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ABSTRACT

Scientific discovery is often slowed by the manual development of computational
tools needed to analyze complex experimental data. Building such tools is costly
and time-consuming because scientists must iteratively review literature, test mod-
eling and scientific assumptions against empirical data, and implement these in-
sights into efficient software. Large language models (LLMs) have demonstrated
strong capabilities in synthesizing literature, reasoning with empirical data, and
generating domain-specific code, offering new opportunities to accelerate com-
putational method development. Existing LLM-based systems either focus on
performing scientific analyses using existing computational methods or on de-
veloping computational methods or models for general machine learning without
effectively integrating the often unstructured knowledge specific to scientific do-
mains. Here, we introduce TusoAl, an agentic Al system that takes a scientific task
description with an evaluation function and autonomously develops and optimizes
computational methods for the application. TusoAl integrates domain knowledge
into a knowledge tree representation and performs iterative, domain-specific op-
timization and model diagnosis, improving performance over a pool of candidate
solutions. We conducted comprehensive benchmark evaluations demonstrating
that TusoAl outperforms state-of-the-art expert methods, MLE agents, and scien-
tific Al agents across diverse tasks. Applying TusoAl to two key open problems
in genetics improved existing computational methods and uncovered new biology
missed by previous methods.

1 INTRODUCTION

Scientific discoveries are often bottlenecked by the slow, manual development of computational
tools needed to analyze experimental data. For example, genetics studies have uncovered tens of
thousands of disease-associated variants, yet robust computational methods are critically needed to
harmonize multi-modal, multi-scale data and uncover the underlying mechanisms (Lappalainen &
MacArthur, 2021). Developing such tools is slow and costly because scientists must iteratively (i)
review extensive literature, (ii) test modeling and scientific assumptions against empirical data, and
(iii) implement these insights into efficient, scalable code. For instance, building robust computa-
tional methods to link enhancers with target genes from single-cell multiome data has taken multi-
ple expert groups many years (Dorans et al.} [2025), hindered by challenges such as cis-regulatory
modeling, latent confounding, noisy data, and computational scalability. Large language models
(LLMs) have demonstrated strong capabilities in performing human-like analysis (Luo et al., |2025)),
such as synthesizing relevant literature (Asai et al.| 2024)), reasoning about biological and modeling
assumptions using empirical data (Gao et al.,[2024)), and generating efficient, domain-specific code
(Rasheed et al., [2025). Integrating LLMs with scientific domain knowledge and iterative data exper-
imentation holds great promise to accelerate computational method development, thereby advancing
discoveries in science and medicine.

Existing work has produced general-purpose Al agents across scientific domains, including
biomedicine (Huang et al.| 2025} Jin et al. 2025) and chemistry (M. Bran et al., |2024). These
systems primarily focus on performing scientific data analyses rather than developing new compu-
tational methods; the former involves assembling and executing pipelines of data formatting and
existing tools, whereas the latter requires creating new algorithms or models for specific pipeline
steps, involving substantial design, optimization, and validation. In parallel, several studies have
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developed machine learning engineering (MLE) agents that can design new algorithms for general
ML applications (Guo et al., 2024; Trirat et al., 2024; Jiang et al.l 2025; Nam et al., 2025)), but these
approaches do not address domain-specific challenges inherent in scientific research. Developing
Al agents for scientific method development that integrate structured domain knowledge and sys-
tematically explore data-specific assumptions has considerable potential to accelerate the creation
of robust computational methods for science and medicine.

Here, we introduce TusoAl, an agentic Al system that takes a scientific task description with an
evaluation function, and autonomously develops and optimizes computational methods for the appli-
cation (Figure[T). TusoAI mimics a scientist’s cycle of method development, integrating structured
domain knowledge with iterative, domain-specific optimization and model diagnosis, improving
performance over a pool of candidate solutions. We demonstrate that TusoAlI achieves superior per-
formance across a range of algorithmic, statistical, machine learning, and deep learning applications
in science. Our key contributions are:

1. We develop TusoAl, an AI agent specifically tailored for scientific method discovery by
integrating structured domain knowledge.

2. We propose a novel framework, featuring (i) knowledge tree for structured representation
of domain knowledge, (ii) hierarchical planning with Bayesian updates to balance solution
quality and diversity, and (iii) fine-grained generation that integrates model optimization
with diagnostic feedback.

3. We benchmark TusoAlI on 6 single-cell analysis tasks and 5 scientific deep learning tasks,
consistently outperforming baseline methods and frequently surpassing existing expert-
designed algorithms.

4. Applying TusoAl to two key open problems in genetics improved existing computational
methods and uncovered new biology missed by existing methods.
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Figure 1: Scientific method development with TusoAl (A) Method overview. (B) Example do-
main knowledge tree (categories and instructions per category), feedback, and diagnostics.
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1.1 RELATED WORK

LLM-based scientific AI agents. Several works have developed general-purpose Al agents capable
of autonomously executing various scientific research tasks. Biomni (Huang et al.| 2025) provides
a unified agentic environment with tools and databases spanning 25 biomedical domains, integrat-
ing LLM reasoning with retrieval-augmented planning and code execution to compose complex
workflows. Stella (Jin et al,, [2025) employs a multi-agent architecture for autonomous biomed-
ical data analysis, achieving self-evolution by dynamically updating its template library and tool
collection. ChemCrow (M. Bran et al.| [2024)) is a chemistry-focused agent that integrates 18 expert-
designed tools and follows the “Thought, Action, Action Input, Observation” format to iteratively
reason toward answers. These methods emphasize end-to-end data analysis with established tools,
whereas our work focuses on developing new computational methods for domain-specific tasks.
Other works have leveraged LLMs to develop application-specific methods, such as single-cell per-
turbation prediction (Tang et al., 2025)), diagnosis prediction (Tan et al.| [2025), and mathematical
discovery (Romera-Paredes et al.,|2024)). In contrast, TusoAl targets computational method develop-
ment across scientific tasks. InternAgent (Team et al., 2025) and its precursor Dolphin (Yuan et al.,
2025)) iteratively evolve and implement research ideas through an optimization process augmented
with literature review. As a concurrent effort, Aygiin et al.| (2025) combine LL.Ms with tree search
and existing model ensembles to improve scientific algorithms, addressing a similar problem but
with a different approach from ours, which integrates a domain knowledge tree with fine-grained
iterative optimization and Bayesian updates. As their code is not publicly available, direct compar-
ison is not possible, but a key distinction of our work is to perform fine-grained optimizations with
domain knowledge that do not require existing models and can operate on a small portion of a much
larger method.

LLM-based general machine learning agents. Several recent works have developed Al agents
for general machine learning engineering. AIDE (Jiang et al.| [2025) frames ML engineering as a
code optimization problem, combining an LLM with tree search to iteratively improve solutions.
R&D Agent (Yang et al.| 2025) similarly explores ML architectures in a dynamic feedback loop.
DS-Agent (Guo et al) 2024) combines an LLM with case-based reasoning (CBR), retrieving po-
tentially successful solutions from top-ranked Kaggle solutions, and refining them through iterative
optimization. MLE-STAR (Nam et al., [2025) retrieves candidate models from the web to form an
initial solution, then improve it by targeting specific ML components and ensembling. AutoML-
Agent (Trirat et al., 2024) employs retrieval-augmented planning and multi-agent coordination to
generate an optimal plan, but executes the plan once without iterative refinement. These methods
are less suited to scientific method development, where domain knowledge is unstructured, exist-
ing ML models may be unavailable, and search spaces are continually evolving. We address these
challenges through structured domain knowledge representation and a novel hierarchical planning
procedure with Bayesian updates during iterative optimization.

Classical automatic machine learning (AutoML) frameworks. Classical (non-LLM) AutoML
frameworks aim to construct high-performing ML models from scratch by searching over key com-
ponents such as feature preprocessing, model architectures, hyperparameters, and pipeline com-
position. Notable examples include auto-sklearn (Feurer et al., 2015), H20 (LeDell et al.; 2020),
AutoGluon (Erickson et al.l [2020), and TPOT (Olson & Moore, 2016)). Within deep learning, neu-
ral architecture search (NAS) methods specialize in optimizing neural architectures, with examples
such as DARTS (Liu et al.,2018) and AMBER (Zhang et al.,2021). While effective for standard ML
tasks, these approaches are constrained by predefined search spaces and are less suited to scientific
domains, where domain knowledge and optimization objectives are unstructured and continually
evolving, making LLM-based agents a more natural fit as they can pair a principled optimization
objective with heuristic search procedures.

2 PROBLEM FORMULATION

We consider the problem of automatic scientific algorithm optimization with LLMs. Given a general
solution space S™! (e.g., all Python scripts) and an evaluator h(-) : S - R, the objective is to
find the optimal solution s* = arg max cgmu h(s). h(-) can be any evaluation metric, such as AUC,
average of several metrics, or domain-specific measures (e.g., enrichment of inferred disease genes
against an expert-curated set). We assume access to a task description 7 (e.g., “single-cell RNA-seq
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imputation”), a domain-specific knowledge base (e.g., scientific papers), and a general LLM that can
be instantiated as agents. The agent can, for example, summarize domain priors from 7, retrieve
information from the knowledge base, and refine a candidate solution s based on instructions. The
goal is to iteratively implement and improve solutions to maximize h(-) within a time budget. We
consider two settings: a cold start, where optimization begins from scratch, and a warm start, where
an initial solution siy;¢ (e.g., a state-of-the-art method) is given for further improvement.

