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Abstract001

While densely annotated image captions signif-002
icantly facilitate the learning of robust vision-003
language alignment, methodologies for system-004
atically optimizing human annotation efforts005
remain underexplored. We introduce CHAIN-006
OF-TALKERS (COTALK), an AI-in-the-loop007
methodology designed to maximize the number008
of annotated samples and improve their compre-009
hensiveness under fixed budget constraints (e.g.,010
total human annotation time). The framework011
is built upon two key insights. First, sequential012
annotation reduces redundant workload com-013
pared to conventional parallel annotation, as014
subsequent annotators only need to annotate the015

“residual”—the missing visual information that016
previous annotations have not covered. Second,017
humans process textual input faster by reading018
while outputting annotations with much higher019
throughput via talking; thus a multimodal inter-020
face enables optimized efficiency. We evaluate021
our framework from two aspects: intrinsic eval-022
uations that assess the comprehensiveness of se-023
mantic units, obtained by parsing detailed cap-024
tions into object-attribute trees and analyzing025
their effective connections; extrinsic evaluation026
measures the practical usage of the annotated027
captions in facilitating vision-language align-028
ment. Experiments with eight participants show029
our CHAIN-OF-TALKERS (CoTalk) improves030
annotation speed (0.42 vs. 0.30 units/sec) and031
retrieval performance (41.13% vs. 40.52%)032
over the parallel method.033

1 Introduction034

Language is central to human–AI interaction, while035

vision enables high-bandwidth perception of the036

world. Aligning these modalities semantically is037

essential for AI systems to interpret multimodal038

information effectively. Typically, this alignment039

is achieved by learning from images paired with040

human-generated captions. Early datasets, such as041

COCO (Chen et al., 2015), provide brief single-042

sentence captions per image, offering basic align-043

Figure 1: Comparison between Existing Annotation
Frameworks and CHAIN-OF-TALKERS (COTALK):
Traditional methods require annotators to independently
type complete image descriptions. In contrast, COTALK
has the first annotator provide a complete spoken anno-
tation, while subsequent annotators focus solely on the

“residual”—the overlooked details.

ment but limited comprehensiveness. Recently, 044

research has shifted toward creating denser cap- 045

tions, significantly improving vision-language mod- 046

els through enhanced semantic grounding, inter- 047

pretability, and downstream task performance (Cho 048

et al., 2025; Shabbir et al., 2025). 049

Currently, annotation interfaces commonly dis- 050

play images to annotators who examine visual 051

content and generate captions by typing (Garg 052

et al., 2024; Hua et al., 2024). Parallel annota- 053

tion, wherein multiple annotators independently 054

describe the same image, aims to boost com- 055

prehensiveness by aggregating diverse perspec- 056

tives (Deitke et al., 2024; Athar et al., 2024; Onoe 057

et al., 2024; Hu et al., 2024). Despite their sim- 058

plicity and ease of use, these methods are largely 059

heuristic, lacking rigorous theoretical justification 060

or systematic validation. In this paper, we identify 061

two fundamental limitations of current annotation 062

practices and propose a novel, systematically vali- 063

dated methodology to overcome these issues. 064

Our first insight addresses the inefficiency 065

caused by redundancy in parallel annotations, 066

where multiple annotators independently describe 067

the same visual content, leading to substantial 068

overlap (e.g., PixomoCap (Deitke et al., 2024) 069
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cross-annotation overlap is 71.36% as measured by070

