford et al., 2019) or Llama (Touvron
et al., 2023) leverage self-supervised learning to
train the text encoder parameters. In modern NLP
pipelines, these PLMs are further fine-tuned on
the supervised task at hand. Ultimately, PLMs
accumulate uncontrolled levels of unfairness due
to unbalanced learning data or algorithmic biases,
for instance. This results in observable biases in
predictions but also in the latent space as studied
in (Zhao et al., 2019; May et al., 2019).

We propose a novel approach (see Figure 1), to
mitigate bias in text encoders, that aims to tackle
bias directly in the latent space on which docu-
ments are projected, thus making our model appli-
cable to any text encoder or decoder (e.g. BERT or
LLAMA). To proceed, we disentangle the neural
signals encoding bias from the neural signals used
for prediction. The proposed architecture is based
on three components. First, two Multi-Layer Per-
ceptrons (MLPs): the first one whose objective is
to predict the sensitive attribute, and the second one
is dedicated to the prediction task at hand. Then, a
third MLP, referred to as a critic, approximates the
Wasserstein distance that acts as a regularizer in
our objective function. Our proposition overcomes
a major shortcoming of prior studies: they rely on
the availability of the sensitive attributes at train
time. A constraint that is incompatible with recent
regulations as the new European ones, that enforce
more stringent requirements for the collection and
utilization of protected attributes. Prior studies are
thus more difficult to use in practical settings. In
the following, we will show that our approach can
address this limitation by avoiding the use of this
information during both testing and training.

The rest of this paper is organized as follows.
Section 2 presents recent advances regarding fair-
ness in NLP. Section 3 argues about our motivation
and provides the background knowledge to under-
stand our contribution. Section 4 proceeds with
the description of the proposed approach, its the-
oretical analysis, and algorithmic implementation.
Section 5 introduces the setting of our experiments,
and Section 6 presents the results and interpretation.
The last section concludes the paper and gives a
couple of hints for possible future research.

2 Related Works

Numerous studies have been conducted on how
to tackle bias in machine learning systems. Ap-
proaches to reinforce fairness can be divided be-
tween pre-, in-, and post-processing methods. In
the NLP literature, common pre-processing tech-
niques consist of data rebalancing (Park et al.,
2018) or embedding debiasing (Wang et al., 2020;
Bolukbasi et al., 2016). Yet, despite the efficiency
of those methods, Kaneko et al. (2022) and Tokpo
et al. (2023) showed that other biases can be learned
during the training or fine-tuning processes. On the
other hand, post-processing procedures aim at cor-
recting biases after the learning step, through model
calibration (Zhao et al., 2017; Jia et al., 2020) or
data projection (Ravfogel et al., 2020) (INLP). We
refer to (Sun et al., 2019; Blodgett et al., 2020) for
more exhaustive surveys of bias in NLP.

Recently, adversarial methods (Beutel et al.,
2017; Zhang et al., 2018; Elazar and Goldberg,
2018) have been investigated to mitigate biases.
Han et al. (2021c,b) respectively suggest using sev-
eral discriminators where each learns different hid-
den representations and applying an adversarial ap-
proach in- and cross-domain to train the adversary
on a different dataset, with methods called Adv
and GATE. Differently, recent contributions focus
on directly constraining the objective to improve
fairness (Shen et al., 2022b; Han et al., 2021a). For
instance, by adding some fairness metric, such as
the Equal opportunity that we will define later in
this paper, to the objective function.

Our approach is at the crossroad of these two
philosophies: on the one hand, we propose to train
a biased model whose sole purpose is to predict the
sensitive attribute and use this latter to enforce fair-
ness in our main prediction model. On the second
hand, we minimize a classifier loss with a regular-
ization term measuring the dependence between
the latent representations of the classifier and some
unfair representations, using Wasserstein distance.
While many works use the Kullback–Leibler (KL)
divergence to measure the mutual information be-
tween representations, Ozair et al. (2019) show sev-
eral limitations: the KL-divergence is sensitive to
small perturbations in the data, and exploiting it for
estimating the mutual information does not scale
up properly. Thus, they suggest an improvement
thanks to the Wasserstein distance. Other methods
based on this distance suggest focusing on the dis-
tance between the distributions of predictions to en-



force fairness (Jiang et al., 2020; Risser et al., 2022).
Finally, most approaches aforementioned depend
on the availability of sensitive attribute annotations
in the training data, and as Kenfack et al. (2023)
recently emphasized, employing proxy-sensitive at-
tributes often worsens the fairness-accuracy trade-
off. They also propose a proxy model to retrieve
the missing sensitive attributes, adapted to improve
the model’s fairness.

Limits of existing approaches and positioning
Compared to the adversarial approaches previously
mentioned, ours is conceptually closer to (Nam
et al., 2020), while their methodology is conducted
on images rather than textual data. We also distin-
guish from their research by the use of the Wasser-
stein distance to evaluate the mutual information
between the two models’ representations instead of
focusing the learning of the main model on samples
going against the prejudice of the biased network.
Like Ozair et al. (2019), we exploit the Wasserstein
distance as an estimator of the mutual information.
However, while they use it to measure mutual infor-
mation to improve representational learning on im-
ages, we consider sensitive attributes in the mutual
information estimation and use it to improve the
model fairness. Our proposition is related to Risser
et al. (2022), yet, we do not use the model out-
puts directly as we use hidden representations, of
fixed-size and task-independent dimensions, of Pre-
trained Language Models that encode information
on sensitive attributes. Additionally, we do not use
the Wasserstein distance to compute the distance
between each group’s prediction probability but
to enforce the independence of the representation
from unfair representations. By using those latent
representations in the Wasserstein-regularization
term, the model is encouraged not to encode the
sensitive information in the representation during
inference. Similarly, in the field of NLP, a re-
lated approach is proposed by Cheng et al. (2021).
Their method maximizes the mutual information
between pairs of sentence representations and their
augmented versions, which vary based on the sen-
sitive attribute. These representations go through
the same encoder, ensuring that the input is inde-
pendent of the sensitive information. However, this
does not ensure independence between the predic-
tion and the sensitive attribute (Shen et al., 2022a;
Cabello et al., 2023). In contrast, our theoretically
grounded approach minimizes the mutual informa-
tion between representations of the same sentence

processed by two different encoders to make the
predictions independent of the sensitive attributes.
Moreover, their approach depends on identifying
biased attribute words, limiting its applicability to
cases where substitute words are accessible. This
is a constraint we avoid. Lastly, while previous
methods primarily targeted classification issues in
images or categorical and numerical data, we intro-
duce an approach well-suited for Natural Language
Processing. It can be applied to less-explored sce-
narios, including continuous sensitive attributes
and regression tasks.

