
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TUSOAI: AGENTIC OPTIMIZATION FOR SCIENTIFIC
METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific discovery is often slowed by the manual development of computational
tools needed to analyze complex experimental data. Building such tools is costly
and time-consuming because scientists must iteratively review literature, test mod-
eling and scientific assumptions against empirical data, and implement these in-
sights into efficient software. Large language models (LLMs) have demonstrated
strong capabilities in synthesizing literature, reasoning with empirical data, and
generating domain-specific code, offering new opportunities to accelerate com-
putational method development. Existing LLM-based systems either focus on
performing scientific analyses using existing computational methods or on de-
veloping computational methods or models for general machine learning without
effectively integrating the often unstructured knowledge specific to scientific do-
mains. Here, we introduce TusoAI, an agentic AI system that takes a scientific task
description with an evaluation function and autonomously develops and optimizes
computational methods for the application. TusoAI integrates domain knowledge
into a knowledge tree representation and performs iterative, domain-specific op-
timization and model diagnosis, improving performance over a pool of candidate
solutions. We conducted comprehensive benchmark evaluations demonstrating
that TusoAI outperforms state-of-the-art expert methods, MLE agents, and scien-
tific AI agents across diverse tasks, such as single-cell RNA-seq data denoising
and satellite-based earth monitoring. Applying TusoAI to two key open problems
in genetics improved existing computational methods (40% power improvement
to scDRS in associating cells to disease in simulations and 10.5% enrichment im-
provement to pgBoost for identifying ground-truth variant-gene pairs) and uncov-
ered novel biology, including 9 new associations between autoimmune diseases
and T cell subtypes (e.g., primary biliary cirrhosis with central memory T cells)
and 7 previously unreported links between disease variants linked to their target
genes (e.g., glucose/HbA1c risk variant rs138917529 with GCK). Our code will
be publicly available upon publication.

1 INTRODUCTION

Scientific discoveries are often bottlenecked by the slow, manual development of computational
tools needed to analyze experimental data. For example, genetics studies have uncovered tens of
thousands of disease-associated variants, yet robust computational methods are critically needed to
harmonize multi-modal, multi-scale data and uncover the underlying mechanisms (Lappalainen &
MacArthur, 2021). Developing such tools is slow and costly because scientists must iteratively (i)
review extensive literature, (ii) test modeling and scientific assumptions against empirical data, and
(iii) implement these insights into efficient, scalable code. For instance, building robust computa-
tional methods to link enhancers with target genes from single-cell multiome data has taken multi-
ple expert groups many years (Dorans et al., 2025), hindered by challenges such as cis-regulatory
modeling, latent confounding, noisy data, and computational scalability. Large language models
(LLMs) have demonstrated strong capabilities in performing human-like analysis (Luo et al., 2025),
such as synthesizing relevant literature (Asai et al., 2024), reasoning about biological and modeling
assumptions using empirical data (Gao et al., 2024), and generating efficient, domain-specific code
(Rasheed et al., 2025). Integrating LLMs with scientific domain knowledge and iterative data exper-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

imentation holds great promise to accelerate computational method development, thereby advancing
discoveries in science and medicine.

Existing work has produced general-purpose AI agents across scientific domains, including
biomedicine (Huang et al., 2025; Jin et al., 2025) and chemistry (M. Bran et al., 2024). These
systems primarily focus on performing scientific data analyses rather than developing new compu-
tational methods; the former involves assembling and executing pipelines of data formatting and
existing tools, whereas the latter requires creating new algorithms or models for specific pipeline
steps, involving substantial design, optimization, and validation. In parallel, several studies have
developed machine learning engineering (MLE) agents that can design new algorithms for general
ML applications (Guo et al., 2024; Trirat et al., 2024; Jiang et al., 2025; Nam et al., 2025), but these
approaches do not address domain-specific challenges inherent in scientific research. Developing
AI agents for scientific method development that integrate structured domain knowledge and sys-
tematically explore data-specific assumptions has considerable potential to accelerate the creation
of robust computational methods for science and medicine.

Here, we introduce TusoAI, an agentic AI system that takes a scientific task description with an
evaluation function, and autonomously develops and optimizes computational methods for the ap-
plication (Figure 1). TusoAI integrates structured domain knowledge with iterative, domain-specific
optimization and model diagnosis, improving performance over a pool of candidate solutions. We
demonstrate that TusoAI achieves superior performance across a range of algorithmic, statistical,
machine learning, and deep learning applications in science. Our key contributions are:

1. We develop TusoAI, an AI agent specifically tailored for scientific method discovery by
integrating structured domain knowledge.

2. We propose a novel framework, featuring (i) knowledge tree for structured representation
of domain knowledge, (ii) hierarchical planning with Bayesian updates to balance solution
quality and diversity, and (iii) fine-grained generation that integrates model optimization
with diagnostic feedback.

3. We benchmark TusoAI on 6 single-cell analysis tasks and 5 scientific deep learning tasks,
consistently outperforming baseline methods and frequently surpassing existing expert-
designed algorithms with on average 16% improvement in single-cell tasks.

4. Applying TusoAI to two key open problems in genetics improved existing computational
methods (40% power improvement to scDRS in associating cells to disease in simulations
and 10.5% enrichment improvement to pgBoost for identifying ground-truth variant-gene
pairs) and uncovered novel biology, including 9 new associations between autoimmune
diseases and T cell subtypes (e.g., primary biliary cirrhosis with central memory T cells)
and 7 previously unreported links between disease variants linked to their target genes (e.g.,
glucose/HbA1c risk variant rs138917529 with GCK).

1.1 RELATED WORK

LLM-based scientific AI agents. Several works have developed general-purpose AI agents capable
of autonomously executing various scientific research tasks. Biomni (Huang et al., 2025) provides
a unified agentic environment with tools and databases spanning 25 biomedical domains, integrat-
ing LLM reasoning with retrieval-augmented planning and code execution to compose complex
workflows. Stella (Jin et al., 2025) employs a multi-agent architecture for autonomous biomed-
ical data analysis, achieving self-evolution by dynamically updating its template library and tool
collection. ChemCrow (M. Bran et al., 2024) is a chemistry-focused agent that integrates 18 expert-
designed tools and follows the “Thought, Action, Action Input, Observation” format to iteratively
reason toward answers. These methods emphasize end-to-end data analysis with established tools,
whereas our work focuses on developing new computational methods for domain-specific tasks.
Other works have leveraged LLMs to develop application-specific methods, such as single-cell per-
turbation prediction (Tang et al., 2025), diagnosis prediction (Tan et al., 2025), and mathematical
discovery (Romera-Paredes et al., 2024). In contrast, TusoAI targets computational method develop-
ment across scientific tasks. InternAgent (Team et al., 2025) and its precursor Dolphin (Yuan et al.,
2025) iteratively evolve and implement research ideas through an optimization process augmented
with literature review. As a concurrent effort, Aygün et al. (2025) combine LLMs with tree search
and existing model ensembles to improve scientific algorithms, addressing a similar problem but

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Scientific method development with TusoAI. (A) Method overview. (B) Example do-
main knowledge tree (categories and instructions per category), feedback, and diagnostics.

with a different approach from ours, which integrates a domain knowledge tree with fine-grained it-
erative optimization and Bayesian updates. As their code is not publicly available, direct comparison
is not possible.

LLM-based general machine learning agents. Several recent works have developed AI agents
for general machine learning engineering. AIDE (Jiang et al., 2025) frames ML engineering as a
code optimization problem, combining an LLM with tree search to iteratively improve solutions.
R&D Agent (Yang et al., 2025) similarly explores ML architectures in a dynamic feedback loop.
DS-Agent (Guo et al., 2024) combines an LLM with case-based reasoning (CBR), retrieving po-
tentially successful solutions from top-ranked Kaggle solutions, and refining them through iterative
optimization. MLE-STAR (Nam et al., 2025) retrieves candidate models from the web to form an
initial solution, then improve it by targeting specific ML components and ensembling. AutoML-
Agent (Trirat et al., 2024) employs retrieval-augmented planning and multi-agent coordination to
generate an optimal plan, but executes the plan once without iterative refinement. These methods
are less suited to scientific method development, where domain knowledge is unstructured, existing
ML models may be unavailable, and search spaces are continually evolving. We address these chal-
lenges through structured domain knowledge representation and hierarchical planning with Bayesian
updates during iterative optimization.