3 METHODS

TusoAl takes as input a task description 7, a dataset D, an evaluator h(-), and optionally an initial
solution sjp;. It outputs an optimized solution s* (Algorithm |1} variables described in Appendix
Table [A). TusoAI operates on only a single function of an arbitrarily large codebase, allowing it
to flexibly build upon scientific methods with extensive scaffolding. Developing computational
methods for scientific domains poses several challenges. First, domain-specific knowledge is often
unstructured, which we address using a knowledge tree that organizes information into categories
and within-category instructions. Second, approaches and optimization strategies can vary widely,
which we manage through hierarchical planning with Bayesian updates to promote diversity while
ensuring solution quality. Third, understanding complex data patterns is challenging, which we
mitigate with fine-grained generation that integrates model optimization with diagnostic feedback.

TusoAl consists of 3 steps. First, it gathers domain knowledge by summarizing key scientific pa-
pers, ensuring that optimization instructions reflect established best practices and recent advances
rather than relying solely on LLM priors. Second, it builds a two-level knowledge tree of struc-
tured instructions: (1) categories of optimization strategies and (2) specific instructions within each
category, promoting both diversity and relevance. Categories and instructions are first drafted by
the LLM and then refined through additional LLM queries in conjunction with paper summaries to
ensure diversity and scientific rigor; we also predefine a diagnostic category Zg,, to guide data log-
ging and model diagnosis. Third, after initializing candidate solutions, it iteratively selects diverse
top performers and improves them through either instruction-based or diagnostic-based optimiza-
tion. Due to the knowledge tree structure, instruction categories can be sampled adaptively via a
Bayesian strategy informed by past performance, while feedback comparing new and prior solu-
tions helps discourage repetition. Examples of instructions generated are provided at Appendix [C|

Algorithm 1 TusoAl

Input: Task 7; dataset D; evaluator h(-); optional initial solution sip;s.
Hyperparameters: Time budget Thugge; (default 8 hrs).
1: Gather domain knowledge: P < A,y (7) > Paper summaries
2: Build structured instructions:
C,{mc}ccc < DraftThenRefine(Acate, 7,P) > Instruction categories with probabilities

For each c € C: > Per-category instructions and feedback
T, « DraftThenRefine(Ajpsir, 7, P, ¢), Fe < 0
Tiing Igf:; cefined Faiag < 0 > Diagnostic instructions (predefined) and feedback

3: Initialize solutions: S < Ai;i¢ (7, P, Sinit): Niop < |S|
4: While wall-clock time < Tpydger do

5: Select Nqp diverse top solutions from &

6 for each top s do

7

8

if Bernoulli(«) do > Instruction-based optimization, defualt v = 0.8
Sample ¢ ~ Cat({m.}ccc); optimize " <= Agpiim (s,IC, ]—'C)

9: if h(s") > h(s) do 7. < 1.1m,; renormalize {m.}.cc > Bayesian update utility
10: Fe < Fe U { Ageedback (8, 8') } > Gather category-specific feedback
11: else > Diagnostic-based optimization
12: s+ Adiag (s, D, Lgiag, .Fdiag) > Get model&data log info then optimize
13: Faiag < Fdiag U { Aseedvack (s, 5") } > Gather diagnostic feedback
14: S+ Su{s}

15: Nyl ¢+ max(1, Niop — 1) every 2 rounds
16: return s* € arg maxses h(s)
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Step 1: Gather domain knowledge. TusoAl first retrieves up to 10 key papers from Semantic
Scholar (Allen Institute for Al [2025) relevant to T, ranked by their citation count. For each paper,
an agent Apgper creates a 15-point technical summary from the abstract and iteratively refines it
using each paragraph of the paper’s Methods section (up to 1,200 words to focus solely on technical
content without relying on costly deep research agents parsing the entire document). This produces
P = {P;}, where each P; is a refined 15-point summary of paper i’s method.

Step 2: Build structured instructions. TusoAl uses a draft-then-refine strategy to construct opti-
mization categories, where an agent A, first drafts candidate categories from the task description
T, then refines them by iterating through each paper summary P; € P, adjusting existing categories
or adding new ones as needed. Categories are task-specific and can be general (e.g., “regularization”,
“model architectures”) or domain-specific (e.g., “single-cell noise modeling”, “genetic feature in-
teractions”). Each category is assigned a probability 7. representing its utility in the optimization
process; 7. is initialized by Ay so that tasks earlier in the pipeline (e.g., “feature preprocessing”)
receive higher weight than later ones (e.g., “hyperparameter tuning”). Similarly, TusoAI uses a
draft-then-refine strategy to initialize instructions for each category, where an agent Ajq first drafts
10 candidate instructions Z. from the task description 7. These instruction lists are then refined by
incorporating 10 additional instructions for each paper summary P; € P. For feedback, TusoAl ini-
tializes an empty list F. < () for each category, which is updated with category-specific feedback
during optimization. A special predefined diagnostic category Zg;,; provides instructions for logging
diagnostic information useful for model updates, with its own feedback list Fy;,e. See Appendix |C]
[G] for an example of constructed task information and Appendix [U] for prompt templates used to
generate this information.

Step 3.1: Initialize solutions. The initialization agent A;,; drafts 5 candidate solution descrip-
tions from 7 and iteratively refines them using each paper summary in P, adding new descriptions
or improving existing ones (e.g., “zero-inflated Poisson with kNN smoothing”). These are basic
descriptions designed to start from scratch and explore to avoid simply re-implementing existing
solutions. It then attempts to implement and debug each solution; those that successfully compile
form the initial solution pool S. Each implementation attempt is limited to 10 minutes with up to 4
bug-fix attempts.

Step 3.2: Iterative optimization. Given the current solution set S, TusoAl selects diverse top
solutions by clustering them based on code-text similarity and, within each cluster, choosing the
shortest solution whose performance is within 0.1% of the cluster’s best model; this helps discourage
overfitting and randomness while maintaining diversity and concise code. For each cluster’s top
solution s, TusoAl performs either instruction-based optimization (80% probability) or diagnostic-
based optimization (20% probability). The resulting solution s’ is added to the pool § < S U s'.
Each implementation attempt is limited to 10 minutes with up to 2 bug-fix attempts. This time
regularization ensures the optimization period is not wasted on a few inefficient implementations,
and encourages the final method to be scalable.

* Instruction-based optimization. The optimization agent Aypim Selects an instruction by
first sampling an instruction category ¢ ~ Cat({m.}.cc), then uniformly draw 3 candi-
date instructions from Z., and finally choosing the most promising among them. It then
optimizes s to produce s’ using the selected instruction in conjunction with 5 most recent
feedback entries from F,. If A(s") > h(s), TusoAl performs a Bayesian-style update to the
category utility by setting 7. < 1.17. and renormalizing {7.}.cc, representing the prior
belief that this category currently contains useful instructions. Finally, the feedback agent
Afeedback Summarizes the change from s to s’ and appends it to F.. (e.g., “this optimization
constructed a kNN on the top 50 PC’s rather than on all genes, improving performance by
15%”).

* Diagnostic-based optimization. The optimization agent Agpim selects an instruction by
first uniformly draw 3 candidate instructions from Zg,e and then choosing the most promis-
ing among them (e.g., “training curves”, “distribution checks”, “validation of assump-
tions™). It then diagnoses and improves s to produce s’ using the selected instruction in
conjunction with 5 most recent feedback entries from F.: it runs s to collect diagnostic
logs and then uses this information to produce an improved model s’. This represents a sci-
entist diagnosing their method’s intermediate outputs to further improve upon it. Finally,
the feedback agent Afeeqpack SUmmarizes the change from s to s’ and appends it to Fiag-
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4 EXPERIMENTS

We evaluate TusoAl on 11 scientific applications spanning diverse domains with both ML and non-
ML components, including 6 single-cell analysis tasks (Luecken et al., [2025) and 5 scientific deep
learning tasks (Tu et al., [2022). The single-cell tasks include denoising (Denoise), cell-type la-
bel projection (Label), batch integration (Batch), identification of spatially variable genes (SVG),
decomposition of spot-level spatial data into specific cell types (Decomp), and dimensionality re-
duction for visualization (Visual). The scientific deep learning tasks include omnidirectional vision
(Spherical), prosthetics control (NinaPro), medical diagnostics (ECG), earth monitoring (Satellite),
and genetic prediction (DeepSea). In each task, we run TusoAl for 8 hours (as per related work
(Miller et al., 2025} |Aygiin et al.,|2025)), optimizing performance on a validation dataset, and evalu-
ating final performance on separate testing datasets. Task descriptions used are concise (e.g., ’single-
cell batch integration”) and extracted from the original benchmarks. We define Avg. and Avg. Rank
as the average performance across tasks for a method, and the average rank in each task, respec-
tively. We additionally assess code diversity, defined as the text similarity between generated code
(Appendix [M)) and mean time to optimize, defined as the average position of each optimization over
the 8 hours, representing how quickly optimizations are achieved.

We conduct comprehensive ablation studies to assess the contribution of different components of
TusoAI (Subsection4.2), and two case studies demonstrating how TusoAl can reveal new biological
insights in genetics (Section [3). Full details on experimental setup and evaluation metrics used are
in Appendix [D] [E] for single-cell and deep learning tasks, respectively.

