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Abstract
In classic Reinforcement Learning (RL), the agent
maximizes an additive objective of the visited
states, e.g., a value function. Unfortunately, objec-
tives of this type cannot model many real-world
applications such as experiment design, explo-
ration, imitation learning, and risk-averse RL to
name a few. This is due to the fact that additive
objectives disregard interactions between states
that are crucial for certain tasks. To tackle this
problem, we introduce Global RL (GRL), where
rewards are globally defined over trajectories
instead of locally over states. Global rewards can
capture negative interactions among states, e.g.,
in exploration, via submodularity, positive interac-
tions, e.g., synergetic effects, via supermodularity,
while mixed interactions via combinations of
them. By exploiting ideas from submodular opti-
mization, we propose a novel algorithmic scheme
that converts any GRL problem to a sequence of
classic RL problems and solves it efficiently with
curvature-dependent approximation guarantees.
We also provide hardness of approximation results
and empirically demonstrate the effectiveness of
our method on several GRL instances.

1. Introduction
Classic Reinforcement Learning (RL) (Puterman, 2014)
represents the value of a trajectory as a sum of local
rewards over its states(-actions). This fact allows us to
exploit Bellman’s optimality principle and therefore can
find optimal policies using efficient algorithms inspired
by dynamic programming (Bellman, 1966). Unfortunately,
additive objectives cannot properly capture a multitude
of real-world tasks including pure exploration (Hazan

*Equal contribution. All authors are from ETH Zurich and are
affiliated with the ETH AI Center. Correspondence to: Riccardo
De Santi <rdesanti@ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1: The agent has visited trajectory τt and must select
the next state. On the left, the agent aims to estimate an
unknown state function f : re-visiting s2 leads to a negative
interaction since the information gain has diminishing
returns. On the right, the agent seeks a trajectory, i.e.,
ordered set of atoms, maximizing synergies seen as positive
interactions among certain combinations of atoms e.g.,
adding s3 to τt = {s1, s2} leads to a synergetic effect.

et al., 2019; Mutti et al., 2022b; Liu & Abbeel, 2021),
function-estimation or experimental design (Mutny et al.,
2023; Tarbouriech & Lazaric, 2019; Tarbouriech et al.,
2020), imitation learning or distribution matching (Abbeel
& Ng, 2004; Lee et al., 2019; Ghasemipour et al., 2020),
risk-averse RL (Garcıa & Fernández, 2015; Mutti et al.,
2022a), diverse skill discovery (Eysenbach et al., 2018;
Campos et al., 2020; He et al., 2022), and constrained
RL (Brantley et al., 2020; Qin et al., 2021). In these cases,
the interactions between states play a fundamental role in
determining the performance of a trajectory. As an example,
consider the case of experiment design over a Markov
chain (Mutny et al., 2023; Tarbouriech & Lazaric, 2019) in
Fig. 1 (left), where an agent aims to minimize uncertainty
about an unknown function of the states, by observing a
noisy sample of it when visiting a state. Intuitively, the new
information gained by observing the function value at a state
depends on how often that state has been previously visited:
the more it has been visited, the less new information is
gained. This phenomenon of negative interactions between
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states cannot be captured by additive objectives that simply
sum over (fixed) local state rewards (Prajapat et al., 2023).
Consider a second example (see Fig. 1, right) where an RL
agent is used to design molecules (Thiede et al., 2022) by
selecting a set of atoms, where each atom is represented as
a state, via a trajectory of fixed length. In this case, positive
interactions between states, e.g., synergies, can capture
the positive effect of including within the trajectory certain
combinations of atoms. But once again, additive objectives
used in classic RL can only assign a fixed local reward to
each atom thus disregarding the interactions among them.

To tackle this problem, we introduce Global RL (GRL),
where an agent aims to compute a policy maximizing
rewards that are globally defined over trajectories rather
than locally over states. This makes it possible to capture
non-additivity and interactions among states even in finite-
sample processes. Then, we formally show how GRL can be
interpreted as a specific combinatorial optimization problem
(Section 3), and study its relation with Convex RL (Hazan
et al., 2019; Zahavy et al., 2021) (Section 4), an alternative
framework to deal with non-additive objectives. It is easy
to see that Global RL is a hard problem in general, thus the
rest of the work aims to answer the question:

When and how can we efficiently and
approximately solve the Global RL problem?

Towards answering this question, we extend discrete semi-
gradient methods from submodular optimization (Iyer et al.,
2013) to design a meta-algorithm that converts a GRL prob-
lem into a sequence of classic RL planning problems. Then,
we identify several structural properties of global rewards,
leading to approximation guarentees for our algorithmic
scheme. Among these, submodular (Lovász, 1983; Krause
& Golovin, 2014; Krause & Guestrin, 2011) global rewards
capture negative interactions between states, supermodu-
lar (Gallo & Simeone, 1989; Billionnet & Minoux, 1985)
global rewards capture positive interactions, and monotone
suBmodular-suPermodular (BP) (Bai & Bilmes, 2018; Ji
et al., 2019) global rewards capture mixed interactions. We
show that these reward structures model a wide range of
applications that cannot be expressed via local rewards, in-
cluding maximum entropy exploration (Hazan et al., 2019;
Mutti et al., 2022b), informative path planning (Prajapat
et al., 2023), experiment design (Mutny et al., 2023), and
synergetic trajectory selection among others. Furthermore,
we use these structures to study the computational hardness
of approximation results and perform a thorough experi-
mental evaluation of the proposed methods (Section 8) in
the context of experimental design, optimization of design
processes, and safe exploration. To sum up, in this work we
present the following contributions:

• The notion of Global MDP and the Global RL (GRL)
problem, which generalizes RL to non-additive objectives.

• A general algorithmic scheme to solve GRL by converting
it to a sequence of classic MDPs via submodular semi-
gradient methods (Section 6).

• Approximation guarantees for the proposed algorithms
via the notion of curvature that explicitly connect the
degree of non-additivity of a global reward with the
approximation ratio (Section 7).

• A computational hardness result for GRL, thereby ruling
out the possibility of achieving better approximation
ratios (Section 7).

• An extensive experimental evaluation of the proposed
algorithms on a wide range of applications (Section 8).

2. Preliminaries
We denote with [N ] a set of integers {1, . . . , N}. Let X be
a set, ∆(X) is the probability simplex over X .

Controlled Markov Process (CMP). An episodic
CMP (Puterman, 2014) is a tuple M := ⟨S,A, P, µ,H⟩,
where S is a discrete state space,A is a discrete action space,
P :S ×A→∆(S) is the transition model, where P (s′|s, a)
is the probability of reaching state s′ by taking action a in
state s. Meanwhile, µ ∈ ∆(S) is the initial state distribu-
tion, H is the horizon of an episode, and we define T = [H].
In each episode, the agent observes an initial state s0 ∼ µ,
selects an action a0, and transitions to s1 ∼ P (·|s0, a0).
This interaction process is repeated until the episode ends.

Markov Decision Process (MDP). If a CMP
M := ⟨S,A, P, µ,H⟩ is augmented with a scalar re-
ward function r : S → R or r : S ×A → R then we obtain
the MDPMr := ⟨S,A, P, µ,H, r⟩.
Policies. A policy encodes the behavior of an agent
interacting with a CMP. A non-Markovian policy π ∈ ΠNM

is a function π : Ht → ∆(A), whereHt denotes the set of
all histories, i.e., states visited in the past, up to length t.
A Markovian non-stationary policy πt ∈ ΠNS

M is a function
πt : S × T → ∆(A), while a Markovian stationary policy
π ∈ ΠS

M is a function π : S → ∆(A) independent of the
time-step. One can notice that ΠS

M ⊆ ΠNS
M ⊆ ΠNM.

Moreover, we denote with Π an arbitrary policy class.

Set Functions. We denote with the term ground set a set V
inducing the family of subsets f := {0, 1}V = 2V . Notice
that a function F : 2V → R takes subsets of the ground
set V as input and outputs scalars, formally F : X 7→ r
with X ⊆ V and r ∈ R. Moreover, every set X ⊆ V can
be represented as a binary vector x ∈ {0, 1}V with entries
given by x(i) = Ii∈X .

3. Global Reinforcement Learning (GRL)
In this section, we formulate the Global RL (GRL) problem
and shed light on its connection with combinatorial
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optimization, which will be essential to design efficient
approximate algorithms. Towards this goal, we first
introduce the concept of Global MDP (GMDP), which
generalizes the notion of MDP to the case of general
non-additive reward functions.

Definition 1 (Global Markov Decision Process). Consider
a CMPM := ⟨S,A, P, µ,H⟩ and a global reward function
F : 2S×T → R mapping trajectories to scalar returns. We
define a Global Markov Decision Process (GMDP) as the
tupleMF := ⟨S,A, P, µ,H, F ⟩.

We denote as local a reward function, e.g., r : S → R, that
assigns a scalar reward to each state(-action) and as global a
reward function F :2S×T 7→ R that assigns a scalar reward
to each trajectory τ := {(st, t)H−1

t=0 } ⊆ S × T . Given a
GMDP, we can state the GRL problem as follows.

Global Reinforcement Learning

max
π∈Π

J (π) := E
τ∼pπ

[
F (τ)

]
(1)

Hereby, pπ is the distribution over trajectories induced by
policy π, formally:

pπ(τ) = µ(s0)

H−1∏
t=0

πt(at|st)P (st+1|st, at)

Particularly, in this work we focus on the setting of known
transition model P and global rewards F .

3.1. GRL as a Subset Selection Problem

Given a family F = 2V induced by a ground set V , a
representative problem in Combinatorial Optimization (CO)
is the subset selection problem (Das & Kempe, 2011), where
one aims to find an optimum of a set-function F : F → R
while constrained to a sub-family C ⊆ F , as in Equation 2.

Subset Selection Problem

max
X∈C

F (X) (2)

Towards interpreting GRL as a CO problem, we define a
path constraint denoted as dynamics constraint, and indicate
it with CM (Blum et al., 2007). Given a CMPM, CM intu-
itively represents the set of admissible trajectories according
to the dynamics P . A formal construction of CM based on
the time-extended CMP ofM is presented in Appendix B.1

Given the notion of dynamics constraint, we can define the
trajectory-optimization version of GRL (1) for deterministic
GMDPs, i.e., fixed initial state and deterministic transitions,
as the following subset selection problem:

1A time-extended CMP has state space V := S × T .

Global RL: Trajectory-Optimization

max
τ∈CM

F (τ) (3)

Notice that this problem formulation is sufficient to find op-
timal policies in deterministic GMDPs as in this case there
exists an optimal deterministic policy (Prajapat et al., 2023),
which can be interpreted as a trajectory. Moreover, this for-
mulation can be straightforwardly extended to the general
problem in Equation (1) by replacing F (τ) by its expecta-
tion according to pπ . Nonetheless, due to the natural analogy
between trajectories and sets, rather than between policies
and distributions over sets, we will first introduce novel
concepts for the trajectory-optimization version of GRL (3),
and then extend them to the general GRL problem (1).