Sentence-BERT (Reimers and Gurevych, 2019)).071

Our second insight is that speech-based annota-072

tion significantly surpasses typing in speed and effi-073

ciency. This is supported by prior research demon-074

strating that the average throughput for spoken075

words (161.2 words per minute, WPM) substan-076

tially exceeds that of typing (53.46 WPM) (Ruan077

et al., 2016).078

Building on these insights, we introduce CHAIN-079

OF-TALKERS (COTALK), an novel AI-in-the-080

loop annotation framework (illustrated in Figure 1).081

Annotators sequentially contribute descriptions:082

the first provides a comprehensive initial descrip-083

tion from scratch, while subsequent annotators in-084

crementally add only the “residual”, the missing vi-085

sual details. Each annotator reads previous annota-086

tions and communicates additional details through087

speech, which are automatically transcribed and088

synthesized into coherent text by a Large Language089

Model (LLM). This sequential, multimodal process090

significantly reduces redundancy and maximizes091

annotation comprehensiveness.092

The design of COTALK is theoretically grounded093

in an information-theoretic evaluation framework094

for image captions (Chen et al., 2024), which pro-095

vides rigorous guidelines for developing efficient096

annotation methodologies. To validate our method,097

we conduct comprehensive assessments of human-098

generated annotations through both intrinsic and099

extrinsic evaluations.100

Intrinsic Evaluation. Traditional metrics such101

as caption length are biased by linguistic style,102

and model-based measures (e.g., CLIP-Score (Hes-103

sel et al., 2021), CLIP-IMAGE-Score (Ge et al.,104

2024)) strongly depend on the performance of the105

underlying model, limiting their interpretability.106

To overcome this, we introduce an alternative eval-107

uation based on semantic units—object-attribute108

pairs extracted by LLMs from detailed captions109

to construct semantic trees. The number of effec-110

tive object-attribute connections represents anno-111

tation comprehensiveness. Using this metric, we112

demonstrate that COTALK achieves superior an-113

notation comprehensiveness, generating 36.72 se-114

mantic units per image compared to 33.61 with115

parallel annotation. It also reduces annotation time116

by approximately 48%, increasing the annotation117

speed from 0.30 to 0.42 semantic units per second.118

Additionally, we verify that speech-based annota-119

tion is not only faster but also captures richer detail120

compared to typing, and reading previous anno-121

tations leads to better comprehension than audi- 122

tory reviews alone. Since speech-based annotation 123

reaches a speed of 0.40 semantic units per second, 124

significantly faster than typing at 0.17. Meanwhile, 125

reading prior annotations takes 55.20 seconds with 126

100% accuracy, compared to 70.20 seconds and 127

94% accuracy for auditory reviews. 128

Extrinsic Evaluation. To validate the practi- 129

cal utility of COTALK, we employ retrieval-based 130

evaluation, a robust proxy for annotation quality 131

relevant to real-world vision-language tasks. By 132

fine-tuning a CLIP model (Radford et al., 2021) 133

separately using captions generated via COTALK 134

and parallel annotation methods, we systematically 135

compare their downstream retrieval performances 136

across multiple benchmarks. Our results demon- 137

strate that COTALK consistently yields superior 138

retrieval accuracy, achieving an average of 41.13% 139

across three datasets and six retrieval tasks, sur- 140

passing parallel annotations (40.52%). This high- 141

lights COTALK’s ability to produce more seman- 142

tically rich and practically valuable annotations, 143

underscoring its effectiveness in enhancing vision- 144

language model performance. 145

2 Methodology 146

2.1 Preliminary 147

Chen et al. (2024) propose an information- 148

theoretic framework for image captioning, system- 149

atically defining key criteria for high-quality an- 150

notations (Figure 2). The framework introduces a 151

semantic space S ∈ [0, 1]n, where each dimension 152

corresponds to a semantic unit ωi in Ω = {ωi}ni−1, 153

representing the probability of that unit appearing 154

in the image. The caption generation process is 155

modeled as a function fθ, simulating human anno- 156

tation. For n annotators, individual annotation pro- 157

cesses are denoted f1, . . . , fn, producing annota- 158

tions Ỹ k for the k-th annotator. These annotations 159

are mapped to the semantic space as vectors Y via a 160

transformation h(·). In this binary semantic space, 161

a value of 1 indicates the presence of a semantic 162

unit, while 0 indicates its absence. The overlap 163

between the source semantics X and received se- 164

mantics Y defines their semantic consistency. The 165

semantic-level error is given by Z = Y −X , cap- 166

turing the discrepancy between the intended se- 167

mantics and the annotated interpretation, thereby 168

reflecting annotation quality. 169

Chen et al. (2024) then proposes three core ob- 170

jectives to guide high-quality captioning: 171
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Figure 2: Overview of our formulation. Some latent variable X in a latent semantic space S generates image X̃ in
data space D. The image X is then annotated by f producing a caption Ỹ which can be mapped back to the original
latent space as Y . The semantic-level error measures the annotation quality. The annotation function f can take
several forms: in single annotation, a single annotator provides a complete image description; in parallel annotation,
multiple annotators independently generate captions that are later merged; and in our sequential annotation, the first
annotator provides an initial description, with subsequent annotators incrementally enriching it.