Baseline methods. We compare TusoAl against the state-of-the-art MLE agent AIDE (Jiang et al.}
2025)), scientific agents Biomni (Huang et al.| |2025) and ChatGPT-Agent (OpenAll 2025)), and top-
performing, published application-specific methods. Biomni (LLM backbone Claude-4-Sonnet) and
ChatGPT-agent (LLM backbone GPT-5) are used to iteratively build models on data for single-
cell tasks; for deep learning tasks, where Biomni and ChatGPT-agent were unable to operate, we
substitute the best of ten models constructed by Claude-4-Sonnet and GPT-5. GPT-40-mini and
GPT-5 are accessed through the OpenAl API, and all others with OpenRouter. For application-
specific baselines, we use the “top-performing expert” method for single-cell tasks (Luecken et al.,
2025)), and all baseline methods, including expert models and NAS methods, for the scientific deep
learning tasks (Tu et al, |2022). This set of baselines is consistent with related work in scientific
optimization (Aygiin et al., 2025) and a recent benchmark that identified AIDE and Biomni as top-
performers (Miller et al.| 2025). We note that most MLE agentic methods cannot apply to scientific
tasks outside the standard ML setup. For full details on baseline implementation and setup, see

Appendix [F}

4.1 PERFORMANCE ACROSS BENCHMARK EXPERIMENTS

Results for the 6 single-cell tasks and 5 scientific deep learning tasks are reported in Tables|[I]and [2]
We reached 2 main conclusions. First, TusoAl consistently outperformed baseline methods across
benchmarks when generating code from scratch (average rank of 1.2 for single-cell tasks and 2.8 for
scientific deep learning tasks, vs. 3.0 and 4.0 for the second best, resp.). Second, the methods con-
structed by TusoAl are novel rather than simple re-implementations of existing approaches or calls
to standard packages. Examples include: (i) in single-cell denoise, TusoAl designed a non-negative
matrix factorization (NMF) approach that models dropout rates, Poisson noise, and performs itera-
tive refinement, distinct from the only other NMF-based approach in the OpenProblems benchmark,
ALRA (Linderman et al.l [2022); (ii) in SVG, TusoAl adapted known techniques such as modeling
expression as a function of spatial coordinates and neighborhood summaries to create a custom,
high-performing method; (iii) in Satellite, TusoAl combined preprocessing, training procedures,
loss functions, and ensembling techniques to build the top-performing model; and (iv) in Spherical,
TusoAlI fine-tuned layers of ResNet-50 and augmented the data with random flips and rotations.
See Appendix [H] for full justification of why these new methods are novel. Third, all methods con-
structed by TusoAl are computationally efficient (<3 minutes for single-cell tasks and <8 minutes
for deep learning tasks, Appendix|[I), owing to the runtime constraints imposed during optimization.

We conducted 2 secondary analyses. First, we assessed the diversity of code produced by TusoAl
and AIDE over 8 hours of optimization, quantifying code diversity using cosine similarity of text
embeddings between each candidate and its 10 previous and 10 subsequent iterations (Figure 2JA).
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Denoise | Label | Batch | SVG | Decomp | Visual | Avg | Avgrank
Expert 0.28 085 | 0.71 | 0.66 0.49 044 | 0.57 3.7
AIDE* 0.30 087 | 071 | 0.73 0.06 044 | 0.52 3.0
Biomni* 0.16 089 | 0.82 | 0.16 0.53 035 | 049 3.7
ChatGPT-Agent* 0.03 0.81 0.83 | 0.60 0.74 038 | 0.57 3.5
TusoAI* 0.35 0.89 | 0.83 | 0.80 0.64 044 | 0.66 1.2

Table 1: Single-cell benchmarks. We report performance across 6 single-cell tasks. “*” denotes
agentic methods. Best in bold, second-best underlined. 95% ClIs across 3 random seeds all under
0.01 and thus not shown.

Spherical NinaPro ECG Satellite DeepSEA | Avg érlig(
WRN default 0.14 £0.01 | 093 £000 | 0.57 £0.00 | 0.85+0.00 | 0.60 £0.00 | 0.62 6.9
DenseNAS random | 0.29 £0.02 | 0.92 £0.01 | 0.58 £0.00 | 0.86 +0.00 | 0.60 +0.00 | 0.65 54
DenseNAS original | 0.27 £0.01 | 0.90 £0.01 | 0.60 +£0.00 | 0.86 +0.01 | 0.60 +0.00 | 0.65 5.8
Perceiver 10 0.17 £000 | 0.78 £0.02 | 0.34 +£0.00 | 0.84 £0.00 | 0.62 £0.00 | 0.55 9.6
XGBoost 0.03 £0.00 | 0.78 £0.01 | 0.44 £0.00 | 0.64 £0.00 | 0.50 4000 | 048 | 11.6
WRN ASHA 0.25 £0.00 | 093 +0.01 | 0.57 £000 | 0.84 +0.01 | 0.59 £000 | 0.63 | 7.1
DARTS 0.52 +003 | 0.82 +001 | 0.66 +£000 | 0.87 £0.00 | 0.68 £0.00 | 0.71 | 4.0
AMBER N/A N/A 0.67 +£0.00 | 0.87 000 | 0.68 £0.00 | N/A | N/A
Expert 0.33 001 | 0.91 001 | 0.72 +0.00 | 0.804+0.00 | 0.70 £ 000 | 0.69 | 4.6
AIDE* 0.16 £0.01 | 0.86 £000 | 0.52 +0.01 | 0.83 £0.01 | 0.57 £0.00 | 0.59 9.8
GPT-5* 0.36 £000 | 0.89 £000 | 0.58 £0.03 | 0.86 £0.01 | 0.66 £0.00 | 0.67 5.8
Claude-4-Sonnet* | 0.40 £0.00 | 0.90 +0.00 | 0.50 £0.01 | 0.88 +0.00 | 0.73 £0.00 | 0.68 | 4.6
TusoATI* 0.42 +0.01 | 0.90 £0.00 | 0.61 £0.00 | 0.89 +001 | 0.70 000 | 0.70 | 2.8

Table 2: Scientific deep learning benchmarks. We report performance across 5 scientific deep
learning tasks. “*” denotes agentic methods. Performance of non-agentic methods extracted from
NASBENCH-360 and transformed to be between 0 and 1 and higher is better. Best in bold, second-
best underlined. 95% ClIs provided across 3 random seeds.

We note that constructing diverse code to escape local optima is often an important consideration in
agentic code optimization (Romera-Paredes et al., 2024 [Nam et al., [2025; |Aygiin et al., [2025).
TusoAl achieved substantially higher diversity than AIDE throughout the optimization process.
For example, in the batch integration benchmark, AIDE repeatedly proposed small variations of
UMAP-based dimensionality reduction, whereas TusoAl explored a wide variety of dimensionality
reduction, transformation, and scaling techniques. This higher diversity is perhaps due to TusoAI’s
instruction sampling, feedback, and diagnosis procedures, which encourage diverse solutions. We
validate the importance of code diversity in generating strong optimizations (Appendix [M). In con-
trast, AIDE promotes incremental changes at each optimization step to facilitate traceability, which
may bias the search toward local tuning rather than full exploration. Second, we characterized the
optimization trajectory of TusoAI on the single-cell denoising task (Figure [2B). We identified 5 key
developments that led to strong performance: (1) introducing NMF, (2) modeling dropout, (3) mod-
eling Poisson noise, (4) adding iterative refinement, and (5) incorporating a sparsity-balancing step.
Notably, during optimization, TusoAl generated many methods that reduced performance before
converging on high-performing solutions. Together with the feedback mechanism, this broad explo-
ration allowed TusoAl to efficiently search the solution space and identify top-performing methods.
See Appendix [J| [K] for the optimization trajectories in other tasks.

4.2 ABLATION STUDIES

We conducted extensive ablation studies to evaluate the impact of each novel component of Tu-
soAl by removing one at a time, including: (i) removing the categorical structure and placing all
instructions and feedback into a single category (No categories); (ii) disabling the Bayesian sam-
pling strategy across categories (No Bayesian); (iii) disabling the model diagnosis capability (No
diagnosis); and (iv) discarding domain knowledge altogether, such that each iteration simply applies
a generic instruction (e.g., “Optimize this model”’; No knowledge). Removing these components
each negatively affected overall performance (Table [3). We attribute this to reduced code diversity
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Figure 2: Behavior of code generated by TusoAl. (A) Code diversity of TusoAl and AIDE over
optimization time, as measured by 1— cosine similarity. Each line corresponds to a dataset. (B) Per-
formance of the proposed optimization and the best code over optimization time for a representative
task “Denoise”. Key optimization changes with their occurrence times are annotated.

(mean diversity 0.48 vs. 0.44/0.39/0.38/0.33 for ablated versions, resp.) and computational effi-
ciency (mean time to optimize 2.3 hours vs. 2.4/3.0/2.6/2.4 for ablated versions, resp.). Removing
domain knowledge had the strongest impact on performance and diversity, while removing Bayesian
updates (thus sampling categories uniformly) most reduced TusoAI’s computational efficiency. See
Appendix [[] N [O] for TusoAI’s general stability across replicates, further ablation details and abla-
tions varying literature information used.

We next assessed the impact of LLM backbones used by TusoAl, testing across 5 different LLMs:
low-latency models GPT-40-mini (default) and Claude-3.5-Haiku; state-of-the-art reasoning models
GPT-5 and Claude-4-Sonnet; and open-source GPT-o0ss-120b. Results are shown in Table@ Apart
from GPT-0ss-120b, TusoAl achieved relatively consistent performance across all LLMs for most
tasks, demonstrating robustness. Interestingly, LLMs such as GPT-5 and Claude-4-Sonnet did not
consistently outperform their lower-latency counterparts, GPT-40-mini and Claude-3.5-Haiku. This
may be because, while reasoning models can construct highly complex code, their tendency to over-
build (e.g., each of GPT-5’s methods are 300+ lines of code) makes subsequent iterations difficult to
refine; in contrast, low-latency but capable models like GPT-40-mini and Claude-3.5-Haiku, when
paired with an appropriate system design, performed just as well at a fraction of the cost (e.g., opti-
mizing denoising for 8 hours costs 0.24$ with GPT-40-mini and 22.3$ with GPT-5). See Appendix
[Pl [Q] for further LLM analysis and cost details, respectively.