Crucially, solving GRL (Equations (1) and (3)) is in general
inapproximable, since even for a restricted class of global re-
wards, it is intractable up to any constant factors as shown by
Prajapat et al. (2023, Theorem 1). Nonetheless, in Section 5,
by leveraging the CO viewpoint introduced within this sec-
tion, we identify structural properties of F that are both com-
mon in practice and lead to efficient approximate algorithms.

4. Relation with Convex RL
Before further discussing the GRL problem, we estab-
lish a connection with the area of General Utilities RL
(GURL) (Zahavy et al., 2021; Geist et al., 2022; Zhang et al.,
2020; Barakat et al., 2023), which offers an alternative way
to tackle non-additive objectives. As stated in Equation (4),

max
dπ :π∈ΠS

M

f(dπ) (4)

the GURL objective is to find a policy π ∈ ΠS
M inducing an

optimal state(-action) distribution w.r.t. a given functional
f : ∆(S × A) → R. If f is convex (concave) in dπ, the
problem in equation (4) is referred to as Convex (Concave)
RL (CRL) (Geist et al., 2022; Zhang et al., 2020; Zahavy
et al., 2021). In this case, the problem can be efficiently
solved via standard constrained convex optimization
schemes (Hazan et al., 2019), but unfortunately, it is
characterized by a fundamental modelling limitation.

4.1. Fundamental Limitation of Convex RL

Recently, it has been shown (Mutti et al., 2022a; 2023;
2022b) that both theoretically and experimentally, an
optimal policy w.r.t. the CRL objective (4) can perform
arbitrarily poorly when released in an environment for a
finite amount of interactions, which is unfortunately the case
in most real-world applications. This phenomenon is due
to the fact that CRL in Equation (4) optimizes asymptotic
distributions rather than their empirical counterparts. To
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Table 1: Applications of Global RL with (from top) submodular, supermodular, BP, and arbitrary global rewards.

APPLICATION SET FUNCTION F (τ) DETAILS

STATE ENTROPY EXPLORATION −1
|τ |

∑
s∈S I(s,·)∈τ log

|{t:(s,t)∈τ}|
|τ |

GOAL REACHABILITY I{|τ ∩ Sg| > 0}
COVERAGE |

⋃
(s,t)∈τ D

s|
BOUNDED CURVATURE COVERAGE

∑
s∈S IC(τ,s)>0 · [1− α(C(τ, s)− 1)] 0 ≤ α ≤ 1

INFORMATIVE PATH PLANNING g(
⋃

(s,t)∈τ D
s) g(V ) =

∑
v∈V ρ(v)

D-OPTIMAL EXPERIMENTAL DESIGN I(yτ ; f) = H(yτ )−H(yτ |f)
NEIGHBOURS COVERAGE IN SPACE-TIME

∑
v∈V max{α,min{|S ∩ Sv|, 1}} 0 ≤ α ≤ 1

COVERAGE OF TIME-VARYING PROCESSES |
⋃

v∈τ D
v|

GOAL COMPLETION I{τ ∩ Sg = Sg} Sg ⊆ V

AUTOMATIC TASK SELECTION
∑N

i=1 Ri(τ)
β Ri(τ) =

∑
s∈τ ri(s), β > 1

SYNERGICAL TRAJECTORY SELECTION
∑K

i=1 |τ ∩ Si|β Si ⊆ V, β > 1

DIVERSE AND SYNERGICAL TRAJECTORY SELECTION |
⋃

s∈τ D
s|+

∑K
i=1 |τ ∩ Si|β β ≥ 1

SAFE REWARD MAXIMIZATION R(τ) + C · I{τ ∩ Su = 0} R ADDITIVE

SUBMODULAR + SAFETY Q(τ) + C · I{τ ∩ Su = 0} Q SUBMODULAR

tackle this problem, Mutti et al. (2023) propose Single
Trial Convex RL (ST-CRL) (Equation 5), which captures
the finite-samples nature of the problem by optimizing
the expected performance of an empirical distribution
d ∈ ∆(S × A) induced by the interaction of a policy π
with the environment for a finite number of steps.

max
π∈ΠNM

E
d∼pπ

[
f(d)

]
(5)

Problem (5) does not suffer from the aforementioned
issue; however, it is intractable, and developing algorithms
that approximately solve Problem (5) is still an open
problem (Mutti et al., 2022b). Notably, also GRL (1) over-
comes the modelling limitation of Convex RL by directly
optimizing a set function defined over trajectories of finite
length. Moreover, interestingly, we show that any ST-CRL
problem (5) can be rewritten as a Global RL problem (1).

Proposition 1 (Single Trial Convex RL ⊆ Global RL).
Given an instance I+ of ST-CRL it is possible to reduce
it to an instance I+ of GRL (1).

The proof can be found in appendix C. Crucially, in ST-CRL
(5) convexity is lost due to the empirical distributions
constraints set, and alternative structural properties useful
for optimization are not known yet. In contrast, GRL
correctly captures the underlying combinatorial nature of
the problem. This fact makes it possible to leverage struc-
tural assumptions for efficient approximate optimization
common in a wide variety of real-world problems, including
typical CRL applications, as shown in the next sections.

5. Exploiting Structure in Global RL
As previously mentioned, solving the GRL problem is
computationally intractable even up to constant factor

approximations (Prajapat et al., 2023; Chekuri & Pal, 2005).
Nonetheless, in this section, we introduce two fundamental
components of the global rewards set function F , namely
submodular and supermodular rewards, which we leverage
to approximately solve GRL efficiently. In the following, we
show that these properties offer an intuitive characterization
and can be used to model a variety of applications by decom-
posing global rewards into two fundamental components.
Definition 2 (Submodular rewards). A global re-
ward function Q : 2V → R is called submodular if
for every τA ⊆ τB ⊆ V and v ∈ V\τB it holds that
Q({v}|τA) ≥ Q({v}|τB), where the marginal gain
(discrete derivative) Q({v}|τA) := Q({v} ∪ τA)−Q(τA).

Thus, submodularity naturally captures a diminishing return
property, i.e., the marginal gain of adding a state v to a
smaller trajectory τA is higher as compared to adding it’s su-
per set τB . This denotes negative interaction between states
i.e. similar states are discouraged and thus maximizing such
functions will encode diversity in the resulting trajectory.
Definition 3 (Supermodular rewards). A global reward func-
tion G : 2V → R is supermodular if for every τA ⊆ τB ⊆ V
and v ∈ V\τB it holds that G({v}|τA) ≤ G({v}|τB).

Therefore, contrary to submodular, maximizing supermodu-
lar rewards encodes complementarity in the resulting trajec-
tory, i.e., having similar states complement each other and re-
sults in larger gains – positive interaction. Next, combining
both we define another reward class called monotone suB-
modular suPermodular (BP) rewards (Bai & Bilmes, 2018):
Definition 4 (BP rewards). A global reward function F :
2V → R admits a BP decomposition if there exists a submod-
ular reward function Q and a supermodular reward function
G both normalized (Q(∅) = G(∅) = 0) and monotonic
non-decreasing (Q({v}|τA) ≥ 0, G({v}|τA) ≥ 0,∀v ∈
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V, τA ⊆ V such that F (τA) = Q(τA) +G(τA) ∀τA ⊆ V .

Thus, BP rewards enable us to capture applications involv-
ing both positive and negative interactions. Interestingly,
any arbitrary global reward F : 2V → R can be decom-
posed as the sum of submodular and supermodular rewards,
i.e., F (τA) = Q(τA)+G(τA) as shown for set functions by
Narasimhan & Bilmes (2012, Lemma 4). Moreover, under
certain conditions, this decomposition can be computed in
polynomial time (Iyer & Bilmes, 2012a, c.f. Lemma 3.2).
Crucially, in Section 5 we present an algorithmic scheme
that does not make any assumption (e.g., monotonicity)
on the submodular or supermodular component, hence it
is applicable to any GMDPs with arbitrary global rewards
as long as the decomposition is available.

Examples of global rewards. In Table 1, we show a wide
range of relevant applications that can be modelled with
global rewards. Applications such as state entropy explo-
ration, D-optimal experiment design, where the objective
is maximized by visiting a diverse set of states, are cap-
tured using submodular rewards. In contrast, the super-
modular component captures positive interactions among
states, e.g., certain synergies among a specific set of states.
Combining both components (BP rewards) becomes par-
ticularly relevant when addressing intricate processes that
require both, e.g., diverse and synergical trajectory selec-
tion. Moreover, we can model constraints using arbitrary
(e.g., non-monotone BP) global rewards and thus extend to
applications involving policy learning under safety-critical
conditions. Furthermore, since our rewards are defined on
state time pairs, we can also model time-varying processes.

6. Semi-gradient Method for GRL
In this section, we present our novel algorithmic scheme to
solve the GRL Problem. We begin by explaining the notion
of subdifferentials, which are used to obtain semi-gradients
of global rewards. Using the semi-gradients, we first present
the algorithm for deterministic GMDPs (3) in order to build
intuition, and then extend it to the general Problem (1).

Subdifferentials. Given a non-additive set function F , sim-
ilar to convex functions, we can define the subdifferential
∂F (X) at a set X ⊆ V as shown in Iyer & Bilmes (2015):

∂F (X) :={x ∈ Rn:F (Y )≥F (X)+x(Y )−x(X),∀Y ⊆V }
Here, x(A) :=

∑
v∈A x(v) is a modular function over

V . Although the polyhedron ∂F (X) can be defined for
any set function, it can be characterized efficiently for
submodular functions. We denote a subgradient of F at X
as hX ∈ ∂F (X). For submodular F , the extreme points of
the polyhedron can be characterized as follows:

First, we define a permutation σ : [|V |] → V that
re-orders the elements of V such that the elements of

Figure 2: In GTO, at any step t, we construct mτt , a tight
modular lower bound about τt and optimize the resulting
classic MDP, which results in an improved trajectory τt+1.

X are assigned to the first |X| positions of V (i.e.,
σ(i) ∈ X ⇐⇒ i ≤ |X|), whereas the remaining elements
are assigned arbitrarily. We define the set Sσ

0 := ∅ and
Sσ
i := {σ(1), . . . , σ(i)}. It is important to note that as a

consequence, we have S|X| = X . With this, we obtain
the extreme point hσ

X of the polyhedron ∂F (X) with
entries hσ

X(σ(i)) = F (Sσ
i ) − F (Sσ

i−1). Now, given any
subgradient hX , we define a modular function,

mσ
X(Y ) := F (X) + hX(Y )− hX(X),

which is defined ∀Y ⊆ V and is a tight lower bound of F ,
i.e., mX(X) = F (X) with mX(Y ) ≤ F (Y ),∀Y ⊆ V , see
Proposition 2 for details. Notably, if we choose subgradient
hX to be the extreme point of ∂F (X), then the modular func-
tion simplifies to mX(Y ) = hX(Y ), which is a marginal
gain of F evaluated with respect to some permutation.

Analogously, for supermodular functions we define the
following modular lower bound ∀Y ⊆ V about the set X ,
as shown in Bai & Bilmes (2018); Iyer & Bilmes (2012b):

mX(Y ) := F (X)−
∑

j∈X\Y

F (j | X\j) +
∑

j∈Y \X

F (j | ∅).

Then, mX(Y )≤F (Y ),∀Y ⊆V and mX(X)=F (X). Fur-
thermore, by adding the tight modular lower bounds for sub-
modular and supermodular functions, we obtain tight mod-
ular lower bounds for global rewards (Bai & Bilmes, 2018).