(1) Information Sufficiency. Jsuf(θ) =172

I(Y ;X): ensures the caption captures task-173

relevant semantics by maximizing mutual infor-174

mation;175

(2) Minimal Redundancy. Jmin(θ) = −H(Ỹ ):176

promotes conciseness by minimizing entropy, re-177

ducing repetitive or irrelevant content;178

(3) Human Comprehensibility. Jint(θ) =179

−D(P
Ỹ
||Plang): measures alignment with natural180

language through distribution distance, enhancing181

readability. These objectives are integrated into a182

unified optimization function:183

J(θ) = Jsuf(θ)− βJmin(θ)− γJint(θ), (1)184

where β and γ are tunable weights. This formu-185

lation offers a flexible and principled approach to186

both analyzing and optimizing image captioning187

systems.188

2.2 Human Annotation189

Traditional human annotation typically involves190

a single annotator, denoted as f1, producing the191

annotation Ỹ 1. Thus, the result of single-round192

annotation is defined as:193

Ỹsingle = Ỹ 1. (2)194

In addition to annotation content, time is a cru-195

cial factor. The total annotation time in a single196

round comprises two components: T X̃
in , the time197

spent observing the image, and Tout, the time spent198

generating the annotation. The total time can be199

expressed as: Tsingle = T X̃
in + T Ỹ 1

out .200

2.3 Parallel Annotation 201

Due to the high reliance on a single annotator, 202

single-round annotation often results in inconsis- 203

tent quality. To address this, parallel annotation is 204

introduced, where multiple annotators work inde- 205

pendently to produce separate outputs (Deitke et al., 206

2024; Onoe et al., 2024). These outputs are then ag- 207

gregated into a unified annotation using a merging 208

function. We define this aggregation process as the 209

LLM merger σ(·), which consolidates individual 210

annotations into a single, coherent result. 211

Formally, fk (k = 1, . . . , n) generates a descrip- 212

tion based directly on the image. The annotation is 213

denoted as Ỹ k. 214

After all n annotators have completed their anno- 215

tations, the LLM merges all the annotations from 216

the different annotators together. 217

ỸPar = Ỹ n
σ = σ(Ỹ 1, . . . , Ỹ n), (3) 218

then the final semantic unit of the parallel process 219

can be determined as YPar = Y n
σ = h(Ỹ n

σ ) 220

The total time cost for the parallel annotation 221

process is: TPar = n · T X̃
in +

∑n
i=1 T

Ỹ i

out . 222

2.4 Chain-of-Talkers Annotation 223

We introduce the Chain-of-Talkers (CoTalk) 224

method, designed to reduce human annotation time 225

while maintaining high annotation quality. CoTalk 226

is according to two key insights: (1) sequential 227

annotation can be more efficient than parallel an- 228

notation, and (2) generating annotations via speech 229

(talk) is faster than typing, while comprehending 230

prior annotations is quicker through text than audio. 231

3



At a system level, CoTalk adopts a sequential an-232

notation strategy, where only the first annotator de-233

scribes the entire image, and subsequent annotators234

contribute only residual information—i.e., addi-235

tions or corrections according to what has already236

been annotated. At the individual level, CoTalk237

leverages a cross-modal approach: prior annota-238

tions are consumed as text, and new annotations239

are generated through talk. This framework is illus-240

trated in Figure 1.241

Formally, fk (k = 2, . . . , n) generates a talk de-242

scription based on previous annotation produced by243

fk−1 (when k = 1, the description is based directly244

on the image). After converting the talk to text, the245

resulting annotation is denoted as Ỹ k.246

Ỹ k = fk(Ỹ k−1
σ , X̃), (4)247

After each annotator completes their annotation,248

the LLM merges the current annotation with the249

previously aggregated annotations.250

ỸCoTalk = Ỹ k
σ = σ(Ỹ k−1

σ , Ỹ k), (5)251

This process continues until an annotator deter-252

mines that no further information is necessary and253

the annotation is complete.254

To account for time, we introduce T Ỹ k−1
σ

in , repre-255

senting the time of fk required to read the previ-256

ous annotation. The total time cost for the CoTalk257

method is: TCoTalk = n·T X̃
in +

∑n
i=1(T

Ỹ i−1
σ

in +T Ỹ i

out ).258

3 Theoretical Analysis259

3.1 CoTalk is Pareto Optimal260

In this section, we compare the CoTalk method261

with parallel annotation and one-round human an-262

notation to highlight its advantages in both quality263

and efficiency. Annotation quality is evaluated us-264

ing Jθ(defined in Equation 1), while efficiency is265

quantified as:266

E =
J(θ)