Denoise | SVG | Decomposition | ECG | Satellite | Avg ;lzrli
TusoAl (default) 0.35 0.80 0.64 0.61 0.89 0.66 | 2.0
No categories 0.09 0.72 0.56 0.63 0.86 057 | 3.2
No Bayesian 0.36 0.77 0.22 0.57 0.84 055 1] 34
No diagnosis 0.26 0.77 0.68 0.63 0.86 0.64 | 2.0
No knowledge 0.17 0.51 0.07 0.68 0.85 046 | 3.8
GPT-40-mini (default) 0.35 0.80 0.64 0.61 0.89 0.66 | 2.2
GPT-5 0.31 0.80 0.82 0.67 0.87 069 | 2.2
Claude 3.5 Haiku 0.41 0.78 0.70 0.63 0.89 0.68 | 1.8
Claude 4 Sonnet 0.32 0.78 0.53 0.59 0.84 0.61 | 42
GPT-0ss-120b 0.39 0.74 0.13 0.61 0.85 054 | 3.8

Table 3: Ablation studies (top) and varying LLM backbone (bottom). Best in bold, second-best
underlined.
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5 CASE STUDIES IN GENETICS

We applied TusoAl to address 2 key challenges in genetics: detecting disease-critical cell popula-
tions and linking genetic variants to their target genes; these are central to understanding disease
etiology but limited by current computational models. We initialized TusoAl with state-of-the-art
methods (scDRS (Zhang et al., |2022b) and pgBoost (Dorans et al., [2025)), resp.) and evaluated its
ability to improve these approaches and generate new biological insights. We consider the same
quantitative evaluation procedure and level of validation for new discoveries as in the original pa-
pers. We note these codebases are too large to easily use with existing agentic approaches that
require editing the entire Python script. See full details of how we applied TusoAl to each task in
Appendix [R] [S] for scDRS and pgBoost, respectively. An additional case study of how TusoAl may
optimize an existing deep learning model outside of biology is in Appendix [T}

Detecting disease-critical cell populations. scDRS (Zhang et al., [2022b) is a state-of-the-art
method that integrates genome-wide association studies (GWAS) with single-cell RNA-seq (scRNA-
seq) to identify disease-associated cell populations, but its power is limited by the high noise of
scRNA-seq data. Here, we apply TusoAl in conjunction with scDRS and task it with optimizing
scDRS’s association scoring function. Results are reported in Figure [3] We reached 3 main conclu-
sions. First, the TusoAl-optimized version substantially outperformed the original scDRS in both
simulations and real-data benchmarks: it achieved over 40% higher power in causal simulations
(Figure [3]A) while retaining calibration in null settings (Appendix R])), and identified 21% more true
cell type—disease associations (17 vs. 14) without false associations in a real-data benchmark (L1
et al.,[2025). Second, the TusoAl-optimized scoring function is concise and interpretable. It com-
putes association scores in log—log rather than log space, likely because this transformation better
captures polygenic disease signals across many genes, avoiding domination by a few highly ex-
pressed genes. This improvement reflects TusoAl’s ability to efficiently explore variations built on
the original method: it tested 167 different variations in 24 hours and at a cost of $0.37, whereas
the original authors evaluated fewer than 10 versions over 3 months. Third, applying the TusoAl-
optimized scDRS to a T cell dataset (Cano-Gamez et al.| 2020)) revealed 26 disease-associated T cell
subpopulations (at FDR <0.05, as per original paper) vs. 17 by the original method, including regu-
latory T cells, central memory T cells, and effector memory T cells associated with primary biliary
cirrhosis, consistent with the roles of these T cell populations in autoimmunity (Dominguez-Villar
& Hafler, 2018 |Seo et al., [2025).

A

Causal simulations B Detecting ground truth cell types C Novel T cell types associated
1.0 P to autoimmune disease

1BD — TCM1
Primary biliary cirrhosis — TCM1
Primary biliary cirrhosis — TCM2

.
o ADHD — neuron Primary biliary cirrhosis — TEM

g Insomnia — interneuron 3 14 0 Primary biliary cirrhosis — nTreg ~ © 17 [1]
a4 Cholesterol — hepatocyte Ulcerative colitis — nTreg
. All autoimmune disease — TCM1
02 Allergy Eczema — TCM1
- —}— ScDRS (TusoAl) Hypothyroidism — TCM1

scDRS SCDRS
00 SCDRS (TusoAl) SCORS SCDRS (TusoAl)

0.1 0.3 0.4 0.5

0.2
Causal effect size

Figure 3: Optimizing scDRS for detecting cell-disease associations. (A) Assessing power in
causal simulations. 95% CI’s are calculated across 30 replicates at each perturbation effect size. (B)
Venn diagram of discovered ground-truth trait-cell type pairs at FDR<0.05 for scDRS and scDRS
(TusoAl). New trait-cell type pairs are indicated on the left. (C) Venn diagram of discovered trait-
T cell subtype pairs at FDR<0.05 for scDRS and scDRS (TusoAlI). New trait-cell type pairs are
indicated on the left.

Linking genetic variants to genes using single-cell multiome. pgBoost (Dorans et al.|[2025) is a
state-of-the-art method for linking genetic variants to target genes using single-cell multiome data;
it integrates variant—gene distance with multiple linking strategies, but the task remains challenging
due to the complexity of genetic regulation (Gazal et al 2022). Here, we apply TusoAl in con-
junction with pgBoost, providing additional positional information for variants and genes, and task
it with optimizing distance-based features. Results are reported in Figure 4| We reached 3 main
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conclusions. First, the TusoAl-optimized model significantly outperformed the original pgBoost,
achieving 13.8% higher enrichment of gold-standard links from fine-mapped eQTLs and 7.2% from
activity-by-contact (ABC) links, with particularly large gains across longer variant—gene distances
where links are harder to identify (Figure [JA,B). Second, the distance-based features generated
by TusoAlI are concise and interpretable: 3 are transformed versions of existing features (inverse,
squared, and normalized terms), 2 are interactions of gene annotations with distance terms, and the
sixth indicates whether the SNP is <50kb from the gene’s transcription start site, consistent with
literature suggesting the typical enhancer—promoter range of around 70kb (Bower et al., 2025). Tu-
soAl discovered these features by testing 511 combinations of 153 novel distance features within 24
hours at a cost of $0.41, whereas the original authors evaluated 5 features over 1.5 months. Third,
applying the TusoAl-optimized pgBoost to fine-mapped SNPs for 94 diseases/traits identified 7 new
variant—-gene links missed by previous methods (> 95% linking percentile vs. < 95% all others, as
per original paper). For example, a fine-mapped variant rs138917529 for glucose and HbAlc was
linked to GCK, consistent with the roles of Glucokinase in regulating glucose levels related to both
glucose metabolism (Froguel et al., [1993) and HbA 1¢ variation (Chakera et al., [2015)).

A eQTL evaluation B ABC evaluation C
w0 2 1 00, 15138917529 (Glucose, HBALc) - GCK
4 20.0 - =
< . < 1 9]
€ 17.5 [ 8- © 0,95 b pgBoost (TusoAl)
£ 150 . _g 60 B g Distance_score
9 . G s o *pgBoost
= 125 .- = 5 0.90
-e.
D 100 b . 5 40 .. & si
o~ - X ignac
g s . @0 .. 2085 ArchR
o © - ~ Cicero
g " ' ES<os SCENT
Z 2 ass@uessczzzzzz == B30 e | CAMK2B
00 B S e L7 Gek  vki® -
>1kb >5kb >10kb>20kb >50 kb>100 kb 0  — —
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Figure 4: Optimizing pgBoost for SNP-gene link discovery. (A) Area under the enrichment-
recall curve (AUERC, as defined in pgBoost) across distance thresholds for ground truth eQTL
variant-gene links. (B) AUERC across distance thresholds for ground truth ABC variant-gene links.
(C) Locus plot of rs138917529 and surrounding genes. Red dashed line indicates linking score
percentile cutoff for SNP-gene linking. GCK is shaded red, as the gene linked to the focal SNP.

6 DISCUSSION

We have presented TusoAl, an agentic system for scientific method optimization. By mimicking
a scientist’s cycle of method development, TusoAl achieves superior performance on single cell
and scientific deep learning benchmarks, and is further able to discover significant optimizations to
state of the art methods in genetics which revealed new biology missed by existing methods. We
believe TusoAl represents a promising step towards automated scientific method development and
optimization, thus accelerating scientific discovery.

We acknowledge several limitations and areas for future work. TusoAl requires a separate vali-
dation experiment to base optimization on to prevent overfitting. This experiment should also be
quick to run while representing final performance. When optimizing an existing method, TusoAl
performs strongest when most of the method is in a single function, and may not perform well if the
method is scattered throughout a large codebase. TusoAl does not consider making new evaluation
procedures, but rather relies on existing ones and will be vulnerable to the same weaknesses those
may have. Several algorithm components are heuristic and may benefit from theoretic justification.
We generally focus on biological applications given their complexity and relevance, but achieve
reliable performance in diverse scientific domains. Future work may include processing multiple
functions in parallel by treating them as separate subtasks, or searching over not just the code-space
for methods, but also the data-space for additional useful data to include in a method, as is common
in scientific domains.
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A  ALGORITHM TABLE

Symbol Type Description

T Task description Short description of task (e.g., single-cell RNA-seq imputation).