Global Trajectory Optimization (GTO). Naturally, two
key questions emerge: How can we use these modular lower
bounds to solve the GRL problem? And, how do we make
sure the dynamics constraints are satisfied? Intuitively, a
modular lower bound of the global reward function repre-
sents nothing but an additive reward. We recursively ap-
proximate the global rewards function about the current
trajectory τ with additive rewards (as shown in Fig. 2),
which results in a sequence of classic RL planning problems.
These problems can be optimized efficiently through stan-
dard RL techniques while ensuring admissible trajectories,
i.e., satisfying the dynamics constraints. In simpler terms,
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Algorithm 1 Global Trajectory Optimization (GTO)

1: Input: Deterministic GMDP, τ1
2: for t = 1, 2, . . . do
3: mτt ← Compute lower bound of F around τt
4: τt+1← MDPSOLVER(M =⟨S,A, P, s0, H,mτt⟩)
5: end for
6: Return τt

our algorithmic scheme is a meta-algorithm that approxi-
mates GMDP with a sequence of local MDPs which then are
solved with existing MDP solvers. The lower bounds being
tight at the current trajectory ensures monotonic improve-
ment across the iterations until convergence. Since F is de-
fined on V := S ×T , our modular lower bounds are defined
on V . To construct a modular lower bound tight at a trajec-
tory τ , we define a permutation στ induced by τ as follows,

στ = {τ ;V\τ} (6)

In the described permutation, the elements within the
set V\τ or the set τ can be arbitrarily permuted among
themselves, while still resulting in a valid tight modular
lower bound (Proposition 2). This flexibility can also be
exploited to incorporate prior knowledge for learning better
policies. We refer the reader to Appendix F.2 for further
details on modular lower bounds.

The resulting algorithm is summarized in Algorithm 1. We
start with an arbitrary trajectory τ1. The algorithm has
two steps: i) computes a modular lower bound of the BP
function as described above to obtain additive rewards
(classic MDP) about the current trajectory τt (Line 3)
and ii) solves the resulting classic MDP using existing
MDPSOLVER tools, e.g., value iteration, which guarantees
an optimal solution corresponding to the rewards mτt

(Line 4). On solving, the new trajectory will achieve a
monotonic improvement in objective value (Proposition 3).
The algorithm alternates between the two steps until
convergence, i.e., the objective does not improve anymore.

Global Policy Optimization (GPO). For stochastic
GMDPs, we solve the problem in policy space. For this,
we generalize the concept of lower bound about a trajectory
to distribution over trajectories generated by a policy.
The corresponding modular lower bound about a policy,
mE

π ∈ RV is defined as the expectation of the modular
rewards about the trajectories induced by the policy π, i.e.,

mE
π := E

τ∼π
[mτ ]. (7)

This can be estimated, for instance, using Monte Carlo sam-
ples. Next, we define the linearization of the GRL objective
J (π) about a policy π′ and evaluating it (7) at a policy π as,

mE
π′(π) := E

τ∼π
E

τ ′∼π′
[mτ ′(τ)]. (8)

The algorithm steps for GPO largely remains the same;
however, in the stochastic case, the MDPSOLVER solves
maxπ m

E
πt−1

(π) using standard RL techniques. Please see
Appendix F for a detailed algorithm for stochastic GMDPs.
While our algorithm can optimize arbitrary global rewards,
in the next section we present approximation guarantees
for monotone submodular, supermodular and BP rewards.

7. Approximation guarantees and Hardness
Due to the non-additivity of the reward function, perfor-
mance guarantees cannot be based on the classic notion of
value function (Puterman, 2014). Nonetheless, along the
lines of (Tarbouriech & Lazaric, 2019; Mutti et al., 2023),
we define the following notion of optimality.
Definition 5 (Non-additive Suboptimality Gap). Consider
a policy π ∈ Π interacting with a Global MDPMF . We
define the non-additive suboptimality gap of π as:

R(π) := J ⋆ − E
τ∼pπ

[
F (τ)

]
where J ⋆ := maxπ∈ΠNM

Eτ∼pπ

[
F (τ)

]
.

Since it is well-understood that in general ΠNS
M is not suffi-

cient to minimize the Non-additive Suboptimality Gap (Pra-
japat et al., 2023; Mutti et al., 2022b), in the following we
give guarantees w.r.t. the reference class ΠNM.

7.1. How good is a modular approximation?

The algorithms proposed in Section 6 approximately solve
the GRL problem (3 and 1) by optimizing a sequence of
modular lower bounds of the global reward F . In this sec-
tion we aim to derive first-iterate approximation guaran-
tees (Iyer et al., 2013) to answer the question:

How well can a Global MDP be approximated by a single
MDP with local rewards?

Intuitively, depends on how much the global reward is non-
additive. For the case of submodular, supermodular, and BP
rewards, this can be captured via the notions of submodular
and supermodular curvature (Conforti & Cornuéjols, 1984).

Definition 6 (Submodular and Supermodular Curvature).
Given a monotone set-function F : 2V → R we define the
submodular and supermodular curvatures respectively as:

kF := 1−min
v∈V

F (v | V \{v})
F (v)

∈ [0, 1] (F submodular)

kF := 1−min
v∈V

F (v)

F (v | V \{v}) ∈ [0, 1] (F supermodular)

For a BP function F = Q+G we can derive curvature-based
guarantees by combining the curvatures of Q and G. More-
over, we say that a submodular (supermodular) function F

6
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has bounded curvature if kF (kF ) < 1. Otherwise, we say
that F is fully-curved. We can now state the approximation
guarantees achieved by GPO in a general stochastic GMDP
w.r.t. the Non-additive Suboptimality Gap (Definition 5).

Theorem 7.1 (Approximation Guarantees GPO). Let
J ⋆ := maxπ∈ΠNM Eτ∼pπ

[
F (τ)

]
and π1 the policy

resulting from one iteration of GPO on a GMDPMF .
Then GPO guarantees that for

i) Monotone submodular reward function, F

R(π1) ≤ kFJ ⋆,

ii) Monotone supermodular reward function, F

R(π1) ≤
2kF − (kF )2

1− kF
J ⋆,

iii) BP reward function, F = Q+G

R(π1) ≤ αJ ⋆, α =

{
2kG−(kG)2

1−kG if kF ≤ kG

1−(1−kQ)(1−kG)
1−kG otherwise

Interestingly, the notion of Non-additive Suboptimality Gap
(Definition 5) can be tailored to the trajectory-optimization
version of GRL (3), and similar guarantees for GTO can be
derived for deterministic GMDPs. The analysis for this case
and the proof of Theorem 7.1 are in Appendices C and D.

Discussion. Theorem 7.1 relates the suboptimality
gap achieved by Markovian policies with the degree
of non-additivity of the reward function as captured by
curvature.2 Notably, the submodular functions enjoy
the best approximation ratio, while high supermodular
curvature seems to substantially affect the solution quality.
Moreover, notice that since GPO optimizes a sequence of
lower bounds, the quality of the returned solutions can be
better than the ones stated in Theorem 7.1, as shown in
the experiments (Section 8). Ultimately, notice that these
results extend classic submodular function maximization
results to the case of constrained optimization under
dynamics constraints, as presented in Section 3.

7.2. Hardness of Global RL

To conclude this section, we present a hardness result for the
trajectory-optimization GRL Problem (3) in deterministic
environments. The following result extends known results
for BP-function maximization (Bai & Bilmes, 2018) to the
case of dynamics-constrained optimization.

2Computable in linear time w.r.t. |S × T |.

Theorem 7.2 (Hardness of GRL, trajectory-optimization
(3)). For all 0 ≤ β ≤ 1, there exists an instance of a BP
global reward F = Q + G with kG = β such that no
poly-time algorithm can achieve an approximation factor
better than 1−kG+ϵ ∀ϵ > 0 w.r.t. the Non-additive Sub-
optimality Gap in deterministic GMDPs, unless P = NP.

The proof of Theorem 7.2 can be found in Appendix E. Cru-
cially, theorem 7.2 shows that the supermodular curvature
plays a fundamental role in determining a lower bound on
the approximability of the problem.

8. Experiments
We present an experimental analysis of GTO and GPO on
three tasks: i) D-optimal experimental design, ii) diverse and
synergical trajectory selection, and iii) safe state coverage.
These environments have deterministic (i,iii) and stochastic
(ii) transitions, consider global rewards with bounded
curvature (i) as well as fully-curved (ii,iii), and cover
submodular (i), BP (ii), and arbitrary global rewards (iii).

We compare the performances of the policy π obtained
via GTO (Algorithm 1) and GPO (Algorithm 2) with the
performance of an optimal policy w.r.t. the additive ob-
jective Jm(π) = Eτ∼pπ

[∑
v∈τ F (v)

]
, which disregards

interactions between states within the same trajectory, as
it is the case in classic RL. Moreover, wherever possible3,
we compare the performance of π with the optimal
non-Markovian policy w.r.t. F , and with SubPO (Prajapat
et al., 2023), a policy gradient method for optimizing under
submodular rewards. We do not explicitly compare with
other RL algorithms, since, SubPO is a representative
baseline for Reinforce-type algorithms with variance
reduction techniques catering to non-additive returns.
Notably, for efficient performance, we run SubPO with
policy parameterized with a neural network and thus it loses
its approximation guarantees in contrast to GPO. Moreover,
we consider two variants of our algorithm GPO-S and GPO-
greedy which build lower bounds based state-dependent
and greedy permutation respectively (see Appendix F.2 for
details). We run all experiments over a grid environment
with 400 states, discrete actions {left, right, up, down, stay},
and plot 95% confidence intervals over 20 runs.

Bayesian D-Optimal experimental design. In this task,
the agent aims to optimally select a trajectory over sampling
points to estimate an unknown function f represented via
Gaussian Processes (Rasmussen et al., 2006), a problem
known as optimal experimental design (Mutny et al., 2023).
We aim to maximize the mutual information I(yτ ; f) =
H(yτ ) − H(yτ |f) between the observations yτ , and the

3For computational reasons, we can solve it in deterministic
environments with monotonic non-decreasing global rewards.
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Figure 3: We compare GTO and GPO with the optimal policy for the modularized objective Fm (MOD). We observe that
MOD performs sub-optimally as its objective cannot capture interactions between states. The alternative versions of the
algorithm tested are presented in Section F.2. (Y-axis: J (π), X-axis: iterations)

unknown function f evaluated at locations in τ , which is a
submodular global reward. In Fig. 3a, we observe that GTO
performs significantly better than the optimal policy for
the modularized objective, competitively with SubPO, and
nearly optimally w.r.t. to the optimal non-Markovian policy.

Diverse synergies. In this task, we maximize the BP
rewards F (τ) = |⋃s∈τ D

s| + ∑K
i=1 |τ ∩ Si|β with

Si ⊆ V := S × T , in a stochastic environment, where with
0.1 probability the agent transitions to a neighbouring state
uniformly at random. This objective induces policies maxi-
mizing coverage over state space while seeking specific com-
plementarity between states within the trajectory resembling,
for instance, synergetic effects between atoms in a molec-
ular design process. As hinted by Theorems 7.1 and 7.2,
maximizing the fully-curved supermodular component of F
may perform arbitrarily poorly. Nonetheless, in Fig. 3b we
observe that GPO performs significantly better than the mod-
ular optimal policy w.r.t. Fm. Moreover, in Appendix G, we
show that in the deterministic setting, where we can compute
the optimal non-Markovian policy, GTO performs optimally.