T
, (6)267

where T denotes the total annotation time. Then,268

we first demonstrate that CoTalk achieves higher in-269

formational sufficiency with minimal redundancy,270

indicating superior annotation quality. Subse-271

quently, we show that for annotations of compa-272

rable quality, CoTalk requires a lower annotation273

budget, thereby achieving Pareto optimality in the274

quality-efficiency trade-off.275

Before proceeding with the analysis, we intro-276

duce the following assumption:277

Assumption 1 (Diminishing semantic contri- 278

bution in CoTalk annotations) In CoTalk, the 279

amount of new semantic content added by each 280

successive annotator decreases due to the influence 281

of prior annotations, resulting in Y k
CoTalk > Y k+1

CoTalk. 282

Assumption 2 (Effective and Correlated 283

Merging of Annotations) In both CoTalk and par- 284

allel annotation, the merging function σ(·) effec- 285

tively eliminates redundancy and accurately inte- 286

grates semantic units. In addition, it exhibits a pos- 287

itive input-output correlation: greater input yields 288

more output, as shown in C. 289

We now present theorems according to the as- 290

sumptions: 291

Theorem 1 (CoTalk Enhances Annotation 292

Quality): As defined in Equation 1, high quality 293

annotation is characterized by high information suf- 294

ficiency, minimal redundancy, and strong human 295

comprehensibility. 296

Information Sufficiency: Information suffi- 297

ciency is defined as the completeness of semantic 298

unit coverage, representing how thoroughly anno- 299

tations capture the semantic content of an image. 300

Under Assumptions 1-2, CoTalk demonstrates su- 301

perior information sufficiency compared to single- 302

round and parallel annotation. In single-round an- 303

notation, a single annotator provides limited se- 304

mantic coverage. While parallel annotation im- 305

proves coverage by aggregating multiple indepen- 306

dent annotations, it suffers from redundancy, as 307

each annotator samples from the entire semantic 308

space. In contrast, CoTalk allows each annota- 309

tor to build on the previous ones; the fk samples 310

from the residual semantic space Y−Y k−1
σ , focus- 311

ing only on what has not yet been covered. This 312

targeted supplementation reduces redundancy and 313

increases semantic completeness. Consequently, 314

the incremental information gain per round, de- 315

fined as ∆I(Y k
σ ;X) = I(Y k

σ ;X) − I(Y k−1
σ ;X), 316

is greater for CoTalk than for parallel annotation 317

when k >= 2: 318

∆ICoTalk(Y
k
σ ;X) > ∆Ipar(Y

k
σ ;X) (7) 319

This indicates that CoTalk accumulates semantic in- 320

formation more efficiently over successive rounds, 321

thereby achieving higher information sufficiency. 322

Minimal Redundancy: Single-round annota- 323

tion inherently contains no redundancy, as it in- 324

volves only one annotator. In contrast, under As- 325

sumption 2, both CoTalk and parallel annotation 326

involve multiple annotators and rely on LLMs to 327
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Figure 3: Semantic Unit Tree: The first layer is a virtual
root node representing the image. The second layer
contains all objects in the image, and the third layer
captures the attributes of each object.

merge their outputs. While parallel annotation328

gathers full independent annotations from each an-329

notator, CoTalk captures more refined "residual"330

inputs—focused supplements according to prior331

contributions. Given that LLMs typically produce332

output proportional to input length, and that word333

count serves as a proxy for redundancy (being di-334

rectly related to entropy H(Y ), we can compare335

the overall entropy of the merged outputs. Ac-336

cording to Shannon’s estimate of 11.82 bits per337

English word, higher word counts imply higher338

redundancy (Grignetti, 1964). Since CoTalk re-339

duces redundancy through sequential refinement, it340

achieves lower overall entropy than parallel anno-341

tation:342

JCoTalk
min (θ) ≈ J

Single
min (θ) > JPar

min(θ), (8)343

indicating that CoTalk minimizes redundancy more344

effectively than parallel annotation, matching the345

minimal redundancy of single-round annotation346

while achieving greater information coverage.347

Human Comprehensibility: Under Assump-348

tion 2, we assume that the merging process is loss-349

less. Since all three annotation methods, CoTalk,350

parallel, and single-round, rely on human annota-351

tors to generate content, their outputs are expected352

to maintain similar levels of interpretability. There-353

fore, the human comprehensibility of CoTalk is354

equivalent to that of the other two methods:355

JCoTalk
int (θ) = J

Single
int (θ) = JPar

int (θ) (9)356

According to the above results, we conclude that357

CoTalk achieves higher information content, lower358

redundancy, and comparable human comprehen-359

sibility relative to parallel and single-round anno-360

tations. Therefore, it offers superior annotation361

quality, denoted as JCoTalk
θ .362

Theorem 2 (CoTalk boosts efficiency): Build- 363

ing on Theorems 1, we establish that CoTalk yields 364

the highest annotation quality. We now compare 365

the efficiency of CoTalk, parallel annotation, and 366

single-round annotation by evaluating the time re- 367

quired to achieve equivalent semantic unit cover- 368

age. Since single-round annotation provides signif- 369

icantly lower information sufficiency, we focus on 370

comparing CoTalk and parallel annotation. Assume 371

parallel annotation can match CoTalk’s semantic 372

coverage using m rounds, while CoTalk requires 373

only n rounds (m > n, as implied by Equation 7). 374

The total annotation time is then: 375

Tn
CoTalk = n · T X̃

in +
n∑

i=1

(T Ỹ i−1
σ

in + T Ỹ i

out ), 376

Tm
Par = m · T X̃

in +
m∑
i=1

T Ỹ i

out (10) 377

Here, T Ỹ i

out = |Y i|
vout

denotes the time for producing 378

annotations, and T Ỹ σi−1

in = |Y σi−1|
vtext

in
represents the 379

time for reviewing prior annotations. The variables 380

vout and vtext
in refer to the speech annotation and 381

reading comprehension speeds, respectively. Since 382

vout > vtext
in (Ruan et al., 2016; Brysbaert, 2019), it 383

follows that TCoTalk < TPar when n = 2, as shown 384

in Proof B. Moreover, the primary time overhead in 385

CoTalk stems from reading prior annotations. How- 386

ever, as semantic coverage increases, the reading 387

time increase per round progressively decreases. 388

In contrast, parallel annotation suffers from grow- 389

ing redundancy, which scales with semantic cov- 390

erage and leads to increasing time consumption. 391

Hence: Tn
CoTalk < Tm

Par. demonstrating that CoTalk 392

achieves the same semantic coverage with lower 393

time costs. Consequently, its efficiency surpasses 394

that of both parallel and single-round methods: 395

ECoTalk > EPar > ESingle. In summary, CoTalk not 396

only ensures high annotation quality through im- 397

proved information sufficiency and reduced redun- 398

dancy, but also maximizes efficiency—minimizing 399

time and labor, and closely approaching Pareto 400

Optimality. 401

3.2 CoTalk is Faster in Input and Output 402

CoTalk employs a cross-modal interface, using text 403

for input and talking for output, in contrast to tra- 404

ditional single-modality parallel approaches. In 405

this section, we evaluate the efficiency of different 406

input-output modality combinations to determine 407

the most effective configuration. 408
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Figure 4: CoTalk Example: The first annotator provides a full image description, while subsequent annotators
review and add missing details. As the sequence continues, the number of new semantic units gradually declines.