D Dataset Data used in running the method.

h(-) Evaluator Scoring function that maps a solution s to a scalar performance
score.

Sinit Initial solution (optional)  Optional user-provided initial solution to start from.

Thudget Time budget Maximum wall-clock time allowed for the optimization loop (de-
fault: 8 hours).

Apaper Subroutine “Paper agent”: retrieves and summarizes domain-relevant litera-
ture given 7.

P Set of documents Domain knowledge / paper summaries collected by Apaper (7).

Acate Subroutine Agent that proposes high-level instruction categories for solving

DraftThenRefine(-)  Procedure Drafting—refinement procedure used to iteratively improve struc-
tured text (categories or instructions).

C Set Set of instruction categories (e.g., preprocessing, noise modeling,
model architecture, etc.).

{mc}eec Probabilities Categorical distribution over categories C, encoding their esti-
mated usefulness.

c Category index Individual category element from C.

Ajnstr Subroutine Agent that drafts and refines concrete instructions for a specific
category c.

Ze Set of instructions Category-specific instructions for optimizing solutions under cat-
egory c.

Fe Feedback set Collected feedback specific to category c.

ZLiag Instructions Diagnostic instructions describing how to print informative
method information.

Fiag Feedback set Feedback collected from diagnostic runs.

Ainit Subroutine Agent that generates initial candidate solutions using 7, P, and
Sinit-

S Solution set Current pool / archive of candidate solutions explored so far.

Neop Integer Number of top diverse solutions selected from S at each iteration.

s Solution A single candidate solution sampled from the current top set.

« Scalar probability Probability of using instruction-based optimization instead of
diagnostic-based optimization (default: 0.8).

Bernoulli(c) Distribution Stochastic decision: with probability « use instruction-based op-
timization; otherwise use diagnostics.

Cat({mc}eec) Distribution Categorical distribution over categories C parameterized by {7 }.

optim Subroutine Agent that improves a solution s using instructions Z. and feed-

back F..

s Solution New candidate solution obtained by optimizing s.

Afeedback Subroutine Agent that analyzes the change from s to s’ and produces textual
feedback.

Adiag Subroutine Diagnostic agent that uses data D and diagnostic info
(Zdiag, Faiag) to improve s.

Niol Integer Adjusted number of solutions to keep / explore in future rounds
(e.g., Nyoi = max(1, Np — 1)).

s* Solution Best-found solution at the end of the run, ie., s* €&
arg maxses h(s).

wall-clock time Time Actual elapsed real-world time since the algorithm started.

Table 4: Explanation of symbols and subroutines used in Algorithm [I]

16



Under review as a conference paper at ICLR 2026

B EXAMPLE TUSOAI CODE TEMPLATE

Single-cell denoising template file

import scanpy as sc

import pandas as pd

import numpy as np

import scipy as sp

import magic

from anndata import read_hb5ad

import scprep

from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import issparse
from sklearn.decomposition import PCA
from anndata import AnnData

import random

def mse (adata) :
import anndata
import scanpy as sc
import scprep
import sklearn.metrics

test_data = anndata.AnnData (X=adata.obsm["test"], obs=adata.obs, var=adata.var)
denoised_data = anndata.AnnData (
X=adata.obsm["denoised"], obs=adata.obs, var=adata.var

)

target_sum = 10000

sc.pp.normalize_total (test_data, target_sum=target_sum)
sc.pp.loglp(test_data)

sc.pp.normalize_total (denoised_data, target_sum=target_sum)
sc.pp.loglp (denoised_data)

error = sklearn.metrics.mean_squared_error (
scprep.utils.toarray (test_data.X), denoised_data.X
)

return error
def tuso_model (adata) :

adata.obsm["denoised"] =
return adata

def main () :
np.random.seed (42)
random.seed (42)
adata = read_h5ad(’openproblems_datasets/lk_pbmc_processed.h5ad’)
print ("tuso_model_start")
adata = tuso_model (adata)
print ("tuso_model_end")

val_metric = 1 - mse(adata)
print (f"tuso_evaluate: {val_metric}")

main ()
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C EXAMPLE INSTRUCTIONS GENERATED BY TUSOAI

Example categories for single-cell denoising

* data_preprocessing

* feature_engineering

* model_architecture

* hyperparameter_tuning

* imputation_strategies

* normalization_methods

* evaluation_metrics

* cross_validation

* domain_knowledge_integration

* robustness_techniques

* noise_modeling

* dropout_probability_estimation

* graph_neural_network_optimization
* dropout_pattern_analysis

* pipeline_interaction_analysis

* low_rank_approximation_optimization

* autoencoder_classifier_integration

Example instructions within a category

* leveraging graph attention mechanisms to focus on informative cell interactions

* incorporating multi-layer graph convolutions to capture hierarchical gene expres-
sion patterns

* implementing edge dropout to enhance model robustness against noise in cell rela-
tionships

* utilizing message passing to propagate information across similar cell types effec-
tively

* integrating adaptive learning rates for different graph nodes based on local connec-
tivity

» employing graph pooling techniques to summarize cellular features without losing
critical information

* applying graph regularization to maintain structural integrity of the cellular network

* utilizing node embeddings to capture latent features of gene expression profiles

* optimizing neighborhood sizes dynamically based on data density in the graph

* exploring higher-order graph structures to uncover complex relationships in RNA-
seq data
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C.1 PREDEFINED DIAGNOSTIC INSTRUCTIONS

Example predefined diagnostic instructions

* altering or adding diagnostic information to be printed
* altering or adding complex diagnostic information of specific model components

* printing key statistical assumptions underlying the model (e.g., independence, nor-
mality)

* emitting warnings when model assumptions appear to be violated by the data
* logging all implicit assumptions made during model selection or preprocessing
* printing assumptions related to feature distributions or transformations

* displaying model-specific assumptions such as linearity, homoscedasticity, or no
multicollinearity

* printing assumptions about data completeness, such as missing value tolerance

* logging expectations about input feature scaling or normalization

* displaying prior distributions or regularization beliefs embedded in the model

* printing assumptions about label distribution (e.g., class balance or stratification)
* emitting diagnostics when data fails to meet i.i.d. assumptions

* logging assumed causal directions or conditional independencies in the model

* printing constraints assumed on feature ranges or valid input domains

» warning if assumptions about sufficient training data volume are not met

* displaying structural assumptions, such as sparsity or low-rank representations

* logging assumptions related to stationarity or autocorrelation in time-dependent
data
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D SINGLE-CELL ANALYSIS TASKS SETUP

The OpenProblems benchmark (Luecken et al., [2025) contains 12 single-cell analysis tasks with
numerous testing datasets and benchmark metrics for each. We select 6 tasks: single-cell denoising,
label projection, batch integration, spatially variable gene identification, spatial decomposition of
cell types, and visualization. These were selected with the following criteria. First, we required
more than one dataset, such that we can optimize on one dataset, and deploy the learned method
on the remaining testing datasets, excluding the 2 cell-cell communication tasks and perturbation
prediction. Second, a publicly available Github to ensure we are reproducing the testing procedures
correctly, excluding multimodal integration and modality prediction. Third, a method for the task
should be able to run in a reasonable amount of time on a CPU, excluding the foundation model
benchmark.

In each task, we performed optimization on one dataset which could be run in a reasonable amount
of time (< 2 minutes for a simple baseline model). The learned methods of each baseline were
then applied to the deployment datasets. In selecting benchmark metrics for each task, we had three
criteria. First, the metric should not have unavoidable trivial solutions, excluding the Poisson loss
metric from denoising, as this can be easily minimized by simply down-weighting lowly expressed
genes, including by just scaling genes by their variance or re-normalizing the data. Second, the
metrics should be computationally efficient to run, so optimization speed of each method will not
be dominated by running metrics. This excluded several metrics from batch integration and visual-
ization. Third, the metric should line up with the task. In the SVG task, it is initially measured in
correlation with spatial variability scores, however, the simulation procedure generates binary 0/1
labels of spatial variability, thus we use accuracy of classifying a gene as SVG instead. We also nor-
malize metrics such that each is between 0 and 1 and a higher score is better. The score in denoising
is 1-MSE, normalized so that no denoising is 0, and perfect denoising is 1. The score in spatial
decomposition is normalized so that a random cell type assignment is 0, and perfect decomposition
is 1. See Table[5]for a full breakdown of datasets and metrics used in single-cell tasks.

Optimization dataset Testing datasets Benchmark metrics
Denoise 1K PBMC SK PBMC MSE
Pancreatic
Label Sk cells from Immune Cell Atlas Diabetic Kidney Accuracy
GTEX v9 F1 macro
HypoMap F1 micro
Mouse Pancreatic Islet Atlas F1 weighted
Tabula Sapiens
Batch 5k cells from Immune Cell Atlas Diabetic Kidney Graph connectivity
GTEX v9 ASW label
HypoMap ASW batch
Mouse Pancreatic Islet Atlas
Tabula Sapiens
SVG Drosophila Stereo-seq ES Drosophila Stereo-seq E10 Accuracy
Drosophila Stereo-seq E9
Drosophila Stereo-seq E6
Decomp TMS Lung (alpha=1.0) TMS Lung (alpha=0.5) R’
TMS Lung (alpha=5.0)
Pancreas (alpha=0.5)
Pancreas (alpha=1.0)
Pancreas (alpha=5.0)
Visual Mouse HSPCT SK PBMC Trustworthiness
Mouse Myeloid Distance correlation
Zebrafish Density Preservation

Table 5: Single-cell benchmark setup. Datasets and metrics refer to the setup on the OpenProblems

webpage.
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E DEEP LEARNING TASKS SETUP

The NASBENCH-360 benchmark [Tu et al.| (2022) contains 10 deep learning tasks across scientific
domains with predefined training, validation, and testing splits, as well as evaluation procedures.
We select 5 tasks: Spherical, NinaPro, DeepSEA, Satellite, and ECG. These were selected with the
following criteria. First, the task should be scientific and somewhat understudied compared to stan-
dard ML tasks, excluding the 2 standard image and audio classification tasks. Second, to ensure fair
comparison against the precomputed baselines, we removed tasks where we were uncertain about
reproducing the evaluation procedure, partly due to recent GitHub or package updates requiring
debugging, excluding Cosmic, PSICOV, and DarcyFlow.