3 Preliminaries

In this section, we introduce the notations used
throughout this paper. We also present the defi-
nitions of the necessary fairness metrics, and the
main concepts, mostly related to the Wasserstein
distance which are essential for understanding the
rest of the paper.

3.1 Motivation

We consider a corpus of n triplets {(xi, yi, si)}ni=1,
where xi ∈ X is a short document or a sentence,
yi ∈ Y is a label and si ∈ S corresponds to one or
multiple variables, referred to as sensitive attributes,
such as gender, ethnicity or age. Let us consider
binary classification for illustrative purposes. The
goal is to predict the outcomes yi by estimating the
conditional probability p(y = 1|x = xi) through a
scoring function f : X → {0, 1}. The prediction
associated with f is noted ŷ. For example, in the
context of a social network, a classifier can use
the descriptors of a message (e.g., a bag of word
representation), xi, to predict whether a message
is toxic or not, leading to the decision to ban the
message and/or the user who wrote it from the
social platform.

3.2 Measuring Fairness

In this context, of particular relevance is group-
based fairness, which examines how well outcome
(ŷ) consistency is preserved across sensitive groups
(s). Returning to our example, when determining
whether a message is toxic, fairness here implies
that the decision is consistent for all users, regard-
less of gender or ethnicity.

A commonly used group-based metric used to
quantify the (un)fairness of a given classifier is the
Equality of Opportunity EO (Hardt et al., 2016)
that is satisfied if the prediction made by the clas-



sifier is conditionally independent of the protected
attribute, given that the true value is positive (e.g.
y = 1). In effect, it means that the same proportion
of each group receives a positive outcome. For bi-
nary sensitive attribute (s ∈ {a, ā}) and multi-class
objectives, the consensual way of aggregating EO
score over classes is the GAP score (De-Arteaga
et al., 2019; Ravfogel et al., 2020) defined as fol-
lows

GAP =

√
1

|C|
∑
c∈C

(EOc)2, (1)

where the EO for a given class c ∈ C is defined by

EOc =p(ŷ = c|y = c, s = a)

− p(ŷ = c|y = c, s = ā).
(2)

Additionally, as fairness often requires deter-
mining a trade-off such that reaching equity does
not degrade the general classification performance,
Han et al. (2021a) proposed the Distance To Op-
timum (DTO) score. This latter measures the
accuracy-fairness trade-off by computing the Eu-
clidean distance from a model to an Utopia point
(point corresponding to the best Accuracy and best
Fairness values across all the baselines). The goal
is to minimize the DTO.

Finally, we consider the Leakage metric that cor-
responds to the accuracy of a classification model
trained to predict the sensitive attribute from the la-
tent representations. It measures the fairness of the
latent representations themselves and demonstrates
unfairness when close to 100 of accuracy.

3.3 Fairness as Mutual Information
minimization

Mutual Information (MI) is an information-theory-
based metric meant to measure the statistical depen-
dence or the amount of information shared between
two variables. In our context, given the class of a
document predicted by our model along with the
value of the sensitive attribute of the document, one
can use MI to evaluate the strength of their relation-
ship. Formally, the mutual information is defined
as the Kullback-Leibler (KL) divergence between
the joint distribution p(x, y) and the product of the
marginal distributions:

MI(x, y) = KL(p(x, y)∥p(x)p(y)). (3)

Fairness can therefore be cast as MI minimiza-
tion between ŷ, our prediction (conditioned on y,

the ground-truth or not), and s, the sensitive at-
tribute, as it will make the prediction and the sen-
sitive attribute less and less dependent. Neverthe-
less, MI is generally intractable for most real-life
scenarios and has strong theoretical limitations as
outlined by Ozair et al. (2019). Notably, it requires
a number of samples exponential in the value of
the Mutual Information to build a high confidence
lower bound and it is sensitive to small perturba-
tions in the data sample. Consequently, Ozair et al.
(2019) proposed a theoretically sound dependency
measure, the Wasserstein Dependency Measure,
based on Wasserstein-1 distance :

MIW (x, y) = W1(p(x, y), p(x)p(y)). (4)

A key feature of the Wasserstein distance is that
it can act as a smooth objective function, as shown
in the WGAN approach (Arjovsky et al., 2017).
More precisely, the Kantorovich-Rubinstein duality
expresses W1(p(x, y), p(x)p(y)) as :

sup
||C||L≤1

Ex,y∼p(x,y)[C(x, y)]

− Ex∼p(x),y∼p(y)[C(x, y)],
(5)

where ||C||L ≤ 1 is the set of all 1-Lipschitz func-
tions. Arjovsky et al. (2017) propose to approxi-
mate this measure by using a parameterized func-
tion, defined as follows :

max
ω,||Cw||L≤1

Ex,y∼p(x,y)[Cω(x, y)]

− Ex∼p(x),y∼p(y)[Cω(x, y)],
(6)

where Cω is called the critic and is usually a neural
network. Wasserstein distance has been efficiently
used in many machine learning fields (Frogner
et al., 2015; Courty et al., 2014; Torres et al., 2021)
and a particularly interesting application is that of
fair machine learning (Jiang et al., 2020; Silvia
et al., 2020; Gordaliza et al., 2019; Laclau et al.,
2021). See Appendix A.1 for further theoretical
details on the Wasserstein Distance. The role of
this measure in our contribution is detailed in the
subsequent sections.

4 Our contribution

We are now ready to show how one can cast the
problem of group fairness as an independence con-
straint in the intermediate latent space of the MLPs
and derive a theoretically sound approach based on
the Wasserstein distance to solve it.
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Figure 2: Architecture for a batch of size 4 at train time. The data representation on the left shows how we create
dependency or independence between zy and zs. At inference, only the trained classifier (green) is kept to predict ŷ.