Safe state coverage. In Fig. 3c, we consider a non-
monotone BP function encoding the task of safe state space
coverage defined as |⋃s∈τ D

s|+ C · I{τ ∩ Su = 0} with
Ds being a disk covering neighbouring states (Prajapat
et al., 2022). An optimal policy w.r.t. this objective is highly
explorative while avoiding unsafe areas. Since this objective
is invariant w.r.t. the time-dimension, we can leverage the
lower bounds introduced in Appendix F.2. We observe that
the policy returned by GTO performs significantly better
than the optimal policy w.r.t. to the modularized objective
Fm. This is due to the fact that the task embeds a notion of
diversity that cannot be captured by local reward functions.

8.1. Experimental Insights and Observations

In the following, we aim to present several claims emerg-
ing from the experiments presented in Section 8 and in
Appendix G.

Practical versus theoretical performances. In the case of

bounded-curvature reward functions, the theory presented
in Section 7 gives first-iteration performance guarantees for
GTO and GPO. Nonetheless, in practice these algorithms
can significantly improve the solution after the first iteration
thus potentially reach significantly better performances than
the ones captured via such curvature-based guarantees. The
experimental results show that this fact is particularly true
for submodular global reward functions where the objective
value increases significantly over multiple iterations.

Beyond bounded-curvature functions. While the curva-
ture assumption is needed to build theoretical guarantees,
the proposed algorithms seem to show outstanding perfor-
mances even with fully-curved reward functions.

Non-monotonic improvements in GPO. As pointed out in
Section 6, in the stochastic setting GPO does not guarantee
a monotonic performance improvement, but we still have
a curvature-based performance guarantee as shown in Sec-
tion 7. In the experiments above, we show that in practice
GPO shows promising performances even in settings with
stochastic dynamics. Clearly, concentrating the estimates in
GPO requires sampling multiple trajectories thus increasing
the computational complexity of the algorithm.

Greedy submodular lower bounds. Observing the perfor-
mances of greedy lower bounds (indicated with−greedy in
Fig. 3 and in Appendix G), we can notice that they outper-
form the normal counterpart in certain instances. In particu-
lar, a further analysis reported in Fig. 5 within Appendix G,
shows that this is the case when the horizon is neither too
large nor too small, but just enough to properly maximize
a certain submodular reward via a specific trajectory (or
policy), as shown in Figure 5 (right). Meanwhile, when the
horizon is arbitrarily small, the two lower bounds seem to
perform equally well. This is due to the fact that in this latter
case random actions will also perform well as there is less
chance of overlapping states and therefore better planning
strategies cannot show performance improvements.
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9. Related Work
Convex RL. Convex RL (CRL) (Hazan et al., 2019; Zahavy
et al., 2021) is a recent framework that extends RL to non-
additive rewards by optimizing convex functionals of state(-
action) distributions. It can capture a wide range of applica-
tions including exploration (Hazan et al., 2019), experimen-
tal design (Mutný et al., 2023), imitation learning (Lee et al.,
2019), and risk-averse RL (Garcıa & Fernández, 2015; Mutti
et al., 2022a). Interestingly, also common CRL algorithms
reduce the problem to solving a sequence of MDPs. More-
over, notice that several CRL objectives, e.g., entropy max-
imization and experimental design, can be cast as global re-
wards as shown in Table 1. Furthermore, while (mixtures of)
Markovian stationary policies are sufficient to optimize CRL
objectives, Global RL leverages Markovian non-stationary
policies, a fact that manifests the need of more general
policy classes to optimize non-additive rewards in finite-
samples settings, as shown by Mutti et al. (2022b). Further,
similar to some Convex RL works (Tarbouriech & Lazaric,
2019; Zahavy et al., 2021), we believe it is possible, and an
interesting direction of future work, to extend GPO to the
case of unknown dynamics, via an optimistic estimate of P .

RL with Non-Markovian Rewards. The concepts
of global rewards and non-additive rewards presented
within this work have a strong link with the notion of
non-Markovian rewards, namely history-dependent reward
functions. Non-Markovian rewards in RL has been studied
from the lenses of logic and formal language theory (Gaon &
Brafman, 2020; De Giacomo & Vardi, 2013; Brafman et al.,
2018). Currently, the analysis within these works seems
orthogonal to ours; however, exploring connections between
these two approaches is an interesting research direction.

Submodularity in Decision Making. Submodular
functions have been used to model problems in active
machine learning (Krause & Golovin, 2014; Bilmes, 2022),
bandits (Yue & Guestrin, 2011; Chen et al., 2017; Gabillon
et al., 2013), planning (Chekuri & Pal, 2005; Wang et al.,
2020) and RL (Prajapat et al., 2023). The most related to us
is from Prajapat et al. (2023) which introduces Submodular
MDPs and proposes a policy gradient (PG) based method
for it. Beyond the larger generality of the function classes
we consider, the main difference is that we transport an
algorithmic scheme from submodular optimization tailored
for BP function maximization to MDPs, rather than using
a function-agnostic optimization scheme like PG.

BP function maximization. Historically, submodular and
supermodular function maximization have been treated
with significantly different approaches (Krause & Golovin,
2014; Iwata, 2008). Recently, novel optimization schemes
based on discrete subgradients (Iyer et al., 2013; Iyer
& Bilmes, 2015) made it possible to treat submodular
and supermodular function maximization in a unified

manner, directly optimize suBmodular-suPermodular
(BP) functions (Bai & Bilmes, 2018), as well as optimize
arbitrary set functions with a known decomposition into
a submodular and a supermodular component. In Section 7
we extend hardness results for BP function maximization
to GRL by shedding light on the effect of the transition
dynamics underlying the Markov process. This removes
the possibility of teleporting from any element of the set
to any other element, which we capture in Section 3 via the
notion of dynamics constraint (see Appendix B).

10. Conclusion
We introduce a novel problem formulation denoted Global
RL (GRL), for sequential decision-making under non-
additive objectives. Then, leveraging tools from submodular
optimization, we provide a novel algorithmic scheme
that converts the GRL problem to a sequence of standard
RL planning problems. We identify structural properties
that render the problem efficiently and approximately
solvable for a wide variety of applications according to
curvature-based approximation guarantees. Moreover, we
derive a hardness result for a representative class of GRL
and extensively showcase the empirical performances of
the proposed algorithms to solve RL problems that cannot
be captured via classic additive (or local) rewards.
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X., and Torres, J. Explore, discover and learn: Unsuper-
vised discovery of state-covering skills. In International
Conference on Machine Learning, 2020.

Chekuri, C. and Pal, M. A recursive greedy algorithm for
walks in directed graphs. In 46th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS’05),
pp. 245–253, 2005. doi: 10.1109/SFCS.2005.9.

Chen, L., Krause, A., and Karbasi, A. Interactive submodu-
lar bandit. In NIPS, 2017.
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A. List of symbols

General Mathematical Objects
[N ] ≜ Set of integers {1, . . . , N}
∆(X) ≜ Probability simplex over X

Controlled Markov Process
M ≜ Controlled Markov Process (CMP),M = ⟨S,A, P, µ,H⟩
S ≜ State space
A ≜ Action space
P ≜ Transition model, P : S ×A → ∆(S)
µ ≜ Initial state distribution, µ ∈ ∆(S)
H ≜ Horizon
T ≜ Time steps set, T = [H]

s0 ≜ Initial state s0 ∼ µ

st ≜ State at time step t

τ ≜ Trajectory τ = {s0, . . . , sH−1}
pπ(τ) ≜ Probability of trajectory τ given a fixedM and π, see equation (3)

MDP and GMDP
Mr ≜ Markov Decision Process (MDP),Mr := ⟨S,A, P, µ,H, r⟩
r ≜ Scalar reward function r : S → R or r : S ×A → R
MF ≜ Global Markov Decision Process,MF := ⟨S,A, P, µ,H, F ⟩
F ≜ Global reward function F : ΓH → R
CM ≜ CMP constraint, see definition 8

Policies
ΠS

M ≜ Class of Markovian stationary policies
ΠNS

M ≜ Class of Markovian non-stationary policies
ΠNM ≜ Class of non-Markovian policies
Ht ≜ History space until step t

π ≜ Markovian policy π : S → ∆(A) or non-Markovian policy π : Ht → ∆(A)
πt ≜ Markovian Non-stationary policy πt : S × T → ∆(A)

Combinatorial Structure and Submodular Optimization
V ≜ Ground set of elements e.g., V = [N ]

f ≜ Family of subsets induced by a ground set e.g., f := {0, 1}V = 2V

F ≜ Pseudo-Boolean set-function F : 2V → R
kF ≜ Submodular curvature, see Definition 6
kF ≜ Supermodular curvature, see Definition 6

Algorithms: GTO and GPO

R(π) ≜ Non-additive suboptimality gap of policy π, see equations (5, 9)
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B. Dynamics constraints
Towards interpreting GRL as a CO problem, we introduce a type of constraint set that we call dynamics constraint, and a
trajectory-optimization version of GRL. But first, we need to introduce the following auxiliary notion.

Definition 7 (Time-extended CMP). Given a CMPM := ⟨S,A, P,H, µ⟩, we call time-extended CMP, the new CMPMl

defined byMl := ⟨V := S × [l],A, Pl, H, µ⟩, which is a l-layered CMP where Pl is defined as:

Pl((s
′, t′) | (s, t), a) =

{
P (s′ | s, a) if t′ = t+ 1

0 otherwise

Now we can define the dynamics constraint CM as follows.

Definition 8 (Dynamics constraint CM). Given a CMP M := ⟨S,A, P,H, µ⟩, we consider the time-extended CMP
MH := ⟨V := S × T ,A, PH , H, µ⟩ and define CM as:

CM := {τ ⊆ V | τ is a path in GP }

where GP = (V,E) is the graph induced by PH where e = ((s, t), (s′, t′)) ∈ E ⇐⇒ ∃a ∈ A s.t. PH((s′, t′) |
(s, t), a)) > 0.

Notice we can interpret a dynamics constraint CM as the set of admissible trajectories of a CMPM.

C. Proofs
C.1. Proofs for Section 4

Proposition 1 (Single Trial Convex RL ⊆ Global RL). Given an instance I+ of ST-CRL it is possible to reduce it to an
instance I+ of GRL (1).

