
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TUSOAI: AGENTIC OPTIMIZATION FOR SCIENTIFIC
METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific discovery is often slowed by the manual development of computational
tools needed to analyze complex experimental data. Building such tools is costly
and time-consuming because scientists must iteratively review literature, test mod-
eling and scientific assumptions against empirical data, and implement these in-
sights into efficient software. Large language models (LLMs) have demonstrated
strong capabilities in synthesizing literature, reasoning with empirical data, and
generating domain-specific code, offering new opportunities to accelerate com-
putational method development. Existing LLM-based systems either focus on
performing scientific analyses using existing computational methods or on de-
veloping computational methods or models for general machine learning without
effectively integrating the often unstructured knowledge specific to scientific do-
mains. Here, we introduce TusoAI, an agentic AI system that takes a scientific task
description with an evaluation function and autonomously develops and optimizes
computational methods for the application. TusoAI integrates domain knowledge
into a knowledge tree representation and performs iterative, domain-specific op-
timization and model diagnosis, improving performance over a pool of candidate
solutions. We conducted comprehensive benchmark evaluations demonstrating
that TusoAI outperforms state-of-the-art expert methods, MLE agents, and scien-
tific AI agents across diverse tasks. Applying TusoAI to two key open problems
in genetics improved existing computational methods and uncovered new biology
missed by previous methods.

1 INTRODUCTION

Scientific discoveries are often bottlenecked by the slow, manual development of computational
tools needed to analyze experimental data. For example, genetics studies have uncovered tens of
thousands of disease-associated variants, yet robust computational methods are critically needed to
harmonize multi-modal, multi-scale data and uncover the underlying mechanisms (Lappalainen &
MacArthur, 2021). Developing such tools is slow and costly because scientists must iteratively (i)
review extensive literature, (ii) test modeling and scientific assumptions against empirical data, and
(iii) implement these insights into efficient, scalable code. For instance, building robust computa-
tional methods to link enhancers with target genes from single-cell multiome data has taken multi-
ple expert groups many years (Dorans et al., 2025), hindered by challenges such as cis-regulatory
modeling, latent confounding, noisy data, and computational scalability. Large language models
(LLMs) have demonstrated strong capabilities in performing human-like analysis (Luo et al., 2025),
such as synthesizing relevant literature (Asai et al., 2024), reasoning about biological and modeling
assumptions using empirical data (Gao et al., 2024), and generating efficient, domain-specific code
(Rasheed et al., 2025). Integrating LLMs with scientific domain knowledge and iterative data exper-
imentation holds great promise to accelerate computational method development, thereby advancing
discoveries in science and medicine.

Existing work has produced general-purpose AI agents across scientific domains, including
biomedicine (Huang et al., 2025; Jin et al., 2025) and chemistry (M. Bran et al., 2024). These
systems primarily focus on performing scientific data analyses rather than developing new compu-
tational methods; the former involves assembling and executing pipelines of data formatting and
existing tools, whereas the latter requires creating new algorithms or models for specific pipeline
steps, involving substantial design, optimization, and validation. In parallel, several studies have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

developed machine learning engineering (MLE) agents that can design new algorithms for general
ML applications (Guo et al., 2024; Trirat et al., 2024; Jiang et al., 2025; Nam et al., 2025), but these
approaches do not address domain-specific challenges inherent in scientific research. Developing
AI agents for scientific method development that integrate structured domain knowledge and sys-
tematically explore data-specific assumptions has considerable potential to accelerate the creation
of robust computational methods for science and medicine.

Here, we introduce TusoAI, an agentic AI system that takes a scientific task description with an
evaluation function, and autonomously develops and optimizes computational methods for the appli-
cation (Figure 1). TusoAI mimics a scientist’s cycle of method development, integrating structured
domain knowledge with iterative, domain-specific optimization and model diagnosis, improving
performance over a pool of candidate solutions. We demonstrate that TusoAI achieves superior per-
formance across a range of algorithmic, statistical, machine learning, and deep learning applications
in science. Our key contributions are:

1. We develop TusoAI, an AI agent specifically tailored for scientific method discovery by
integrating structured domain knowledge.

2. We propose a novel framework, featuring (i) knowledge tree for structured representation
of domain knowledge, (ii) hierarchical planning with Bayesian updates to balance solution
quality and diversity, and (iii) fine-grained generation that integrates model optimization
with diagnostic feedback.

3. We benchmark TusoAI on 6 single-cell analysis tasks and 5 scientific deep learning tasks,
consistently outperforming baseline methods and frequently surpassing existing expert-
designed algorithms.

4. Applying TusoAI to two key open problems in genetics improved existing computational
methods and uncovered new biology missed by existing methods.

Figure 1: Scientific method development with TusoAI. (A) Method overview. (B) Example do-
main knowledge tree (categories and instructions per category), feedback, and diagnostics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

1.1 RELATED WORK

LLM-based scientific AI agents. Several works have developed general-purpose AI agents capable
of autonomously executing various scientific research tasks. Biomni (Huang et al., 2025) provides
a unified agentic environment with tools and databases spanning 25 biomedical domains, integrat-
ing LLM reasoning with retrieval-augmented planning and code execution to compose complex
workflows. Stella (Jin et al., 2025) employs a multi-agent architecture for autonomous biomed-
ical data analysis, achieving self-evolution by dynamically updating its template library and tool
collection. ChemCrow (M. Bran et al., 2024) is a chemistry-focused agent that integrates 18 expert-
designed tools and follows the “Thought, Action, Action Input, Observation” format to iteratively
reason toward answers. These methods emphasize end-to-end data analysis with established tools,
whereas our work focuses on developing new computational methods for domain-specific tasks.
Other works have leveraged LLMs to develop application-specific methods, such as single-cell per-
turbation prediction (Tang et al., 2025), diagnosis prediction (Tan et al., 2025), and mathematical
discovery (Romera-Paredes et al., 2024). In contrast, TusoAI targets computational method develop-
ment across scientific tasks. InternAgent (Team et al., 2025) and its precursor Dolphin (Yuan et al.,
2025) iteratively evolve and implement research ideas through an optimization process augmented
with literature review. As a concurrent effort, Aygün et al. (2025) combine LLMs with tree search
and existing model ensembles to improve scientific algorithms, addressing a similar problem but
with a different approach from ours, which integrates a domain knowledge tree with fine-grained
iterative optimization and Bayesian updates. As their code is not publicly available, direct compar-
ison is not possible, but a key distinction of our work is to perform fine-grained optimizations with
domain knowledge that do not require existing models and can operate on a small portion of a much
larger method.

LLM-based general machine learning agents. Several recent works have developed AI agents
for general machine learning engineering. AIDE (Jiang et al., 2025) frames ML engineering as a
code optimization problem, combining an LLM with tree search to iteratively improve solutions.
R&D Agent (Yang et al., 2025) similarly explores ML architectures in a dynamic feedback loop.
DS-Agent (Guo et al., 2024) combines an LLM with case-based reasoning (CBR), retrieving po-
tentially successful solutions from top-ranked Kaggle solutions, and refining them through iterative
optimization. MLE-STAR (Nam et al., 2025) retrieves candidate models from the web to form an
initial solution, then improve it by targeting specific ML components and ensembling. AutoML-
Agent (Trirat et al., 2024) employs retrieval-augmented planning and multi-agent coordination to
generate an optimal plan, but executes the plan once without iterative refinement. These methods
are less suited to scientific method development, where domain knowledge is unstructured, exist-
ing ML models may be unavailable, and search spaces are continually evolving. We address these
challenges through structured domain knowledge representation and a novel hierarchical planning
procedure with Bayesian updates during iterative optimization.

Classical automatic machine learning (AutoML) frameworks. Classical (non-LLM) AutoML
frameworks aim to construct high-performing ML models from scratch by searching over key com-
ponents such as feature preprocessing, model architectures, hyperparameters, and pipeline com-
position. Notable examples include auto-sklearn (Feurer et al., 2015), H2O (LeDell et al., 2020),
AutoGluon (Erickson et al., 2020), and TPOT (Olson & Moore, 2016). Within deep learning, neu-
ral architecture search (NAS) methods specialize in optimizing neural architectures, with examples
such as DARTS (Liu et al., 2018) and AMBER (Zhang et al., 2021). While effective for standard ML
tasks, these approaches are constrained by predefined search spaces and are less suited to scientific
domains, where domain knowledge and optimization objectives are unstructured and continually
evolving, making LLM-based agents a more natural fit as they can pair a principled optimization
objective with heuristic search procedures.

2 PROBLEM FORMULATION

We consider the problem of automatic scientific algorithm optimization with LLMs. Given a general
solution space S full (e.g., all Python scripts) and an evaluator h(·) : S full 7→ R, the objective is to
find the optimal solution s∗ = argmaxs∈S full h(s). h(·) can be any evaluation metric, such as AUC,
average of several metrics, or domain-specific measures (e.g., enrichment of inferred disease genes
against an expert-curated set). We assume access to a task description T (e.g., “single-cell RNA-seq

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

imputation”), a domain-specific knowledge base (e.g., scientific papers), and a general LLM that can
be instantiated as agents. The agent can, for example, summarize domain priors from T , retrieve
information from the knowledge base, and refine a candidate solution s based on instructions. The
goal is to iteratively implement and improve solutions to maximize h(·) within a time budget. We
consider two settings: a cold start, where optimization begins from scratch, and a warm start, where
an initial solution sinit (e.g., a state-of-the-art method) is given for further improvement.

3 METHODS

TusoAI takes as input a task description T , a dataset D, an evaluator h(·), and optionally an initial
solution sinit. It outputs an optimized solution s∗ (Algorithm 1, variables described in Appendix
Table A). TusoAI operates on only a single function of an arbitrarily large codebase, allowing it
to flexibly build upon scientific methods with extensive scaffolding. Developing computational
methods for scientific domains poses several challenges. First, domain-specific knowledge is often
unstructured, which we address using a knowledge tree that organizes information into categories
and within-category instructions. Second, approaches and optimization strategies can vary widely,
which we manage through hierarchical planning with Bayesian updates to promote diversity while
ensuring solution quality. Third, understanding complex data patterns is challenging, which we
mitigate with fine-grained generation that integrates model optimization with diagnostic feedback.

TusoAI consists of 3 steps. First, it gathers domain knowledge by summarizing key scientific pa-
pers, ensuring that optimization instructions reflect established best practices and recent advances
rather than relying solely on LLM priors. Second, it builds a two-level knowledge tree of struc-
tured instructions: (1) categories of optimization strategies and (2) specific instructions within each
category, promoting both diversity and relevance. Categories and instructions are first drafted by
the LLM and then refined through additional LLM queries in conjunction with paper summaries to
ensure diversity and scientific rigor; we also predefine a diagnostic category Idiag to guide data log-
ging and model diagnosis. Third, after initializing candidate solutions, it iteratively selects diverse
top performers and improves them through either instruction-based or diagnostic-based optimiza-
tion. Due to the knowledge tree structure, instruction categories can be sampled adaptively via a
Bayesian strategy informed by past performance, while feedback comparing new and prior solu-
tions helps discourage repetition. Examples of instructions generated are provided at Appendix C.

Algorithm 1 TusoAI
Input: Task T ; dataset D; evaluator h(·); optional initial solution sinit.
Hyperparameters: Time budget Tbudget (default 8 hrs).