First, talking for output is faster: The time for409

talking output can be expressed as: T talking
out , and the410

time for text output can be defined as: T typing
out . Ex-411

isting research shows that talking speed is 161.20412

WPM, three times faster than typing, with 20.4%413

lower error rates (Ruan et al., 2016), we can directly414

conclude that vtalking
out > v

typing
out .415

Next, text for input is faster: Since eyes spend416

10% to 20% time rereading during text input, while417

replaying audio for review is more time consuming418

compared to rereading text (Zhan and Shen, 2015).419

We can conclude that vrereading > vrelistening. More-420

over, we can define the time for listening input as:421

T
listening
in = Tlistening + Trelistening, and the time for422

text input can be expressed as: T reading
in = Treading +423

Trereading. The reading comprehension speed for424

text is 236 WPM, exceeding the 161 WPM speed to425

understand talking (Brysbaert, 2019), which means426

that vreading > vlistening. Therefore, we can achieve427

that vreading
in > v

listening
in .428

From the above results, we conclude that in429

CoTalk, using multimodal input and output can430

save more time compared to a single modality ap-431

proach. Specifically, for annotators’ output, talking432

should be adopted due to its higher speed and accu-433

racy. On the other hand, for understanding previous434

annotations, text is more effective.435

4 Experiments436

Our experiments aim to validate the effectiveness of437

different annotation strategies: CoTalk and parallel438

annotations, as well as to identify the optimal input-439

output modality for individual annotators, namely440

talk or text. Finally, we perform an in-depth analy-441

sis of the collected human annotation. 442

4.1 Evaluation Metrics 443

To assess the quality differences among various an- 444

notation methods, we conduct a quantitative com- 445

parison using both extrinsic and intrinsic metrics. 446

4.1.1 Intrinsic Metric 447

Section 2.1 establishes that semantic units serve 448

as a reliable indicator of annotation quality: more 449

units correspond to higher-quality annotations. We 450

further formalize the function h(·), which maps an- 451

notations to semantic units. Specifically, we utilize 452

LLMs to extract these units and organize them into 453

a hierarchical tree, where the root is a virtual node 454

labeled "Image", the second level contains entities, 455

and subsequent levels represent their associated at- 456

tributes. The total number of edges quantifies the 457

semantic units. For example, in Figure 3, “Termi- 458

nal” has five semantic units. 459

Building on semantic units, we quantitatively 460

compare CoTalk and parallel annotation in terms 461

of quality and efficiency. As shown in Table 1, 462

two-person CoTalk yields higher-quality annota- 463

tions (36.72 units/image vs. 33.61) and reduces 464

per-annotator time by 48%. To assess redundancy, 465

we measure the overlap between outputs from the 466

first and second annotators. Redundancy is defined 467

as the repetition rate of semantic units, including ex- 468

act matches and semantically similar phrases (e.g., 469

“black car” vs. “black vehicle”) exceeding a sim- 470

ilarity threshold using Sentence-BERT (Reimers 471

and Gurevych, 2019). CoTalk shows lower redun- 472

dancy (29.76%) compared to parallel annotation 473

(69.12%), highlighting the inefficiencies of inde- 474
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Table 1: Information on different methods. Redundancy
refers to internal components within each annotation
method.

Method #Semantic Units Time Speed(units/s) Duplication ↓
Parallel 33.61 118.30 0.30 69.12

CoTalk 36.72 88.43 0.42 29.76

Table 2: Comparison of quality and efficiency between
speaking and typing, and comprehension between lis-
tening and reading.

Method # Semantic Units Time Speed(units/s)
Talking 46.65 116.65 0.40
Typing 33.15 199.15 0.17

Accuracy Time # Frequency
Listening 94.00 70.20

2.22
Reading 100.00 55.20

pendent annotation without shared context.475

4.1.2 Extrinsic Metric476

Extrinsic Metric assesses the practical effectiveness477

of annotation methods. We focus on image-text478

retrieval, a task closely aligned with the goal of479

maximizing mutual information in InfoNCE. In480

information theory, higher mutual information in-481

dicates better cross-modal predictability. There-482

fore, stronger retrieval performance, reflects more483

informative and semantically aligned annotations.484

To evaluate this, we fine-tune Long-CLIP (Zhang485

et al., 2024) using annotations generated by CoTalk486

and parallel methods, then test the models on the487

remote sensing benchmarks: RSICD (Lu et al.,488

2017), RSITMD (Yuan et al., 2021), and UCM-489

Captions (Qu et al., 2016). As shown in Table 3, the490

model trained with CoTalk annotations achieves the491

highest average retrieval score (41.13%), outper-492

forming the model trained with parallel annotations493

(40.52%). More details are in H.1.494

With intrinsic and extrinsic metrics, CoTalk an-495

notation consistently outperforms parallel annota-496

tion in quality, efficiency, and redundancy.497

4.2 Qualitative Analysis498

From a qualitative perspective, we explore the con-499

cept of “residual” within the CoTalk annotation.500

Annotators typically focus on entities overlooked501

by previous annotators, followed by missing at-502

tributes of these entities, as illustrated in Figure 4.503

These attributes, such as color, position (relative504

and absolute), quantity, shape, and size, align with505

our defined semantic units. Notably, annotators506

rarely correct prior annotations, probably because507

Table 3: Validate annotation quality by evaluating per-
formance in downstream retrieval tasks.