Classical automatic machine learning (AutoML) frameworks. Classical (non-LLM) AutoML
frameworks aim to construct high-performing ML models from scratch by searching over key com-
ponents such as feature preprocessing, model architectures, hyperparameters, and pipeline com-
position. Notable examples include auto-sklearn (Feurer et al., 2015), H2O (LeDell et al., 2020),
AutoGluon (Erickson et al., 2020), and TPOT (Olson & Moore, 2016). Within deep learning, neu-
ral architecture search (NAS) methods specialize in optimizing neural architectures, with examples
such as DARTS (Liu et al., 2018) and AMBER (Zhang et al., 2021). While effective for standard ML
tasks, these approaches are constrained by predefined search spaces and are less suited to scientific
domains, where domain knowledge and optimization objectives are unstructured and continually
evolving, making LLM-based agents a more natural fit.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2 PROBLEM FORMULATION

We consider the problem of automatic scientific algorithm optimization with LLMs. Given a general
solution space S full (e.g., all Python scripts) and an evaluator h(·) : S full 7→ R, the objective is to
find the optimal solution s∗ = argmaxs∈S full h(s). h(·) can be any evaluation metric, such as AUC,
average of several metrics, or domain-specific measures (e.g., enrichment of inferred disease genes
against an expert-curated set). We assume access to a task description T (e.g., “single-cell RNA-seq
imputation”), a domain-specific knowledge base (e.g., scientific papers), and a general LLM that can
be instantiated as agents. The agent can, for example, summarize domain priors from T , retrieve
information from the knowledge base, and refine a candidate solution s based on instructions. The
goal is to iteratively implement and improve solutions to maximize h(·) within a time budget. We
consider two settings: a cold start, where optimization begins from scratch, and a warm start, where
an initial solution sinit (e.g., a state-of-the-art method) is given for further improvement.

3 METHODS

TusoAI takes as input a task description T , a dataset D, an evaluator h(·), and optionally an ini-
tial solution sinit. It outputs an optimized solution s∗ (Algorithm 1). Developing computational
methods for scientific domains poses several challenges. First, domain-specific knowledge is often
unstructured, which we address using a knowledge tree that organizes information into categories
and within-category instructions. Second, approaches and optimization strategies can vary widely,
which we manage through hierarchical planning with Bayesian updates to promote diversity while
ensuring solution quality. Third, understanding complex data patterns is challenging, which we
mitigate with fine-grained generation that integrates model optimization with diagnostic feedback.

TusoAI consists of 3 steps. First, it gathers domain knowledge by summarizing key scientific pa-
pers, ensuring that optimization instructions reflect established best practices and recent advances
rather than relying solely on LLM priors. Second, it builds a two-level knowledge tree of struc-
tured instructions: (1) categories of optimization strategies and (2) specific instructions within each
category, promoting both diversity and relevance. Categories and instructions are first drafted by
the LLM and then refined through additional LLM queries in conjunction with paper summaries to
ensure diversity and scientific rigor; we also predefine a diagnostic category Idiag to guide data log-
ging and model diagnosis. Third, after initializing candidate solutions, it iteratively selects diverse
top performers and improves them through either instruction-based or diagnostic-based optimiza-
tion. Instruction categories are sampled adaptively via a Bayesian strategy informed by past perfor-
mance, while feedback comparing new and prior solutions helps discourage repetition. Examples of
instructions generated are provided at Appendix B.

Step 1: Gather domain knowledge. TusoAI first retrieves up to 10 key papers from Semantic
Scholar (Allen Institute for AI, 2025) relevant to T , ranked by citation count. For each paper, an
agent Apaper creates a 15-point technical summary from the abstract and iteratively refines it using
each paragraph of the paper’s Methods section (up to 1,200 words to focus solely on technical
content without relying on costly deep research agents parsing the entire document). This produces
P = {Pi}, where each Pi is a refined 15-point summary of paper i’s method.

Step 2: Build structured instructions. TusoAI uses a draft-then-refine strategy to construct opti-
mization categories, where an agent Acate first drafts candidate categories from the task description
T , then refines them by iterating through each paper summary Pi ∈ P , adjusting existing categories
or adding new ones as needed. Categories are task-specific and can be general (e.g., “regularization”,
“model architectures”) or domain-specific (e.g., “single-cell noise modeling”, “genetic feature in-
teractions”). Each category is assigned a probability πc representing its utility in the optimization
process; πc is initialized by Acate so that tasks earlier in the pipeline (e.g., “feature preprocessing”)
receive higher weight than later ones (e.g., “hyperparameter tuning”). Similarly, TusoAI uses a
draft-then-refine strategy to initialize instructions for each category, where an agent Ainstr first drafts
10 candidate instructions Ic from the task description T . These instruction lists are then refined by
incorporating 10 additional instructions for each paper summary Pi ∈ P . For feedback, TusoAI ini-
tializes an empty list Fc ← ∅ for each category, which is updated with category-specific feedback
during optimization. A special predefined diagnostic category Idiag provides instructions for logging
diagnostic information useful for model updates, with its own feedback list Fdiag.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 TusoAI
Input: Task T ; dataset D; evaluator h(·); optional initial solution sinit.
Hyperparameters: Time budget Tbudget (default 8 hrs).

1: Gather domain knowledge: P ← Apaper(T ) ▷ Paper summaries
2: Build structured instructions:

C, {πc}c∈C ← DraftThenRefine(Acate, T ,P) ▷ Instruction categories with probabilities
For each c ∈ C: ▷ Per-category instructions and feedback

Ic ← DraftThenRefine(Ainstr, T ,P, c), Fc ← ∅
Idiag ← ∅, Fdiag ← ∅ ▷ Diagnostic instructions and feedback

3: Initialize solutions: S ← Ainit(T ,P, sinit); Ntop ← |S|
4: While wall-clock time < Tbudget do
5: Select Ntop diverse top solutions from S
6: for each top s do
7: if Bernoulli(α) do ▷ Instruction-based optimization, defualt α = 0.8
8: Sample c ∼ Cat({πc}c∈C); optimize s′ ← Aoptim

(
s, Ic,Fc

)
9: if h(s′) > h(s) do πc ← 1.1πc; renormalize {πc}c∈C ▷ Update category utility

10: Fc ← Fc ∪ {Afeedback(s, s
′)} ▷ Gather category-specific feedback

11: else ▷ Diagnostic-based optimization
12: s′ ← Adiag

(
s,D, Idiag,Fdiag

)
▷ Get model&data log info then optimize

13: Fdiag ← Fdiag ∪ {Afeedback(s, s
′)} ▷ Gather diagnostic feedback

14: S ← S ∪ {s′}
15: Nsol ← max(1, Ntop − 1) every 2 rounds
16: return s∗ ∈ argmaxs∈S h(s)

Step 3.1: Initialize solutions. The initialization agent Ainit drafts 5 candidate solution descrip-
tions from T and iteratively refines them using each paper summary in P , adding new descriptions
or improving existing ones (e.g., “zero-inflated Poisson with kNN smoothing”). These are basic
descriptions designed to start from scratch and explore to avoid simply re-implementing existing
solutions. It then attempts to implement and debug each solution; those that successfully compile
form the initial solution pool S. Each implementation attempt is limited to 10 minutes with up to 4
bug-fix attempts.

Step 3.2: Iterative optimization. Given the current solution set S, TusoAI selects diverse top
solutions by clustering them based on code-text similarity and, within each cluster, choosing the
shortest solution whose performance is within 0.1% of the cluster’s best model; this helps discourage
overfitting and randomness while maintaining diversity and concise code. For each cluster’s top
solution s, TusoAI performs either instruction-based optimization (80% probability) or diagnostic-
based optimization (20% probability). The resulting solution s′ is added to the pool S ← S ∪ s′.
Each implementation attempt is limited to 10 minutes with up to 2 bug-fix attempts. This time
regularization ensures the optimization period is not wasted on a few inefficient implementations,
and encourages the final method to be scalable.

• Instruction-based optimization. The optimization agent Aoptim selects an instruction by
first sampling an instruction category c ∼ Cat({πc}c∈C), then uniformly draw 3 candi-
date instructions from Ic, and finally choosing the most promising among them. It then
optimizes s to produce s′ using the selected instruction in conjunction with 5 most recent
feedback entries from Fc. If h(s′) > h(s), TusoAI updates the category utility by setting
πc ← 1.1πc and renormalizing {πc}c∈C . Finally, the feedback agent Afeedback summarizes
the change from s to s′ and appends it to Fc (e.g., “this optimization constructed a kNN on
the top 50 PC’s rather than on all genes, improving performance by 15%”).