1: Gather domain knowledge: P ← Apaper(T) ▷ Paper summaries
2: Build structured instructions:

C, {πc}c∈C ← DraftThenRefine(Acate, T ,P) ▷ Instruction categories with probabilities
For each c ∈ C: ▷ Per-category instructions and feedback

Ic ← DraftThenRefine(Ainstr, T ,P, c), Fc ← ∅
Idiag ← Ipredefined

diag , Fdiag ← ∅ ▷ Diagnostic instructions (predefined) and feedback
3: Initialize solutions: S ← Ainit(T ,P, sinit); Ntop ← |S|
4: While wall-clock time < Tbudget do
5: Select Ntop diverse top solutions from S
6: for each top s do
7: if Bernoulli(α) do ▷ Instruction-based optimization, defualt α = 0.8
8: Sample c ∼ Cat({πc}c∈C); optimize s′ ← Aoptim

(
s, Ic,Fc

)
9: if h(s′) > h(s) do πc ← 1.1πc; renormalize {πc}c∈C ▷ Bayesian update utility

10: Fc ← Fc ∪ {Afeedback(s, s
′)} ▷ Gather category-specific feedback

11: else ▷ Diagnostic-based optimization
12: s′ ← Adiag

(
s,D, Idiag,Fdiag

)
▷ Get model&data log info then optimize

13: Fdiag ← Fdiag ∪ {Afeedback(s, s
′)} ▷ Gather diagnostic feedback

14: S ← S ∪ {s′}
15: Nsol ← max(1, Ntop − 1) every 2 rounds
16: return s∗ ∈ argmaxs∈S h(s)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Step 1: Gather domain knowledge. TusoAI first retrieves up to 10 key papers from Semantic
Scholar (Allen Institute for AI, 2025) relevant to T , ranked by their citation count. For each paper,
an agent Apaper creates a 15-point technical summary from the abstract and iteratively refines it
using each paragraph of the paper’s Methods section (up to 1,200 words to focus solely on technical
content without relying on costly deep research agents parsing the entire document). This produces
P = {Pi}, where each Pi is a refined 15-point summary of paper i’s method.

Step 2: Build structured instructions. TusoAI uses a draft-then-refine strategy to construct opti-
mization categories, where an agent Acate first drafts candidate categories from the task description
T , then refines them by iterating through each paper summary Pi ∈ P , adjusting existing categories
or adding new ones as needed. Categories are task-specific and can be general (e.g., “regularization”,
“model architectures”) or domain-specific (e.g., “single-cell noise modeling”, “genetic feature in-
teractions”). Each category is assigned a probability πc representing its utility in the optimization
process; πc is initialized by Acate so that tasks earlier in the pipeline (e.g., “feature preprocessing”)
receive higher weight than later ones (e.g., “hyperparameter tuning”). Similarly, TusoAI uses a
draft-then-refine strategy to initialize instructions for each category, where an agent Ainstr first drafts
10 candidate instructions Ic from the task description T . These instruction lists are then refined by
incorporating 10 additional instructions for each paper summary Pi ∈ P . For feedback, TusoAI ini-
tializes an empty list Fc ← ∅ for each category, which is updated with category-specific feedback
during optimization. A special predefined diagnostic category Idiag provides instructions for logging
diagnostic information useful for model updates, with its own feedback list Fdiag. See Appendix C,
G for an example of constructed task information and Appendix U for prompt templates used to
generate this information.

Step 3.1: Initialize solutions. The initialization agent Ainit drafts 5 candidate solution descrip-
tions from T and iteratively refines them using each paper summary in P , adding new descriptions
or improving existing ones (e.g., “zero-inflated Poisson with kNN smoothing”). These are basic
descriptions designed to start from scratch and explore to avoid simply re-implementing existing
solutions. It then attempts to implement and debug each solution; those that successfully compile
form the initial solution pool S. Each implementation attempt is limited to 10 minutes with up to 4
bug-fix attempts.

Step 3.2: Iterative optimization. Given the current solution set S, TusoAI selects diverse top
solutions by clustering them based on code-text similarity and, within each cluster, choosing the
shortest solution whose performance is within 0.1% of the cluster’s best model; this helps discourage
overfitting and randomness while maintaining diversity and concise code. For each cluster’s top
solution s, TusoAI performs either instruction-based optimization (80% probability) or diagnostic-
based optimization (20% probability). The resulting solution s′ is added to the pool S ← S ∪ s′.
Each implementation attempt is limited to 10 minutes with up to 2 bug-fix attempts. This time
regularization ensures the optimization period is not wasted on a few inefficient implementations,
and encourages the final method to be scalable.

• Instruction-based optimization. The optimization agent Aoptim selects an instruction by
first sampling an instruction category c ∼ Cat({πc}c∈C), then uniformly draw 3 candi-
date instructions from Ic, and finally choosing the most promising among them. It then
optimizes s to produce s′ using the selected instruction in conjunction with 5 most recent
feedback entries fromFc. If h(s′) > h(s), TusoAI performs a Bayesian-style update to the
category utility by setting πc ← 1.1πc and renormalizing {πc}c∈C , representing the prior
belief that this category currently contains useful instructions. Finally, the feedback agent
Afeedback summarizes the change from s to s′ and appends it to Fc (e.g., “this optimization
constructed a kNN on the top 50 PC’s rather than on all genes, improving performance by
15%”).

• Diagnostic-based optimization. The optimization agent Aoptim selects an instruction by
first uniformly draw 3 candidate instructions from Idiag and then choosing the most promis-
ing among them (e.g., “training curves”, “distribution checks”, “validation of assump-
tions”). It then diagnoses and improves s to produce s′ using the selected instruction in
conjunction with 5 most recent feedback entries from Fc: it runs s to collect diagnostic
logs and then uses this information to produce an improved model s′. This represents a sci-
entist diagnosing their method’s intermediate outputs to further improve upon it. Finally,
the feedback agent Afeedback summarizes the change from s to s′ and appends it to Fdiag.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We evaluate TusoAI on 11 scientific applications spanning diverse domains with both ML and non-
ML components, including 6 single-cell analysis tasks (Luecken et al., 2025) and 5 scientific deep
learning tasks (Tu et al., 2022). The single-cell tasks include denoising (Denoise), cell-type la-
bel projection (Label), batch integration (Batch), identification of spatially variable genes (SVG),
decomposition of spot-level spatial data into specific cell types (Decomp), and dimensionality re-
duction for visualization (Visual). The scientific deep learning tasks include omnidirectional vision
(Spherical), prosthetics control (NinaPro), medical diagnostics (ECG), earth monitoring (Satellite),
and genetic prediction (DeepSea). In each task, we run TusoAI for 8 hours (as per related work
(Miller et al., 2025; Aygün et al., 2025)), optimizing performance on a validation dataset, and evalu-
ating final performance on separate testing datasets. Task descriptions used are concise (e.g., ”single-
cell batch integration”) and extracted from the original benchmarks. We define Avg. and Avg. Rank
as the average performance across tasks for a method, and the average rank in each task, respec-
tively. We additionally assess code diversity, defined as the text similarity between generated code
(Appendix M) and mean time to optimize, defined as the average position of each optimization over
the 8 hours, representing how quickly optimizations are achieved.

We conduct comprehensive ablation studies to assess the contribution of different components of
TusoAI (Subsection 4.2), and two case studies demonstrating how TusoAI can reveal new biological
insights in genetics (Section 5). Full details on experimental setup and evaluation metrics used are
in Appendix D, E for single-cell and deep learning tasks, respectively.

Baseline methods. We compare TusoAI against the state-of-the-art MLE agent AIDE (Jiang et al.,
2025), scientific agents Biomni (Huang et al., 2025) and ChatGPT-Agent (OpenAI, 2025), and top-
performing, published application-specific methods. Biomni (LLM backbone Claude-4-Sonnet) and
ChatGPT-agent (LLM backbone GPT-5) are used to iteratively build models on data for single-
cell tasks; for deep learning tasks, where Biomni and ChatGPT-agent were unable to operate, we
substitute the best of ten models constructed by Claude-4-Sonnet and GPT-5. GPT-4o-mini and
GPT-5 are accessed through the OpenAI API, and all others with OpenRouter. For application-
specific baselines, we use the “top-performing expert” method for single-cell tasks (Luecken et al.,
2025), and all baseline methods, including expert models and NAS methods, for the scientific deep
learning tasks (Tu et al., 2022). This set of baselines is consistent with related work in scientific
optimization (Aygün et al., 2025) and a recent benchmark that identified AIDE and Biomni as top-
performers (Miller et al., 2025). We note that most MLE agentic methods cannot apply to scientific
tasks outside the standard ML setup. For full details on baseline implementation and setup, see
Appendix F.

4.1 PERFORMANCE ACROSS BENCHMARK EXPERIMENTS

Results for the 6 single-cell tasks and 5 scientific deep learning tasks are reported in Tables 1 and 2.
We reached 2 main conclusions. First, TusoAI consistently outperformed baseline methods across
benchmarks when generating code from scratch (average rank of 1.2 for single-cell tasks and 2.8 for
scientific deep learning tasks, vs. 3.0 and 4.0 for the second best, resp.). Second, the methods con-
structed by TusoAI are novel rather than simple re-implementations of existing approaches or calls
to standard packages. Examples include: (i) in single-cell denoise, TusoAI designed a non-negative
matrix factorization (NMF) approach that models dropout rates, Poisson noise, and performs itera-
tive refinement, distinct from the only other NMF-based approach in the OpenProblems benchmark,
ALRA (Linderman et al., 2022); (ii) in SVG, TusoAI adapted known techniques such as modeling
expression as a function of spatial coordinates and neighborhood summaries to create a custom,
high-performing method; (iii) in Satellite, TusoAI combined preprocessing, training procedures,
loss functions, and ensembling techniques to build the top-performing model; and (iv) in Spherical,
TusoAI fine-tuned layers of ResNet-50 and augmented the data with random flips and rotations.
See Appendix H for full justification of why these new methods are novel. Third, all methods con-
structed by TusoAI are computationally efficient (<3 minutes for single-cell tasks and <8 minutes
for deep learning tasks, Appendix I), owing to the runtime constraints imposed during optimization.

We conducted 2 secondary analyses. First, we assessed the diversity of code produced by TusoAI
and AIDE over 8 hours of optimization, quantifying code diversity using cosine similarity of text
embeddings between each candidate and its 10 previous and 10 subsequent iterations (Figure 2A).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Denoise Label Batch SVG Decomp Visual Avg Avg rank
Expert 0.28 0.85 0.71 0.66 0.49 0.44 0.57 3.7
AIDE* 0.30 0.87 0.71 0.73 0.06 0.44 0.52 3.0
Biomni* 0.16 0.89 0.82 0.16 0.53 0.35 0.49 3.7
ChatGPT-Agent* 0.03 0.81 0.83 0.60 0.74 0.38 0.57 3.5
TusoAI* 0.35 0.89 0.83 0.80 0.64 0.44 0.66 1.2

Table 1: Single-cell benchmarks. We report performance across 6 single-cell tasks. “*” denotes
agentic methods. Best in bold, second-best underlined. 95% CIs across 3 random seeds all under
0.01 and thus not shown.