4.1 Definition of the Objective Function

In most recent NLP applications, deep classifi-
cation is performed as a two-step approach: the
scoring function f is a composition of two param-
eterized functions such that f = g ◦ h, where
g(x) = z ∈ Rd projects x in low dimensional
space and h is a simple, usually one linear layer
neural network with softmax activation followed
by an argmax referred to as a classification layer.
The objective of g is to produce an embedding z
linearly separable with respect to the target of in-
terest. For the deep model predicting y, we write
fc = gc ◦ hc = hc(zc), where the index c stands
for classification.

As stated earlier, fairness can be defined as min-
imizing MI(ŷ, s). As s is neither observable nor
allowed to be observed in most real-life scenarios,
we make use of a surrogate for s that we call the de-
monic model. This deep model is a composition of
fs = gs ◦hs = hs(zs), where s stands for sensitive
attribute. Therefore, in the absence of the sensitive
attribute, we can use :

min MI(ŷ, ŝ). (7)

As the argmax operation producing the hard pre-
dictions following the classification layer is not
differentiable, we propose to minimize the MI be-
tween the latent representations instead of the net-
work final output, leading to optimizing an upper
bound of the latter equation (see details in Ap-
pendix):

min MI(zy, zs) ≥ MI(ŷ, ŝ). (8)

Lastly, we replace MI with MIW for the reasons
explained earlier. We propose to optimize simulta-
neously the Wasserstein dependency measure and
the more traditional classification loss (e.g. the
cross-entropy). Our objective function writes as
follow

argmin L(y, h(zy))
+β W1(p(zy, zs), p(zy)p(zs)),

(9)

where L is the loss function aiming at maximizing
the accuracy of the model for predicting y while
the role of the second term is to constrain the en-
coder part of the language model to learn fair rep-
resentations. The hyper-parameter β ∈ R+ is a
weight allowing some control on the impact of the
penalty as the speed of convergence of the two sub-
objectives may be different. In the following, we
refer to the approach minimizing Equation 9 as WFC
for Wasserstein Fair Classification (WFC).

4.2 Optimization of WFC
The overall architecture of WFC is presented in Fig-
ure 2. Given a batch of documents along with their
sensitive attribute, we start by generating a repre-
sentation of each document using a PLM. Then,
taking these vectors as input, we train two MLPs
to predict s and y, respectively. The former is re-
ferred to as the demonic model in the remained of
this paper. Now, assuming that the MLPs consist of



one hidden layer, for the sake of simplicity, we can
extract two embedding vectors for all documents,
denoted by zs and zy. Note that the prediction ŷ
made by the second MLP (in green in Figure 2)
can be directly used to compute the first part of our
objective function (see Equation 9).

Now for the second term of the loss, which is
given by W1(p(zy, zs), p(zy)p(zs)), we use the ap-
proximation proposed by Arjovsky et al. (2017):

max
ω,||Cw||L≤1

Ezy ,zs∼p(zy ,zs)[Cω(zy, zs)]

−Ezy∼p(zy),zs∼p(zs)[Cω(zy, zs)].
(10)

In this context, Cω is a MLP, referred to as
the critic in Figure 2. To enforce the Lipschitz
constraint, we clamp the weights to given values
([−0.01, 0.01]) at each optimization step2. For a
batch of documents, the critic takes as input the
concatenation of zy and zs on the one hand, and the
concatenation of zy and zs randomly drawn from
the dataset (equivalent to zy ∼ p(zy), zs ∼ p(zs)),
on the other hand. We then follow the training pro-
cedure introduced by Arjovsky et al. (2017) which
alternate maximizing Equation 10 in the critic
parameters for nc iterations and minimizing Equa-
tion 9 for nd iterations in the fy classifier param-
eters. The overview of the training process is de-
tailed in the appendix B.3

Training the demonic model We pre-train the
demonic model to predict the sensitive attributes
and do not update the demonic weights during the
training phase of the main model. The benefits
are twofold. Firstly, unlike previous works (Caton
and Haas, 2020), we require only limited access to
sensitive attributes label at training and we do not
need access to the labeling of sensitive attributes
in the inference regime. As a result, WFC is highly
compatible with recent regulations (e.g., US Con-
sumer Financial Protection Bureau). Secondly, the
demonic model can now be trained in a few-shot
fashion if some examples of the training set are
annotated with sensitive attributes. However, when
no sensitive attributes are available in the training
set, we replace the training data of the demonic part
of the architecture with data from another domain
(e.g. another dataset) containing sensitive informa-
tion for the same attribute. For example, for gender,

2We also tested some more recent improvements of Lips-
chitz constraint enforcement (Gulrajani et al., 2017; Wei et al.,
2018). Interestingly, all lead to poor performance

we can leverage generated datasets, like the EEC
dataset (Kiritchenko and Mohammad, 2018). Thus,
we transfer this knowledge from one dataset to an-
other, working towards fairness autonomy regard-
less of the inclusion of sensitive attributes within
the data.

5 Experimental Protocol

In our experiments, we intensively use the FairLib
package (Han et al., 2022), which provides an ac-
cess to many state-of-the-art methods and datasets.

5.1 Dataset
We employ two widely-used datasets to evaluate
fairness in the context of text classification, build-
ing upon prior research (Ravfogel et al., 2020; Han
et al., 2021c; Shen et al., 2022a). Both datasets are
readily available in FairLib.

Bias in Bios (De-Arteaga et al., 2019). This
dataset, referred to as ‘Bios dataset’ in the rest of
the paper, consists of brief biographies associated
with occupations (a total of 28) and genders (male
or female). As per the partitioning prepared by
(Ravfogel et al., 2020), the training, validation, and
test sets comprise 257, 000, 40, 000 and 99, 000
samples, respectively.