• Diagnostic-based optimization. The optimization agent Aoptim selects an instruction by
first uniformly draw 3 candidate instructions from Idiag and then choosing the most promis-
ing among them (e.g., “training curves”, “distribution checks”, “validation of assump-
tions”). It then diagnoses and improves s to produce s′ using the selected instruction in
conjunction with 5 most recent feedback entries from Fc: it runs s to collect diagnostic
logs and then uses this information to produce an improved model s′. Finally, the feedback
agent Afeedback summarizes the change from s to s′ and appends it to Fdiag.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

We evaluate TusoAI on 11 scientific applications spanning diverse domains, including 6 single-cell
analysis tasks (Luecken et al., 2025) and 5 scientific deep learning tasks (Tu et al., 2022). The
single-cell tasks include denoising (Denoise), cell-type label projection (Label), batch integration
(Batch), identification of spatially variable genes (SVG), decomposition of spot-level spatial data
into specific cell types (Decomp), and dimensionality reduction for visualization (Visual). The sci-
entific deep learning tasks include omnidirectional vision (Spherical), prosthetics control (NinaPro),
medical diagnostics (ECG), earth monitoring (Satellite), and genetic prediction (DeepSea). In each
task, we run TusoAI for 8 hours, optimizing performance on a validation dataset, and evaluating
final performance on a separate deployment dataset. We conduct comprehensive ablation studies to
assess the contribution of different components of TusoAI (Subsection 4.2), and two case studies
demonstrating how TusoAI can reveal new biological insights in genetics (Section 5). Additional
details are provided in Appendix C, D, J, K.

Baseline methods. We compare TusoAI against the state-of-the-art MLE agent AIDE (Jiang et al.,
2025), scientific agents Biomni (Huang et al., 2025) and ChatGPT-Agent (OpenAI, 2025), and top-
performing application-specific methods. Biomni (LLM backbone Claude-4-Sonnet) and ChatGPT-
agent (LLM backbone GPT-5) are used to iteratively build models on data for single-cell tasks; for
deep learning tasks, where Biomni and ChatGPT-agent were unable to operate, we substitute the best
of ten models constructed by Claude-4-Sonnet and GPT-5. For application-specific baselines, we
use the “top-performing expert” method for single-cell tasks (Luecken et al., 2025), and all baseline
methods, including expert models and NAS methods, for the scientific deep learning tasks (Tu et al.,
2022). This set of baselines is consistent with related work in scientific optimization (Aygün et al.,
2025) and a recent benchmark that identified AIDE and Biomni as top-performers (Miller et al.,
2025). For details on baseline implementation, see Appendix E.

4.1 PERFORMANCE ACROSS BENCHMARK EXPERIMENTS

Results for the 6 single-cell tasks and 5 scientific deep learning tasks are reported in Tables 1 and 2.
We reached 2 main conclusions. First, TusoAI consistently outperformed baseline methods across
benchmarks when generating code from scratch (average rank of 1.2 for single-cell tasks and 2.8
for scientific deep learning tasks, vs. 3.0 and 4.0 for the second best, resp.). Second, the meth-
ods constructed by TusoAI are novel rather than simple re-implementations of existing approaches
or calls to standard packages. Examples include: (i) in single-cell denoise, TusoAI designed a
non-negative matrix factorization (NMF) approach that models dropout rates, Poisson noise, and
performs iterative refinement, distinct from the only other NMF-based approach in the OpenProb-
lems benchmark, ALRA (Linderman et al., 2022); (ii) in SVG, TusoAI adapted known techniques
such as modeling expression as a function of spatial coordinates and neighborhood summaries to
create a custom, high-performing method; (iii) in Satellite, TusoAI combined preprocessing, train-
ing procedures, loss functions, and ensembling techniques to build the top-performing model; and
(iv) in Spherical, TusoAI fine-tuned layers of ResNet-50 and augmented the data with random flips
and rotations. Third, all methods constructed by TusoAI are computationally efficient, owing to the
runtime constraints imposed during optimization.

Denoise Label Batch SVG Decomp Visual Avg Avg rank
Expert 0.28 0.85 0.71 0.66 0.49 0.44 0.57 3.7
AIDE* 0.30 0.87 0.71 0.73 0.06 0.44 0.52 3.0
Biomni* 0.16 0.89 0.82 0.16 0.53 0.35 0.49 3.7
ChatGPT-Agent* 0.03 0.81 0.83 0.60 0.74 0.38 0.57 3.5
TusoAI* 0.35 0.89 0.83 0.80 0.64 0.44 0.66 1.2

Table 1: Single-cell benchmarks. We report performance across 6 single-cell tasks. “*” denotes
agentic methods. Best in bold, second-best underlined. 95% CIs across 3 random seeds all under
0.01 and thus not shown.

We conducted 2 secondary analyses. First, we assessed the diversity of code produced by TusoAI
and AIDE over 8 hours of optimization, quantifying code diversity using cosine similarity of text
embeddings between each candidate and its 10 previous and 10 subsequent iterations (Figure 2A).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Spherical NinaPro ECG Satellite DeepSEA Avg Avg rank
WRN default 0.14 ± 0.01 0.93 ± 0.00 0.57 ± 0.00 0.85 ± 0.00 0.60 ± 0.00 0.62 6.9
DenseNAS random 0.29 ± 0.02 0.92 ± 0.01 0.58 ± 0.00 0.86 ± 0.00 0.60 ± 0.00 0.65 5.4
DenseNAS original 0.27 ± 0.01 0.90 ± 0.01 0.60 ± 0.00 0.86 ± 0.01 0.60 ± 0.00 0.65 5.8
Perceiver IO 0.17 ± 0.00 0.78 ± 0.02 0.34 ± 0.00 0.84 ± 0.00 0.62 ± 0.00 0.55 9.6
XGBoost 0.03 ± 0.00 0.78 ± 0.01 0.44 ± 0.00 0.64 ± 0.00 0.50 ± 0.00 0.48 11.6
WRN ASHA 0.25 ± 0.00 0.93 ± 0.01 0.57 ± 0.00 0.84 ± 0.01 0.59 ± 0.00 0.63 7.1
DARTS 0.52 ± 0.03 0.82 ± 0.01 0.66 ± 0.00 0.87 ± 0.00 0.68 ± 0.00 0.71 4.0
AMBER N/A N/A 0.67 ± 0.00 0.87 ± 0.00 0.68 N/A N/A
Expert 0.33 ± 0.01 0.91 ± 0.01 0.72 ± 0.00 0.80 ± 0.00 0.70 ± 0.00 0.69 4.6
AIDE* 0.16 ± 0.01 0.86 ± 0.00 0.52 ± 0.01 0.83 ± 0.01 0.57 ± 0.00 0.59 9.8
GPT-5* 0.36 ± 0.00 0.89 ± 0.00 0.58 ± 0.03 0.86 ± 0.01 0.66 ± 0.00 0.67 5.8
Claude-4-Sonnet* 0.40 ± 0.00 0.90 ± 0.00 0.50 ± 0.01 0.88 ± 0.00 0.73 ± 0.00 0.68 4.6
TusoAI* 0.42 ± 0.01 0.90 ± 0.00 0.61 ± 0.00 0.89 ± 0.01 0.70 ± 0.00 0.70 2.8

Table 2: Scientific deep learning benchmarks. We report performance across 5 scientific deep
learning tasks. “*” denotes agentic methods. Performance of non-agentic methods extracted from
NASBENCH-360. Best in bold, second-best underlined. 95% CIs provided across 3 random seeds.

TusoAI achieved substantially higher diversity than AIDE throughout the optimization process. For
example, in the batch integration benchmark, AIDE repeatedly proposed small variations of UMAP-
based dimensionality reduction, whereas TusoAI explored a wide variety of dimensionality reduc-
tion, transformation, and scaling techniques. This higher diversity is perhaps due to TusoAI’s in-
struction sampling, feedback, and diagnosis procedures, which encourage diverse solutions. In con-
trast, AIDE promotes incremental changes at each optimization step to facilitate traceability, which
may bias the search toward local tuning rather than full exploration. Details of the diversity pro-
cedure is provided in Appendix G. Second, we characterized the optimization trajectory of TusoAI
on the single-cell denoising task (Figure 2B). We identified 5 key developments that led to strong
performance: (1) introducing NMF, (2) modeling dropout, (3) modeling Poisson noise, (4) adding
iterative refinement, and (5) incorporating a sparsity-balancing step. Notably, during optimization,
TusoAI generated many methods that reduced performance before converging on high-performing
solutions. Together with the feedback mechanism, this broad exploration allowed TusoAI to effi-
ciently search the solution space and identify top-performing methods.

Figure 2: Behavior of code generated by TusoAI. (A) Code diversity of TusoAI and AIDE over
optimization time, as measured by 1− cosine similarity. Each line corresponds to a dataset. (B)
Performance of the current code and the best code over optimization time for a representative task
“Denoise”. Key optimization changes with their occurrence times are annotated.