In each task, we performed optimization by training a model on the predefined training set and
attaining a score on the validation set. The final testing accuracy of optimized models is attained
when deploying the model on the predefined test set. We use the same splits and metrics defined in
the original paper.
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F BASELINE IMPLEMENTATIONS

AIDE. AIDE takes as input a data folder, task description, and evaluation metric. While originally
designed for whole-workflow construction in ML tasks, this can be adapted to general optimization
in the following ways. First, AIDE can operate on any data input in the data folder. If specific
preprocessing information was needed, we could input this code to the task description. Second,
in place of specifying an accuracy metric (e.g., ”F1 score”), we instead simply input the entire
evaluation function in Python, and found this worked well. As our goal is optimization and not
construction, AIDE’s initial prompt is tuned until code was consistently generated and optimized
upon, typically requiring the same formatting information as other methods. AIDE is run for the
same length as TusoAl (8 hours) in the same conda environment on the same CPU (Optimization
for AIDE and TusoAl is performed on the same Intel(R) Xeon(R) Gold 5416S.) or GPU (Intel(R)
Xeon(R) Silver 4314 CPU @ 2.40GHz), given 4 threads and S0GB of memory. While AIDE does
have a default timeout per execution of 1 hour, on attempting to set this to the same time as TusoAl
led to consistent crashes on more of half of tasks, thus we left it as is.

Biomni. We access Biomni through its web page. Biomni runs on a CPU and can take input files
up to a limit, has a runtime execution of 1 hour per iteration. While not specifically designed for
optimization, we can upload the same template code and data as TusoAl then ask Biomni to perform
an iterative process of updates. In practice, this led to between 2 and 10 iterations per task between
20 minutes and 4 hours. This procedure was signed off by the original authors of Biomni.

ChatGPT-Agent. We access ChatGPT-Agent through its web page. ChatGPT-Agent can accept
input files up to 25MB and has a runtime execution of 1 hour per iteration. We upload the same
template code and data as TusoAl and ask ChatGPT-Agent to perform an iterative process of updates.
In practice, this led to between 2 and 7 iterations per task between 10 minutes and 5 hours.

Expert. The expert baselines for NASBench-360 are pre-computed from their paper. The original
authors found the best performing expert models from the literature for each task. This includes the
following methods:

1. DeepSea - The original DeepSea model released alongside the dataset, a 1D convolution
model with state of the art performance. (Zhou & Troyanskaya, [2015))

2. NinaPro - Feed-forward neural network with attention modules in place of convolutions.
(Josephs et al., 2020)

3. Spherical - a spherical CNN with special operations for spherical signals. This model
achieved state of the art performance on spherical MNIST. (Cohen et al.,[2018)

4. Satellite - A linear classifier with convolution kernel as feature extractor, achieving state of
the art on UCR time series prediction tasks. (Dempster et al.,[2020)

5. ECG - ResNet with 1D convolution, achieving state of the art on several time series predic-
tion tasks for medicine. (Hong et al.}|[2020)

For single-cell tasks, we selected the expert method with the following criteria. First, it should
be within the top 3 methods as defined by the existing OpenProblems benchmarking. Second, the
OpenProblems Github should have code for reproducing this method. Third, we selected the method
that was particularly efficient compared to others, if applicable, defined by a runtime of less than 10
minutes on OpenProblems, with others having greater than 1 hour. This left us with the following
expert methods, whose code we extracted from the OpenProblems Github:

1. Denoise — MAGIC, a graph-based diffusion method that imputes missing gene expression
values. (Van Dijk et al., [2018))

2. Batch — ComBat, an empirical Bayes approach that removes batch effects across samples.
(Zhang et al.} 2020)

3. Label — PCA + Logistic Regression, which uses low-dimensional PCs as features for effi-
cient cell-type classification. (Luecken et al., 2025))

4. Decomposition — NNLS, a non-negative least squares model for estimating gene programs
or latent factors. (Aliee & Theis, |[2021)
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5. SVG — SPARK-X, a spatial variance component model that identifies spatially variable
genes at scale. (Zhu et al., [2021])

6. Visualize —t-SNE (log10CP10K), a nonlinear embedding of log-transformed counts for 2D
visualization. (Luecken et al.,|2025)

Claude-4-Sonnet and GPT-5. In deep learning tasks where Biomni and ChatGPT-Agent cannot
apply due to computational limitations (file size, runtime, GPU access), we substitute the best of
10 models generated by Claude-4-Sonnet and GPT-5. 10 models are generated by prompting these
LLMs using the same template that would have been used in Biomni and ChatGPT-Agent. The best
is decided by the top performing model on the validation dataset which ran in less than one hour,
akin to the runtime limitations of Biomni and ChatGPT-Agent.
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G EXAMPLE TASK INFORMATION

Denoise
Task Description single cell RNA-seq imputation
Drafted Categories data_normalization

feature_selection
imputation_modeling
latent_space_representation
noise_handling
batch_effect_correction
hyperparameter_tuning
evaluation_metrics
ensemble_imputation_methods
domain_specific_constraints
count_distribution_modeling

Refined Categories data_normalization
feature_selection
imputation_modeling
latent_space_representation
noise_handling
batch_effect_correction
hyperparameter_tuning
evaluation_metrics
ensemble_imputation_methods
domain_specific_constraints
count_distribution_modeling
dropout_probability_estimation
graph_based_representation
dropout_pattern_analysis
pipeline_interaction_analysis
rank_estimation_and_optimization
virtual_class_label_generation

Drafted Solution Descriptions | k-nearest neighbors imputation

matrix factorization (e.g., PCA, NMF)
autoencoder-based imputation (including DCA)
generative adversarial networks (GANSs) for imputation
deep learning models (e.g., U-Net architecture)

Refined Solution Descriptions | k-nearest neighbors imputation

matrix factorization (e.g., PCA, NMF)
autoencoder-based imputation (including DCA)
deep learning models (e.g., U-Net architecture)
graph neural network (GNN) for imputation
scImpute for dropout imputation

co-occurrence clustering based on dropout patterns
scran normalization with prior clustering
AutoClass model for scRNA-Seq cleaning

low-rank matrix approximation (ALRA)
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H NOVELTY OF DISCOVERED METHODS

For the four example methods constructed by TusoAl listed in Section[4.1} we expand on the novelty
claim with a thorough literature review of related methods.

In single-cell denoise, TusoAl designed a non-negative matrix factorization (NMF) approach that
models dropout rates, Poisson noise, and performs iterative refinement, distinct from the only other
NMF-based approach in the OpenProblems benchmark, ALRA (Linderman et al.l [2022). Specif-
ically, ALRA applies a low-rank approximation to a globally normalized matrix and performs an
adaptive thresholding step to restore zeros, but it does not explicitly model count noise, does not
incorporate dropout mechanisms, and does not iteratively refine factors. Another denoising method
uses NMF, Denoiselt (Jeon et al., 2024). This method focuses on identifying noisy features via
NMF loadings combined with isolation-forest filtering, and does not perform probabilistic mod-
eling of gene-cell counts or imputation of dropout-affected expression values, again distinct from
our approach. Another point of novelty is that TusoAI’s learned method is outperforming MAGIC
(Van Dijk et al., 2018)), which was found to outperform ALRA (Luecken et al.,|2025).

In SVG, TusoAlI adapted known techniques such as modeling expression as a function of spatial co-
ordinates and neighborhood summaries to create a custom, high-performing method. Many existing
SVG detectors are primarily coordinate-based, using Gaussian-process or generalized linear models
over spatial locations (SpatialDE, SpatialDE2, SPARK-X, GPcounts, BOOST-GP) (Svensson et al.,
2018 [Kats et al., 2021; Zhu et al.} 2021; BinTayyash et al.} 2021} [Li et al., 2021), while others rely
mainly on neighborhood or graph structure, diffusion, or spatial autocorrelation statistics (Moran’s
I, SOMDE, scGCO, Sepal, SpaGCN, SpaGFT, nnSVG, Spanve) (Luecken et al., 2025} Hao et al.,
20215 Zhang et al.,[2022aj;|Andersson & Lundeberg, 2021;|Hu et al.,[2021};/Chang et al., | 2024} |Weber,
et al., 2023} |Cai et al.| 2023)). Graph-based models such as SpaGCN and SpaGFT can incorporate
both spatial coordinates and local neighborhoods through graph constructions and convolution or
spectral transforms (Hu et al., [2021} |Chang et al., [2024])), but they do not explicitly combine smooth
coordinate regression with fixed neighborhood summary covariates in a single per-gene predictive
model as TusoAl does. This joint modeling of coordinate trends and neighborhood summaries en-
ables TusoAlI to outperform SPARK-X (Zhu et al.,|2021)) on our SVG benchmark, despite SPARK-X
being among the strongest existing SVG baselines (Luecken et al., 2025).