Spherical NinaPro ECG Satellite DeepSEA Avg Avg
rank

WRN default 0.14 ± 0.01 0.93 ± 0.00 0.57 ± 0.00 0.85 ± 0.00 0.60 ± 0.00 0.62 6.9
DenseNAS random 0.29 ± 0.02 0.92 ± 0.01 0.58 ± 0.00 0.86 ± 0.00 0.60 ± 0.00 0.65 5.4
DenseNAS original 0.27 ± 0.01 0.90 ± 0.01 0.60 ± 0.00 0.86 ± 0.01 0.60 ± 0.00 0.65 5.8
Perceiver IO 0.17 ± 0.00 0.78 ± 0.02 0.34 ± 0.00 0.84 ± 0.00 0.62 ± 0.00 0.55 9.6
XGBoost 0.03 ± 0.00 0.78 ± 0.01 0.44 ± 0.00 0.64 ± 0.00 0.50 ± 0.00 0.48 11.6
WRN ASHA 0.25 ± 0.00 0.93 ± 0.01 0.57 ± 0.00 0.84 ± 0.01 0.59 ± 0.00 0.63 7.1
DARTS 0.52 ± 0.03 0.82 ± 0.01 0.66 ± 0.00 0.87 ± 0.00 0.68 ± 0.00 0.71 4.0
AMBER N/A N/A 0.67 ± 0.00 0.87 ± 0.00 0.68 ± 0.00 N/A N/A
Expert 0.33 ± 0.01 0.91 ± 0.01 0.72 ± 0.00 0.80 ± 0.00 0.70 ± 0.00 0.69 4.6
AIDE* 0.16 ± 0.01 0.86 ± 0.00 0.52 ± 0.01 0.83 ± 0.01 0.57 ± 0.00 0.59 9.8
GPT-5* 0.36 ± 0.00 0.89 ± 0.00 0.58 ± 0.03 0.86 ± 0.01 0.66 ± 0.00 0.67 5.8
Claude-4-Sonnet* 0.40 ± 0.00 0.90 ± 0.00 0.50 ± 0.01 0.88 ± 0.00 0.73 ± 0.00 0.68 4.6
TusoAI* 0.42 ± 0.01 0.90 ± 0.00 0.61 ± 0.00 0.89 ± 0.01 0.70 ± 0.00 0.70 2.8

Table 2: Scientific deep learning benchmarks. We report performance across 5 scientific deep
learning tasks. “*” denotes agentic methods. Performance of non-agentic methods extracted from
NASBENCH-360 and transformed to be between 0 and 1 and higher is better. Best in bold, second-
best underlined. 95% CIs provided across 3 random seeds.

We note that constructing diverse code to escape local optima is often an important consideration in
agentic code optimization (Romera-Paredes et al., 2024; Nam et al., 2025; Aygün et al., 2025).
TusoAI achieved substantially higher diversity than AIDE throughout the optimization process.
For example, in the batch integration benchmark, AIDE repeatedly proposed small variations of
UMAP-based dimensionality reduction, whereas TusoAI explored a wide variety of dimensionality
reduction, transformation, and scaling techniques. This higher diversity is perhaps due to TusoAI’s
instruction sampling, feedback, and diagnosis procedures, which encourage diverse solutions. We
validate the importance of code diversity in generating strong optimizations (Appendix M). In con-
trast, AIDE promotes incremental changes at each optimization step to facilitate traceability, which
may bias the search toward local tuning rather than full exploration. Second, we characterized the
optimization trajectory of TusoAI on the single-cell denoising task (Figure 2B). We identified 5 key
developments that led to strong performance: (1) introducing NMF, (2) modeling dropout, (3) mod-
eling Poisson noise, (4) adding iterative refinement, and (5) incorporating a sparsity-balancing step.
Notably, during optimization, TusoAI generated many methods that reduced performance before
converging on high-performing solutions. Together with the feedback mechanism, this broad explo-
ration allowed TusoAI to efficiently search the solution space and identify top-performing methods.
See Appendix J, K for the optimization trajectories in other tasks.

4.2 ABLATION STUDIES

We conducted extensive ablation studies to evaluate the impact of each novel component of Tu-
soAI by removing one at a time, including: (i) removing the categorical structure and placing all
instructions and feedback into a single category (No categories); (ii) disabling the Bayesian sam-
pling strategy across categories (No Bayesian); (iii) disabling the model diagnosis capability (No
diagnosis); and (iv) discarding domain knowledge altogether, such that each iteration simply applies
a generic instruction (e.g., “Optimize this model”; No knowledge). Removing these components
each negatively affected overall performance (Table 3). We attribute this to reduced code diversity

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Behavior of code generated by TusoAI. (A) Code diversity of TusoAI and AIDE over
optimization time, as measured by 1− cosine similarity. Each line corresponds to a dataset. (B) Per-
formance of the proposed optimization and the best code over optimization time for a representative
task “Denoise”. Key optimization changes with their occurrence times are annotated.

(mean diversity 0.48 vs. 0.44/0.39/0.38/0.33 for ablated versions, resp.) and computational effi-
ciency (mean time to optimize 2.3 hours vs. 2.4/3.0/2.6/2.4 for ablated versions, resp.). Removing
domain knowledge had the strongest impact on performance and diversity, while removing Bayesian
updates (thus sampling categories uniformly) most reduced TusoAI’s computational efficiency. See
Appendix L, N, O for TusoAI’s general stability across replicates, further ablation details and abla-
tions varying literature information used.

We next assessed the impact of LLM backbones used by TusoAI, testing across 5 different LLMs:
low-latency models GPT-4o-mini (default) and Claude-3.5-Haiku; state-of-the-art reasoning models
GPT-5 and Claude-4-Sonnet; and open-source GPT-oss-120b. Results are shown in Table 3. Apart
from GPT-oss-120b, TusoAI achieved relatively consistent performance across all LLMs for most
tasks, demonstrating robustness. Interestingly, LLMs such as GPT-5 and Claude-4-Sonnet did not
consistently outperform their lower-latency counterparts, GPT-4o-mini and Claude-3.5-Haiku. This
may be because, while reasoning models can construct highly complex code, their tendency to over-
build (e.g., each of GPT-5’s methods are 300+ lines of code) makes subsequent iterations difficult to
refine; in contrast, low-latency but capable models like GPT-4o-mini and Claude-3.5-Haiku, when
paired with an appropriate system design, performed just as well at a fraction of the cost (e.g., opti-
mizing denoising for 8 hours costs 0.24$ with GPT-4o-mini and 22.3$ with GPT-5). See Appendix
P, Q for further LLM analysis and cost details, respectively.

Denoise SVG Decomposition ECG Satellite Avg Avg
rank

TusoAI (default) 0.35 0.80 0.64 0.61 0.89 0.66 2.0
No categories 0.09 0.72 0.56 0.63 0.86 0.57 3.2
No Bayesian 0.36 0.77 0.22 0.57 0.84 0.55 3.4
No diagnosis 0.26 0.77 0.68 0.63 0.86 0.64 2.0
No knowledge 0.17 0.51 0.07 0.68 0.85 0.46 3.8
GPT-4o-mini (default) 0.35 0.80 0.64 0.61 0.89 0.66 2.2
GPT-5 0.31 0.80 0.82 0.67 0.87 0.69 2.2
Claude 3.5 Haiku 0.41 0.78 0.70 0.63 0.89 0.68 1.8
Claude 4 Sonnet 0.32 0.78 0.53 0.59 0.84 0.61 4.2
GPT-oss-120b 0.39 0.74 0.13 0.61 0.85 0.54 3.8

Table 3: Ablation studies (top) and varying LLM backbone (bottom). Best in bold, second-best
underlined.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 CASE STUDIES IN GENETICS

We applied TusoAI to address 2 key challenges in genetics: detecting disease-critical cell popula-
tions and linking genetic variants to their target genes; these are central to understanding disease
etiology but limited by current computational models. We initialized TusoAI with state-of-the-art
methods (scDRS (Zhang et al., 2022b) and pgBoost (Dorans et al., 2025), resp.) and evaluated its
ability to improve these approaches and generate new biological insights. We consider the same
quantitative evaluation procedure and level of validation for new discoveries as in the original pa-
pers. We note these codebases are too large to easily use with existing agentic approaches that
require editing the entire Python script. See full details of how we applied TusoAI to each task in
Appendix R, S for scDRS and pgBoost, respectively. An additional case study of how TusoAI may
optimize an existing deep learning model outside of biology is in Appendix T.

Detecting disease-critical cell populations. scDRS (Zhang et al., 2022b) is a state-of-the-art
method that integrates genome-wide association studies (GWAS) with single-cell RNA-seq (scRNA-
seq) to identify disease-associated cell populations, but its power is limited by the high noise of
scRNA-seq data. Here, we apply TusoAI in conjunction with scDRS and task it with optimizing
scDRS’s association scoring function. Results are reported in Figure 3. We reached 3 main conclu-
sions. First, the TusoAI-optimized version substantially outperformed the original scDRS in both
simulations and real-data benchmarks: it achieved over 40% higher power in causal simulations
(Figure 3A) while retaining calibration in null settings (Appendix R), and identified 21% more true
cell type–disease associations (17 vs. 14) without false associations in a real-data benchmark (Li
et al., 2025). Second, the TusoAI-optimized scoring function is concise and interpretable. It com-
putes association scores in log–log rather than log space, likely because this transformation better
captures polygenic disease signals across many genes, avoiding domination by a few highly ex-
pressed genes. This improvement reflects TusoAI’s ability to efficiently explore variations built on
the original method: it tested 167 different variations in 24 hours and at a cost of $0.37, whereas
the original authors evaluated fewer than 10 versions over 3 months. Third, applying the TusoAI-
optimized scDRS to a T cell dataset (Cano-Gamez et al., 2020) revealed 26 disease-associated T cell
subpopulations (at FDR<0.05, as per original paper) vs. 17 by the original method, including regu-
latory T cells, central memory T cells, and effector memory T cells associated with primary biliary
cirrhosis, consistent with the roles of these T cell populations in autoimmunity (Dominguez-Villar
& Hafler, 2018; Seo et al., 2025).

Figure 3: Optimizing scDRS for detecting cell-disease associations. (A) Assessing power in
causal simulations. 95% CI’s are calculated across 30 replicates at each perturbation effect size. (B)
Venn diagram of discovered ground-truth trait-cell type pairs at FDR<0.05 for scDRS and scDRS
(TusoAI). New trait-cell type pairs are indicated on the left. (C) Venn diagram of discovered trait-
T cell subtype pairs at FDR<0.05 for scDRS and scDRS (TusoAI). New trait-cell type pairs are
indicated on the left.

Linking genetic variants to genes using single-cell multiome. pgBoost (Dorans et al., 2025) is a
state-of-the-art method for linking genetic variants to target genes using single-cell multiome data;
it integrates variant–gene distance with multiple linking strategies, but the task remains challenging
due to the complexity of genetic regulation (Gazal et al., 2022). Here, we apply TusoAI in con-
junction with pgBoost, providing additional positional information for variants and genes, and task
it with optimizing distance-based features. Results are reported in Figure 4. We reached 3 main

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

conclusions. First, the TusoAI-optimized model significantly outperformed the original pgBoost,
achieving 13.8% higher enrichment of gold-standard links from fine-mapped eQTLs and 7.2% from
activity-by-contact (ABC) links, with particularly large gains across longer variant–gene distances
where links are harder to identify (Figure 4A,B). Second, the distance-based features generated
by TusoAI are concise and interpretable: 3 are transformed versions of existing features (inverse,
squared, and normalized terms), 2 are interactions of gene annotations with distance terms, and the
sixth indicates whether the SNP is <50kb from the gene’s transcription start site, consistent with
literature suggesting the typical enhancer–promoter range of around 70kb (Bower et al., 2025). Tu-
soAI discovered these features by testing 511 combinations of 153 novel distance features within 24
hours at a cost of $0.41, whereas the original authors evaluated 5 features over 1.5 months. Third,
applying the TusoAI-optimized pgBoost to fine-mapped SNPs for 94 diseases/traits identified 7 new
variant–gene links missed by previous methods (> 95% linking percentile vs. < 95% all others, as
per original paper). For example, a fine-mapped variant rs138917529 for glucose and HbA1c was
linked to GCK, consistent with the roles of Glucokinase in regulating glucose levels related to both
glucose metabolism (Froguel et al., 1993) and HbA1c variation (Chakera et al., 2015).