4.2 ABLATION STUDIES

We conducted extensive ablation studies to evaluate the impact of each novel component of Tu-
soAI, including: (i) removing the categorical structure and placing all instructions and feedback into
a single category (No categories); (ii) disabling the Bayesian sampling strategy across categories
(No Bayesian); (iii) disabling the model diagnosis capability (No diagnosis); and (iv) discarding
domain knowledge altogether, such that each iteration simply applies a generic instruction (e.g.,
“Optimize this model”; No knowledge). Removing these components each negatively affected over-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

all performance (Table 3). We attribute this to reduced code diversity (mean diversity 0.48 vs.
0.44/0.39/0.38/0.33 for ablated versions, resp.) and computational efficiency (mean time to opti-
mize 2.3 hours vs. 2.4/3.0/2.6/2.4 for ablated versions, resp.). Removing domain knowledge had
the strongest impact on performance and diversity, while removing Bayesian updates most reduced
TusoAI’s computational efficiency. See Appendix H for further ablation details.

We next assessed the impact of LLM backbones used by TusoAI, testing across 5 different LLMs:
low-latency models GPT-4o-mini (default) and Claude-3.5-Haiku; state-of-the-art reasoning models
GPT-5 and Claude-4-Sonnet; and open-source GPT-oss-120b. Results are shown in Table ??. Apart
from GPT-oss-120b, TusoAI achieved relatively consistent performance across all LLMs for most
tasks, demonstrating robustness. Interestingly, LLMs such as GPT-5 and Claude-4-Sonnet did not
consistently outperform their lower-latency counterparts, GPT-4o-mini and Claude-3.5-Haiku. This
may be because, while reasoning models can construct highly complex code, their tendency to over-
build (e.g., each of GPT-5’s methods are 300+ lines of code) makes subsequent iterations difficult to
refine; in contrast, low-latency but capable models like GPT-4o-mini and Claude-3.5-Haiku, when
paired with an appropriate system design, performed just as well at a fraction of the cost (e.g., opti-
mizing denoising for 8 hours costs 0.24$ with GPT-4o-mini and 22.3$ with GPT-5). See Appendix
I for further LLM details.

Denoise SVG Decomposition ECG Satellite Avg Avg rank
TusoAI (default) 0.35 0.80 0.64 0.61 0.89 0.66 2.0
No categories 0.09 0.72 0.56 0.63 0.86 0.57 3.2
No Bayesian 0.36 0.77 0.22 0.57 0.84 0.55 3.4
No diagnosis 0.26 0.77 0.68 0.63 0.86 0.64 2.0
No knowledge 0.17 0.51 0.07 0.68 0.85 0.46 3.8
GPT-4o-mini (default) 0.35 0.80 0.64 0.61 0.89 0.66 2.2
GPT-5 0.31 0.80 0.82 0.67 0.87 0.69 2.2
Claude 3.5 Haiku 0.41 0.78 0.70 0.63 0.89 0.68 1.8
Claude 4 Sonnet 0.32 0.78 0.53 0.59 0.84 0.61 4.2
GPT-oss-120b 0.39 0.74 0.13 0.61 0.85 0.54 3.8

Table 3: Ablation studies (top) and varying LLM backbone (bottom). Best in bold, second-best
underlined.

5 CASE STUDIES IN GENETICS

We applied TusoAI to address 2 key challenges in genetics: detecting disease-critical cell popula-
tions and linking genetic variants to their target genes; these are central to understanding disease
etiology but limited by current computational models. We initialized TusoAI with state-of-the-art
methods (scDRS (Zhang et al., 2022) and pgBoost (Dorans et al., 2025), resp.) and evaluated its
ability to improve these approaches and generate new biological insights.

Detecting disease-critical cell populations. scDRS (Zhang et al., 2022) is a state-of-the-art
method that integrates genome-wide association studies (GWAS) with single-cell RNA-seq (scRNA-
seq) to identify disease-associated cell populations, but its power is limited by the high noise of
scRNA-seq data. Here, we apply TusoAI in conjunction with scDRS and task it with optimizing
scDRS’s association scoring function. Results are reported in Figure 3. We reached 3 main conclu-
sions. First, the TusoAI-optimized version substantially outperformed the original scDRS in both
simulations and real-data benchmarks: it achieved over 40% higher power in causal simulations
(Figure 3A) while retaining calibration in null settings (Appendix J), and identified 21% more true
cell type–disease associations (17 vs. 14) without false associations in a real-data benchmark (Li
et al., 2025). Second, the TusoAI-optimized scoring function is concise and interpretable. It com-
putes association scores in log–log rather than log space, likely because this transformation better
captures polygenic disease signals across many genes, avoiding domination by a few highly ex-
pressed genes. This improvement reflects TusoAI’s ability to efficiently explore function space: it
tested 167 unique versions in 24 hours and at a cost of $0.37, whereas the original authors evaluated
fewer than 10 versions over 3 months. Third, applying the TusoAI-optimized scDRS to a T cell

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

dataset (Cano-Gamez et al., 2020) revealed 26 disease-associated T cell subpopulations (vs. 17 by
the original method), including regulatory T cells, central memory T cells, and effector memory T
cells associated with primary biliary cirrhosis, consistent with the roles of these T cell populations
in autoimmunity (Dominguez-Villar & Hafler, 2018; Seo et al., 2025).

Figure 3: Optimizing scDRS for detecting cell-disease associations. (A) Assessing power in
causal simulations. 95% CI’s are calculated across 30 replicates at each perturbation effect size. (B)
Number of discovered ground-truth trait-cell type pairs at FDR 0.05. (C) Number of discovered
trait-T cell subtype pairs at FDR 0.05.

Linking genetic variants to genes using single-cell multiome. pgBoost (Dorans et al., 2025) is a
state-of-the-art method for linking genetic variants to target genes using single-cell multiome data;
it integrates variant–gene distance with multiple linking strategies, but the task remains challenging
due to the complexity of genetic regulation (Gazal et al., 2022). Here, we apply TusoAI in con-
junction with pgBoost, providing additional positional information for variants and genes, and task
it with optimizing distance-based features. Results are reported in Figure 4. We reached 3 main
conclusions. First, the TusoAI-optimized model significantly outperformed the original pgBoost,
achieving 13.8% higher enrichment of gold-standard links from fine-mapped eQTLs and 7.2% from
activity-by-contact (ABC) links, with particularly large gains across longer variant–gene distances
(Figure 4A,B). Second, the distance-based features generated by TusoAI are concise and inter-
pretable: 3 are transformed versions of existing features (inverse, squared, and normalized terms),
2 are interactions of gene annotations with distance terms, and the sixth indicates whether the SNP
is <50kb from the gene’s transcription start site, consistent with literature suggesting the typical
enhancer–promoter range of around 70kb (Bower et al., 2025). TusoAI discovered these features by
testing 511 combinations of 153 novel distance features within 24 hours at a cost of $0.41, whereas
the original authors evaluated 5 features over 1.5 months. Third, applying the TusoAI-optimized
pgBoost to fine-mapped SNPs for 94 diseases/traits identified 7 novel variant–gene links missed by
previous methods. For example, a fine-mapped variant rs138917529 for glucose and HbA1c was
linked to GCK, consistent with the roles of Glucokinase in regulating glucose levels related to both
glucose metabolism (Froguel et al., 1993) and HbA1c variation (Chakera et al., 2015).

Figure 4: Optimizing pgBoost for SNP-gene link discovery. (A) Area under the enrichment-recall
curve (AUERC, as defined in pgBoost) across distance thresholds for ground truth eQTL variant-
gene links. (B) AUERC across distance thresholds for ground truth ABC variant-gene links. (C)
Locus plot of rs138917529 and surrounding genes. Red dashed line indicates cutoff for SNP-gene
linking.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Allen Institute for AI. Semantic scholar. https://www.semanticscholar.org, 2025. Ac-
cessed: 2025-09-16.

Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi, Amanpreet Singh, Joseph Chee Chang, Kyle
Lo, Luca Soldaini, Sergey Feldman, Mike D’arcy, et al. Openscholar: Synthesizing scientific
literature with retrieval-augmented lms. arXiv preprint arXiv:2411.14199, 2024.

Eser Aygün, Anastasiya Belyaeva, Gheorghe Comanici, Marc Coram, Hao Cui, Jake Garrison, Re-
nee Johnston Anton Kast, Cory Y McLean, Peter Norgaard, Zahra Shamsi, et al. An ai system to
help scientists write expert-level empirical software. arXiv preprint arXiv:2509.06503, 2025.

G. Bower, E. W. Hollingsworth, S. H. Jacinto, et al. Range extender mediates long-distance enhancer
activity. Nature, 643:830–838, 2025. doi: 10.1038/s41586-025-09221-6.