Proof. For the sake of clarity, without loss of generality, we consider an empirical distribution defined over S × T . Notice
that this is indeed general since in the case the original instance does not take into account the time dimension, e.g.,
optimizes over distributions d ∈ ∆(S), then it is sufficient to define a functional f ′ marginalizing the input distribution, e.g.,
d′ ∈ ∆(S × T ) over the time dimension. Moreover, by considering trajectories composed of state-action pairs rather than
only states, it is trivial to extend the following proof to the case of distributions over S ×A× T . Given an instance of the
Single Trial General Utilities RL, namely:

max
π∈Π

(
E

d∼pπ

[
f(d)

])
(9)

we show how to build an equivalent instance of the GRL problem, namely:

max
π∈Π

E
τ∼pπ

[
F (τ)

]
(10)

such that the two problems are equivalent. In particular, we prove a stronger result than equivalence on the set of maximizers.
We show that the objective functions are equal, formally:

E
d∼pπ

[
f(d)

]
= E

τ∼pπ

[
F (τ)

]
∀π ∈ Π

We build the instance of the GRL problem as follows. First, we realize that every empirical distribution d ∼ pπ must
be induced by a trajectory τ following policy π due to the definition of pπ. Hence, for the sake of clarity, we express a
distribution of this type as dτ . As a consequence, for every empirical distribution dτ we can define the trajectory τ inducing
that distribution. This is trivial since dτ is fundamentally an indicator function over S×A×T such that dτ (s, t) = 1τ(t)=(s),
where τ(t) represent the state visited within the trajectory τ at time step t. Since there exists a bijection between the space
of trajectories τ and the space of empirical distributions dτ , we can express the probability of sampling a certain trajectory
τ , namely pτ as follows:

pπ(τ) := pπ(dτ ) (11)

For the sake of clarity, we prove Equation (11) explicitly by leveraging the definitions of pπ(τ) and pπ(dτ ). In particular,
given a policy π, we want to prove that for any trajectory τ it holds that pπ(τ) = pπ(dτ ). Consider a trajectory τ =

14
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{((s0, 0), a0), ((s1, 1), a1), . . . , ((st, t), at), . . . , ((sH−1, H − 1), aH−1)} and the empirical distribution dτ ∈ ∆(V) =
∆(S × T ). Consider the function dtτ = (s, t) ∈ V : dτ > 0, which returns the state-time pair (s, t) visited by trajectory τ in
time-step t. Now we can express pπ(τ) and pπ(dτ ) as follows:

pπ(τ) = µ((s0, 0))

H−1∏
t=0

P ((st+1, t+ 1)|(st, t), at)π(at|(st, t)) (12)

pπ(dτ ) = µ(d0τ )

H−1∏
t=0

P (dt+1
τ |dtτ , at)π(at|dtτ ) (13)

Crucially, it is immediate to notice that, due to the definition of dtτ∀t ∈ T we have that:

µ((s0, 0)) = µ(d0τ )

P ((st+1, t+ 1)|(st, t), at) = P (dt+1
τ |dtτ , at)

π(at|(st, t)) = π(at|dtτ )

Ultimately, we define the GRL global reward F as:

F (τ) = f(dτ )

Hence, by construction of the GRL instance, we have that ∀π ∈ Π:

E
d∼pπ

[
f(d)

]
=

∑
d

f(d)pπ(d)

=
∑
dτ

f(dτ )p
π(dτ )

=
∑
dτ

f(dτ )pπ(τ)

=
∑
τ

F (τ)pπ(τ)

= E
τ∼pπ

[
F (τ)

]
Intuitively, it is likely possible to show also the other direction of the inclusion, i.e., GRL ⊆ Single Trial General Utilities
RL, and therefore that the two problem classes are equivalent. Although interesting, this is not necessary in order to prove
the theorem stated.

C.2. Proofs for Section 7

Theorem 7.1 (Approximation Guarantees GPO). Let J ⋆ := maxπ∈ΠNM
Eτ∼pπ

[
F (τ)

]
and π1 the policy resulting from

one iteration of GPO on a GMDPMF . Then GPO guarantees that for

i) Monotone submodular reward function, F

R(π1) ≤ kFJ ⋆,

ii) Monotone supermodular reward function, F

R(π1) ≤
2kF − (kF )2

1− kF
J ⋆,

iii) BP reward function, F = Q+G

R(π1) ≤ αJ ⋆, α =

{
2kG−(kG)2

1−kG if kF ≤ kG

1−(1−kQ)(1−kG)
1−kG otherwise

15
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Proof. The proof is composed of three sequential parts proving each one of the three cases independently. We first show
that J (π1) ≥ (1 − kF )J (π∗) where J (π) = Eτ∼π

[
F (τ)

]
. Once this is proved, the theorem statement can be trivially

derived by using the definition of V(π).

J (π1)
(1)
≥ mσ,E

π0
(π1) (lower bound)

(2)
≥ mσ,E

π0
(π∗) (π1 maximizer of mσ,E

π0
)

(3)
= E

τ∗∼π∗

[
E

τ0∼π0

[
mσ

τ0(τ
∗)

]]
(def. mσ,E

π0
(π∗))

= E
τ∗∼π∗

[
E

τ0∼π0

[ ∑
x∈τ∗

mσ
τ0(Iτ0(x))

]]
= E

τ∗∼π∗

[
E

τ0∼π0

[ ∑
x∈τ∗

F
(
S
σ(τ0)
Iτ0 (x)

)
− F

(
S
σ(τ0)
Iτ0 (x)−1

)]]
= E

τ∗∼π∗

[
E

τ0∼π0

[ ∑
x∈τ∗

F ({σ(τ0)[1], . . . , σ(τ0)[Iτ0(x)]})− F ({σ(τ0)[1], . . . , σ(τ0)[Iτ0(x)− 1]})
]]

= E
τ∗∼π∗

[
E

τ0∼π0

[ ∑
x∈τ∗

F (σ(τ0)[Iτ0(x)] | {σ(τ0)[1], . . . , σ(τ0)[Iτ0(x)− 1]})
]]

≥ (1− kF ) E
τ∗∼π∗

[
E

τ0∼π0

[ ∑
x∈τ∗

F (σ(τ0)[Iτ0(x)])

]]
(4)
= (1− kF ) E

τ∗∼π∗

[
E

τ0∼π0

[ ∑
x∈τ∗

F (x)

]]
≥ (1− kF ) E

τ∗∼π∗

[
E

τ0∼π0

[
F (τ∗)

]]
(5)
≥ (1− kF ) E

τ∗∼π∗

[
F (τ∗)

]
= (1− kF )J (π∗)

We define Iτ (x) as the function returning the index of element x in trajectory τ . This proof is heavily based on the proof of
theorem D.1. Analogously, in step (1) we use the fact that mσ,E

π0
(π1) is by construction a lower bound of J (π1), in step (2)

we notice that π1 is a maximizer of mσ,E
π0

(·) due to the local optimization step in GPO, while in step (3) we leverage the
definition of mσ,E

π0
(π∗). In step (4) we leverage the notion of submodular curvature (Definition 6), and in step (5) we exploit

submodularity of F (Definition 2).

We now prove the second statement. This proof is heavily based on the proof of theorem D.2. We first show that
J (π1) ≥ (kF )2−3kF+1

1−kF J (π∗) where J (π) = Eτ∼π

[
F (τ)

]
. Once this is proved, the theorem statement can be trivially

derived by using the definition of V(π).

J (π1)
(1)
≥ mE

π0
(π1)

(2)
≥ mE

π0
(π∗)

(3)
= E

τ∗∼π∗

[
E

τ0∼π0

[
mτ0(τ

∗)

]]
(4)
≥ E

τ∗∼π∗

[
E

τ0∼π0

[
(1− kF )F (τ∗)− kF

1− kF

∑
j∈τ0\τ∗

F (j)

]]
(5)
≥ (1− kF ) E

τ∗∼π∗

[
E

τ0∼π0

[
F (τ∗)

]]
− kF

1− kF
E

τ∗∼π∗

[
E

τ0∼π0

[ ∑
j∈τ0\τ∗

F (j)

]]
(14)
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In step (1) we use the fact that mE
π0
(π1) is by construction a lower bound of J (π1), in step (2) we notice that π1 is a

maximizer of mE
π0
(·) due to the local optimization step in GPO, while in step (3) we leverage the definition of mE

π0
(π∗).

Meanwhile, in step (4), we trivially follow steps (1) to (1) of the proof of theorem D.2. Now, we lower bound the second
term of equation 14 (without the preceding constant component) as follows:

− E
τ∗∼π∗

[
E

τ0∼π0

[ ∑
j∈τ0\τ∗

F (j)

]]
≥ − E

τ∗∼π∗

[
E

τ0∼π0

[
F (τ0)

]]

= − E
τ0∼π0

[
F (τ0)

]
= −J (π0)

≥ −J(π∗) (15)

By plugging the result in eq. 15 into equation 14, we obtain:

J (π1) ≥ (1− kF )J (π∗)− kF

1− kF
J (π∗)

=
(kF )2 − 3kF + 1

1− kF
J (π∗)

where we have employed the definition of J (π∗). Notice that a critical aspect of this proof is that we cannot compare F (τ∗)
and F (τ) as we did for the proofs in the deterministic setting, since in the stochastic setting the notion of optimality is
defined over the policy space and therefore we can only compare

J (π∗) = E
τ∗∼π∗

[
F (τ∗)

]
≥ E

τ∼π

[
F (τ)

]
= J (π) ∀π ∈ Π

We now prove the third statement. First, notice that:

J (π) = E
τ∼π

[
F (τ)

]
= E

τ∼π

[
Q(τ) +G(τ)

]
= E

τ∼π

[
Q(τ)

]
+ E

τ∼π

[
G(τ)

]
= JQ(π) + JG(π) (16)

where we define:

JQ := E
τ∼π

[
Q(τ)

]
JG := E

τ∼π

[
G(τ)

]

and:

π∗ ∈ argmax
π

J (π) π∗
Q ∈ argmax

π
JQ(π) π∗

G ∈ argmax
π

JG(π)

Given these quantities, we can proceed with the core of the proof. We first show that J (π1) ≥ α · J (π∗) for the value of α
stated within the theorem. From this, we deduce that J (π̂) ≥ α · J (π∗) since further policy updates are performed only if
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they don’t worsen the policy performance according to J .

J (π1)
(1)
= JQ(π1) + JG(π1)

(2)
≥ mσ,E

π0
(π1) +mE

π0
(π1)

(3)
≥ mσ,E

π0
(π∗) +mE

π0
(π∗)

(4)
= E

τ∗∼π∗

[
E

τ0∼π0

[
mσ

τ0(τ
∗)

]]
+ E

τ∗∼π∗

[
E

τ0∼π0

[
mτ0(τ

∗)

]]
= E

τ∗∼π∗

[
E

τ0∼π0

[
mσ

τ0(τ
∗) +mτ0(τ

∗)

]]
(5)
≥ E

τ∗∼π∗

[
E

τ0∼π0

[
(1− kQ)Q(τ∗) +mτ0(τ

∗)

]]
= (1− kQ)JQ(π∗) + E

τ∗∼π∗

[
E

τ0∼π0

[
mτ0(τ

∗)

]]
(17)

In step (1) we use equation (16), in step (2) we use the fact that mσ,E
π0

(π1) and mE
π0
(π1) are by construction respectively

lower bounds of JQ(π1) and JG(π1). In step (3), we notice that π1 is a maximizer of the sum of marginal lower bounds,
namely mσ,E

π0
(π∗) +mE

π0
(π∗) due to the local optimization step in GPO. Meanwhile in step (4) we leverage the definition

of mσ,E
π0

(π∗) and mE
π0
(π∗), and step (5) can be trivially derived by following steps (2) to (4) used to prove theorem D.1.