Figure 4: Optimizing pgBoost for SNP-gene link discovery. (A) Area under the enrichment-
recall curve (AUERC, as defined in pgBoost) across distance thresholds for ground truth eQTL
variant-gene links. (B) AUERC across distance thresholds for ground truth ABC variant-gene links.
(C) Locus plot of rs138917529 and surrounding genes. Red dashed line indicates linking score
percentile cutoff for SNP-gene linking. GCK is shaded red, as the gene linked to the focal SNP.

6 DISCUSSION

We have presented TusoAI, an agentic system for scientific method optimization. By mimicking
a scientist’s cycle of method development, TusoAI achieves superior performance on single cell
and scientific deep learning benchmarks, and is further able to discover significant optimizations to
state of the art methods in genetics which revealed new biology missed by existing methods. We
believe TusoAI represents a promising step towards automated scientific method development and
optimization, thus accelerating scientific discovery.

We acknowledge several limitations and areas for future work. TusoAI requires a separate vali-
dation experiment to base optimization on to prevent overfitting. This experiment should also be
quick to run while representing final performance. When optimizing an existing method, TusoAI
performs strongest when most of the method is in a single function, and may not perform well if the
method is scattered throughout a large codebase. TusoAI does not consider making new evaluation
procedures, but rather relies on existing ones and will be vulnerable to the same weaknesses those
may have. Several algorithm components are heuristic and may benefit from theoretic justification.
We generally focus on biological applications given their complexity and relevance, but achieve
reliable performance in diverse scientific domains. Future work may include processing multiple
functions in parallel by treating them as separate subtasks, or searching over not just the code-space
for methods, but also the data-space for additional useful data to include in a method, as is common
in scientific domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Hananeh Aliee and Fabian J Theis. Autogenes: Automatic gene selection using multi-objective
optimization for rna-seq deconvolution. Cell Systems, 12(7):706–715, 2021.

Allen Institute for AI. Semantic scholar. https://www.semanticscholar.org, 2025. Ac-
cessed: 2025-09-16.

Alma Andersson and Joakim Lundeberg. sepal: Identifying transcript profiles with spatial patterns
by diffusion-based modeling. Bioinformatics, 37(17):2644–2650, 2021.

Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi, Amanpreet Singh, Joseph Chee Chang, Kyle
Lo, Luca Soldaini, Sergey Feldman, Mike D’arcy, et al. Openscholar: Synthesizing scientific
literature with retrieval-augmented lms. arXiv preprint arXiv:2411.14199, 2024.

Eser Aygün, Anastasiya Belyaeva, Gheorghe Comanici, Marc Coram, Hao Cui, Jake Garrison, Re-
nee Johnston Anton Kast, Cory Y McLean, Peter Norgaard, Zahra Shamsi, et al. An ai system to
help scientists write expert-level empirical software. arXiv preprint arXiv:2509.06503, 2025.

Nuha BinTayyash, Sokratia Georgaka, ST John, Sumon Ahmed, Alexis Boukouvalas, James Hens-
man, and Magnus Rattray. Non-parametric modelling of temporal and spatial counts data from
rna-seq experiments. Bioinformatics, 37(21):3788–3795, 2021.

G. Bower, E. W. Hollingsworth, S. H. Jacinto, et al. Range extender mediates long-distance enhancer
activity. Nature, 643:830–838, 2025. doi: 10.1038/s41586-025-09221-6.

Guoxin Cai, Yichang Chen, Shuqing Chen, Xun Gu, and Zhan Zhou. Spanve: A statistical method
for detecting downstream-friendly spatially variable genes in large-scale spatial transcriptomic
data. bioRxiv, pp. 2023–02, 2023.

Enrique Cano-Gamez, Blagoje Soskic, Theodoros I. Roumeliotis, et al. Single-cell transcrip-
tomics identifies an effectorness gradient shaping the response of cd4+ t cells to cytokines. Na-
ture Communications, 11(1):1801, 2020. doi: 10.1038/s41467-020-15543-y. URL https:
//doi.org/10.1038/s41467-020-15543-y.

Ali J. Chakera, Anna M. Steele, Anna L. Gloyn, Maggie H. Shepherd, Beverley Shields, Sian Ellard,
and Andrew T. Hattersley. Recognition and management of individuals with hyperglycemia be-
cause of a heterozygous glucokinase mutation. Diabetes Care, 38(7):1383–1392, 06 2015. ISSN
0149-5992. doi: 10.2337/dc14-2769. URL https://doi.org/10.2337/dc14-2769.

Yuzhou Chang, Jixin Liu, Yi Jiang, Anjun Ma, Yao Yu Yeo, Qi Guo, Megan McNutt, Jordan E Krull,
Scott J Rodig, Dan H Barouch, et al. Graph fourier transform for spatial omics representation and
analyses of complex organs. Nature Communications, 15(1):7467, 2024.

Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv preprint
arXiv:1801.10130, 2018.

Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accu-
rate time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454–1495, 2020.

Margarita Dominguez-Villar and David A. Hafler. Regulatory t cells in autoimmune disease.
Nature Immunology, 19:665–673, 2018. doi: 10.1038/s41590-018-0120-4. URL https:
//doi.org/10.1038/s41590-018-0120-4.

Elizabeth Dorans, Karthik Jagadeesh, Kushal Dey, and Alkes L Price. Linking regulatory variants to
target genes by integrating single-cell multiome methods and genomic distance. Nature Genetics,
pp. 1–10, 2025.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

11

https://www.semanticscholar.org
https://doi.org/10.1038/s41467-020-15543-y
https://doi.org/10.1038/s41467-020-15543-y
https://doi.org/10.2337/dc14-2769
https://doi.org/10.1038/s41590-018-0120-4
https://doi.org/10.1038/s41590-018-0120-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. CoRR, abs/2002.08155, 2020. URL https://arxiv.org/abs/2002.
08155.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Philippe Froguel, Habib Zouali, Nathalie Vionnet, Gilberto Velho, Martine Vaxillaire, Fang Sun,
Suzanne Lesage, Markus Stoffel, Jun Takeda, Philippe Passa, M. Alan Permutt, Jacques S. Beck-
mann, Graeme I. Bell, and Daniel Cohen. Familial hyperglycemia due to mutations in glucokinase
– definition of a subtype of diabetes mellitus. New England Journal of Medicine, 328(10):697–
702, 1993. doi: 10.1056/NEJM199303113281005. URL https://www.nejm.org/doi/
full/10.1056/NEJM199303113281005.

Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard
Schwarz, Yasha Ektefaie, Jovana Kondic, and Marinka Zitnik. Empowering biomedical discovery
with ai agents. Cell, 187(22):6125–6151, 2024.

Steven Gazal, Omer Weissbrod, Farhad Hormozdiari, Kushal K. Dey, Joseph Nasser, Kumar A.
Jagadeesh, Daniel J. Weiner, Huwenbo Shi, Charles P. Fulco, Luke J. O’Connor, Bogdan
Pasaniuc, Jesse M. Engreitz, and Alkes L. Price. Combining snp-to-gene linking strate-
gies to identify disease genes and assess disease omnigenicity. Nature Genetics, 54(6):827–
836, June 2022. doi: 10.1038/s41588-022-01087-y. URL https://doi.org/10.1038/
s41588-022-01087-y.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024.

Minsheng Hao, Kui Hua, and Xuegong Zhang. Somde: a scalable method for identifying spatially
variable genes with self-organizing map. Bioinformatics, 37(23):4392–4398, 2021.

Shenda Hong, Yanbo Xu, Alind Khare, Satria Priambada, Kevin Maher, Alaa Aljiffry, Jimeng Sun,
and Alexey Tumanov. Holmes: health online model ensemble serving for deep learning models
in intensive care units. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1614–1624, 2020.

Jian Hu, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J Irwin, Edward B Lee,
Russell T Shinohara, and Mingyao Li. Spagcn: Integrating gene expression, spatial location and
histology to identify spatial domains and spatially variable genes by graph convolutional network.
Nature methods, 18(11):1342–1351, 2021.

Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. biorxiv,
pp. 2025–05, 2025.

Jaemin Jeon, Youjeong Suk, Sang Cheol Kim, Hye-Yeong Jo, Kwangsoo Kim, and Inuk Jung.
Denoiseit: denoising gene expression data using rank based isolation trees. BMC bioinformatics,
25(1):271, 2024.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Ruofan Jin, Zaixi Zhang, Mengdi Wang, and Le Cong. Stella: Self-evolving llm agent for biomedical
research. arXiv preprint arXiv:2507.02004, 2025.

David Josephs, Carson Drake, Andy Heroy, and John Santerre. semg gesture recognition with a
simple model of attention. In Machine Learning for Health, pp. 126–138. PMLR, 2020.

Ilia Kats, Roser Vento-Tormo, and Oliver Stegle. Spatialde2: fast and localized variance component
analysis of spatial transcriptomics. Biorxiv, pp. 2021–10, 2021.

12

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://www.nejm.org/doi/full/10.1056/NEJM199303113281005
https://www.nejm.org/doi/full/10.1056/NEJM199303113281005
https://doi.org/10.1038/s41588-022-01087-y
https://doi.org/10.1038/s41588-022-01087-y

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tuuli Lappalainen and Daniel G MacArthur. From variant to function in human disease genetics.
Science, 373(6562):1464–1468, 2021.

Erin LeDell, Sebastien Poirier, et al. H2o automl: Scalable automatic machine learning. In Pro-
ceedings of the AutoML Workshop at ICML, volume 2020, pp. 24, 2020.

Ang Li, Tian Lin, Alicia Walker, Xiao Tan, Ruolan Zhao, Shuyang Yao, Patrick F. Sullivan, Jens
Hjerling-Leffler, Naomi R. Wray, and Jian Zeng. Benchmarking methods integrating gwas and
single-cell transcriptomic data for mapping trait-cell type associations. medRxiv, 2025. doi:
10.1101/2025.05.24.25328275. URL https://www.medrxiv.org/content/early/
2025/06/05/2025.05.24.25328275.

Qiwei Li, Minzhe Zhang, Yang Xie, and Guanghua Xiao. Bayesian modeling of spatial molecular
profiling data via gaussian process. Bioinformatics, 37(22):4129–4136, 2021.

George C. Linderman, Jiajun Zhao, Maria Roulis, et al. Zero-preserving imputation of single-cell
rna-seq data. Nature Communications, 13:192, 2022. doi: 10.1038/s41467-021-27729-z. URL
https://doi.org/10.1038/s41467-021-27729-z.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

M. D. Luecken, S. Gigante, D. B. Burkhardt, et al. Defining and benchmarking open prob-
lems in single-cell analysis. Nature Biotechnology, 43:1035–1040, 2025. doi: 10.1038/
s41587-025-02694-w. URL https://doi.org/10.1038/s41587-025-02694-w.

Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K Nejad, Felipe Yáñez, Bati Yilmaz,
Kangjoo Lee, Alexandra O Cohen, Valentina Borghesani, Anton Pashkov, et al. Large language
models surpass human experts in predicting neuroscience results. Nature human behaviour, 9(2):
305–315, 2025.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, 6(5):525–535, 2024.

Henry E. Miller, Matthew Greenig, Benjamin Tenmann, and Bo Wang. Bioml-bench: Evalu-
ation of ai agents for end-to-end biomedical ml. bioRxiv, 2025. doi: 10.1101/2025.09.01.
673319. URL https://www.biorxiv.org/content/early/2025/09/07/2025.
09.01.673319.

J. M. Mudge, S. Carbonell-Sala, M. Diekhans, et al. Gencode 2025: reference gene annotation
for human and mouse. Nucleic Acids Research, 53(D1):D966–D975, 2025. doi: 10.1093/nar/
gkae1078.

Jaehyun Nam, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö Arık, and Tomas Pfister. Mle-
star: Machine learning engineering agent via search and targeted refinement. arXiv preprint
arXiv:2506.15692, 2025.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

OpenAI. Introducing chatgpt agent: Bridging research and action. https://openai.com/
index/introducing-chatgpt-agent/, July 2025.

Zeeshan Rasheed, Muhammad Waseem, Kai Kristian Kemell, Aakash Ahmad, Malik Abdul Sami,
Jussi Rasku, Kari Systä, and Pekka Abrahamsson. Large language models for code generation:
The practitioners perspective. arXiv preprint arXiv:2501.16998, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

13

https://www.medrxiv.org/content/early/2025/06/05/2025.05.24.25328275
https://www.medrxiv.org/content/early/2025/06/05/2025.05.24.25328275
https://doi.org/10.1038/s41467-021-27729-z
https://doi.org/10.1038/s41587-025-02694-w
https://www.biorxiv.org/content/early/2025/09/07/2025.09.01.673319
https://www.biorxiv.org/content/early/2025/09/07/2025.09.01.673319
https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-chatgpt-agent/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Eui S. Seo, Sang K. Lee, and Young M. Son. Multifaceted functions of tissue-resident memory t
cells in tumorigenesis and cancer immunotherapy. Cancer Immunology, Immunotherapy, 74(6):
184, April 2025. doi: 10.1007/s00262-025-04035-x. URL https://doi.org/10.1007/
s00262-025-04035-x.

Valentine Svensson, Sarah A Teichmann, and Oliver Stegle. Spatialde: identification of spatially
variable genes. Nature methods, 15(5):343–346, 2018.

Yanchao Tan, Hang Lv, Yunfei Zhan, Guofang Ma, Bo Xiong, and Carl Yang. Boxlm: Unifying
structures and semantics of medical concepts for diagnosis prediction in healthcare. In Forty-
second International Conference on Machine Learning, 2025.

Xiangru Tang, Zhuoyun Yu, Jiapeng Chen, Yan Cui, Daniel Shao, Weixu Wang, Fang Wu, Yuchen
Zhuang, Wenqi Shi, Zhi Huang, et al. Cellforge: Agentic design of virtual cell models. arXiv
preprint arXiv:2508.02276, 2025.

InternAgent Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Runmin Ma, Yusong
Hu, Zhiyin Yu, Xiaohan He, Songtao Huang, Shaowei Hou, Zheng Nie, Zhilong Wang, Jinyao
Liu, Tianshuo Peng, Peng Ye, Dongzhan Zhou, Shufei Zhang, Xiaosong Wang, Yilan Zhang,
Meng Li, Zhongying Tu, Xiangyu Yue, Wangli Ouyang, Bowen Zhou, and Lei Bai. Internagent:
When agent becomes the scientist – building closed-loop system from hypothesis to verification,
2025. URL https://arxiv.org/abs/2505.16938.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework
for full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

Renbo Tu, Nicholas Roberts, Mikhail Khodak, Junhong Shen, Frederic Sala, and Ameet Talwalkar.
NAS-bench-360: Benchmarking neural architecture search on diverse tasks. In Thirty-sixth Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=xUXTbq6gWsB.

David Van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Ambrose J Carr, Cas-
sandra Burdziak, Kevin R Moon, Christine L Chaffer, Diwakar Pattabiraman, et al. Recovering
gene interactions from single-cell data using data diffusion. Cell, 174(3):716–729, 2018.

Lukas M Weber, Arkajyoti Saha, Abhirup Datta, Kasper D Hansen, and Stephanie C Hicks. nnsvg
for the scalable identification of spatially variable genes using nearest-neighbor gaussian pro-
cesses. Nature communications, 14(1):4059, 2023.

Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan,
Xinpeng Hong, Weiqing Liu, Yelong Shen, Weizhu Chen, and Jiang Bian. R&d-agent: Automat-
ing data-driven ai solution building through llm-powered automated research, development, and
evolution, 2025. URL https://arxiv.org/abs/2505.14738.

Jiakang Yuan, Xiangchao Yan, Shiyang Feng, Bo Zhang, Tao Chen, Botian Shi, Wanli Ouyang,
Yu Qiao, Lei Bai, and Bowen Zhou. Dolphin: Moving towards closed-loop auto-research through
thinking, practice, and feedback, 2025. URL https://arxiv.org/abs/2501.03916.

Ke Zhang, Wanwan Feng, and Peng Wang. Identification of spatially variable genes with graph cuts.
Nature Communications, 13(1):5488, 2022a.

Martin Jinye Zhang, Kangcheng Hou, Kushal K Dey, Saori Sakaue, Karthik A Jagadeesh, Kathryn
Weinand, Aris Taychameekiatchai, Poorvi Rao, Angela Oliveira Pisco, James Zou, et al. Poly-
genic enrichment distinguishes disease associations of individual cells in single-cell rna-seq data.
Nature genetics, 54(10):1572–1580, 2022b.

Yuqing Zhang, Giovanni Parmigiani, and W Evan Johnson. Combat-seq: batch effect adjustment
for rna-seq count data. NAR genomics and bioinformatics, 2(3):lqaa078, 2020.

Zijun Zhang, Christopher Y Park, Chandra L Theesfeld, and Olga G Troyanskaya. An automated
framework for efficiently designing deep convolutional neural networks in genomics. Nature
Machine Intelligence, 3(5):392–400, 2021.

14

https://doi.org/10.1007/s00262-025-04035-x
https://doi.org/10.1007/s00262-025-04035-x
https://arxiv.org/abs/2505.16938
https://openreview.net/forum?id=xUXTbq6gWsB
https://arxiv.org/abs/2505.14738
https://arxiv.org/abs/2501.03916

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep learning–
based sequence model. Nature methods, 12(10):931–934, 2015.

Jiaqiang Zhu, Shiquan Sun, and Xiang Zhou. Spark-x: non-parametric modeling enables scalable
and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome
biology, 22(1):184, 2021.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ALGORITHM TABLE

Symbol Type Description

T Task description Short description of task (e.g., single-cell RNA-seq imputation).
D Dataset Data used in running the method.
h(·) Evaluator Scoring function that maps a solution s to a scalar performance

score.
sinit Initial solution (optional) Optional user-provided initial solution to start from.
Tbudget Time budget Maximum wall-clock time allowed for the optimization loop (de-

fault: 8 hours).

Apaper Subroutine “Paper agent”: retrieves and summarizes domain-relevant litera-
ture given T .

P Set of documents Domain knowledge / paper summaries collected by Apaper(T).

Acate Subroutine Agent that proposes high-level instruction categories for solving
T .

DraftThenRefine(·) Procedure Drafting–refinement procedure used to iteratively improve struc-
tured text (categories or instructions).

C Set Set of instruction categories (e.g., preprocessing, noise modeling,
model architecture, etc.).

{πc}c∈C Probabilities Categorical distribution over categories C, encoding their esti-
mated usefulness.

c Category index Individual category element from C.
Ainstr Subroutine Agent that drafts and refines concrete instructions for a specific

category c.
Ic Set of instructions Category-specific instructions for optimizing solutions under cat-

egory c.
Fc Feedback set Collected feedback specific to category c.
Idiag Instructions Diagnostic instructions describing how to print informative

method information.
Fdiag Feedback set Feedback collected from diagnostic runs.

Ainit Subroutine Agent that generates initial candidate solutions using T , P , and
sinit.

S Solution set Current pool / archive of candidate solutions explored so far.
Ntop Integer Number of top diverse solutions selected from S at each iteration.
s Solution A single candidate solution sampled from the current top set.

α Scalar probability Probability of using instruction-based optimization instead of
diagnostic-based optimization (default: 0.8).

Bernoulli(α) Distribution Stochastic decision: with probability α use instruction-based op-
timization; otherwise use diagnostics.

Cat({πc}c∈C) Distribution Categorical distribution over categories C parameterized by {πc}.
Aoptim Subroutine Agent that improves a solution s using instructions Ic and feed-

back Fc.
s′ Solution New candidate solution obtained by optimizing s.
Afeedback Subroutine Agent that analyzes the change from s to s′ and produces textual

feedback.
Adiag Subroutine Diagnostic agent that uses data D and diagnostic info

(Idiag,Fdiag) to improve s.

Nsol Integer Adjusted number of solutions to keep / explore in future rounds
(e.g., Nsol = max(1, Ntop − 1)).

s∗ Solution Best-found solution at the end of the run, i.e., s∗ ∈
argmaxs∈S h(s).

wall-clock time Time Actual elapsed real-world time since the algorithm started.