Enrique Cano-Gamez, Blagoje Soskic, Theodoros I. Roumeliotis, et al. Single-cell transcrip-
tomics identifies an effectorness gradient shaping the response of cd4+ t cells to cytokines. Na-
ture Communications, 11(1):1801, 2020. doi: 10.1038/s41467-020-15543-y. URL https:
//doi.org/10.1038/s41467-020-15543-y.

Ali J. Chakera, Anna M. Steele, Anna L. Gloyn, Maggie H. Shepherd, Beverley Shields, Sian Ellard,
and Andrew T. Hattersley. Recognition and management of individuals with hyperglycemia be-
cause of a heterozygous glucokinase mutation. Diabetes Care, 38(7):1383–1392, 06 2015. ISSN
0149-5992. doi: 10.2337/dc14-2769. URL https://doi.org/10.2337/dc14-2769.

Margarita Dominguez-Villar and David A. Hafler. Regulatory t cells in autoimmune disease.
Nature Immunology, 19:665–673, 2018. doi: 10.1038/s41590-018-0120-4. URL https:
//doi.org/10.1038/s41590-018-0120-4.

Elizabeth Dorans, Karthik Jagadeesh, Kushal Dey, and Alkes L Price. Linking regulatory variants to
target genes by integrating single-cell multiome methods and genomic distance. Nature Genetics,
pp. 1–10, 2025.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming and
natural languages. CoRR, abs/2002.08155, 2020. URL https://arxiv.org/abs/2002.
08155.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Philippe Froguel, Habib Zouali, Nathalie Vionnet, Gilberto Velho, Martine Vaxillaire, Fang Sun,
Suzanne Lesage, Markus Stoffel, Jun Takeda, Philippe Passa, M. Alan Permutt, Jacques S. Beck-
mann, Graeme I. Bell, and Daniel Cohen. Familial hyperglycemia due to mutations in glucokinase
– definition of a subtype of diabetes mellitus. New England Journal of Medicine, 328(10):697–
702, 1993. doi: 10.1056/NEJM199303113281005. URL https://www.nejm.org/doi/
full/10.1056/NEJM199303113281005.

Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard
Schwarz, Yasha Ektefaie, Jovana Kondic, and Marinka Zitnik. Empowering biomedical discovery
with ai agents. Cell, 187(22):6125–6151, 2024.

Steven Gazal, Omer Weissbrod, Farhad Hormozdiari, Kushal K. Dey, Joseph Nasser, Kumar A.
Jagadeesh, Daniel J. Weiner, Huwenbo Shi, Charles P. Fulco, Luke J. O’Connor, Bogdan
Pasaniuc, Jesse M. Engreitz, and Alkes L. Price. Combining snp-to-gene linking strate-
gies to identify disease genes and assess disease omnigenicity. Nature Genetics, 54(6):827–
836, June 2022. doi: 10.1038/s41588-022-01087-y. URL https://doi.org/10.1038/
s41588-022-01087-y.

10

https://www.semanticscholar.org
https://doi.org/10.1038/s41467-020-15543-y
https://doi.org/10.1038/s41467-020-15543-y
https://doi.org/10.2337/dc14-2769
https://doi.org/10.1038/s41590-018-0120-4
https://doi.org/10.1038/s41590-018-0120-4
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://www.nejm.org/doi/full/10.1056/NEJM199303113281005
https://www.nejm.org/doi/full/10.1056/NEJM199303113281005
https://doi.org/10.1038/s41588-022-01087-y
https://doi.org/10.1038/s41588-022-01087-y


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024.

Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. biorxiv,
pp. 2025–05, 2025.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Ruofan Jin, Zaixi Zhang, Mengdi Wang, and Le Cong. Stella: Self-evolving llm agent for biomedical
research. arXiv preprint arXiv:2507.02004, 2025.

Tuuli Lappalainen and Daniel G MacArthur. From variant to function in human disease genetics.
Science, 373(6562):1464–1468, 2021.

Erin LeDell, Sebastien Poirier, et al. H2o automl: Scalable automatic machine learning. In Pro-
ceedings of the AutoML Workshop at ICML, volume 2020, pp. 24, 2020.

Ang Li, Tian Lin, Alicia Walker, Xiao Tan, Ruolan Zhao, Shuyang Yao, Patrick F. Sullivan, Jens
Hjerling-Leffler, Naomi R. Wray, and Jian Zeng. Benchmarking methods integrating gwas and
single-cell transcriptomic data for mapping trait-cell type associations. medRxiv, 2025. doi:
10.1101/2025.05.24.25328275. URL https://www.medrxiv.org/content/early/
2025/06/05/2025.05.24.25328275.

George C. Linderman, Jiajun Zhao, Maria Roulis, et al. Zero-preserving imputation of single-cell
rna-seq data. Nature Communications, 13:192, 2022. doi: 10.1038/s41467-021-27729-z. URL
https://doi.org/10.1038/s41467-021-27729-z.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

M. D. Luecken, S. Gigante, D. B. Burkhardt, et al. Defining and benchmarking open prob-
lems in single-cell analysis. Nature Biotechnology, 43:1035–1040, 2025. doi: 10.1038/
s41587-025-02694-w. URL https://doi.org/10.1038/s41587-025-02694-w.

Xiaoliang Luo, Akilles Rechardt, Guangzhi Sun, Kevin K Nejad, Felipe Yáñez, Bati Yilmaz,
Kangjoo Lee, Alexandra O Cohen, Valentina Borghesani, Anton Pashkov, et al. Large language
models surpass human experts in predicting neuroscience results. Nature human behaviour, 9(2):
305–315, 2025.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, 6(5):525–535, 2024.

Henry E. Miller, Matthew Greenig, Benjamin Tenmann, and Bo Wang. Bioml-bench: Evalu-
ation of ai agents for end-to-end biomedical ml. bioRxiv, 2025. doi: 10.1101/2025.09.01.
673319. URL https://www.biorxiv.org/content/early/2025/09/07/2025.
09.01.673319.

J. M. Mudge, S. Carbonell-Sala, M. Diekhans, et al. Gencode 2025: reference gene annotation
for human and mouse. Nucleic Acids Research, 53(D1):D966–D975, 2025. doi: 10.1093/nar/
gkae1078.

Jaehyun Nam, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö Arık, and Tomas Pfister. Mle-
star: Machine learning engineering agent via search and targeted refinement. arXiv preprint
arXiv:2506.15692, 2025.

Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for automating
machine learning. In Workshop on automatic machine learning, pp. 66–74. PMLR, 2016.

11

https://www.medrxiv.org/content/early/2025/06/05/2025.05.24.25328275
https://www.medrxiv.org/content/early/2025/06/05/2025.05.24.25328275
https://doi.org/10.1038/s41467-021-27729-z
https://doi.org/10.1038/s41587-025-02694-w
https://www.biorxiv.org/content/early/2025/09/07/2025.09.01.673319
https://www.biorxiv.org/content/early/2025/09/07/2025.09.01.673319


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI. Introducing chatgpt agent: Bridging research and action. https://openai.com/
index/introducing-chatgpt-agent/, July 2025.

Zeeshan Rasheed, Muhammad Waseem, Kai Kristian Kemell, Aakash Ahmad, Malik Abdul Sami,
Jussi Rasku, Kari Systä, and Pekka Abrahamsson. Large language models for code generation:
The practitioners perspective. arXiv preprint arXiv:2501.16998, 2025.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Eui S. Seo, Sang K. Lee, and Young M. Son. Multifaceted functions of tissue-resident memory t
cells in tumorigenesis and cancer immunotherapy. Cancer Immunology, Immunotherapy, 74(6):
184, April 2025. doi: 10.1007/s00262-025-04035-x. URL https://doi.org/10.1007/
s00262-025-04035-x.

Yanchao Tan, Hang Lv, Yunfei Zhan, Guofang Ma, Bo Xiong, and Carl Yang. Boxlm: Unifying
structures and semantics of medical concepts for diagnosis prediction in healthcare. In Forty-
second International Conference on Machine Learning, 2025.

Xiangru Tang, Zhuoyun Yu, Jiapeng Chen, Yan Cui, Daniel Shao, Weixu Wang, Fang Wu, Yuchen
Zhuang, Wenqi Shi, Zhi Huang, et al. Cellforge: Agentic design of virtual cell models. arXiv
preprint arXiv:2508.02276, 2025.

InternAgent Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Runmin Ma, Yusong
Hu, Zhiyin Yu, Xiaohan He, Songtao Huang, Shaowei Hou, Zheng Nie, Zhilong Wang, Jinyao
Liu, Tianshuo Peng, Peng Ye, Dongzhan Zhou, Shufei Zhang, Xiaosong Wang, Yilan Zhang,
Meng Li, Zhongying Tu, Xiangyu Yue, Wangli Ouyang, Bowen Zhou, and Lei Bai. Internagent:
When agent becomes the scientist – building closed-loop system from hypothesis to verification,
2025. URL https://arxiv.org/abs/2505.16938.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework
for full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.