Now we can lower bound the second term of equation 17 as:

E
τ∗∼π∗

[
E

τ0∼π0

[
mτ0(τ

∗)

]]
(1)
≥ E

τ∗∼π∗

[
E

τ0∼π0

[
(1− kG)G(τ∗)− kG

1− kG

∑
j∈τ0\τ∗

G(j)

]]

= (1− kG)JG(π∗)− kG

1− kG
E

τ∗∼π∗

[
E

τ0∼π0

[ ∑
j∈τ0\τ∗

G(j)

]]
(18)

where step (1) can be trivially derived by following steps (2) to (4) used to prove theorem D.2. Now we can lower bound the
second term of equation 18 (without the preceding constant component) as follows:

− E
τ∗∼π∗

[
E

τ0∼π0

[ ∑
j∈τ0\τ∗

G(j)

]]
(1)
≥ − E

τ∗∼π∗

[
E

τ0∼π0

[
G(τ0)

]]
= −JQ(π0)

≥ −JQ(π∗
G)

(2)
≥ −J (π∗) (19)

using in step (1) the fact that (τ0\τ∗) ⊂ τ0 and supermodularity of G, while the step (2) is due to the following trivial chain
of inequalities:

J (π∗) = E
τ∗∼π∗

[
F (τ∗)

]
≥ E

τ∗
G∼π∗

G

[
F (τ∗G)

]
= E

τ∗
G∼π∗

G

[
Q(τ∗G)

]
+ E

τ∗
G∼π∗

G

[
G(τ∗G)

]
≥ JG(π∗

G) (Q non-negative)

18
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By plugging equation 19 into equation 18 and then equation 18 into equation 17 we obtain:

J (π1) ≥ (1− kQ)JQ(π∗) + (1− kG)JG(π∗)− kG

1− kG
J (π∗)

= (1− kQ)JQ(π∗) + (1− kG)JG(π∗)− kG

1− kG

[
JQ(π∗) + JG(π∗)

]
=

(1− kQ)(1− kG)− kG

1− kG
JQ(π∗) +

(1− kG)2 − kG

1− kG
JQ(π∗) (20)

and by trivially lower bounding equation 20 depending on the value of kQ and kG leads to the theorem statement.

C.3. Auxiliary Lemmas

Lemma C.1 (Supermodular telescoping bound). Consider a supermodular function F defined over the ground set V . For
every set S ⊆ V we have ∑

j∈S

F (j) ≥ (1− kF )F (S)

Proof. First, we order the elements of the set S = {j1, . . . , jn}, then we have∑
j∈S

F (j) ≥ (1− kF )
[
F (j1) + F (j2 | j1) + . . .+ F (jn | j1, . . . , ln−1)

]
curvature inequality

= (1− kF )F (S) telescoping sum
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D. Analysis Deterministic Case via Trajectory Optimization
Analogously to the analysis presented in section 7, it is possible to study the approximation guarantees achieved by algorithm
GTO for the trajectory-optimization version of the problem for deterministic GMDPs as presented in equation (3).

For the sake of completeness, in the following we specialize the concept of Non-additive Suboptimality Gap (Definition 5)
in order to capture the sub-optimality gap achieved by a given trajectory in a deterministic GMDP rather than a policy in a
possibly stochastic GMDP.
Definition 9 (Non-additive Suboptimality Gap: Trajectory-Optimization, Deterministic GMDP Version). Consider a
trajectory τ ∈ CM, where CM denotes the CMP constraint i.e., the set of admissible trajectories, for a given Global MDP
MF . We define the non-additive suboptimality gapR(τ) of a trajectory τ as:

R(τ) := F ∗ − F (τ) (21)

where F ∗ := maxτ∈CM F (τ) and we implicitly consider an arbitrary initial starting state s0.

Given this definition we can state the following guarantees.
Theorem D.1 (Approximation Guarantee GTO, F submodular, Deterministic Case). By running for one iteration algorithm
GTO on a GMDPMF with F submodular, we obtain a trajectory τ1 such that:

R(τ1) ≤ kFF
∗

where F ∗ := maxτ∈CM F (τ).

Proof. We first show that F (τ1) ≥ (1 − kF )F (τ∗) where τ∗ ∈ argmaxτ∈CM
F (τ). Once this is proved, the theorem

statement can be trivially derived by using the definition ofR(τ).

F (τ1)
(1)
≥ mσ

τ0(τ1)

(2)
≥ mσ

τ0(τ
∗)

=
∑
x∈τ∗

mσ
τ0(Iτ0(x))

=
∑
x∈τ∗

F
(
S
σ(τ0)
Iτ0 (x)

)
− F

(
S
σ(τ0)
Iτ0 (x)−1

)
=

∑
x∈τ∗

F ({σ(τ0)[1], . . . , σ(τ0)[Iτ0(x)]})− F ({σ(τ0)[1], . . . , σ(τ0)[Iτ0(x)− 1]})

=
∑
x∈τ∗

F (σ(τ0)[Iτ0(x)] | {σ(τ0)[1], . . . , σ(τ0)[Iτ0(x)− 1]})

(3)
≥ (1− kF )

∑
x∈τ∗

F (σ(τ0)[Iτ0(x)])

= (1− kF )
∑
x∈τ∗

F (x)

(4)
≥ (1− kF )F (τ∗)

We define Iτ (x) as the function returning the index of element x in trajectory τ . In step (1) we use the fact that mσ
τ0(τ1) is by

construction a lower bound of F (τ1), in step (2) we notice that τ1 is a maximizer of mσ
τ0(·) due to the local optimization step

in GTO, in step (3) we leverage the notion of submodular curvature (Definition 6), and in step (4) we exploit submodularity
of F (Definition 2).
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Theorem D.2 (Approximation Guarantee GTO, F supermodular, Deterministic Case). By running for one iteration
algorithm GTO on a GMDPMF with F supermodular, we obtain a trajectory τ1 such that:

R(τ1) ≤
2kF − (kF )2

1− kF
F ∗

where F ∗ := maxτ∈CM F (τ).

Proof. We first show that F (τ1) ≥ (kF )2−3kF+1
1−kF F (τ∗) where τ∗ ∈ argmaxτ∈CM

F (τ). Once this is proved, the theorem
statement can be trivially derived by using the definition ofR(τ).

F (τ1)
(1)
≥ mτ0(τ1)

(2)
≥ mτ0(τ

∗)

= F (τ0)−
∑

j∈τ0\τ∗

F (j | τ0\j) +
∑

j∈τ∗\τ0

F (j)

= F (τ0)−
∑
j∈B

F (j | τ0\j) +
∑
j∈C

F (j)

≥
∑

j∈A∪B

F (j)−
∑
j∈B

F (j | τ0\j) +
∑
j∈C

F (j)

=
∑

j∈A∪C

F (j)−
∑
j∈B

F (j | τ0\j) +
∑
j∈B

F (j)

(3)
≥

∑
j∈A∪C

F (j)− 1

1− kF

∑
j∈B

F (j) +
∑
j∈B

F (j)

≥
∑

j∈A∪C

F (j)− kF

1− kF

∑
j∈B

F (j)

(4)
≥ (1− kF )F (τ∗)− kF

1− kF

∑
j∈B

F (j)

(5)
≥ (1− kF )F (τ∗)− kF

1− kF
F (τ∗)

=
(kF )2 − 3kF + 1

1− kF
F (τ∗)

where where we have defined A := τ0 ∩ τ∗, B := τ0\τ∗, C := τ∗\τ0. In step (1) we use the fact that mσ
τ0(τ1) is by

construction a lower bound of F (τ1), in step (2) we notice that τ1 is a maximizer of mτ0(·) due to the local optimization
step in GTO, in step (3) we leverage the notion of supermodular curvature (Definition 6), and in step (4) we use Lemma C.1.
Meanwhile, step (5) is due to the following chain of inequalities:∑

j∈B

F (j) ≤ F (B) (supermodularity)

≤ F (τ0) (monotonicity)

≤ F (τ∗) (optimality of τ∗)
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Theorem D.3 (Approximation Guarantee GTO, F BP, Deterministic Case). By running for one iteration algorithm GTO on
a GMDPMF with F = Q+G BP, we obtain a trajectory τ1 such that:

R(τ1) ≤ αF ∗

with

α =

{
2kG−(kG)2

1−kG if kF ≤ kG

1−(1−kQ)(1−kG)
1−kG otherwise

where kQ is the submodular curvature of Q, kG is the supermodular curvature of G, and F ∗ := maxτ∈CM F (τ).

Proof. We define Iτ (x) as the function returning the index of element x in trajectory τ . We first show that F (τ1) ≥
(1 − α)F (τ∗) where τ∗ ∈ argmaxτ∈CM

F (τ). Once this is proved, the theorem statement can be trivially derived by
using the definition ofR(τ).

F (τ1) = Q(τ1) +G(τ1)

(1)
≥ mσ

τ0(τ1) +mτ0(τ1)

(2)
≥ mσ

τ0(τ
∗) +mτ0(τ

∗)

(3)
≥ (1− kQ)Q(τ∗) +mτ0(τ

∗)

In step (1) we use the fact that mσ
τ0(τ1) and mτ0(τ1) are by construction respectively lower bounds of Q(τ1) and G(τ1). In

step (2), we notice that τ1 is a maximizer of the sum of marginal lower bounds, namely mσ
τ0(·) +mτ0(·) due to the local

optimization step in GTO. Meanwhile step (3) can be trivially derived by following steps (1) to (4) used to prove theorem
D.1. Now, we define A := τ0 ∩ τ∗, B := τ0\τ∗, C := τ∗\τ0 and lower bound the second term as follows:

mτ0(τ
∗)

(1)
≥ (1− kG)G(τ∗)− kG

1− kG

∑
j∈B

G(j)

(2)
≥ (1− kG)G(τ∗)− kG

1− kG
G(τ∗G)

(3)
≥ (1− kG)G(τ∗)− kG

1− kG
F (τ∗G) (22)

where in step (1) we have trivially followed steps (2) to (4) used to prove theorem D.2, while in step (2) we have used the
following chain of inequalities: ∑

j∈B

G(j) ≤ G(B) ≤ G(τ0) ≤ G(τ∗G)

and in step (3) we have used the fact that:

F (τ∗) ≥ F (τ∗G) = Q(τ∗G) +G(τ∗G) ≥ G(τ∗G)

since Q is non-negative. By plugging equation 22 into the initial chain of inequalities, we obtain:

F (τ1) ≥ (1− kQ)Q(τ∗) + (1− kG)G(τ∗)− kG

1− kG
F (τ∗)

= (1− kQ)Q(τ∗) + (1− kG)G(τ∗)− kG

1− kG
[
Q(τ∗) +G(τ∗)

]
=

(1− kQ)(1− kG)− kG

1− kG
Q(τ∗) +

(1− kG)2 − kG

1− kG
G(τ∗)

from which we can straightforwardly derive the statement by lower bounding the coefficients depending on the values of
kQ, k

G and using the definition of F .
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E. Computational Hardness
Theorem 7.2 (Hardness of GRL, trajectory-optimization (3)). For all 0 ≤ β ≤ 1, there exists an instance of a BP global
reward F = Q + G with kG = β such that no poly-time algorithm can achieve an approximation factor better than
1− kG + ϵ ∀ϵ > 0 w.r.t. the Non-additive Suboptimality Gap in deterministic GMDPs, unless P = NP.