Method RSICD RSITMD UCM-Captions Average ↑
Zero-shot 21.24 31.10 65.01 37.94

Parallel 22.57±0.06 33.97±0.05 65.01±0.07 40.52

CoTalk 23.63 ± 0.05 33.83 ± 0.09 65.94 ± 0.06 41.13

Table 4: The Relationship Between Annotation Quality
and Annotation Cycles: Annotation quality is analyzed
in relation to annotation cycles, where each cycle corre-
sponds to approximately 10 minutes of annotation.

Cycle # Amount # Semantic units Time Speed(units/s)

1 4 104 745.14 0.14
2 8 289 628.26 0.46
3 9 308 770.00 0.40
4 6 180 720.00 0.25

of the high accuracy of initial inputs. Instead, each 508

annotation round adds new entities or attributes, 509

embodying the concept of “residual” in CoTalk 510

and enriching the description without redundancy. 511

4.3 Talking is Faster for Output, Reading is 512

Faster for Input 513

After establishing CoTalk as an effective frame- 514

work for multi-annotator collaboration, we evaluate 515

which input and output modalities best maximize 516

annotator efficiency, comparing speech and text in 517

both input (viewing prior annotations) and output 518

(producing new annotations) modes. 519

4.3.1 Annotation Output: Talk vs. Type 520

To compare the quality and efficiency of talking 521

versus text annotation, we recruit eight experienced 522

annotators, divided into two groups of four. Within 523

each group, two annotators leverage talk input, 524

while the other two use text input via keyboard 525

to annotate the same set of images. The results are 526

averaged across the annotation methods for com- 527

parison. As shown in Table 2, talking yields an 528

average of 13.50 more units per image than typing, 529

suggesting greater detail and completeness. Addi- 530

tionally, talking requires 116.65 seconds per image, 531

41% faster than the 199.15 seconds needed for typ- 532

ing, demonstrating a clear efficiency advantage. 533

4.3.2 Annotation Input: Read vs. Listen 534

To compare comprehension from speech and text, 535

we perform an experiment using various images 536

and LLM-generated questions according to human 537

annotations. Eight annotators answer five questions 538

per image in both text and audio formats. As Table 539

7



Figure 5: Consistency Analysis of Intrinsic Metric se-
mantic units and Extrinsic Metric by finetuning the
Long-CLIP with fixed ratio data reduced. Each point
represents its score minus the score from the full dataset.

2 shows, reading is on average 15 seconds faster540

and 6.38% more accurate. Listeners need 2.2 re-541

plays on average for detailed information, while542

rereading text takes less time. The gap widens in543

complex scenes (e.g., urban or industrial).544

These findings suggest that relying solely on545

speech (talking) or text for both input and output is546

suboptimal. Instead, a hybrid approach using text547

for input and speech for output can achieve both548

higher annotation quality and greater efficiency.549

4.4 Further Analysis550

4.4.1 Consistency between Extrinsic and551

Intrinsic Metrics552

Given the strength of extrinsic metrics in evaluating553

annotation quality, we test whether intrinsic met-554

rics, specifically semantic unit count, serve as reli-555

able proxies. We fine-tune Long CLIP (Zhang et al.,556

2024) on full CoTalk annotations, then reduce se-557

mantic units per image by fixed ratios and evaluate558

on remote sensing retrieval benchmarks. As shown559

in Figure 5, performance decreases steadily with560

fewer units, averaging a 2.07% decline when only561

20% remain. This trend confirms that the amount562

of semantic units directly impacts annotation in-563

formativeness and model performance, which is564

consistent with extrinsic metric. The results also565

underscore the value of dense captions for robust566

vision-language alignment. More details are in H.2.567

4.4.2 Annotator Ability Over Time568

We recruit untrained annotators for CoTalk and569

analyze their initial annotation cycles (10 min-570

utes each) to gauge ability and learning curves.571

As shown in Table 4, novices match experienced572

speeds (0.46 units/s) after one session, suggesting573

rapid adaptation via previous examples and famil-574

iarity with the task. However, the speed drops from575

0.40 to 0.25 units in round four, indicating fatigue576

Figure 6: The relationship between images with varying
semantic unit counts and the number of required anno-
tators (yellow), and the change in annotation speed at
different positions in CoTalk (blue).