Renbo Tu, Nicholas Roberts, Mikhail Khodak, Junhong Shen, Frederic Sala, and Ameet Talwalkar.
NAS-bench-360: Benchmarking neural architecture search on diverse tasks. In Thirty-sixth Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL
https://openreview.net/forum?id=xUXTbq6gWsB.

Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan,
Xinpeng Hong, Weiqing Liu, Yelong Shen, Weizhu Chen, and Jiang Bian. R&d-agent: Automat-
ing data-driven ai solution building through llm-powered automated research, development, and
evolution, 2025. URL https://arxiv.org/abs/2505.14738.

Jiakang Yuan, Xiangchao Yan, Shiyang Feng, Bo Zhang, Tao Chen, Botian Shi, Wanli Ouyang,
Yu Qiao, Lei Bai, and Bowen Zhou. Dolphin: Moving towards closed-loop auto-research through
thinking, practice, and feedback, 2025. URL https://arxiv.org/abs/2501.03916.

Martin Jinye Zhang, Kangcheng Hou, Kushal K Dey, Saori Sakaue, Karthik A Jagadeesh, Kathryn
Weinand, Aris Taychameekiatchai, Poorvi Rao, Angela Oliveira Pisco, James Zou, et al. Poly-
genic enrichment distinguishes disease associations of individual cells in single-cell rna-seq data.
Nature genetics, 54(10):1572–1580, 2022.

Zijun Zhang, Christopher Y Park, Chandra L Theesfeld, and Olga G Troyanskaya. An automated
framework for efficiently designing deep convolutional neural networks in genomics. Nature
Machine Intelligence, 3(5):392–400, 2021.

12

https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-chatgpt-agent/
https://doi.org/10.1007/s00262-025-04035-x
https://doi.org/10.1007/s00262-025-04035-x
https://arxiv.org/abs/2505.16938
https://openreview.net/forum?id=xUXTbq6gWsB
https://arxiv.org/abs/2505.14738
https://arxiv.org/abs/2501.03916


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXAMPLE TUSOAI CODE TEMPLATE

The below code template is for single-cell denoising. The only function TusoAI ever sees and
optimizes is the tuso model function.

Listing 1: Single-cell denoising template file.

import scanpy as sc
import pandas as pd
import numpy as np
import scipy as sp
import magic
from anndata import read_h5ad
import scprep
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import issparse
from sklearn.decomposition import PCA
from anndata import AnnData
import random

def mse(adata):
import anndata
import scanpy as sc
import scprep
import sklearn.metrics

test_data = anndata.AnnData(X=adata.obsm["test"], obs=adata.obs, var=
adata.var)

denoised_data = anndata.AnnData(
X=adata.obsm["denoised"], obs=adata.obs, var=adata.var

)

# scaling and transformation
target_sum = 10000

sc.pp.normalize_total(test_data, target_sum=target_sum)
sc.pp.log1p(test_data)

sc.pp.normalize_total(denoised_data, target_sum=target_sum)
sc.pp.log1p(denoised_data)

error = sklearn.metrics.mean_squared_error(
scprep.utils.toarray(test_data.X), denoised_data.X

)
return error

def tuso_model(adata):

adata.obsm["denoised"] = ...
return adata

def main():
np.random.seed(42)
random.seed(42)
adata = read_h5ad(’openproblems_datasets/1k_pbmc_processed.h5ad’)
print("tuso_model_start")
adata = tuso_model(adata)
print("tuso_model_end")

val_metric = 1-mse(adata)
print(f"tuso_evaluate: {val_metric}")

main()

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B EXAMPLE INSTRUCTIONS GENERATED BY TUSOAI

Listing 2: Example categories for single-cell denoising.
[’data_preprocessing’, ’feature_engineering’, ’model_architecture’, ’

hyperparameter_tuning’, ’imputation_strategies’, ’
normalization_methods’, ’evaluation_metrics’, ’cross_validation’, ’
domain_knowledge_integration’, ’robustness_techniques’, ’
noise_modeling’, ’dropout_probability_estimation’, ’
graph_neural_network_optimization’, ’dropout_pattern_analysis’, ’
pipeline_interaction_analysis’, ’low_rank_approximation_optimization
’, ’autoencoder_classifier_integration’]

Listing 3: Example instructions within a category.

<p>by leveraging graph attention mechanisms to focus on informative cell
interactions</p>

<p>by incorporating multi-layer graph convolutions to capture
hierarchical gene expression patterns</p>

<p>by implementing edge dropout to enhance model robustness against noise
in cell relationships</p>

<p>by utilizing message passing to propagate information across similar
cell types effectively</p>

<p>by integrating adaptive learning rates for different graph nodes based
on local connectivity</p>

<p>by employing graph pooling techniques to summarize cellular features
without losing critical information</p>

<p>by applying graph regularization to maintain structural integrity of
the cellular network</p>

<p>by utilizing node embeddings to capture latent features of gene
expression profiles</p>

<p>by optimizing neighborhood sizes dynamically based on data density in
the graph</p>

<p>by exploring higher-order graph structures to uncover complex
relationships in RNA-seq data</p>

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.1 PREDEFINED DIAGNOSTIC INSTRUCTIONS

Listing 4: Example predefined diagnostic instructions.
[

"by altering or adding diagnostic information to be printed",
"by altering or adding complex diagnostic information of specific model

components",
"by printing key statistical assumptions underlying the model (e.g.,

independence, normality)",
"by emitting warnings when model assumptions appear to be violated by

the data",
"by logging all implicit assumptions made during model selection or

preprocessing",
"by printing assumptions related to feature distributions or

transformations",
"by displaying model-specific assumptions such as linearity,

homoscedasticity, or no multicollinearity",
"by printing assumptions about data completeness, such as missing value

tolerance",
"by logging expectations about input feature scaling or normalization",
"by displaying prior distributions or regularization beliefs embedded

in the model",
"by printing assumptions about label distribution (e.g., class balance

or stratification)",
"by emitting diagnostics when data fails to meet i.i.d. (independent

and identically distributed) assumptions",
"by logging assumed causal directions or conditional independencies in

the model",
"by printing constraints assumed on feature ranges or valid input

domains",
"by warning if assumptions about sufficient training data volume are

not met",
"by displaying structural assumptions, such as sparsity or low-rank

representations",
"by logging assumptions related to stationarity or autocorrelation in

time-dependent data",
]

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C SINGLE-CELL ANALYSIS TASKS SETUP

The OpenProblems benchmark (Luecken et al., 2025) contains 12 single-cell analysis tasks with
numerous testing datasets and benchmark metrics for each. We select 6 tasks: single-cell denoising,
label projection, batch integration, spatially variable gene identification, spatial decomposition of
cell types, and visualization. These were selected with the following criteria. First, we required
more than one dataset, such that we can optimize on one dataset, and deploy the learned method
on the remaining testing datasets, excluding the 2 cell-cell communication tasks and perturbation
prediction. Second, a publicly available Github to ensure we are reproducing the testing procedures
correctly, excluding multimodal integration and modality prediction. Third, a method for the task
should be able to run in a reasonable amount of time on a CPU, excluding the foundation model
benchmark.

In each task, we performed optimization on one dataset which could be run in a reasonable amount
of time (< 2 for a simple baseline model). The learned methods of each baseline were then applied
to the deployment datasets. In selecting benchmark metrics for each task, we had three criteria.
First, the metric should not have unavoidable trivial solutions, excluding the Poisson loss metric
from denoising, as this can be easily minimized by simply down-weighting lowly expressed genes,
including by just scaling genes by their variance or re-normalizing the data. Second, the metrics
should be computationally efficient to run, so optimization speed of each method will not be dom-
inated by running metrics. This excluded several metrics from batch integration and visualization.
Third, the metric should line up with the task. In the SVG task, it is initially measured in correla-
tion with spatial variability scores, however, the simulation procedure generates binary 0/1 labels of
spatial variability, thus we use accuracy of classifying a gene as SVG instead. We also normalize
metrics such that each is between 0 and 1 and a higher score is better. The score in denoising is
1-MSE, normalized so that no denoising is 0, and perfect denoising is 1. The score in spatial de-
composition is normalized so that a random cell type assignment is 0, and perfect decomposition is
1. See Table 4 for a full breakdown of datasets and metrics used in single-cell tasks.