Table 4: Explanation of symbols and subroutines used in Algorithm 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B EXAMPLE TUSOAI CODE TEMPLATE

Single-cell denoising template file

import scanpy as sc
import pandas as pd
import numpy as np
import scipy as sp
import magic
from anndata import read_h5ad
import scprep
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import issparse
from sklearn.decomposition import PCA
from anndata import AnnData
import random

def mse(adata):
import anndata
import scanpy as sc
import scprep
import sklearn.metrics

test_data = anndata.AnnData(X=adata.obsm["test"], obs=adata.obs, var=adata.var)
denoised_data = anndata.AnnData(

X=adata.obsm["denoised"], obs=adata.obs, var=adata.var
)

scaling and transformation
target_sum = 10000

sc.pp.normalize_total(test_data, target_sum=target_sum)
sc.pp.log1p(test_data)

sc.pp.normalize_total(denoised_data, target_sum=target_sum)
sc.pp.log1p(denoised_data)

error = sklearn.metrics.mean_squared_error(
scprep.utils.toarray(test_data.X), denoised_data.X

)
return error

def tuso_model(adata):

adata.obsm["denoised"] = ...
return adata

def main():
np.random.seed(42)
random.seed(42)
adata = read_h5ad(’openproblems_datasets/1k_pbmc_processed.h5ad’)
print("tuso_model_start")
adata = tuso_model(adata)
print("tuso_model_end")

val_metric = 1 - mse(adata)
print(f"tuso_evaluate: {val_metric}")

main()

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C EXAMPLE INSTRUCTIONS GENERATED BY TUSOAI

Example categories for single-cell denoising

• data preprocessing
• feature engineering
• model architecture
• hyperparameter tuning
• imputation strategies
• normalization methods
• evaluation metrics
• cross validation
• domain knowledge integration
• robustness techniques
• noise modeling
• dropout probability estimation
• graph neural network optimization
• dropout pattern analysis
• pipeline interaction analysis
• low rank approximation optimization
• autoencoder classifier integration

Example instructions within a category

• leveraging graph attention mechanisms to focus on informative cell interactions
• incorporating multi-layer graph convolutions to capture hierarchical gene expres-

sion patterns
• implementing edge dropout to enhance model robustness against noise in cell rela-

tionships
• utilizing message passing to propagate information across similar cell types effec-

tively
• integrating adaptive learning rates for different graph nodes based on local connec-

tivity
• employing graph pooling techniques to summarize cellular features without losing

critical information
• applying graph regularization to maintain structural integrity of the cellular network
• utilizing node embeddings to capture latent features of gene expression profiles
• optimizing neighborhood sizes dynamically based on data density in the graph
• exploring higher-order graph structures to uncover complex relationships in RNA-

seq data

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.1 PREDEFINED DIAGNOSTIC INSTRUCTIONS

Example predefined diagnostic instructions

• altering or adding diagnostic information to be printed
• altering or adding complex diagnostic information of specific model components
• printing key statistical assumptions underlying the model (e.g., independence, nor-

mality)
• emitting warnings when model assumptions appear to be violated by the data
• logging all implicit assumptions made during model selection or preprocessing
• printing assumptions related to feature distributions or transformations
• displaying model-specific assumptions such as linearity, homoscedasticity, or no

multicollinearity
• printing assumptions about data completeness, such as missing value tolerance
• logging expectations about input feature scaling or normalization
• displaying prior distributions or regularization beliefs embedded in the model
• printing assumptions about label distribution (e.g., class balance or stratification)
• emitting diagnostics when data fails to meet i.i.d. assumptions
• logging assumed causal directions or conditional independencies in the model
• printing constraints assumed on feature ranges or valid input domains
• warning if assumptions about sufficient training data volume are not met
• displaying structural assumptions, such as sparsity or low-rank representations
• logging assumptions related to stationarity or autocorrelation in time-dependent

data

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D SINGLE-CELL ANALYSIS TASKS SETUP

The OpenProblems benchmark (Luecken et al., 2025) contains 12 single-cell analysis tasks with
numerous testing datasets and benchmark metrics for each. We select 6 tasks: single-cell denoising,
label projection, batch integration, spatially variable gene identification, spatial decomposition of
cell types, and visualization. These were selected with the following criteria. First, we required
more than one dataset, such that we can optimize on one dataset, and deploy the learned method
on the remaining testing datasets, excluding the 2 cell-cell communication tasks and perturbation
prediction. Second, a publicly available Github to ensure we are reproducing the testing procedures
correctly, excluding multimodal integration and modality prediction. Third, a method for the task
should be able to run in a reasonable amount of time on a CPU, excluding the foundation model
benchmark.

In each task, we performed optimization on one dataset which could be run in a reasonable amount
of time (< 2 minutes for a simple baseline model). The learned methods of each baseline were
then applied to the deployment datasets. In selecting benchmark metrics for each task, we had three
criteria. First, the metric should not have unavoidable trivial solutions, excluding the Poisson loss
metric from denoising, as this can be easily minimized by simply down-weighting lowly expressed
genes, including by just scaling genes by their variance or re-normalizing the data. Second, the
metrics should be computationally efficient to run, so optimization speed of each method will not
be dominated by running metrics. This excluded several metrics from batch integration and visual-
ization. Third, the metric should line up with the task. In the SVG task, it is initially measured in
correlation with spatial variability scores, however, the simulation procedure generates binary 0/1
labels of spatial variability, thus we use accuracy of classifying a gene as SVG instead. We also nor-
malize metrics such that each is between 0 and 1 and a higher score is better. The score in denoising
is 1-MSE, normalized so that no denoising is 0, and perfect denoising is 1. The score in spatial
decomposition is normalized so that a random cell type assignment is 0, and perfect decomposition
is 1. See Table 5 for a full breakdown of datasets and metrics used in single-cell tasks.

Optimization dataset Testing datasets Benchmark metrics
Denoise 1K PBMC 5K PBMC MSE

Pancreatic
Label 5k cells from Immune Cell Atlas Diabetic Kidney Accuracy

GTEX v9 F1 macro
HypoMap F1 micro

Mouse Pancreatic Islet Atlas F1 weighted
Tabula Sapiens

Batch 5k cells from Immune Cell Atlas Diabetic Kidney Graph connectivity
GTEX v9 ASW label
HypoMap ASW batch

Mouse Pancreatic Islet Atlas
Tabula Sapiens

SVG Drosophila Stereo-seq E5 Drosophila Stereo-seq E10 Accuracy
Drosophila Stereo-seq E9
Drosophila Stereo-seq E6

Decomp TMS Lung (alpha=1.0) TMS Lung (alpha=0.5) R2

TMS Lung (alpha=5.0)
Pancreas (alpha=0.5)
Pancreas (alpha=1.0)
Pancreas (alpha=5.0)

Visual Mouse HSPCT 5K PBMC Trustworthiness
Mouse Myeloid Distance correlation

Zebrafish Density Preservation

Table 5: Single-cell benchmark setup. Datasets and metrics refer to the setup on the OpenProblems
webpage.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E DEEP LEARNING TASKS SETUP

The NASBENCH-360 benchmark Tu et al. (2022) contains 10 deep learning tasks across scientific
domains with predefined training, validation, and testing splits, as well as evaluation procedures.
We select 5 tasks: Spherical, NinaPro, DeepSEA, Satellite, and ECG. These were selected with the
following criteria. First, the task should be scientific and somewhat understudied compared to stan-
dard ML tasks, excluding the 2 standard image and audio classification tasks. Second, to ensure fair
comparison against the precomputed baselines, we removed tasks where we were uncertain about
reproducing the evaluation procedure, partly due to recent GitHub or package updates requiring
debugging, excluding Cosmic, PSICOV, and DarcyFlow.

In each task, we performed optimization by training a model on the predefined training set and
attaining a score on the validation set. The final testing accuracy of optimized models is attained
when deploying the model on the predefined test set. We use the same splits and metrics defined in
the original paper.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F BASELINE IMPLEMENTATIONS

AIDE. AIDE takes as input a data folder, task description, and evaluation metric. While originally
designed for whole-workflow construction in ML tasks, this can be adapted to general optimization
in the following ways. First, AIDE can operate on any data input in the data folder. If specific
preprocessing information was needed, we could input this code to the task description. Second,
in place of specifying an accuracy metric (e.g., ”F1 score”), we instead simply input the entire
evaluation function in Python, and found this worked well. As our goal is optimization and not
construction, AIDE’s initial prompt is tuned until code was consistently generated and optimized
upon, typically requiring the same formatting information as other methods. AIDE is run for the
same length as TusoAI (8 hours) in the same conda environment on the same CPU (Optimization
for AIDE and TusoAI is performed on the same Intel(R) Xeon(R) Gold 5416S.) or GPU (Intel(R)
Xeon(R) Silver 4314 CPU @ 2.40GHz), given 4 threads and 50GB of memory. While AIDE does
have a default timeout per execution of 1 hour, on attempting to set this to the same time as TusoAI
led to consistent crashes on more of half of tasks, thus we left it as is.

Biomni. We access Biomni through its web page. Biomni runs on a CPU and can take input files
up to a limit, has a runtime execution of 1 hour per iteration. While not specifically designed for
optimization, we can upload the same template code and data as TusoAI then ask Biomni to perform
an iterative process of updates. In practice, this led to between 2 and 10 iterations per task between
20 minutes and 4 hours. This procedure was signed off by the original authors of Biomni.

ChatGPT-Agent. We access ChatGPT-Agent through its web page. ChatGPT-Agent can accept
input files up to 25MB and has a runtime execution of 1 hour per iteration. We upload the same
template code and data as TusoAI and ask ChatGPT-Agent to perform an iterative process of updates.
In practice, this led to between 2 and 7 iterations per task between 10 minutes and 5 hours.

Expert. The expert baselines for NASBench-360 are pre-computed from their paper. The original
authors found the best performing expert models from the literature for each task. This includes the
following methods:

1. DeepSea - The original DeepSea model released alongside the dataset, a 1D convolution
model with state of the art performance. (Zhou & Troyanskaya, 2015)

2. NinaPro - Feed-forward neural network with attention modules in place of convolutions.
(Josephs et al., 2020)

3. Spherical - a spherical CNN with special operations for spherical signals. This model
achieved state of the art performance on spherical MNIST. (Cohen et al., 2018)

4. Satellite - A linear classifier with convolution kernel as feature extractor, achieving state of
the art on UCR time series prediction tasks. (Dempster et al., 2020)

5. ECG - ResNet with 1D convolution, achieving state of the art on several time series predic-
tion tasks for medicine. (Hong et al., 2020)

For single-cell tasks, we selected the expert method with the following criteria. First, it should
be within the top 3 methods as defined by the existing OpenProblems benchmarking. Second, the
OpenProblems Github should have code for reproducing this method. Third, we selected the method
that was particularly efficient compared to others, if applicable, defined by a runtime of less than 10
minutes on OpenProblems, with others having greater than 1 hour. This left us with the following
expert methods, whose code we extracted from the OpenProblems Github:

1. Denoise – MAGIC, a graph-based diffusion method that imputes missing gene expression
values. (Van Dijk et al., 2018)

2. Batch – ComBat, an empirical Bayes approach that removes batch effects across samples.
(Zhang et al., 2020)

3. Label – PCA + Logistic Regression, which uses low-dimensional PCs as features for effi-
cient cell-type classification. (Luecken et al., 2025)

4. Decomposition – NNLS, a non-negative least squares model for estimating gene programs
or latent factors. (Aliee & Theis, 2021)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

5. SVG – SPARK-X, a spatial variance component model that identifies spatially variable
genes at scale. (Zhu et al., 2021)

6. Visualize – t-SNE (log10CP10K), a nonlinear embedding of log-transformed counts for 2D
visualization. (Luecken et al., 2025)

Claude-4-Sonnet and GPT-5. In deep learning tasks where Biomni and ChatGPT-Agent cannot
apply due to computational limitations (file size, runtime, GPU access), we substitute the best of
10 models generated by Claude-4-Sonnet and GPT-5. 10 models are generated by prompting these
LLMs using the same template that would have been used in Biomni and ChatGPT-Agent. The best
is decided by the top performing model on the validation dataset which ran in less than one hour,
akin to the runtime limitations of Biomni and ChatGPT-Agent.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G EXAMPLE TASK INFORMATION

Denoise
Task Description single cell RNA-seq imputation
Drafted Categories data normalization

feature selection
imputation modeling
latent space representation
noise handling
batch effect correction
hyperparameter tuning
evaluation metrics
ensemble imputation methods
domain specific constraints
count distribution modeling

Refined Categories data normalization
feature selection
imputation modeling
latent space representation
noise handling
batch effect correction
hyperparameter tuning
evaluation metrics
ensemble imputation methods
domain specific constraints
count distribution modeling
dropout probability estimation
graph based representation
dropout pattern analysis
pipeline interaction analysis
rank estimation and optimization
virtual class label generation

Drafted Solution Descriptions k-nearest neighbors imputation
matrix factorization (e.g., PCA, NMF)
autoencoder-based imputation (including DCA)
generative adversarial networks (GANs) for imputation
deep learning models (e.g., U-Net architecture)

Refined Solution Descriptions k-nearest neighbors imputation
matrix factorization (e.g., PCA, NMF)
autoencoder-based imputation (including DCA)
deep learning models (e.g., U-Net architecture)
graph neural network (GNN) for imputation
scImpute for dropout imputation
co-occurrence clustering based on dropout patterns
scran normalization with prior clustering
AutoClass model for scRNA-Seq cleaning
low-rank matrix approximation (ALRA)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H NOVELTY OF DISCOVERED METHODS

For the four example methods constructed by TusoAI listed in Section 4.1, we expand on the novelty
claim with a thorough literature review of related methods.