or reduced efficiency over time, which highlights 577

the importance of considering session duration and 578

rest intervals in future workflow designs. 579

4.4.3 Full Image Annotation: Annotator 580

Count and Speed 581

Multiple annotators sequentially annotate each im- 582

age using CoTalk until the last annotator deems it 583

sufficiently detailed. We record annotation speed 584

and the number of annotators per image. As shown 585

in Figure 6 (blue), speed decreases as early annota- 586

tors cover obvious content, leaving finer details for 587

later ones. On average, 3.2 annotators are enough 588

per image (Figure 6, yellow). Moreover, images 589

with more units need more annotators, making se- 590

mantic unit count a strong complexity indicator. 591

For images with 60 or fewer units, two annotators 592

suffice; more complex ones need at least three. 593

Given these findings, intrinsic and extrinsic met- 594

rics align, since fewer semantic units lead to lower 595

retrieval performance. Furthermore, novice annota- 596

tors in CoTalk quickly perform as well as experi- 597

enced ones. Although annotation speed slows over 598

iterations, only 3.2 annotators are needed on aver- 599

age to produce a sufficiently detailed annotation. 600

5 Conclusion 601

Our work presented two key insights: sequential 602

annotation minimized redundancy compared to par- 603

allel approaches, and humans achieved higher ef- 604

ficiency by reading text input and talking output. 605

Building on these, we proposed Chain-of-Talkers 606

(CoTalk), a cross-modal, sequential collaboration 607

framework that enhanced human annotation for im- 608

age captioning. Both theoretical and empirical anal- 609

ysis confirmed that CoTalk significantly improved 610

caption quality within fixed budget constraints. 611
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Limitations612

Although CoTalk has proven effective in enhanc-613

ing image caption quality and efficiency, several614

limitations remain worth discussing.615

Assumptions on Human Ability. Our compari-616

son of information sufficiency, human comprehen-617

sibility, and efficiency between sequential annota-618

tion and CoTalk assumes consistent annotator abil-619

ities. However, in practice, annotator capabilities620

often vary. In sequential annotation, later annota-621

tors may identify more residual information than622

earlier ones, while in parallel annotation, annota-623

tors may differ significantly in annotation time and624

quality for the same image. Additionally, we as-625

sume all annotations are accurate, but in reality,626

factors such as annotator ability and attention may627

cause deviations between the annotated semantic628

units and the true content of the image.629

Assumptions on Model Ability. CoTalk relies630

on large models to merge annotations from multi-631

ple annotators. While our theoretical analysis as-632

sumes that these models can accurately consolidate633

diverse inputs without information loss, practical634

challenges may arise—particularly when annota-635

tors provide contradictory descriptions or inconsis-636

tent expressions for the same object. Additionally,637

CoTalk employs a speech-to-text model to tran-638

scribe annotator speech. Although state-of-the-art639

models such as (An et al., 2024; Radford et al.,640

2022) achieve high accuracy, transcription errors641

can still occur, especially with unclear or imprecise642

speech. Further exploration and careful selection643

of robust language and speech-to-text models are644

critical to improving CoTalk’s overall reliability.645

Ethics Statement646

In developing and evaluating the Chain-of-Talkers647

(CoTalk) framework for image captioning annota-648

tion, we upheld rigorous ethical standards to ensure649

integrity, fairness, and accountability throughout650

the research process.651

Participant Welfare and Informed Consent:652

All human annotators were fully informed about653

the nature, purpose, and procedures of the anno-654

tation tasks. Participation was entirely voluntary,655

and written informed consent was obtained from656

each individual. Annotators were informed of how657

their data would be utilized for research purposes.658

We ensured the privacy and anonymity of all par-659

ticipants by removing personal identifiers from the660

data and results.661

Data Integrity and Transparency: We main- 662

tained strict data integrity, accurately recording 663

annotation data without manipulation or fabrica- 664

tion. Secure data management practices were im- 665

plemented to prevent data loss or unauthorized ac- 666

cess. All relevant data, results, and methodologies 667

are reported transparently to enable reproducibility 668

and facilitate verification by other researchers. 669

Broader Impact: The CoTalk framework en- 670

hances annotation quality and efficiency, benefit- 671

ing downstream tasks such as image retrieval and 672

visual understanding. However, annotations may 673

still reflect annotator biases or image-related im- 674

balances, potentially influencing model behavior. 675

High-quality annotations can also be misused in 676

sensitive domains like surveillance. We urge re- 677

sponsible use of CoTalk, with attention to fairness, 678

privacy, and application-specific risks. 679
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Appendix852