In Satellite, TusoAl combined preprocessing, training procedures, loss functions, and ensembling
techniques to build the top-performing model. First, this is distinct from the expert model, which is
a linear classifier (Dempster et al.,[2020). Second, these kinds of pipeline-level decisions lie outside
the search space of the NAS baselines used in NASBench-360: methods such as DARTS-GAEA,
DenseNAS, AMBER, and tuned WRN search only over convolutional architectures under a fixed
data preprocessing pipeline, standard loss, and a single-model training recipe, and therefore cannot
automatically implement the techniques TusoAl does here.

In Spherical, TusoAl fine-tuned layers of ResNet-50 and augmented the data with random flips and
rotations. First, this is distinct from the expert model, which is a spherical CNN (Cohen et al.,2018]).
Again, these decisions, such as fine-tuning Resnet-50 or augmenting data with rotations and flips lie
outside the search space for NAS methods.
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I RUNTIME OF NEW METHODS
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Figure 5: Testing set runtime for (A) single-cell tasks (averaged over 3 random data splits) and (B)
deep learning tasks (averaged over 3 random seeds).
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J  OPTIMIZATION TRAJECTORIES
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Figure 7: AIDE’s optimization trajectory for all benchmarking tasks. AIDE can edit the evaluation
function, which occurred in the decomposition task which was thus excluded.
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L STABILITY ACROSS REPLICATES

Validation performance across 3 replicates
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Figure 8: Validation performance across 3 replicates. Final validation performance after running
TusoAl 3 separate times on each single-cell task.
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M CODE DIVERSITY

We measure the diversity of generated code, as measured by the cosine similarity of the text em-
bedding of one generated code versus all others, similar to (Aygitin et al.| [2025)). This is performed
for TusoAl and AIDE. For each, we first filter out repetitive/uninformative code strings, including
comments, imports, evaluation functions and data loading procedures (which will not change over
iterations). We then apply sklearn’s TfidfVectorizer function to each cleaned code to obtain a text
embedding. We can then compute the cosine similarity between pairs of code. Diversity is measured
as 1-cosine similarity. We opt for TF-IDF instead of more sophisticated methods like CodeBERT
(Feng et al., [2020) which measure semantic similarity, as we observed this overestimated the simi-
larity between code (all cosine similarity > 0.997 for all tasks). This is likely due to each iteration
always being a slight permutation of the same python method performing the same task. TF-IDF
better captures a measure of difference between algorithmic procedures in this case.

Diversity collapse vs. convergence
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Figure 9: Code diversity versus optimization ability. Last diverse code for each trajectory (defined
as last position with diversity>0.1) versus last optimization position.
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N ABLATION ANALYSIS
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Figure 10: Additional ablation information. (A) Box plot across 5 tasks of the mean code diversity.
(B) Box plot across 5 tasks of the mean time to optimize. (A) Box plot of the final testing scores of
5 replicates for each ablation.
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O VARYING LITERATURE SEARCHED

Ablation Replicates by Number of Papers
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Figure 11: Box plot of the final testing scores of 5 replicates for collecting 10 papers (default), O
papers, and 50 papers, alongside optional paper summary filtering step.
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Figure 12: Box plot of the final testing scores of 5 replicates for having 15 bullet point summaries
(default), 5 bullet point summaries, and 30 bullet point summaries.
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P LLM ANALYSIS
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Figure 13: Additional LLM information. (A) Average length of generated methods for each task
and LLM versus the total count of how many methods were generated. (B) Average length of
generated methods for each task and LLM versus the final deployment performance.
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Q CoST ANALYSIS
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Figure 14: Cost distribution. (A) TusoAl vs. AIDE cost for each task. (B) Boxplot of costs for
each LLM on 5 ablation tasks.
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R SCcDRS ANALYSIS

Optimization setup. scDRS’ codebase consists of several files. We construct a version of com-
pute_score.py that exposes the compute_raw_score function. This is the only function TusoAl op-
erates upon during optimization. For optimization, we construct causal simulations similar to the
scDRS paper, subsampling 10k cells from TMS, perturbing 1000 disease genes in a cluster of cells,
setting the geneset overlap to 25%, and varying effect size from 5 to 50%. TusoAl optimizes the
compute_raw_score function based on the average (F1 + AUPRC)/2 across 3 replicates at effect size
15%, where scDRS has lower power. We run this experiment for 24 hours using default parameter
settings for TusoAl

Additional simulation results. We apply scDRS and the learned version by TusoAlI to all 30 repli-
cates of each effect size in causal simulations. We additionally apply it to 100 replicates of null
simulations, identical to scDRS, where 1000 random genes are selected with no perturbation. Addi-
tional metrics in these simulations are reported in Figure [T5]

Null simulations (1000 random genes) AUPRC in detecting disease associated cel ~ FDR in detecting disease associated cells
—e— SCDRS (TusoAl) y v a1e —4— scDRS (TusoAl)
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Figure 15: Additional scDRS metrics. (A) Q-Q plot of -logl0 p-values in null simulations. 95%
CI’s are calculated at each point across 30 replicates. (B) AUPRC of associating individual cells
in causal simulations. 95% CI’s are calculated at each point across 30 replicates. (C) FDR of
associating individual cells in causal simulations. 95% CI’s are calculated at each point across 30
replicates.
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S PGBOOST ANALYSIS

Optimization setup. pgBoost discovers that distance-based features are critical for modeling SNP-
gene distances. It’s samples are SNP-gene pairs, and features include over 30 features derived from
single-cell multiome methods and 2 distance features, the SNP distance to the gene’s transcrip-
tion start site (TSS), and a binary indicator of if this is the closest TSS of any gene to the SNP.
We augment pgBoost’s script with gene annotations from GENCODE V48 (Mudge et al., 2025)),
specifically the SNP’s position, the gene’s TSS, and the gene’s transcription end site (TES). During
both the knowledge tree construction and optimization process, TusoAl is encouraged to come up
with instructions/optimizations relevant to distance-based modeling of SNP-gene links and avoid
other model changes. Optimization is performed by increasing the average enrichment in pgBoost’s
primary evaluation of gold-standard links (eQTL and ABC) relative to the original pgBoost’s en-
richment. We run TusoAl for 24 hours using default parameter settings.

Real data analysis. We analyze fine-mapped SNPs from the same set of GWAS traits as in the
pgBoost paper. pgBoost considers a true link to be in the top 95% percentile, and specifically looks
for SNP-gene links that are not in such a percentile for other methods. We perform an identical
analysis, looking for links in the top 95% of pgBoost (TusoAl), but not in other methods.
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T WARM START DEEP LEARNING

We show how TusoAI’s warm-start capability might work in conjunction with a scientific deep
learning task. For NinaPro, we re-implement the Expert model from NASBench-360. This is a
feed-forward neural network with attention modules in place of optimizations. Optimizing this
model for 8 hours with TusoAl improves testing performance from 0.91 to 0.94, now becoming
the top performing model for this task (Figure [I6). Where both the Expert and cold-start TusoAI’s
learned models were outperformed by NAS methods, their combination yields a new top model. We
next analyze the optimization trajectory of TusoAl to see how this was achieved. We summarize the
key optimizations below:

1. The dense attention network was replaced with a dilated temporal convolutional network
(TCN).

. Five separate TCN models were trained and ensembled.
. Features were standardized with z-scaling.
. Gradient clipping.

. Log transformation of input features.

AN N B~ W

. Ensemble is replaced by a mixture of experts (MOE) architecture.
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Figure 16: Warm start example on NinaPro. (A) Testing performance of all NinaPro methods.
(B) Optimization trajectory of TusoAl with warm-start NinaPro.

37



Under review as a conference paper at ICLR 2026

U PROMPT TEMPLATES

U.1 INSTRUCTIONS FOR PARSING LITERATURE

Initializing paper description with abstract

You are a scientific summariser. Draft a concise yet technically accurate description of the
paper’s method based **only** on the abstract below, to the extent possible. Capture the
main points using bullet points. Avoid complete sentences and omit details irrelevant to the
methods.

Abstract: ”””’[ABSTRACT GOES HERE]”””

Updating paper description with methods section

The current method description:

”?”[CURRENT DESCRIPTION GOES HERE]””

New excerpt from the paper:

”»”INEW TEXT GOES HERE]””

Update the description by **incorporating any new technical details or correcting existing
ones** found in the excerpt. Keep the description concise and clear. Return **only**
the revised description. Use bullet points. Avoid full sentences and exclude information
unrelated to the methods. Do not exceed 15 bullet points.
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U.2 INSTRUCTIONS FOR CONSTRUCTING CATEGORIES

Initializing categories with LLM

We are building an LLM-powered AutoML system for the task:

”[TASK DESCRIPTION]”

As a reference, some generic categories for optimizing classification models include:
[CLASSIFICATION CATEGORIES]

You are a master of machine learning and the domain relevant to this task. First briefly reason
about what kinds of modeling interventions or optimization strategies could be helpful for
this specific task. Then propose a list of concise, task-relevant optimization categories.
Your list should include conceptual ideas tailored to this task and each should represent a
specific axis of improvement (e.g., architectural choices, preprocessing strategies, domain
constraints, evaluation metrics, robustness techniques, etc.).

Output exactly **N** proposed categories, one per line, each enclosed in:

<c>Category Name</c>

Do not include any other text, explanation, or formatting. By “optimization” we mean
strictly performance improvements — not runtime, scalability, visualization, logging, post-
evaluation tools, or similar considerations. You will only have access to: [DATA AVAIL-
ABLE].