Moji (Blodgett et al., 2016). This dataset con-
tains tweets written in either "Standard American
English" (SAE) or "African American English"
(AAE), annotated with positive or negative polarity.
We use the dataset prepared by (Ravfogel et al.,
2020), which includes 100, 000 training examples,
8, 000 validation examples, and 8, 000 test exam-
ples. The target variable y represents the polarity,
while the protected attribute corresponds to the eth-
nicity, indicated by the AAE/SAE attribute.

5.2 Baselines
Except for the classical cross-entropy loss without
fairness constraint (CE) that we run ourselves, we
report the results from (Shen et al., 2022a; Han
et al., 2022) on these two datasets. The consid-
ered baselines are INLP (Ravfogel et al., 2020),
the ADV method (Han et al., 2021c), FairBatch
(Roh et al., 2021), GATE (Han et al., 2021a) and
Con, displaying the dp and eo versions (Shen et al.,
2022a).

5.3 Evaluation Tasks
For training a vanilla text classification model, we
follow the protocol proposed by Han et al. (2022):



a frozen BERT encoder followed by a 3-layer MLP.
We use accuracy to assess the classification perfor-
mance. Fairness for all models is evaluated against
three metrics presented earlier: GAP, referred to
as “Fairness” in previous works (Han et al., 2022;
Shen et al., 2022a), and the Distance To Optimum
(DTO) proposed by Han et al. (2021a) (we follow
the methodology of Shen et al. (2022a) and evalu-
ate the DTO on the average fairness and accuracy
of the best empirical results for each metric over
all models to build the utopia point). Finally, we
consider the Leakage score.

Task 1: Fair Classification We first compare our
method against state-of-the-art approaches. We use
the representation generated by a base BERT model
as an input to the MLPs. For Bios, the demonic
MLP is trained on 1% of the training set and obtains
99% accuracy for predicting the sensitive attributes
on the test set. Similarly, the demonic MLP obtains
88.5% accuracy on Moji.

Task 2: Demonic transfer We conduct these
experiments for Bios and train a demonic MLP
either on the EEC dataset (Kiritchenko and Mo-
hammad, 2018) or the Marked Personas dataset
(Cheng et al., 2023). We then evaluate the perfor-
mance of the demonic MLP to predict gender on
the Bios test dataset. When training on the EEC
dataset we obtain 98.1% of accuracy, and on the
Marked Personas dataset, we obtain 98.4% of ac-
curacy. We repeat Task 1, with those variants of
the demonic MLP. We focus on Bios in this exper-
iment. For Moji, it would require to have access
to other datasets with the same protected attribute
(ethnicity).

Task 3: Use of representations from different
layers In the previous experiments, following
approaches presented in (Han et al., 2022), the
Wasserstein distance is approximated using the last
hidden representations of the 3-layer MLP. We com-
pare this approach, on both datasets, with the use
of the first hidden representations of the MLP and
with the output logits. For the latter, the Wasser-
stein is estimated between distributions of different
dimensions: for example, in the case of Bios, 2
for the demonic MLP corresponding to the sensi-
tive attributes and 28 for the classification MLP
corresponding to the labels.

Task 4: Independence with predicted hard sen-
sitive attributes To evaluate the impact of using
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Figure 3: Visualization of the fairness-accuracy trade-
off on (a) Moji and (b) Bios. Values correspond to the
average results.

the representation zs, we reproduce Task 1, but
replace zs with the sensitive attributes predicted
by the demonic MLP: ŝ and concatenate zy and ŝ
dependently and independently when computing
the Wasserstein distance. Note that we do not en-
counter a problem with the non-differentiability
for ŷ (with the argmax operation as for ŝ as men-
tioned in Section 4.1) since the demonic model is
pre-trained.

5.4 Implementation Details

Our architecture is composed of three components:
two classifiers and a critic. The details of the MLPs
used to parameterize each component are given in
Appendix B. We find the best hyperparameters for
our models by grid-search cross-validation over
the MLP and Critic learning rates, the value of nd

(number of batches used to train the main MLP),
the layers producing zs and zy, the value of β and
the value used to clamp the weights to enforce
the Lipschitz constraint. The values allowing us



Table 1: Results on Moji (top) and Bios (bottom). For
baselines, results are drawn from (Shen et al., 2022a).
We report the mean ± standard deviation over 5 runs. *
indicates the model without fairness consideration.

Model Accuracy ↑ Fairness ↑ DTO ↓ Leakage ↓
*CE 72.3± 0.5 61.2± 1.4 31.0 87.9± 3.3
INLP 73.3± 0.0 85.6± 0.0 7.02 86.7± 0.6
Adv 75.6± 0.4 90.4± 1.1 1.71 78.8± 6.0
Gate 76.2± 0.3 90.1± 1.5 1.90 100.0± 0.0
FairBatch 75.1± 0.6 90.6± 0.5 1.78 88.4± 0.4
EOGLB 75.2± 0.2 90.1± 0.4 2.15 85.7± 1.2
Condp 75.8± 0.3 88.1± 0.6 3.92 54.2± 0.9
Coneo 74.1± 0.7 84.1± 3.0 8.17 80.1± 4.2
WFC 75.2± 0.1 91.4± 0.3 1.17 86.9± 0.2

Model Accuracy ↑ Fairness ↑ DTO ↓ Leakage ↓
*CE 82.3± 0.2 85.1± 0.8 5.67 98.0± 0.0
INLP 82.3± 0.0 88.6± 0.0 2.44 97.6± 0.1
Adv 81.9± 0.2 90.6± 0.5 1.80 88.6± 4.6
Gate 83.7± 0.2 90.4± 0.9 0.20 100.0± 0.0
FairBatch 82.2± 0.1 89.5± 1.3 1.86 98.0± 0.3
EOGLB 81.7± 0.4 88.4± 1.0 2.97 97.2± 0.5
Condp 82.1± 0.2 84.3± 0.8 6.50 76.3± 1.5
Coneo 81.8± 0.3 85.2± 0.4 5.72 84.9± 3.4
WFC 82.4± 0.1 89.0± 0.3 2.06 96.5± 0.5

Table 2: Evaluation of the impact of parameter β (Equa-
tion 9) on the model’s leakage. Results on Moji (top)
and Bios (bottom).