Proof. The proof is based on a reduction from a problem with a known hardness result, namely (Bai & Bilmes, 2018,
Theorem 4.1), which gives the same approximation ratio as in the lemma, but for the cardinality constrained case. We refer
with P1 to the problem of BP maximization with a cardinality constraint, while with P2 to the problem of BP maximization
under a CMP constraint. The reduction works as follows. First, we define a poly-time reduction from any instance of P1 to a
specific instance of P2. In particular, given an instance of P1 with a function F , a ground set V and a cardinality constraint
k, we define an instance of P2 with CMP constraint CM induced by the fully-connected CMPM := ⟨V,A, P,H = k⟩
as explained in definition 8. The time-extended CMPMH will be a k-layered CMP of which the state space is a k-fold
cartesian product of the original ground set V . We define the objective function of P2 as F ′ : D := V × [k] → R and
F (Sd) = F (ΠSd) where Sd ⊆ D and Π : V × [k]→ V is a projector map that drops the time-coordinate of its input, e.g.
Π({(s, t), (s′, t′)}) = {s, s′}. For the sake of notational simplicity we write ΠS instead of Π(S). Notice that the instance
of P2 can be computed in poly-time w.r.t. the cardinality of the original ground set V , which represents the complexity
of the initial instance of P1. In order to show that the instance we have built for P2 is a valid one, it is left to show that
F ′ ∈ BP . We start by noticing that

F ′(Sd) = F (ΠSd) = Q(ΠSd) +G(ΠSd) = Q′(Sd) +G′(Sd)

where we have used the fact that F ∈ BP and have defined Q′ := QΠ and G′ := GΠ. Since Q and G are non-negative
then also Q′ and G′ must be non-negative, and since Q,G,Π are monotone then also Q′ and G′ are monotone. Moreover,
once can easily check that Q′ is submodular. Next, we show that G′ is supermodular and that it preserves the supermodular
curvature of G, i.e., kG

′
= kG. Consider the sets Ad ⊆ Bd ⊆ D and the element d /∈ Bd. In order to prove that G′ is

supermodular we must show that G′(d | Ad) ≤ G′(d | Bd). We define S := ΠSd and write:

G′(d | Bd) = G′(Bd ∪ d)−G′(Bd)

= G(Π(Bd ∪ d))−G(ΠBd)

= G(ΠBd ∪Πd)−G(ΠBd)

= G(Πd | ΠBd)

≥ G(Πd | ΠAd) (Ad ⊆ Bd =⇒ ΠAd ⊆ ΠBd)
= G(ΠAd ∪Πd)−G(ΠAd)

= G(Π(Ad ∪ d))−G(ΠAd)

= G′(Ad ∪ d)−G′(Ad)

= G′(d | Ad)

which proves that G′ is supermodular. As for its curvature, we have:

kG
′
= 1− min

Sd⊆D,d/∈Sd

G′(d)

G′(d | Sd)

= 1− min
Sd⊆D,d/∈Sd

G(ΠSd)

G(ΠSd ∪Πd)−G(ΠSd)

= 1− min
S⊆V,v /∈S

G(v)

G(v | S)
= kG

For the sake of contradiction, we now suppose that there exists a poly-time algorithm that can solve P2 by computing a set
Ŝ such that for every function F ′ ∈ BP and ϵ > 0 we have:

F ′(Ŝd) > (1− kG
′
+ ϵ)F ′(S∗

d) (23)
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where S∗
d is an optimizer of F ′. We claim that eq. 23 implies that F (Ŝd) > (1− kG + ϵ)F (S∗), where S∗ is an optimizer

of F . Which would be a contradiction with the aforementioned hardness result and would imply the result stated in the
lemma. In order to prove that

F ′(Ŝd) > (1− kG
′
+ ϵ)F ′(S∗

d) =⇒ F (Ŝd) > (1− kG + ϵ)F (S∗)

we notice that F ′(Sd) = F (ΠSd) by definition, and therefore it is left to prove that F ′(S∗
d) = F (S∗). By def. of F ′ we

have that F ′(S∗
d) = F (ΠS∗

d), hence it suffices to show that ΠS∗
d = S∗. By contradiction, we suppose that S∗ ̸= ΠS∗

d .
By def. of S∗ this would imply that F (S∗) > F (ΠS∗

d). But notice that ∀S ⊂ V , the pre-image of S along Π is always a
non-empty subset of D, namely Π−1(S) with Π−1 : 2V → 2D. Therefore we can pick S̄d ∈ Π−1(S) and we would obtain
that:

F ′(S̄d) = F (ΠS̄d) = F (S∗) > F (ΠS∗
d) = F ′(S∗

d)

which is a contradiction since S∗
d is a maximizer of F ′ by definition. This fact, together with the fact that kG

′
= kG proves

our claim. Ultimately, notice that once an optimal solution for P2 is computed, an optimal solution for P1 can be computed
in poly-time.
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F. Algorithm
In this section, we first present two propositions, especially for the algorithm GTO that ensure the build modular functions
are tight lower bound of the global reward function, and guarantee monotonic improvement. Then we present the GPO
algorithm and finally discuss some efficient ways to build modular lower bounds.
Proposition 2 (Tight modular lower bound). Let F : 2V → R be a submodular function. For any set X ⊆ V , define per-
mutation σ : [|V |]→ V such that Sσ

|X| = X , where Sσ
i = {σ(1), σ(2), . . . , σ(i)} and Sσ

0 = ∅. Define a modular function
about the set X , mσ

X =
∑

v∈X mσ
X(v) with entries for element i ∈ [|V |] given by mσ

X(σ(i)) := F (Sσ
i )− F (Sσ

i−1). Then
mσ

X is a tight modular lower bound of the submodular function F, i.e., mX(X) = F (X) with mX(Y ) ≤ F (Y ),∀Y ⊆ V .

Proof. As per definition, mσ
X(X) =

∑
v∈X mσ

X(v) =
∑

i∈[|X|] F (Sσ
i ) − F (Sσ

i−1) =
∑

i∈[|X|] F (Sσ
i |Sσ

i−1) = F (X).
The last equality follows since Sσ

|X| = X . Hence the modular function is tight at X . Next, we prove that it is lower bound,
i.e., ∀Y : mσ

X(Y ) ≤ F (Y ).

Let Y = {i1, . . . ik}, wlog, s.t, ij <σ ij+1, i.e., the elements are arranged in Y as per permutation σ.

F (Y ) =

k∑
j=1

F (ij |i1, . . . ij−1) ({i1, . . . ij−1} ⊆ {σ(1), . . . σ(j − 1)})

≥
k∑

j=1

F (ij |σ(1), . . . σ(j − 1)) = mσ(Y )

Proposition 3 (Monotonic Improvement). GTO monotonically improves the objective function, i.e., at any iteration t, it
holds that F (τt+1) ≥ F (τt).

Proof. Let mτt be a modular lower bound of a global reward function, F about the trajectory τt. Then,

F (τt) =
∑
v∈τt

mτt(v)

(1)
≤

∑
v∈τt+1

mτt(v)

(2)
≤ F (τt+1)

In the above proof, (1) follows since τt+1 is the optimal policy for modular rewards mτt obtained by MDPSOLVER, e.g.,
value iteration. Step (2) follows since mτt is a lower bound of the global reward function F .

F.1. Policy optimization for stochastic GMDPs

In this section, we extend the approach defined for deterministic GMDPs to stochastic GMDPs. The core idea stays the
same, i.e., we recursively approximate the stochastic GMDPs with stochastic linearized MDP and solve it with standard
MDP tools. However, we need a mechanism to convert the stochastic GMDPs to linearized MDPs. What should we linearise
it about?

We solve the problem in policy space and linearize the GMDP around the current policy. However, we can compute the
lower bounds only around the sets. Policy can thus interpreted as distribution over the trajectories and we define the modular
rewards around a policy π as:

mE
π := E

τ∼π
[mτ ] (24)

where mE
π ∈ RV defines a modular reward around a policy π and mτ ∈ RV are reward computed around a trajectory τ .

Furthermore we define the linearization of the GRL objective J(π) around the policy π′, by evaluating this Equation (24)
for a policy π as,

mE
π′(π) := E

τ∼π
E

τ ′∼π′
[mτ ′(τ)]
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Algorithm 2 Global Policy Optimization (GPO)

1: Initialize GMDP, π1 ←− random, t← 0,
2: do
3: t← t+ 1

4: Estimate mE
πt

:= Eτ∼πt
[mτ ]

5: πt+1 ←− MDPSOLVER(M = ⟨S,A, P, s0,mE
πt
, H⟩)

6: while J(πt+1) > J(πt)
7: Return πt

Global Policy Optimization (GPO). The outline of the steps is given in Algorithm 2. The algorithm starts with an arbitrary
policy π1, which may be represented using e.g., a value function. In each iteration, we estimate a modular lower bound of the
global reward function about the current policy π (Line 4) using Monte Carlo samples. In particular, we sample trajectories
utilizing the current policy πt in the GMDP and compute modular lower bound w.r.t. each of the sampled trajectories. On
averaging across all the modular lower bounds, we define a reward for each state-time pair which forms a classic MDP
with modular rewards. Given the modular rewards, we can deploy any MDPSOLVER, e.g., value iteration, policy iteration
or linear program, etc that solves argmaxπ m

E
πt
(π) and results in the optimal policy for the linearized MDPM in Line 5.

The algorithm continues and we linearize the GMDP about the improved stochastic policy and resolve it for a better policy.
In every iteration, we compare the objective with the last policy empirically using samples. In case the objective doesn’t
improve anymore, we terminate in Line 7 with the best policy πt.

F.2. Alternative modular lower bounds for submodular rewards

Computational complexity of computing lower bounds (LB’s). The computation of LB is O(|S × T |). Notably, solving
a finite horizon MDP (Agarwal et al., 2019, c.f. Chapter 1.2), for example, using value iteration has per-iteration complexity
ofO(|S ×T |2|A|), and thus computing the lower bounds is a non-dominant operation that does not affect the computational
complexity of the overall algorithm. The challenge of scaling to a large state space and horizon exists in finite horizon MDP
solvers as well and is not exclusive to our approach. However, in order to make the computation of LB more efficient in
practice, one can incorporate approaches tailored to the problem such as GPO-S, where the lower bound remains the same
for a fixed state across multiple time steps and is empirically faster to compute. We next elaborate more on this.

Only state dependent lower bounds. In many applications, submodular rewards are naturally defined on the state space S
rather than joint state time space V . For instance, consider a submodular function F ′ : 2S→R, F ′(S) := |⋃s∈S Ds|. We
can build a submodular function F : 2S×T → R using an operator A : 2S×T → 2S that drops the time indices and define
F (τ) := F ′(A(τ)) (Prajapat et al., 2023, Section 2).