Optimization dataset Testing datasets Benchmark metrics
Denoise 1K PBMC 5K PBMC MSE

Pancreatic
Label 5k cells from Immune Cell Atlas Diabetic Kidney Accuracy

GTEX v9 F1 macro
HypoMap F1 micro

Mouse Pancreatic Islet Atlas F1 weighted
Tabula Sapiens

Batch 5k cells from Immune Cell Atlas Diabetic Kidney Graph connectivity
GTEX v9 ASW label
HypoMap ASW batch

Mouse Pancreatic Islet Atlas
Tabula Sapiens

SVG Drosophila Stereo-seq E5 Drosophila Stereo-seq E10 Accuracy
Drosophila Stereo-seq E9
Drosophila Stereo-seq E6

Decomp TMS Lung (alpha=1.0) TMS Lung (alpha=0.5) R2

TMS Lung (alpha=5.0)
Pancreas (alpha=0.5)
Pancreas (alpha=1.0)
Pancreas (alpha=5.0)

Visual Mouse HSPCT 5K PBMC Trustworthiness
Mouse Myeloid Distance correlation

Zebrafish Density Preservation

Table 4: Single-cell benchmark setup. Datasets and metrics refer to the setup on the OpenProblems
webpage.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D DEEP LEARNING TASKS SETUP

The NASBENCH-360 benchmark Tu et al. (2022) contains 10 deep learning tasks across scientific
domains with predefined training, validation, and testing splits, as well as evaluation procedures.
We select 5 tasks: Spherical, NinaPro, DeepSEA, Satellite, and ECG. These were selected with the
following criteria. First, the task should be scientific and somewhat understudied compared to stan-
dard ML tasks, excluding the 2 standard image and audio classification tasks. Second, to ensure fair
comparison against the precomputed baselines, we removed tasks where we were uncertain about
reproducing the evaluation procedure, partly due to recent GitHub or package updates requiring
debugging, excluding Cosmic, PSICOV, and DarcyFlow.

In each task, we performed optimization by training a model on the predefined training set and
attaining a score on the validation set. The final testing accuracy of optimized models is attained
when deploying the model on the predefined test set. We use the same splits and metrics defined in
the original paper.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E BASELINE IMPLEMENTATIONS

AIDE. AIDE takes as input a data folder, task description, and evaluation metric. While originally
designed for whole-workflow construction in ML tasks, this can be adapted to general optimization
in the following ways. First, AIDE can operate on any data input in the data folder. If specific
preprocessing information was needed, we could input this code to the task description. Second,
in place of specifying an accuracy metric (e.g., ”F1 score”), we instead simply input the entire
evaluation function in Python, and found this worked well. As our goal is optimization and not
construction, AIDE’s initial prompt is tuned until code was consistently generated and optimized
upon, typically requiring the same formatting information as other methods. AIDE is run for the
same length as TusoAI (8 hours) in the same conda environment on the same CPU (Optimization
for AIDE and TusoAI is performed on the same Intel(R) Xeon(R) Gold 5416S.) or GPU (Intel(R)
Xeon(R) Silver 4314 CPU @ 2.40GHz), given 4 threads and 50GB of memory. While AIDE does
have a default timeout per execution of 1 hour, on attempting to set this to the same time as TusoAI
led to consistent crashes on more of half of tasks, thus we left it as is.

Biomni. We access Biomni through its web page. Biomni runs on a CPU and can take input files
up to a limit, has a runtime execution of 1 hour. While not specifically designed for optimization,
we can upload the same template code and data as TusoAI then ask Biomni to perform an iterative
process of updates. In practice, this led to between 2 and 10 iterations per task between 20 minutes
and 4 hours.

ChatGPT-Agent. We access ChatGPT-Agent through its web page. ChatGPT-Agent can accept
input files up to 25MB and has a runtime execution of 1 hour. We upload the same template code
and data as TusoAI and ask ChatGPT-Agent to perform an iterative process of updates. In practice,
this led to between 2 and 7 iterations per task between 10 minutes and 5 hours.

Expert. The expert baselines for NASBench-360 are pre-computed from their paper. For single-
cell tasks, we selected the expert method with the following criteria. First, it should be within the
top 3 methods as defined by the existing OpenProblems benchmarking. Second, the OpenProblems
Github should have code for reproducing this method. Third, we selected the method that was
particularly efficient compared to others, if applicable, defined by a runtime of less than 10 minutes
on OpenProblems, with others having greater than 1 hour. This left us with the following expert
methods, whose code we extracted from the OpenProblems Github:

1. Denoise - MAGIC
2. Batch - Combat
3. Label - Logistic Regression
4. Decomposition - NNLS
5. SVG - SPARK-X
6. Visualize - T-SNE (log10CP10K)

Claude-4-Sonnet and GPT-5. In deep learning tasks where Biomni and ChatGPT-Agent cannot
apply due to computational limitations (file size, runtime, GPU access), we substitute the best of
10 models generated by Claude-4-Sonnet and GPT-5. 10 models are generated by prompting these
LLMs using the same template that would have been used in Biomni and ChatGPT-Agent. The best
is decided by the top performing model on the validation dataset which ran in less than one hour.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F STABILITY ACROSS REPLICATES

Figure 5: Validation performance across 3 replicates. Final validation performance after running
TusoAI 3 separate times on each single-cell task.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G CODE DIVERSITY

We measure the diversity of generated code, as measured by the cosine similarity of the text embed-
ding of one generated code versus all others. This is performed for TusoAI and AIDE. For each, we
first filter out repetitive/uninformative code strings, including comments, imports, evaluation func-
tions and data loading procedures (which will not change over iterations). We then apply sklearn’s
TfidfVectorizer function to each cleaned code to obtain a text embedding. We can then compute the
cosine similarity between pairs of code. Diversity is measured as 1-cosine similarity. We opt for
TF-IDF instead of more sophisticated methods like CodeBERT (Feng et al., 2020) which measure
semantic similarity, as we observed this overestimated the similarity between code (all cosine simi-
larity > 0.997 for all tasks). This is likely due to each iteration always being a slight permutation of
the same python method performing the same task. TF-IDF better captures a measure of difference
between algorithmic procedures in this case.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H ABLATION ANALYSIS

Figure 6: Additional ablation information. (A) Box plot across 5 tasks of the mean code diversity.
(B) Box plot across 5 tasks of the mean time to optimize.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I LLM ANALYSIS

Figure 7: Additional LLM information. (A) Average length of generated methods for each task
and LLM versus the total count of how many methods were generated. (B) Average length of
generated methods for each task and LLM versus the final deployment performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

J SCDRS ANALYSIS

Optimization setup. scDRS’ codebase consists of several files. We construct a version of com-
pute score.py that exposes the compute raw score function. This is the only function TusoAI op-
erates upon during optimization. For optimization, we construct causal simulations similar to the
scDRS paper, subsampling 10k cells from TMS, perturbing 1000 disease genes in a cluster of cells,
setting the geneset overlap to 25%, and varying effect size from 5 to 50%. TusoAI optimizes the
compute raw score function based on the average (F1 + AUPRC)/2 across 3 replicates at effect size
15%, where scDRS has lower power. We run this experiment for 24 hours using default parameter
settings for TusoAI.

Additional simulation results. We apply scDRS and the learned version by TusoAI to all 30 repli-
cates of each effect size in causal simulations. We additionally apply it to 100 replicates of null
simulations, identical to scDRS, where 1000 random genes are selected with no perturbation. Addi-
tional metrics in these simulations are reported in Figure 8.

Figure 8: Additional scDRS metrics. (A) Q-Q plot of -log10 p-values in null simulations. 95%
CI’s are calculated at each point across 30 replicates. (B) AUPRC of associating individual cells
in causal simulations. 95% CI’s are calculated at each point across 30 replicates. (C) FDR of
associating individual cells in causal simulations. 95% CI’s are calculated at each point across 30
replicates.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K PGBOOST ANALYSIS

Optimization setup. pgBoost discovers that distance-based features are critical for modeling SNP-
gene distances. It’s samples are SNP-gene pairs, and features include over 30 features derived from
single-cell multiome methods and 2 distance features, the SNP distance to the gene’s transcrip-
tion start site (TSS), and a binary indicator of if this is the closest TSS of any gene to the SNP.
We augment pgBoost’s script with gene annotations from GENCODE V48 (Mudge et al., 2025),
specifically the SNP’s position, the gene’s TSS, and the gene’s transcription end site (TES). During
both the knowledge tree construction and optimization process, TusoAI is encouraged to come up
with instructions/optimizations relevant to distance-based modeling of SNP-gene links and avoid
other model changes. Optimization is performed by increasing the average enrichment in pgBoost’s
primary evaluation of gold-standard links (eQTL and ABC) relative to the original pgBoost’s en-
richment. We run TusoAI for 24 hours using default parameter settings.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

L PROMPT TEMPLATES

L.1 INSTRUCTIONS FOR PARSING LITERATURE

Listing 5: Initializing paper description with abstract.
prompt = f"""

You are a scientific summariser. Draft a concise yet technically accurate
description of the paper’s method based **only** on the abstract below,

to the extent possible. Capture the main points using bullets points.
Do not waste words on complete sentences or details irrelevant to

the methods.