β DTO ↑ Accuracy ↑ Fairness ↑ Leakage ↓
1 1.2 75.2 91.4 86.9
5 4.2 72.1 93.4 81.1
10 5.8 70.5 92.1 81.6
20 7.6 68.6 92.1 84.1
β DTO ↑ Accuracy ↑ Fairness ↑ Leakage ↓
1 2.1 82.4 89.0 96.5
5 2.3 81.8 89.3 87.4
10 2.8 81.8 88.5 88.8
20 3.6 81.3 88.0 81.8

to obtain the lower DTO during this process are
presented in Appendix B. The architecture details
of the MLP for the leakage are provided in (Shen
et al., 2022a) as we use the same configuration.

6 Results

6.1 Task 1: Fair Classification

We compare WFC with text classification baselines.
For Moji, (Table 1 and Fig. 3), accuracy of WFC
is higher than the accuracy of CE and it is equiv-
alent to competitors. On the fairness metrics, we
outperform all other baselines and obtain the best
DTO. For Bios (Table 1 and Fig. 3), our method
is competitive with the other baselines and ranks 4
out of 9 in terms of accuracy-fairness trade-off. In
comparison, with equivalent methods in terms of

DTO (INLP, FairBatch, and Adv), WFC improves
either the performance or the fairness. Especially,
WFC has the second-best accuracy compared to
baselines. Finally, we note that WFC is more sta-
ble in terms of Fairness compared with other ap-
proaches having on average the best results for this
metric (along with a smaller standard deviation).
Eventually, even when our method does not out-
perform the baselines (e.g., Bios dataset), it still
exhibits noteworthy properties, particularly its abil-
ity to achieve competitive performances without
access to the sensitive attributes in the training set.
We evaluate this capability in the next subsection.
We also explore the ability of our proposition to
improve the leakage. We initially aim at improving
the fairness while maintaining the accuracy of the
model. Yet, our method allows to improve leakage
by increasing the value of β in Equation 9, in other
words, we give more importance to the Wasserstein
regularization in the loss. We note in Table 2 that
with a higher β, the leakage decreases. However,
on both datasets, the accuracy, that we want to pre-
serve, decreases and the trade-off worsens as we
get better for the leakage. To sum up, reducing leak-
age makes it more challenging to retrieve sensitive
attributes but could result in unintended informa-
tion loss needed for the classification task affecting
the performance. Ultimately, we want to enhance
fairness while keeping a good performance and this
objective may not necessarily match with a strong
leakage improvement.

6.2 Task 2: Demonic Transfer
For this task, we pre-train the demonic model on
other datasets. Table 3a shows that we achieve sim-
ilar results as when the pre-training is done using
the same dataset. The average loss of accuracy
and fairness are not significant. These results are
promising for improving fairness, especially in situ-
ations where collecting sensitive data is not feasible
or when only partial information is accessible.

6.3 Task 3: Use of representations from
different layers

On both datasets (Table 3b), accuracy is rather sta-
ble regardless of the layers used to compute the
Wasserstein distance. Still, the best results are ob-
tained using the last hidden representations. How-
ever, while we note a slight decrease in fairness on
Bios when using representations from other layers,
the decrease becomes much more significant on
Moji. Using the last hidden layer is the best option.



Table 3: Summary of the results for tasks 2, 3 and 4. We report the mean ± standard deviation over 5 runs for
all tasks. Boldface numbers are the best results, and a star indicates that the difference is statistically significant
according to a signed-rank Wilcoxon test (i.e. with a p-value lower than 0.01).

Data Accuracy ↑ Fairness ↑ DTO ↓ Leakage ↓
Bios 1% 82.4± 0.1 89.0± 0.3 2.06 96.5± 0.5
EEC 82.2± 0.4 88.9± 0.4 2.26 97.5± 0.3
MP 82.4± 0.3 88.9± 0.4 2.14 96.4± 0.5

(a) Task 2: comparison between several scenarios for training the demonic
model for prediction on Bios.

Layer Accuracy ↑ Fairness ↑ DTO ↓ Leakage ↓
Bios

Last hid. 82.4± 0.1∗ 89.0± 0.3∗ 2.06∗ 96.5± 0.5
First hid. 81.9± 0.2 86.7± 0.4 4.29 96.5± 0.6
Last lay. 82.1± 0.6 87.5± 0.3 3.49 87.0± 1.1∗

Moji
Last hid. 75.2± 0.1∗ 91.4± 0.3∗ 1.17∗ 86.9± 0.2
First hid. 74.3± 0.1 80.8± 1.0 11.4 85.6± 0.6
Last lay. 73.5± 0.0 70.2± 0.2 21.9 64.5± 0.1∗

(b) Task 3: comparison between the use of representations of different MLP
layers to compute the Wasserstein.

Labels Accuracy ↑ Fairness ↑ DTO ↓ Leakage ↓
Bios

Representations 82.4± 0.1 89.0± 0.3∗ 2.06∗ 96.5± 0.5
Hard labels 82.6± 0.2 87.5± 0.2 3.28 92.0± 0.2∗

Moji
Representations 75.2± 0.1∗ 91.4± 0.3∗ 1.17∗ 86.9± 0.2
Hard labels 72.2± 0.1 65.0± 0.0 27.3 81.0± 0.8∗

(c) Task 4: comparison between the use of representations zs and hard
sensitive attributes to compute the Wasserstein distance.

6.4 Task 4: Independence with predicted hard
sensitive attributes

We replace zs by the predicted ŝ to compute the
Wasserstein distance and report the results in Table
3c. We observe, on average, a slight improvement
of the accuracy on Bios, and a slight decrease in
accuracy on Moji. However, while the decrease
in fairness is not significant for Bios, we observe
a substantial drop for Moji. As a result, using ŝ
instead of zs seems to have a neutral impact at best,
this may also result, in some cases, in a reduction
of both accuracy and fairness.