Updating categories with papers

We are building an LLM-powered AutoML system for the task:

”[TASK DESCRIPTION]”

We will curate and refine our categories based on the current categories and a paper.
Current categories: [CURRENT CATEGORIES]

Paper: ”[TITLE]” Key method points: [BULLET POINTS]

TASK 1. If the paper suggests a **new** axis of optimization missing from the list, propose
a concise, task-relevant category for it. 2. If two or more current categories can be merged,
provide a single category name that subsumes them. 3. Otherwise, if a category is irrelevant
given only [DATA AVAILABLE], leave the list unchanged.

Return **one updated list only**, one category per line. Each line must be wrapped exactly
like:

<c>Category</c>

No other text.
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U.3 INSTRUCTIONS FOR CONSTRUCTING WITHIN-CATEGORY INSTRUCTIONS

Initializing within-category instructions with LLM

We are designing an LLM-powered AutoML system for the task:

”[TASK DESCRIPTION]”

Current optimisation axis: **[CATEGORY]**

Below is a style example of prompts for a *regularisation* category for a classification task.
Each prompt begins with *by ...* and expresses a specific, actionable optimisation idea:
[FEW-SHOT EXAMPLES]

You are a master of machine learning and the domain relevant to this task. Keeping the same
concise, actionable style, write **exactly N distinct prompts** that belong to the **[CATE-
GORY]** category **and are appropriate for this task**.

These should include a mix of general, conceptual, and complex prompts, not overly spe-
cific, similar to the examples.

Wrap *each* prompt in its own:

<p> ... </p>

Return **only** these <p>...</p> lines, nothing else.

By optimisation we mean strictly **performance**, not runtime, scalability, logging, visu-
alization, evaluation, or post-processing. Assume evaluation metrics already exist. You will
only have access to: [DATA AVAILABLE].

Refining within-category instructions with LLM

We are designing an LLM-powered AutoML system for the task:

”[TASK DESCRIPTION]”

We will only have access to: [DATA AVAILABLE].

Here is a concise summary of the baseline method: ”””[SUMMARY]”"”

Below are style examples of valid prompt lines taken from earlier work: [FEW-SHOT EX-
AMPLES]

Your job is to generate **between N_min and N_max new prompts**. These prompts will
ultimately be assigned to one of the following categories:

[CATEGORY LIST]

**Step 1**: Generate the prompts, independently of categories. **Step 2**: Assign each
prompt to its most relevant category.

For each prompt, output a line in this exact format:

<c>CategoryName</c><p>by ...</p>

Rules:

* Every prompt must begin with **”by ..””** * Cover a mix of general, conceptual, and
complex ideas * Focus strictly on **performance optimisation** (ignore runtime, scalabil-
ity, logging, visualization, etc.) * Return **only** the <c>...</c><p>...</p> lines —
nothing else.
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U.4 INSTRUCTIONS FOR CONSTRUCTING INITIAL SOLUTIONS

Initializing solutions with LLM

We are designing an LLM-powered AutoML system for the task:

”[TASK DESCRIPTION]”

Below is an example list of generic model initializations for a **classification** task: [FEW-
SHOT EXAMPLES]

You are a master of machine learning and of the domain relevant to this task. Propose
**exactly N concise model initializations** that could serve as starting baselines **for this
specific task**, given that we only have [DATA AVAILABLE].

These should be general task-specific methods, model families, or high-level architectural
descriptions — not fully specified pipelines.

Output one per line, each wrapped in:

<m> ... </m>

Return **only** these <m>...</m> lines — no explanations, no extra text.

Refining initial solutions with LLM

We are building an LLM-powered AutoML system for the task:

”[TASK DESCRIPTION]”

We will curate and refine our **model initializations** list using insights from the following
paper.

Current initializations: [CURRENT INITIALIZATIONS]

Paper: ”[TITLE]” Key method points: [BULLET POINTS]

TASK — 1. If the paper presents a **model family or architecture** not covered above,
propose it as a concise initialization (< 6 words). 2. If two or more current initializations
are effectively the same family, merge them by giving a single, clear name that subsumes
them. 3. If neither condition applies, or if the model cannot be implemented using **[DATA
AVAILABLE]**, leave the list unchanged.

Return **one updated list only** — one initialization per line, each wrapped exactly like:
<m>Initialization</m>

No other text.
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U.5 PROMPT FOR DEVELOPING INITIAL SOLUTIONS

Initialisation prompt

Write a basic version of this model for {task_description} using {init}. Hints: - {hints}
{base_fn_code} Output only python code, and do not include comments.
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U.6 PROMPT FOR OPTIMIZING WITH INSTRUCTIONS

Instruction-based optimization prompt

Write a basic version of this model for {task_description} using {init}. Hints: - {hints}
{base_fn_code} Output only python code, and do not include comments.

by choosing one of the following strategies to guide optimisation, based on your assessment
of what will most improve this model for {task_description}: {prompt_options}
Additionally, consider the following feedback from earlier attempts that used this same op-
timisation strategy: {fb_block}
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U.7 PROMPT FOR GENERATING DIAGNOSTICS

Generating diagnostic info prompt

Write a basic version of this model for {task_description} using {init}. Hints: - {hints}
{base_fn_code} Output only python code, and do not include comments.

by choosing one of the following strategies to print diagnostic information, based on
your assessment of what will be most informative for optimisation of this model for
{task_description}. Ensure the information printed is concise enough to be used in an LLM
prompt: {diagnostic_options}

U.8 PROMPT FOR OPTIMIZING WITH DIAGNOSTICS

Optimizing with diagnostic info prompt

Write a basic version of this model for {task_description} using {init}. Hints: - {hints}
{base_fn_code} Output only python code, and do not include comments.

by assessing this diagnostic info and proposing model/feature improvements for this model
for {task_description}: {current_code}

Additionally, consider the following feedback from earlier attempts that used this same op-
timisation strategy: {fb_block}
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U.9 PROMPT FOR GENERATING FEEDBACK

Feedback on code optimization

We attempted to optimize this function: [ORIGINAL_CODE] Here is the proposed opti-
mization: [NEW_CODE] Write a concise one line summary of the differences between the
original function and the proposed optimization. It should be as short as possible while
summarizing the differences.

45



Under review as a conference paper at ICLR 2026

U.10 PROMPT FOR DEBUGGING

Fix Function Prompt

Fix this function: {suggestion}. Here’s the error: {error_msg} Ignore warnings. If an error
is related to installation, assume the package is not installed and try doing it without that
specific package. Output only python code, and do not include comments.
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U.11 PROMPT TEMPLATE FOR BIOMNI AND CHATGPT-AGENT

Single-cell denoising prompt template for scientific agents

We are considering the task of single cell RNA-seq imputation.

We wish to create an expertly optimized model for this.

Here is a starter script. Create a top-performing model for our task within the
tuso_model function.

import scanpy as sc

import pandas as pd

import numpy as np

import scipy as sp

import magic

from anndata import read_hb5ad

import scprep

from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import issparse
from sklearn.decomposition import PCA
from anndata import AnnData

import random

def mse (adata) :
import anndata
import scanpy as sc
import scprep
import sklearn.metrics

test_data = anndata.AnnData (X=adata.obsm["test"], obs=adata.obs, var=adata.var)
denoised_data = anndata.AnnData (
X=adata.obsm["denoised"], obs=adata.obs, var=adata.var

target_sum = 10000

sc.pp.normalize_total (test_data, target_sum=target_sum)
sc.pp.loglp (test_data)

sc.pp.normalize_total (denoised_data, target_sum=target_sum)
sc.pp.loglp (denoised_data)

error = sklearn.metrics.mean_squared_error (
scprep.utils.toarray (test_data.X), denoised_data.X

)

return error

def tuso_model (adata) :

a = AnnData(
X=adata.obsm["train"].copy (),
obs=adata.obs.copy (),
var=adata.var.copy ()

out = a.X
out = out.toarray() if issparse (out) else out
adata.obsm["denoised"] = out
return adata
def main():

np.random.seed (42)

random.seed (42)

adata = read_h5ad(’ 1k_pbmc_processed.h5ad’)
print ("tuso_model_start")

adata = tuso_model (adata)

print ("tuso_model_end")

val_metric = l-mse (adata)
print (f"tuso_evaluate: {val_metric}")

main ()

Make sure to store the denoised data in adata.obsm["denoised"].
Keep the function header, input, output the same.
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Each time you generate code, run it, extract the tuso_evaluate metric, and try and
build a better performing solution from the previous solutions.
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V  GENERIC CLASSIFICATION EXAMPLE

List Contents

Categories ["regularisation’, ’feature_engineering’,
"hyperparameter_tuning’, ’sampling’,
"ensemble_methods’, ’'calibration’,
" feature_selection’]

Initializations ["logistic regression", "XGBoost", "random
forest", "MLP classifier"]

Regularisation 1. by introducing L1 sparsity constraints to

instructions prune features

2. by subsampling training rows each iteration
to inject stochasticity

3. by shrinking updates with a smaller
learning rate for smoother convergence

4. by refining regularisation strategies

5. by combining complementary regularisation
methods

6. by adapting regularisation strength across
epochs

7. by scaling regularisation to the dataset
size

8. by combining elastic-net with adaptive
polynomial penalties to capture curved
relationships

9. by adding Jacobian norm regularisation to
control sharp non-linear gradients

10. by introducing spectral norm constraints
for stable non-linear layers
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