For such functions, we can build a modular lower bound about current trajectory τ = {(si, i)}H−1
i=0 with a permutation

σ = {τ,V\τ} as:

mσ(s, t) :=


F (Sσ

i )− F (Sσ
i−1) (s, t) ∈ τ(

F (Sσ
i )− F

(
Sσ
i−1

))
/H (s, t) ∈ τr

0 (s, t) ∈ τv

(25)

where Sσ
i = {σ(1), σ(2), ..., σ(i)}, (s, t) = σ(i), τr = {(s, t) ∈ V|(s, ·) ̸∈ τ} is the set of state-time pair where the state is

not yet visited by τ and τv = {(s, t) ∈ V|(s, ·) ∈ τ, (s, t) ̸∈ τ} is the set of the state-time pair where the state is visited but
at a different time.

Note that these bounds are computationally more efficient to compute, especially in the case of large horizons. Essentially
we compute marginal gain for each state not yet visited and assign this as a reward to that state for any future visit.

Greedy σ-permutation for lower bounds. In general, we can pick any permutation στ = {τ,V\τ} randomly as long
as first H elements are τ . This results in a valid modular lower bound and hence our theoretical results hold. However
empirical performance may vary based on the permutation (c.f. Fig. 5). Here we present a strategy to build these lower
bounds greedily. For simplicity, we present it for the state-dependent case explained above.
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Define a permutation σ = {τ, τr, τv}, where τr := {(s, t) ∈ V|(s, ·) ̸∈ τ} is the set of state-time pair where the state is not
visited earlier and τv := {(s, t) ∈ V|(s, ·) ∈ τ, (s, t) ̸∈ τ} is the set of state-time pair where the state is visited but at a
different time. Ignoring the time dimension, we order the states in the set τr as follows,

σ := argmax
s

F ′({s} ∪ Si)− F ′(Si),

where Sσ
i = {σ(1), σ(2), . . . , σ(i)}. In this permutation, we randomly shuffle the last τv states, which were visited but at

different times. Using this permutation, we define the modular rewards, mσ(s, t), as given in Equation (25).

Note that in Equation (25), we divide modular reward by H for (s, t) ∈ τr which is a careful choice that ensures mσ(s, t)
is a valid lower bound and provides equal weightage (reward) across all times in the modularized MDP for the exploring
unvisited state. In particular, for a LB, mσ(s, t) to be valid requires F (V ) ≤∑

(s,t)∈V mσ(s, t) for all sets V ∈ V . Consider
a particular case of permutation σ = {τ, V, ...} where V = {(s′, 2)(s′, 6), ..., (s′, H − 1)} is a set containing the same state
s′ for all times and for simplicity let F (τ ∪ (s′, 2))− F (τ) = F ((s′, 2)). In this case, if we do not divide by H , a valid LB
is mσ(s′, 2) = F ((s′, ·)) and mσ(s, t) = 0,∀t ̸= 2, i.e., only visiting s′ at horizon t = 2 will have a reward and zero at
other times. However, visiting s′ at t = 2 may not be possible due to MDP constraints and visiting it at any other time is not
encouraged by the rewards. Hence, we use the normalized equal reward across all times to enhance exploring the unvisited
state at any time.
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G. Experiments Details
Computation of Non-Markovian policy. We compute the optimal non-Markovian policy by solving a linear program (LP).
The LP is defined with optimization variables, π(a|s), cost as objective (1), and constraints that π(a|s) is a probability sim-
plex. The cost is defined as an expectation over all the trajectories. Computing all the possible trajectories is computationally
exponential in the horizon. Thus, we can compare against it only for deterministic environments with small horizons.

All experiments within Section 8 are run on a squared grid with |S| = 400 and action space A = {left, up, down, right,
stay}. Each experiment is conducted over 20 runs and the empirical standard deviation is shown. Here, we first report a
table summarizing the configuration shared by most experiments and subsequently we will list the deviations from this
configuration for a subset of the experiments.

Variable Value

env.cov module Matern

env.alpha 0.1

env.beta 2

env.stochasticity degree 0 (deterministic), 0.1 (stochastic)

env.unsafety penalty 500

env.n traj samples 1 (deterministic), 20 (stochastic)

Table 3: Base experimental configuration.

Bayesian D-Optimal Experimental Design. We have run the experiments with horizon H = 10 for 6 iterations of GTO.

Diverse Synergies. We have run the experiments with horizon H = 8 for 6 iterations of GPO.

Safe State Coverage. We have run the experiments with horizon H = 20 for 25 iterations of GTO.

In the following, we extend Section 8 to showcase the performances of GTO and GPO on a wider variety of global reward
functions capturing more real-world applications and representative enough to later discuss important insights.

In the following experiments, we consider a squared grid with |S| = 100, with action space A =
{left, up, down, right, stay}, horizon H = 10, and show the performance of running GTO and GPO for 15 iterations.
Each experiment is conducted over 20 runs and the empirical standard deviation is shown in the following plots. Moreover,
the trajectories illustrated in figure 5 are generated using H = 31 and 35 iterations of GTO. The plots for the Safe State
Coverage experiment in Figure 10 have been created with H = 20, 25 iterations, and stochasticity degree of 0.05.

States Coverage. In Fig. 4, we consider the state-coverage submodular global reward function F (τ) := |⋃s∈τ D
s|, with

Ds being a disk of size 2× 2 containing the agent’s current state, and its right, up, and right-up neighbouring states (Prajapat
et al., 2022). Notice that this global reward is fully-curved. A policy maximizing the objective J (π) induced by F will
try to explore the state space to maximize coverage according to the application-specific definition of the set Ds, which in
practice depends on the sensors with which the agent is equipped.

Bounded Curvature Coverage. The notion of coverage can often be captured via a bounded-curvature submodular
global reward, which we denote as bounded curvature coverage. It can be expressed as F (τ) =

∑
s∈S ϕ(τ, s) where

ϕ(τ, s) = IC(τ,s)>0 · [1− α(C(τ, s)− 1)] and C(τ, s) := |{t ∈ [H] : (s, t) ∈ τ}|. Similar to a classic coverage function
presented above, this function value is increased by 1 once a state is visited for the first time, while it increases by an
arbitrary value α when a state is visited again. Interestingly, one can prove that the submodular curvature of F has value
kF = 1− α. In the following plot, we consider a significantly curved instance, where α = 0.9.

D-Optimal Experimental Design. Here we consider the optimal experimental design setting as introduced in Section 8. To
ensure robustness in our findings, we conduct 20 experiments across 4 different environments.

Synergical Trajectory Selection. As previously mentioned, in the context of scientific discovery applications, it could be
particularly relevant to model positive interactions or synergies among state within a certain trajectory. As an illustrative
example, consider states representing atoms and trajectories encoding molecules. Certain combinations e.g., pairs, triplets

28



Global Reinforcement Learning: Beyond Linear and Convex Rewards via Submodular Semi-gradient Methods

0 4 8 12
0

5

10

15

20

GTO-greedy-S
GTO-S
MOD
GTO-greedy
GTO
NM

0 4 8 12
0

5

10

15

20

GPO-greedy-S
GPO
GPO-greedy
GPO-S
MOD

Figure 4: States Coverage: (left) values of F (τ) in deterministic GMDP setting where τ is the trajectory computed by GTO
at each iteration (x-axis), which matches the optimal non-Markovian policy. (right) values of J (π) in stochastic GMDP
setting, where π is the policy computed by GPO at each iteration (x-axis).

Figure 5: State Coverage, H = 31, 35 iterations: (left) trajectory τ1 induced by output policy of GTO using GTO-S lower
bounds achieves F (τ1) = 56, (right) trajectory τ2 induced by output policy of GTO using GTO-greedy-S lower bounds
achieves F (τ2) = 64. GTO-greedy-S outperforms GTO-S in those instances where the horizon is just enough to reach
optimality.

etc., of states i.e., atom, can have a synergistic effect that can be captured via supermodular global reward functions. In
figure 8, we consider the supermodular global reward function defined as F (τ) :=

∑K
i=1 |τ ∩ Si|β with Si ⊆ V := S × T

indicating a synergy, which we see as a subset of V capturing complementary among its elements.

Diverse and Synergical Trajectory Selection. Interestingly, the notions of exploration mentioned above and encoded
through submodularity can be mixed with notions of complementary among states within the same trajectory. This leads
to BP objectives such as F (τ) = |⋃s∈τ D

s| +∑K
i=1 |τ ∩ Si|β with Si ⊆ V := S × T . This objective induces policies

maximizing state space covering while seeking complementarity between states within the trajectory. The performances of
GTO and GPO on this global reward are illustrated in figure 9. We believe that objectives of this type can be particularly
relevant in the context of computational chemistry, where often a scientist wishes to discovery chemical compounds that
show a certain diversity and complementarity among its elements at the same time.

Safe States Coverage. Here we consider the notion of safe state coverage as introduced in Section 8. As illustrated in
figure 11, an optimal policy w.r.t. to this objective is highly explorative while avoiding unsafe areas. Notice that the concept
of safety is captured via a penalty term which can be arbitrary calibrated w.r.t. the maximum value of the submodular
component. Nonetheless, in order to guarantee the satisfiability of a safety constraint one would have to express the global
reward as a Lagrangian and compute the optimal Lagrangian multiplier by an outer optimization scheme. This procedure,
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Figure 6: Bounded Curvature Coverage: (left) values of F (τ) in deterministic GMDP setting where τ is the trajectory
computed by GTO at each iteration (x-axis), (right) values of J (π) in stochastic GMDP setting, where π is the policy
computed by GPO at each iteration (x-axis). The left plot shows that in practice τ is nearly-optimal w.r.t. the optimal
non-Markovian policy.
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Figure 7: D-Optimal Experimental Design: (left) values of F (τ) in deterministic GMDP setting where τ is the trajectory
computed by GTO at each iteration (x-axis), (right) values of J (π) in stochastic GMDP setting, where π is the policy
computed by GPO at each iteration (x-axis). GTO and GPO perform nearly optimally in both cases.

which we leave as future work, seems particularly viable and may lead to high probability guarantees on safety satisfiability.
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Figure 8: Synergical Trajectory Selection: (left) values of F (τ) in deterministic GMDP setting where τ is the trajectory
computed by GTO at each iteration (x-axis), (right) values of J (π) in stochastic GMDP setting, where π is the policy
computed by GPO at each iteration (x-axis). In (left) τ matches the optimal non-Markovian policy.
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Figure 9: Diverse and Synergical Trajectory Selection: (left) values of F (τ) in deterministic GMDP setting where τ is the
trajectory computed by GTO at each iteration (x-axis), (right) values of J (π) in stochastic GMDP setting, where π is the
policy computed by GPO at each iteration (x-axis). From (left) we can deduce that τ can properly trade-off diversity and
complementary and match the optimal non-Markovian policy.
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Figure 10: Safe States Coverage: (left) values of F (τ) in deterministic GMDP setting where τ is the trajectory computed by
GTO at each iteration (x-axis), (right) values of J (π) in stochastic GMDP setting, where π is the policy computed by GPO
at each iteration (x-axis). Negative values in (right) are due to high unsafety penalty and unavoidable possibility of visiting
unsafe states, see figure 10.
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Figure 11: Safe States Coverage H = 20, 25 iterations: (left) trajectory τ computed by GTO at last iteration, (right)
empirical distribution (blue = low probability, yellow = high probability) over the state space induced by the policy π
computed by GPO at each iteration (x-axis). The initial state is the bottom left state of the grid.
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