In single-cell denoise, TusoAI designed a non-negative matrix factorization (NMF) approach that
models dropout rates, Poisson noise, and performs iterative refinement, distinct from the only other
NMF-based approach in the OpenProblems benchmark, ALRA (Linderman et al., 2022). Specif-
ically, ALRA applies a low-rank approximation to a globally normalized matrix and performs an
adaptive thresholding step to restore zeros, but it does not explicitly model count noise, does not
incorporate dropout mechanisms, and does not iteratively refine factors. Another denoising method
uses NMF, DenoiseIt (Jeon et al., 2024). This method focuses on identifying noisy features via
NMF loadings combined with isolation-forest filtering, and does not perform probabilistic mod-
eling of gene-cell counts or imputation of dropout-affected expression values, again distinct from
our approach. Another point of novelty is that TusoAI’s learned method is outperforming MAGIC
(Van Dijk et al., 2018), which was found to outperform ALRA (Luecken et al., 2025).

In SVG, TusoAI adapted known techniques such as modeling expression as a function of spatial co-
ordinates and neighborhood summaries to create a custom, high-performing method. Many existing
SVG detectors are primarily coordinate-based, using Gaussian-process or generalized linear models
over spatial locations (SpatialDE, SpatialDE2, SPARK-X, GPcounts, BOOST-GP) (Svensson et al.,
2018; Kats et al., 2021; Zhu et al., 2021; BinTayyash et al., 2021; Li et al., 2021), while others rely
mainly on neighborhood or graph structure, diffusion, or spatial autocorrelation statistics (Moran’s
I, SOMDE, scGCO, Sepal, SpaGCN, SpaGFT, nnSVG, Spanve) (Luecken et al., 2025; Hao et al.,
2021; Zhang et al., 2022a; Andersson & Lundeberg, 2021; Hu et al., 2021; Chang et al., 2024; Weber
et al., 2023; Cai et al., 2023). Graph-based models such as SpaGCN and SpaGFT can incorporate
both spatial coordinates and local neighborhoods through graph constructions and convolution or
spectral transforms (Hu et al., 2021; Chang et al., 2024), but they do not explicitly combine smooth
coordinate regression with fixed neighborhood summary covariates in a single per-gene predictive
model as TusoAI does. This joint modeling of coordinate trends and neighborhood summaries en-
ables TusoAI to outperform SPARK-X (Zhu et al., 2021) on our SVG benchmark, despite SPARK-X
being among the strongest existing SVG baselines (Luecken et al., 2025).

In Satellite, TusoAI combined preprocessing, training procedures, loss functions, and ensembling
techniques to build the top-performing model. First, this is distinct from the expert model, which is
a linear classifier (Dempster et al., 2020). Second, these kinds of pipeline-level decisions lie outside
the search space of the NAS baselines used in NASBench-360: methods such as DARTS-GAEA,
DenseNAS, AMBER, and tuned WRN search only over convolutional architectures under a fixed
data preprocessing pipeline, standard loss, and a single-model training recipe, and therefore cannot
automatically implement the techniques TusoAI does here.

In Spherical, TusoAI fine-tuned layers of ResNet-50 and augmented the data with random flips and
rotations. First, this is distinct from the expert model, which is a spherical CNN (Cohen et al., 2018).
Again, these decisions, such as fine-tuning Resnet-50 or augmenting data with rotations and flips lie
outside the search space for NAS methods.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I RUNTIME OF NEW METHODS

Figure 5: Testing set runtime for (A) single-cell tasks (averaged over 3 random data splits) and (B)
deep learning tasks (averaged over 3 random seeds).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J OPTIMIZATION TRAJECTORIES

Figure 6: TusoAI’s optimization trajectory for all benchmarking tasks. Denoise is in Figure 2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

K AIDE OPTIMIZATION TRAJECTORIES

Figure 7: AIDE’s optimization trajectory for all benchmarking tasks. AIDE can edit the evaluation
function, which occurred in the decomposition task which was thus excluded.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

L STABILITY ACROSS REPLICATES

Figure 8: Validation performance across 3 replicates. Final validation performance after running
TusoAI 3 separate times on each single-cell task.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

M CODE DIVERSITY

We measure the diversity of generated code, as measured by the cosine similarity of the text em-
bedding of one generated code versus all others, similar to (Aygün et al., 2025). This is performed
for TusoAI and AIDE. For each, we first filter out repetitive/uninformative code strings, including
comments, imports, evaluation functions and data loading procedures (which will not change over
iterations). We then apply sklearn’s TfidfVectorizer function to each cleaned code to obtain a text
embedding. We can then compute the cosine similarity between pairs of code. Diversity is measured
as 1-cosine similarity. We opt for TF-IDF instead of more sophisticated methods like CodeBERT
(Feng et al., 2020) which measure semantic similarity, as we observed this overestimated the simi-
larity between code (all cosine similarity > 0.997 for all tasks). This is likely due to each iteration
always being a slight permutation of the same python method performing the same task. TF-IDF
better captures a measure of difference between algorithmic procedures in this case.

Figure 9: Code diversity versus optimization ability. Last diverse code for each trajectory (defined
as last position with diversity>0.1) versus last optimization position.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

N ABLATION ANALYSIS

Figure 10: Additional ablation information. (A) Box plot across 5 tasks of the mean code diversity.
(B) Box plot across 5 tasks of the mean time to optimize. (A) Box plot of the final testing scores of
5 replicates for each ablation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

O VARYING LITERATURE SEARCHED

Figure 11: Box plot of the final testing scores of 5 replicates for collecting 10 papers (default), 0
papers, and 50 papers, alongside optional paper summary filtering step.

Figure 12: Box plot of the final testing scores of 5 replicates for having 15 bullet point summaries
(default), 5 bullet point summaries, and 30 bullet point summaries.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

P LLM ANALYSIS

Figure 13: Additional LLM information. (A) Average length of generated methods for each task
and LLM versus the total count of how many methods were generated. (B) Average length of
generated methods for each task and LLM versus the final deployment performance.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Q COST ANALYSIS

Figure 14: Cost distribution. (A) TusoAI vs. AIDE cost for each task. (B) Boxplot of costs for
each LLM on 5 ablation tasks.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

R SCDRS ANALYSIS

Optimization setup. scDRS’ codebase consists of several files. We construct a version of com-
pute score.py that exposes the compute raw score function. This is the only function TusoAI op-
erates upon during optimization. For optimization, we construct causal simulations similar to the
scDRS paper, subsampling 10k cells from TMS, perturbing 1000 disease genes in a cluster of cells,
setting the geneset overlap to 25%, and varying effect size from 5 to 50%. TusoAI optimizes the
compute raw score function based on the average (F1 + AUPRC)/2 across 3 replicates at effect size
15%, where scDRS has lower power. We run this experiment for 24 hours using default parameter
settings for TusoAI.

Additional simulation results. We apply scDRS and the learned version by TusoAI to all 30 repli-
cates of each effect size in causal simulations. We additionally apply it to 100 replicates of null
simulations, identical to scDRS, where 1000 random genes are selected with no perturbation. Addi-
tional metrics in these simulations are reported in Figure 15.

Figure 15: Additional scDRS metrics. (A) Q-Q plot of -log10 p-values in null simulations. 95%
CI’s are calculated at each point across 30 replicates. (B) AUPRC of associating individual cells
in causal simulations. 95% CI’s are calculated at each point across 30 replicates. (C) FDR of
associating individual cells in causal simulations. 95% CI’s are calculated at each point across 30
replicates.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

S PGBOOST ANALYSIS

Optimization setup. pgBoost discovers that distance-based features are critical for modeling SNP-
gene distances. It’s samples are SNP-gene pairs, and features include over 30 features derived from
single-cell multiome methods and 2 distance features, the SNP distance to the gene’s transcrip-
tion start site (TSS), and a binary indicator of if this is the closest TSS of any gene to the SNP.
We augment pgBoost’s script with gene annotations from GENCODE V48 (Mudge et al., 2025),
specifically the SNP’s position, the gene’s TSS, and the gene’s transcription end site (TES). During
both the knowledge tree construction and optimization process, TusoAI is encouraged to come up
with instructions/optimizations relevant to distance-based modeling of SNP-gene links and avoid
other model changes. Optimization is performed by increasing the average enrichment in pgBoost’s
primary evaluation of gold-standard links (eQTL and ABC) relative to the original pgBoost’s en-
richment. We run TusoAI for 24 hours using default parameter settings.

Real data analysis. We analyze fine-mapped SNPs from the same set of GWAS traits as in the
pgBoost paper. pgBoost considers a true link to be in the top 95% percentile, and specifically looks
for SNP-gene links that are not in such a percentile for other methods. We perform an identical
analysis, looking for links in the top 95% of pgBoost (TusoAI), but not in other methods.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

T WARM START DEEP LEARNING

We show how TusoAI’s warm-start capability might work in conjunction with a scientific deep
learning task. For NinaPro, we re-implement the Expert model from NASBench-360. This is a
feed-forward neural network with attention modules in place of optimizations. Optimizing this
model for 8 hours with TusoAI improves testing performance from 0.91 to 0.94, now becoming
the top performing model for this task (Figure 16). Where both the Expert and cold-start TusoAI’s
learned models were outperformed by NAS methods, their combination yields a new top model. We
next analyze the optimization trajectory of TusoAI to see how this was achieved. We summarize the
key optimizations below:

1. The dense attention network was replaced with a dilated temporal convolutional network
(TCN).

2. Five separate TCN models were trained and ensembled.
3. Features were standardized with z-scaling.
4. Gradient clipping.
5. Log transformation of input features.
6. Ensemble is replaced by a mixture of experts (MOE) architecture.

Figure 16: Warm start example on NinaPro. (A) Testing performance of all NinaPro methods.
(B) Optimization trajectory of TusoAI with warm-start NinaPro.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

U PROMPT TEMPLATES

U.1 INSTRUCTIONS FOR PARSING LITERATURE

Initializing paper description with abstract

You are a scientific summariser. Draft a concise yet technically accurate description of the
paper’s method based **only** on the abstract below, to the extent possible. Capture the
main points using bullet points. Avoid complete sentences and omit details irrelevant to the
methods.
Abstract: ”””[ABSTRACT GOES HERE]”””

Updating paper description with methods section

The current method description:
”””[CURRENT DESCRIPTION GOES HERE]”””
New excerpt from the paper:
”””[NEW TEXT GOES HERE]”””
Update the description by **incorporating any new technical details or correcting existing
ones** found in the excerpt. Keep the description concise and clear. Return **only**
the revised description. Use bullet points. Avoid full sentences and exclude information
unrelated to the methods. Do not exceed 15 bullet points.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

U.2 INSTRUCTIONS FOR CONSTRUCTING CATEGORIES

Initializing categories with LLM

We are building an LLM-powered AutoML system for the task:
”[TASK DESCRIPTION]”
As a reference, some generic categories for optimizing classification models include:
[CLASSIFICATION CATEGORIES]
You are a master of machine learning and the domain relevant to this task. First briefly reason
about what kinds of modeling interventions or optimization strategies could be helpful for
this specific task. Then propose a list of concise, task-relevant optimization categories.
Your list should include conceptual ideas tailored to this task and each should represent a
specific axis of improvement (e.g., architectural choices, preprocessing strategies, domain
constraints, evaluation metrics, robustness techniques, etc.).
Output exactly **N** proposed categories, one per line, each enclosed in:
<c>Category Name</c>
Do not include any other text, explanation, or formatting. By “optimization” we mean
strictly performance improvements — not runtime, scalability, visualization, logging, post-
evaluation tools, or similar considerations. You will only have access to: [DATA AVAIL-
ABLE].