7 Conclusion

We presented WFC a novel method that enforces fair-
ness constraints using a pre-trained neural network
on the sensitive attributes and Wasserstein regular-
ization. Our model is theoretically well-motivated
and has interesting properties over existing mod-
els. The most important one is the fact that it does
not require annotation of the sensitive attribute at

both training and inference time. We obtain com-
petitive results compared to baselines on the Bios
dataset and outperform them on the fairness score
with comparable accuracy on Moji dataset. Further-
more, we present a solution for our algorithm to be
trained when sensitive attributes are not available
for a given dataset, paving the way for its use under
realistic applications. In further studies, we will
focus on applying this method using different text
encoders or decoders, datasets, and downstream
tasks, as this method can generalize to tasks out
of the text classification scope, notably, regression
and even unsupervised objectives.

Limitations

The proposed approach is rather flexible as it can
handle various types of sensitive attributes. How-
ever, due to the lack of available datasets, we were
not able to assess our performance for continuous
sensitive attributes, e.g. age. In addition, we are
aware that gender may embrace a n-ary definition,
in all our experiments, we were limited to consider-



ing only men vs women classification, due to data
availability.

For Task 2 defined in the experiments section,
we were able to show empirically that our method
works well when the demonic model is pre-trained
on a different dataset when no sensitive attributes or
very few of them are available on the main training
dataset. However, we do not provide sufficient
generalization guarantees to consider an out-of-the-
box large-scale deployment. The next step will
be to derive theoretical guarantees inspired by the
results of domain adaptation to assess how well
this idea can be generalized to other data and under
which conditions it might fail or succeed.

Finally, for Task 1 we did not perform a statisti-
cal test to assess the significance of the observed
differences. Indeed, most of the results were re-
ported from (Shen et al., 2022a) and we were un-
able to retrieve the scores for each run.

Ethics Statement

We acknowledge the following concerns about our
work. First, biases present in the data are US-
centered, and concerning the Bias in Bios dataset
genders are binary. Furthermore, to conduct our
research we need to have access to the sensitive
attributes contrary to what privacy measures rec-
ommend, and the latter are annotated with a risk of
subjectivity.

Acknowledgements

This work was funded by the french National
Agency for Research (ANR) in the context of the
Diké project (ANR-21-CE23-0026).
Our experiments utilize the previously mentioned
Fairlib framework. We would like to express our
gratitude to Xudong Han for his availability and
assistance in using it.

References
Martin Arjovsky, Soumith Chintala, and Léon Bottou.

2017. Wasserstein generative adversarial networks.
In ICML, pages 214–223. PMLR.

Emily M Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In FAccT, pages 610–623.

Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. 2017.
Data decisions and theoretical implications when
adversarially learning fair representations. arXiv
preprint arXiv:1707.00075.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in nlp. In Proceed-
ings of ACL, pages 5454–5476.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social me-
dia: A case study of african-american english. arXiv
preprint arXiv:1608.08868.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. NeurIPS, 29.

Laura Cabello, Anna Katrine Jørgensen, and Anders
Søgaard. 2023. On the independence of association
bias and empirical fairness in language models. In
Proceedings of the 2023 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’23,
page 370–378, New York, NY, USA. Association for
Computing Machinery.

Simon Caton and Christian Haas. 2020. Fairness
in machine learning: A survey. arXiv preprint
arXiv:2010.04053.

Myra Cheng, Esin Durmus, and Dan Jurafsky. 2023.
Marked personas: Using natural language prompts
to measure stereotypes in language models. arXiv
preprint arXiv:2305.18189.

Pengyu Cheng, Weituo Hao, Siyang Yuan, Shijing Si,
and Lawrence Carin. 2021. Fairfil: Contrastive neu-
ral debiasing method for pretrained text encoders.

Nicolas Courty, Rémi Flamary, and Devis Tuia. 2014.
Domain adaptation with regularized optimal trans-
port. In ECML PKDD, pages 274–289. Springer.

Maria De-Arteaga, Alexey Romanov, Hanna Wal-
lach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi,
and Adam Tauman Kalai. 2019. Bias in bios: A case
study of semantic representation bias in a high-stakes
setting. In FaccT, pages 120–128.

Dina Demner-Fushman, Wendy W Chapman, and
Clement J McDonald. 2009. What can natural lan-
guage processing do for clinical decision support?
Journal of biomedical informatics, 42(5):760–772.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Yanai Elazar and Yoav Goldberg. 2018. Adversarial
removal of demographic attributes from text data. In
Proceedings of EMNLP. Association for Computa-
tional Linguistics.

Susan T Fiske. 2017. Prejudices in cultural contexts:
Shared stereotypes (gender, age) versus variable
stereotypes (race, ethnicity, religion). Perspectives
on psychological science, 12(5):791–799.

https://doi.org/10.1145/3593013.3594004
https://doi.org/10.1145/3593013.3594004
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/2103.06413


Charlie Frogner, Chiyuan Zhang, Hossein Mobahi,
Mauricio Araya, and Tomaso A Poggio. 2015. Learn-
ing with a wasserstein loss. NeurIPS, 28.

Paula Gordaliza, Eustasio Del Barrio, Gamboa Fabrice,
and Jean-Michel Loubes. 2019. Obtaining fairness
using optimal transport theory. In ICML, pages 2357–
2365. PMLR.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron C Courville. 2017. Im-
proved training of wasserstein gans. Advances in
neural information processing systems, 30.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2021a. Balancing out bias: Achieving fair-
ness through balanced training. arXiv preprint
arXiv:2109.08253.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2021b. Decoupling adversarial training for fair NLP.
In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 471–477, Online.
Association for Computational Linguistics.

Xudong Han, Timothy Baldwin, and Trevor Cohn.
2021c. Diverse adversaries for mitigating bias in
training. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 2760–2765,
Online. Association for Computational Linguistics.

Xudong Han, Aili Shen, Yitong Li, Lea Frermann, Tim-
othy Baldwin, and Trevor Cohn. 2022. Fairlib: A
unified framework for assessing and improving fair-
ness. In Proceedings of the The 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 60–71.

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equal-
ity of opportunity in supervised learning. NeurIPS,
29.

Ben Hutchinson, Vinodkumar Prabhakaran, Emily Den-
ton, Kellie Webster, Yu Zhong, and Stephen Denuyl.
2020. Social biases in NLP models as barriers for
persons with disabilities. In ACL, pages 5491–5501.