Abstract:
\"\"\"{abstract}\"\"\"
"""

Listing 6: Updating paper description with methods section.
prompt = f"""

The current method description ):

\"\"\"{current_desc}\"\"\"

New excerpt from the paper:
\"\"\"{new_text}\"\"\"

Update the description by **incorporating any new technical details or
correcting

existing ones** found in the excerpt. Preserve conciseness and clarity.
Return **only**

the revised description. Capture the main points using bullets points.
Do not waste words on complete sentences or details irrelevant to the

methods.
Do not exceed {bp_limit} bullet points.
"""

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

L.2 INSTRUCTIONS FOR CONSTRUCTING CATEGORIES

Listing 7: Initializing categories with LLM.
prompt = f"""

We are building an LLM-powered AutoML system for the task:

"{task_description}"

"{features_sentence}"

As a reference, some generic categories for optimizing classification
models include:

{classification_categories}

You are a master of machine learning and the domain relevant to this task
. Please first briefly reason about what kinds of modeling
interventions or optimization strategies could be helpful for this
specific task. Then propose a list of concise, task-relevant
optimization categories.

Your list should include conceptual ideas that are tailored to this task
and each should reflect a specific axis of improvement (e.g.,
architectural choices, preprocessing tricks, domain constraints,
evaluation metrics, robustness techniques, etc.).

Output exactly {num_cat} proposed categories, one per line, each enclosed
in: <c>Category Name</c>

Do not include any other text, explanation, or formatting. By
optimization we mean strictly performance, not runtime, scalability,
logging, visualization, post-evaluation, etc. We will only have
access to {data_available}.

"""

Listing 8: Updating categories with papers.
prompt = f"""

We are building an LLM-powered AutoML system for the task:

"{task_description}"

"{features_sentence}"

We will curate and refine our categories based on the current categories
and a paper.

Current categories:
{current}

Paper: "{title}"
Key method points:
{bullet_points}

TASK
1. If the paper suggests a *new* axis of optimization missing from the

list,
propose a concise category for it.

2. If two or more current categories can be merged, instead give a single
name that

subsumes them.
3. Otherwise, if the category is irrelevant given only {data_available},

leave the list unchanged.

Return **one updated list only** one category per line,

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

each wrapped exactly like <c>Category</c>. No other text."""

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

L.3 INSTRUCTIONS FOR CONSTRUCTING WITHIN-CATEGORY INSTRUCTIONS

Listing 9: Initializing within-category instructions with LLM.

prompt = f"""
We are designing an LLM-powered AutoML system for the task:

"{task_description}"

"{features_sentence}"

Current optimisation axis: **{category}**

Below is a style example of prompts for a *regularisation* category for a
classification task. Each prompt begins with *by ...* and expresses

a specific, actionable optimisation idea:

{few_shot}

You are a master of machine learning and the domain relevant to this task
. Keeping the same concise, actionable style, write **exactly {
to_generate} distinct prompts** that belong to the **{category}**
category **and are appropriate for this task**.

These should be a mix of general, conceptual, and complex prompts, and
not overly specific, similar to the example.

Wrap *each* prompt in its own <p> ... </p> tag.
Return only these <p>...</p> lines, nothing else.
By optimization we mean strictly performance, not runtime, scalability,

logging, visualizing, evaluating, etc. Assume the evaluation metrics
already exist. We will only have access to {data_available}.

"""

Listing 10: Refining within-category instructions with LLM.
prompt = f"""
We are designing an LLM powered AutoML system for the task:

"{task_description}"

We will only have access to {data_available}.

Here is a concise summary of the baseline method:
\"\"\"{summary}\"\"\"

Below are style examples of valid prompt lines taken from earlier work:
{few_shot_block}

Your job: generate between {n_new_min} and {n_new_max} new prompts. These
will ultimately be assigned into one of the following categories:

{categories_line}

First, generate these prompts, independently of the categories. Second,
assign each to it’s most relevant category.

For each prompt output a line in this exact format:

<c>CategoryName</c><p>by </p>

* Every prompt must begin with by .
* Cover a mix of general, conceptual, and complex ideas.
* Focus strictly on *performance* optimisation (ignore runtime,

scalability, logging, etc.).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

* Return only the ’<c> </c><p>_</p>’ lines, nothing else.
""".strip()

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

L.4 INSTRUCTIONS FOR CONSTRUCTING INITIAL SOLUTIONS

Listing 11: Initializing solutions with LLM.
prompt = f"""
We are designing an LLM-powered AutoML system for the task:

"{task_description}"

Below is an example list of generic model initializations for a **
classification** task:

{few_shot}

You are a master of machine learning and of the domain relevant to this
task.

Propose **exactly {num_init} concise model initializations** that could
serve as

starting baselines **for this specific task** given that we only have
{data_available}. They should be general task-specific methods, model

families, or high-level architectural
descriptions, not fully-specified pipelines.

Output one per line, each wrapped in <m> ... </m> tags.
Return *only* these <m>...</m> lines -- no explanations, no extra text.
"""

Listing 12: Refining initial solutions with LLM.
prompt = f"""
We are building an LLM-powered AutoML system for the task:

"{task_description}"

We will curate and refine our *model initializations* list using insights
from the following paper.

Current initializations:
{current}

Paper: "{title}"
Key method points:
{bullet_points}

TASK ->
1. If the paper presents a **model family or architecture** not covered

above,
propose it as a concise initialization (<= 6 words).

2. If two or more current initializations are effectively the same family
,
merge them by giving a single, clear name that subsumes them.

3. If the above are not met, or we cannot implement the model using {
data_available}, leave the list unchanged.

Return **one updated list only** -- one initialization per line,
each wrapped exactly like <m>Initialization</m>. No other text."""

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

L.5 PROMPT TEMPLATE FOR BIOMNI AND CHATGPT-AGENT

Listing 13: Single-cell denoising prompt template for scientific agents.

We are considering the task of single cell RNA-seq imputation.
We wish to create an expertly optimized model for this.
Here is a starter script. Create a top-performing model for our task

within the tuso_model function.

import scanpy as sc
import pandas as pd
import numpy as np
import scipy as sp
import magic
from anndata import read_h5ad
import scprep
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
from scipy.sparse import issparse
from sklearn.decomposition import PCA
from anndata import AnnData
import random

def mse(adata):
import anndata
import scanpy as sc
import scprep
import sklearn.metrics

test_data = anndata.AnnData(X=adata.obsm["test"], obs=adata.obs, var=
adata.var)

denoised_data = anndata.AnnData(
X=adata.obsm["denoised"], obs=adata.obs, var=adata.var

)

# scaling and transformation
target_sum = 10000

sc.pp.normalize_total(test_data, target_sum=target_sum)
sc.pp.log1p(test_data)

sc.pp.normalize_total(denoised_data, target_sum=target_sum)
sc.pp.log1p(denoised_data)

error = sklearn.metrics.mean_squared_error(
scprep.utils.toarray(test_data.X), denoised_data.X

)
return error

def tuso_model(adata):
a = AnnData(

X=adata.obsm["train"].copy(),
obs=adata.obs.copy(),
var=adata.var.copy()

)

out = a.X
out = out.toarray() if issparse(out) else out
adata.obsm["denoised"] = out
return adata

def main():
np.random.seed(42)
random.seed(42)
adata = read_h5ad(’1k_pbmc_processed.h5ad’)
print("tuso_model_start")

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

adata = tuso_model(adata)
print("tuso_model_end")

val_metric = 1-mse(adata)
print(f"tuso_evaluate: {val_metric}")

main()

Make sure to store the denoised data in adata.obsm["denoised"].
Keep the function header, input, output the same.

Each time you generate code, run it, extract the tuso_evaluate metric,
and try and build a better performing solution from the previous
solutions.

32


	Introduction
	Related work

	Problem formulation
	Methods
	Experiments 
	Performance across benchmark experiments
	Ablation studies

	Case Studies in Genetics 
	Example TusoAI code template
	Example instructions generated by TusoAI
	Predefined diagnostic instructions

	Single-cell analysis tasks setup
	Deep learning tasks setup
	Baseline implementations
	Stability across replicates
	Code diversity
	Ablation analysis
	LLM analysis
	scDRS analysis
	pgBoost analysis
	Prompt templates
	Instructions for parsing literature
	Instructions for constructing categories
	Instructions for constructing within-category instructions
	Instructions for constructing initial solutions
	Prompt template for Biomni and ChatGPT-Agent