Updating categories with papers

We are building an LLM-powered AutoML system for the task:
”[TASK DESCRIPTION]”
We will curate and refine our categories based on the current categories and a paper.
Current categories: [CURRENT CATEGORIES]
Paper: ”[TITLE]” Key method points: [BULLET POINTS]
TASK 1. If the paper suggests a **new** axis of optimization missing from the list, propose
a concise, task-relevant category for it. 2. If two or more current categories can be merged,
provide a single category name that subsumes them. 3. Otherwise, if a category is irrelevant
given only [DATA AVAILABLE], leave the list unchanged.
Return **one updated list only**, one category per line. Each line must be wrapped exactly
like:
<c>Category</c>
No other text.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

U.3 INSTRUCTIONS FOR CONSTRUCTING WITHIN-CATEGORY INSTRUCTIONS

Initializing within-category instructions with LLM

We are designing an LLM-powered AutoML system for the task:
”[TASK DESCRIPTION]”
Current optimisation axis: **[CATEGORY]**
Below is a style example of prompts for a *regularisation* category for a classification task.
Each prompt begins with *by ...* and expresses a specific, actionable optimisation idea:
[FEW-SHOT EXAMPLES]
You are a master of machine learning and the domain relevant to this task. Keeping the same
concise, actionable style, write **exactly N distinct prompts** that belong to the **[CATE-
GORY]** category **and are appropriate for this task**.
These should include a mix of general, conceptual, and complex prompts, not overly spe-
cific, similar to the examples.
Wrap *each* prompt in its own:
<p> ... </p>
Return **only** these <p>...</p> lines, nothing else.
By optimisation we mean strictly **performance**, not runtime, scalability, logging, visu-
alization, evaluation, or post-processing. Assume evaluation metrics already exist. You will
only have access to: [DATA AVAILABLE].

Refining within-category instructions with LLM

We are designing an LLM-powered AutoML system for the task:
”[TASK DESCRIPTION]”
We will only have access to: [DATA AVAILABLE].
Here is a concise summary of the baseline method: ”””[SUMMARY]”””
Below are style examples of valid prompt lines taken from earlier work: [FEW-SHOT EX-
AMPLES]
Your job is to generate **between N min and N max new prompts**. These prompts will
ultimately be assigned to one of the following categories:
[CATEGORY LIST]
Step 1: Generate the prompts, independently of categories. **Step 2**: Assign each
prompt to its most relevant category.
For each prompt, output a line in this exact format:
<c>CategoryName</c><p>by ...</p>
Rules:
* Every prompt must begin with **”by ...”** * Cover a mix of general, conceptual, and
complex ideas * Focus strictly on **performance optimisation** (ignore runtime, scalabil-
ity, logging, visualization, etc.) * Return **only** the <c>...</c><p>...</p> lines —
nothing else.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

U.4 INSTRUCTIONS FOR CONSTRUCTING INITIAL SOLUTIONS

Initializing solutions with LLM

We are designing an LLM-powered AutoML system for the task:
”[TASK DESCRIPTION]”
Below is an example list of generic model initializations for a **classification** task: [FEW-
SHOT EXAMPLES]
You are a master of machine learning and of the domain relevant to this task. Propose
exactly N concise model initializations that could serve as starting baselines **for this
specific task**, given that we only have [DATA AVAILABLE].
These should be general task-specific methods, model families, or high-level architectural
descriptions — not fully specified pipelines.
Output one per line, each wrapped in:
<m> ... </m>
Return **only** these <m>...</m> lines — no explanations, no extra text.

Refining initial solutions with LLM

We are building an LLM-powered AutoML system for the task:
”[TASK DESCRIPTION]”
We will curate and refine our **model initializations** list using insights from the following
paper.
Current initializations: [CURRENT INITIALIZATIONS]
Paper: ”[TITLE]” Key method points: [BULLET POINTS]
TASK → 1. If the paper presents a **model family or architecture** not covered above,
propose it as a concise initialization (≤ 6 words). 2. If two or more current initializations
are effectively the same family, merge them by giving a single, clear name that subsumes
them. 3. If neither condition applies, or if the model cannot be implemented using **[DATA
AVAILABLE]**, leave the list unchanged.
Return **one updated list only** — one initialization per line, each wrapped exactly like:
<m>Initialization</m>
No other text.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

U.5 PROMPT FOR DEVELOPING INITIAL SOLUTIONS

Initialisation prompt

Write a basic version of this model for {task description} using {init}. Hints: - {hints}
{base fn code} Output only python code, and do not include comments.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

U.6 PROMPT FOR OPTIMIZING WITH INSTRUCTIONS

Instruction-based optimization prompt

Write a basic version of this model for {task description} using {init}. Hints: - {hints}
{base fn code} Output only python code, and do not include comments.
by choosing one of the following strategies to guide optimisation, based on your assessment
of what will most improve this model for {task description}: {prompt options}
Additionally, consider the following feedback from earlier attempts that used this same op-
timisation strategy: {fb block}

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

U.7 PROMPT FOR GENERATING DIAGNOSTICS

Generating diagnostic info prompt

Write a basic version of this model for {task description} using {init}. Hints: - {hints}
{base fn code} Output only python code, and do not include comments.
by choosing one of the following strategies to print diagnostic information, based on
your assessment of what will be most informative for optimisation of this model for
{task description}. Ensure the information printed is concise enough to be used in an LLM
prompt: {diagnostic options}

U.8 PROMPT FOR OPTIMIZING WITH DIAGNOSTICS

Optimizing with diagnostic info prompt

Write a basic version of this model for {task description} using {init}. Hints: - {hints}
{base fn code} Output only python code, and do not include comments.
by assessing this diagnostic info and proposing model/feature improvements for this model
for {task description}: {current code}
Additionally, consider the following feedback from earlier attempts that used this same op-
timisation strategy: {fb block}

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

U.9 PROMPT FOR GENERATING FEEDBACK

Feedback on code optimization

We attempted to optimize this function: [ORIGINAL CODE] Here is the proposed opti-
mization: [NEW CODE] Write a concise one line summary of the differences between the
original function and the proposed optimization. It should be as short as possible while
summarizing the differences.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

U.10 PROMPT FOR DEBUGGING

Fix Function Prompt

Fix this function: {suggestion}. Here’s the error: {error msg} Ignore warnings. If an error
is related to installation, assume the package is not installed and try doing it without that
specific package. Output only python code, and do not include comments.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

U.11 PROMPT TEMPLATE FOR BIOMNI AND CHATGPT-AGENT

Single-cell denoising prompt template for scientific agents

We are considering the task of single cell RNA-seq imputation.
We wish to create an expertly optimized model for this.
Here is a starter script. Create a top-performing model for our task within the

tuso_model function.

import scanpy as sc
import pandas as pd
import numpy as np
import scipy as sp
import magic
from anndata import read_h5ad
import scprep
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import issparse
from sklearn.decomposition import PCA
from anndata import AnnData
import random

def mse(adata):
import anndata
import scanpy as sc
import scprep
import sklearn.metrics

test_data = anndata.AnnData(X=adata.obsm["test"], obs=adata.obs, var=adata.var)
denoised_data = anndata.AnnData(

X=adata.obsm["denoised"], obs=adata.obs, var=adata.var
)

scaling and transformation
target_sum = 10000

sc.pp.normalize_total(test_data, target_sum=target_sum)
sc.pp.log1p(test_data)

sc.pp.normalize_total(denoised_data, target_sum=target_sum)
sc.pp.log1p(denoised_data)

error = sklearn.metrics.mean_squared_error(
scprep.utils.toarray(test_data.X), denoised_data.X

)
return error

def tuso_model(adata):
a = AnnData(

X=adata.obsm["train"].copy(),
obs=adata.obs.copy(),
var=adata.var.copy()

)

out = a.X
out = out.toarray() if issparse(out) else out
adata.obsm["denoised"] = out
return adata

def main():
np.random.seed(42)
random.seed(42)
adata = read_h5ad(’1k_pbmc_processed.h5ad’)
print("tuso_model_start")
adata = tuso_model(adata)
print("tuso_model_end")

val_metric = 1-mse(adata)
print(f"tuso_evaluate: {val_metric}")

main()

Make sure to store the denoised data in adata.obsm["denoised"].
Keep the function header, input, output the same.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Each time you generate code, run it, extract the tuso_evaluate metric, and try and
build a better performing solution from the previous solutions.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

V GENERIC CLASSIFICATION EXAMPLE

List Contents
Categories [’regularisation’, ’feature engineering’,

’hyperparameter tuning’, ’sampling’,
’ensemble methods’, ’calibration’,
’feature selection’]

Initializations ["logistic regression", "XGBoost", "random
forest", "MLP classifier"]

Regularisation
instructions

1. by introducing L1 sparsity constraints to
prune features

2. by subsampling training rows each iteration
to inject stochasticity

3. by shrinking updates with a smaller
learning rate for smoother convergence

4. by refining regularisation strategies

5. by combining complementary regularisation
methods

6. by adapting regularisation strength across
epochs

7. by scaling regularisation to the dataset
size

8. by combining elastic-net with adaptive
polynomial penalties to capture curved
relationships

9. by adding Jacobian norm regularisation to
control sharp non-linear gradients

10. by introducing spectral norm constraints
for stable non-linear layers

49

	Introduction
	Related work

	Problem formulation
	Methods
	Experiments
	Performance across benchmark experiments
	Ablation studies

	Case Studies in Genetics
	Discussion
	Algorithm Table
	Example TusoAI code template
	Example instructions generated by TusoAI
	Predefined diagnostic instructions

	Single-cell analysis tasks setup
	Deep learning tasks setup
	Baseline implementations
	Example Task Information
	Novelty of Discovered Methods
	Runtime of New Methods
	Optimization Trajectories
	AIDE Optimization Trajectories
	Stability across replicates
	Code diversity
	Ablation analysis
	Varying literature searched
	LLM analysis
	Cost Analysis
	scDRS analysis
	pgBoost analysis
	Warm Start Deep Learning
	Prompt templates
	Instructions for parsing literature
	Instructions for constructing categories
	Instructions for constructing within-category instructions
	Instructions for constructing initial solutions
	Prompt for developing initial solutions
	Prompt for optimizing with instructions
	Prompt for generating diagnostics
	Prompt for optimizing with diagnostics
	Prompt for generating feedback
	Prompt for debugging
	Prompt template for Biomni and ChatGPT-Agent

	Generic Classification Example