Mariana Jatobá, Juliana Santos, Ives Gutierriz, Daniela
Moscon, Paula Odete Fernandes, and João Paulo
Teixeira. 2019. Evolution of artificial intelligence
research in human resources. Procedia Computer
Science, 164:137–142.

Shengyu Jia, Tao Meng, Jieyu Zhao, and Kai-Wei
Chang. 2020. Mitigating gender bias amplification in
distribution by posterior regularization. In Proceed-
ings of the Annual Meeting of ACL.

Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich
Jiang, and Silvia Chiappa. 2020. Wasserstein fair
classification. In Uncertainty in artificial intelligence,
pages 862–872. PMLR.

Masahiro Kaneko, Danushka Bollegala, and Naoaki
Okazaki. 2022. Debiasing isn’t enough!–on the ef-
fectiveness of debiasing mlms and their social biases
in downstream tasks. In Proceedings of the Inter-
national Conference on Computational Linguistics,
pages 1299–1310.

Leonid Kantorovich. 1942. On the translocation of
masses. In C.R. (Doklady) Acad. Sci. URSS(N.S.),
volume 37(10), pages 199–201.

Patrik Joslin Kenfack, Samira Ebrahimi Kahou, and
Ulrich Aïvodji. 2023. Fairness under demographic
scarce regime. arXiv preprint arXiv:2307.13081.

Svetlana Kiritchenko and Saif M. Mohammad. 2018.
Examining gender and race bias in two hundred sen-
timent analysis systems.

Charlotte Laclau, Ievgen Redko, Manvi Choudhary, and
Christine Largeron. 2021. All of the fairness for edge
prediction with optimal transport. In AISTATS, pages
1774–1782. PMLR.

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and
Ruslan Salakhutdinov. 2021. Towards understanding
and mitigating social biases in language models. In
ICML, pages 6565–6576. PMLR.

Chandler May, Alex Wang, Shikha Bordia, Samuel R
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings of
NAACL-HLT, pages 622–628.

Gaspard Monge. 1781. Mémoire sur la théorie des
déblais et des remblais. Histoire de l’Académie
Royale des Sciences, pages 666–704.

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee,
and Jinwoo Shin. 2020. Learning from failure: De-
biasing classifier from biased classifier. Advances in
Neural Information Processing Systems, 33:20673–
20684.

OpenAI. Chatgpt. https://openai.com/blog/
chatgpt. Accessed: 2022-03-06.

Osonde A Osoba and William Welser IV. 2017. An
intelligence in our image: The risks of bias and errors
in artificial intelligence. Rand Corporation.

Sherjil Ozair, Corey Lynch, Yoshua Bengio, Aaron
Van den Oord, Sergey Levine, and Pierre Sermanet.
2019. Wasserstein dependency measure for repre-
sentation learning. Advances in Neural Information
Processing Systems, 32.

Ji Ho Park, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection. In
Proceedings of EMNLP, pages 2799–2804.

Sundar Pichai. Google bard. https:
//blog.google/technology/ai/
bard-google-ai-search-updates/. Accessed:
2022-03-06.

https://doi.org/10.18653/v1/2021.findings-acl.41
https://doi.org/10.18653/v1/2021.eacl-main.239
https://doi.org/10.18653/v1/2021.eacl-main.239
http://arxiv.org/abs/1805.04508
http://arxiv.org/abs/1805.04508
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/bard-google-ai-search-updates/


Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael
Twiton, and Yoav Goldberg. 2020. Null it out: Guard-
ing protected attributes by iterative nullspace projec-
tion. In Proceedings of the Annual Meeting of ACL,
pages 7237–7256. ACL.

Laurent Risser, Alberto González Sanz, Quentin Vin-
cenot, and Jean-Michel Loubes. 2022. Tackling al-
gorithmic bias in neural-network classifiers using
wasserstein-2 regularization. Journal of Mathemati-
cal Imaging and Vision, 64(6):672–689.

Yuji Roh, Kangwook Lee, Steven Euijong Whang, and
Changho Suh. 2021. Fairbatch: Batch selection
for model fairness. In International Conference on
Learning Representations.

Carsten Schwemmer, Carly Knight, Emily D Bello-
Pardo, Stan Oklobdzija, Martijn Schoonvelde, and
Jeffrey W Lockhart. 2020. Diagnosing gender bias
in image recognition systems. Socius, 6.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022a. Does representational
fairness imply empirical fairness? In Findings of the
Association for Computational Linguistics: AACL-
IJCNLP 2022, pages 81–95.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. 2022b. Optimising equal oppor-
tunity fairness in model training. In Proceedings of
the Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4073–4084. Associa-
tion for Computational Linguistics.

Chiappa Silvia, Jiang Ray, Stepleton Tom, Pacchiano
Aldo, Jiang Heinrich, and Aslanides John. 2020. A
general approach to fairness with optimal transport.
In Proceedings of AAAI, volume 34, pages 3633–
3640.

Tony Sun, Andrew Gaut, Shirlyn Tang, Yuxin Huang,
Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth
Belding, Kai-Wei Chang, and William Yang Wang.
2019. Mitigating gender bias in natural language
processing: Literature review. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics, pages 1630–1640.

Yi Chern Tan and L Elisa Celis. 2019. Assessing so-
cial and intersectional biases in contextualized word
representations. NeurIPS, 32.

Ewoenam Tokpo, Pieter Delobelle, Bettina Berendt, and
Toon Calders. 2023. How far can it go?: On intrinsic
gender bias mitigation for text classification. arXiv
e-prints, pages arXiv–2301.

Luis Caicedo Torres, Luiz Manella Pereira, and M Hadi
Amini. 2021. A survey on optimal transport for
machine learning: Theory and applications. arXiv
preprint arXiv:2106.01963.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NeurIPS, 30.

Tianlu Wang, Xi Victoria Lin, Nazneen Fatema Ra-
jani, Bryan McCann, Vicente Ordonez, and Caiming
Xiong. 2020. Double-hard debias: Tailoring word
embeddings for gender bias mitigation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5443–5453.

Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and
Liqiang Wang. 2018. Improving the improved train-
ing of wasserstein gans: A consistency term and its
dual effect. In International Conference on Learning
Representation (ICLR).

Raymond W Yeung. 1991. A new outlook on shan-
non’s information measures. IEEE transactions on
information theory, 37(3):466–474.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
2018. Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pages 335–
340.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gender
bias in contextualized word embeddings. In Proceed-
ings of NAACL-HLT, pages 629–634.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification us-
ing corpus-level constraints. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 2979–2989.

A Theoretical background and Proof

A.1 Wasserstein Distance
Finding correspondences between two sets of
points is a longstanding issue in machine learn-
ing. The optimal transport (OT) (Monge, 1781)
problem offers an efficient solution to this issue by
calculating an optimal one-to-one transport map
between the two sets. This map is determined
by considering the geometrical proximity of the



Algorithm 1: WFC Algorithm
Data: D = {(xi, yi, si)}ni=1 the training set, ne the number of epochs, nc and nd the number of

training iterations per epoch for the critic and the classifier respectively, a batch size nb, two
neural networks hs(x) and hc(x; θ), a Critic Cω, a weight on the regularization β

for e = 1, ..., ne do
for t = 1, ..., nc do

Sample {xi, yi, si}nb
i=1

Encode : zs ← {hs(xi)}nb
i=1, zy ← {hc(xi)}nb

i=1

Concatenate vectors to get Zdep ← [zs,i, zy,i]
nb
i=1

Shuffle the zs,i vectors.
Concatenate vectors to get Zind ← [zs,i, zy,i]

nb
i=1

grad(w)← ∇ω
1
nb
(
∑nb

i=1Cω(Zdep,i)−
∑nb

i=1Cω(Zind,i))
ω ← Adam(ω; grad(w))

end
for t = 1, ..., nd do

Sample {xi, yi, si}nb
i=1

Encode : zs ← {hs(xi)}nb
i=1, zy ← {hc(xi)}nb

i=1

Concatenate vectors to get Zdep = [zs,i, zy,i]
nb
i=1

Shuffle the zs,i vectors.
Concatenate vectors to get Zind = [zs,i, zy,i]

nb
i=1

L ←
∑nb

i=1 L(yi, h(zy,i))
L ← L+ β(

∑nb
i=1Cω(Zdep,i)−

∑nb
i=1Cω(Zind,i))

θ ← Adam(θ;∇θ
1
nb
L)

end
end

points in the sets. In practice, OT can be expressed
as a problem of aligning two empirical distribu-
tions PX1 and PX2 supported on two point sets
X1 = {x(i)1 ∈ Rd}N1

i=1 and X2 = {x(j)1 ∈ Rd}N2
i=1.

We consider the Monge-Kantorovich formulation
of this problem (Kantorovich, 1942) where the goal
is to search for a coupling γ defined as a joint prob-
ability distribution over X1 ×X2 with marginals
PX1 and PX2 . This amounts to minimizing the cost
of transport w.r.t. some metric l : X1 ×X2 → R+:

min
γ∈Π(PX1

,PX2
)
⟨M,γ⟩F (11)

where ⟨·,·⟩F is the Frobenius dot product, M is
a dissimilarity matrix, i.e., Mij = l(x

(i)
1 , x

(j)
2 ),

defining the cost of associating x
(i)
1 with x

(j)
2 and

Π(PX1 ,PX2) is a set of doubly stochastic matrices.
This problem admits a unique solution γ∗ and de-
fines a metric on the space of probability measures
called the Wasserstein distance (also known as the
Earth-Mover Distance) as follows:

WM (PX1 ,PX2) = min
γ∈Π(PX1

,PX2
)
⟨M,γ⟩F .

A.2 Proof that MI(zy, zs) ≥ MI(ŷ, ŝ)
We have :

p(ŷ, zy, ŝ) = p(ŷ|zy, ŝ)p(zy|ŝ)p(ŝ) (12)

Recall that ŝ = hs(zs) and ŷ = hc(zy),
therefore, ŷ is fully determined by zy, hence,
p(ŷ|zy, ŝ) = p(ŷ|zy). Then :

p(ŷ, zy, ŝ) = p(ŷ|zy)p(zy|ŝ)p(ŝ). (13)

Therefore, the three variables follow the markov
property

ŝ→ zy → hc(zy). (14)

In such context, it was shown that (Yeung, 1991):

MI(zy, ŝ) ≥ MI(ŷ, ŝ). (15)

Following the same logic, we have

MI(zy, zs) ≥ MI(zy, ŝ) (16)

hence

MI(zy, zs) ≥ MI(ŷ, ŝ). (17)



Dataset BiasInBios Moji

input dimension 768 2304
hidden layers 1 1

hidden dimension 300 300
learning rate 0.0001 0.00001

batch size 128 128
epochs max 10000 10000

activation TanH TanH
β 1 1
nc 5 5
nd 20 5

clamp value 0.01 0.01
layer used last last

Table 4: Details on hyperparameters used for the classi-
fying MLP.

number hidden layer 1
hidden dimension 512

activation ReLU

optimizer
Root Mean Square

Propagation
learning rate 5e-5

Table 5: Details on hyperparameters used for the Critic
MLP.

B Experimental details

In this section, we provide additional experimental
details, notably, we detail the MLP architectures,
give the optimal hyperparameters, and describe the
full algorithm of WFC.

B.1 MLP architectures

In Table 4, we present the architectural details of
the classifier MLP. We grid searched over the learn-
ing rate (lr ∈ {1e− 5, 1e− 4, 1e− 3, 5e− 5, 5e−
4, 5e− 3}, the number of training batches for clas-
sification per epoch nd ∈ {5, 10, 20}, the value
used to clamp the weights to enforce the Lipschitz
constraint clamp value ∈ {0.001, 0.01, 0.1}, the
parameter β ∈ {0.5, 1, 2}, the layer used between
the first hidden, last hidden, or last layer.

B.2 Critic architecture

In Table 5, we present the architectural details of
the Critic, which is a simple multi-layer perceptron.
We grid searched over the learning rate lr ∈ {5e−
5, 5e− 4, 5e− 3}.

B.3 Algorithm of WFC
In Algorithm 1, we provide the detailed algorithm
for WFC used in our experiments.