A Related Work853

A growing trend in image captioning research was854

the emphasis on generating more comprehensive855

captions (Cho et al., 2025; Bolya et al., 2025; Shab-856

bir et al., 2025; Hua et al., 2024; Athar et al., 2024;857

Singla et al., 2024; Ma et al., 2024; Nguyen et al.,858

2023), aiming for higher information sufficiency859

through broader semantic coverage. Recently, nu-860

merous dense captioning datasets emerged, includ-861

ing high-quality manually annotated datasets (Onoe862

et al., 2024; Deitke et al., 2024; Hu et al., 2023) and863

pseudo-labeled datasets generated by models (Ge864

et al., 2024; Singla et al., 2024; Chen et al., 2023;865

Ou et al., 2025). Although some approaches in-866

corporated prior knowledge (Ou et al., 2025; Li867

et al., 2024) or utilized visual models for secondary868

correction (Ge et al., 2024; Li et al., 2023), the qual-869

ity of model-generated detailed captions remained870

notably inferior to that of human annotations.871

However, traditional human annotation was872

labor-intensive, and the associated time and co-873

ordination costs significantly constrained scalabil-874

ity and efficiency. While several studies demon-875

strated that involving multiple annotators improved876

the detail and accuracy of descriptions (Hu et al., 877

2023; Onoe et al., 2024), these benefits came at 878

the expense of a higher annotation overhead. To 879

improve annotation efficiency, some studies intro- 880

duced models to assist human annotators. For ex- 881

ample, models could first identify key objects or 882

generate preliminary descriptions, which were then 883

refined by humans (Cho et al., 2025; Garg et al., 884

2024). However, these approaches still relied on 885

traditional typing for annotation, which remained 886

time-consuming. More recently, several works ex- 887

plored using speech input to accelerate annotation, 888

reducing typing time costs and mitigating issues 889

such as annotator manipulation during large-model- 890

assisted labeling (Deitke et al., 2024; Athar et al., 891

2024). Nonetheless, most of these methods re- 892

lied on merging multi-person speech annotations, 893

which often introduced redundancy and partially 894

offset the efficiency gains. 895

To overcome these limitations, we proposed 896

CoTalk, a human-AI collaborative annotation 897

framework based on two key insights. First, se- 898

quential annotation, where subsequent annotators 899

provided “residual” supplements to previous anno- 900

tations, yielded higher quality and efficiency than 901

parallel annotation. Second, combining text-based 902

input with talk-based output in this sequential set- 903

ting optimized both speed and accuracy, outper- 904

forming traditional single-modality approaches. 905

B Proof for Theorem 906

Proof 1 When the number of annotators in CoTalk 907

is n = 2, under the same semantic unit coverage, 908

the total time for parallel annotation exceeds that 909

of CoTalk annotation, indicating that CoTalk is 910

more efficient. Before proceeding, we review the 911

necessary assumptions: (1) Taggers have equal 912

abilities, therefore the number of semantic units 913

supplemented by the second annotator Ỹ 2
CoTalk is 914

less than the number initially annotated by the first 915

Ỹ 1
CoTalk; (2) According to Equation 7, the number 916

of annotators in parallel annotation m is greater 917

than in CoTalk n, i.e., (m > n), with both m and 918

n as integers; (3) Prior research shows that the out- 919

put speed for voice annotation vout is faster than 920

the reading comprehension speed vtext
in (Ruan et al., 921

2016; Brysbaert, 2019). Given n = 2, the CoTalk 922

annotation time is: 923

T 2
CoTalk = 2 · T X̃

in + T
Ỹ 1

CoTalk
in +

2∑
i=1

T
Ỹ i

CoTalk
out (11) 924
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Table 5: The simulation results of sequence and parallel on large model

Model

RSICD RSITMD UCM-Captions

Image to Text
Average

Text to Image
Average

Image to Text
Average

Text to Image
Average

Image to Text
Average

Text to Image
Average

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot 9.70 23.88 38.15 23.91 5.13 19.11 29.85 18.03 13.50 33.63 45.58 30.90 10.52 31.57 47.10 29.73 39.50 80.00 90.48 69.99 28.38 59.68 77.19 55.08

Parallel 10.06 25.62 37.69 24.46 6.21 20.60 32.84 19.88 15.93 36.73 47.57 33.41 12.27 35.58 50.31 32.72 41.43 79.52 91.43 70.79 30.24 64.19 82.76 59.06

CoTalk 10.25 25.53 38.33 24.70 6.78 21.82 33.97 20.86 15.49 38.05 49.78 34.44 12.88 36.86 52.05 33.93 40.00 79.52 91.90 70.47 31.56 64.19 82.23 59.33

For parallel annotation:925

Tm
Par = m · T X̃

in +

m∑
i=1

T
Ỹ i

Par
out (12)926

where m > n. Considering an extreme case where927

m = 3 means that the number of effective seman-928

tic units completed by three parallel annotators is929

the same as the two annotators in CoTalk, and as-930

suming (according to premise 1) that all annotators931

have the same ability, each parallel annotator com-932

pletes Y 1
par semantic units. Therefore, the time for933

parallel annotation becomes:934

T 3
Par = 3 · T X̃

in + 3 · T Ỹ 1
Par

out (13)935

The time difference between parallel and CoTalk936

annotation for the same number of semantic units937

is:938

∆T (n = 2,m = 3) = T 3
Par − T 2

CoTalk (14)939

Expanding:940

∆T = T X̃
in + 2 · T Ỹ 1

Par
out − T

Ỹ 2
Cotalk

out − T
Ỹ 1

CoTalk
in (15)941

942

∆T = T X̃
in +

2 · |Ỹ 1
Par| − |Ỹ 2

CoTalk|
vout

−
|Ỹ 1

CoTalk|
vtext

in
(16)943

Since vout < vtext
in , it follows that:944

Ỹ 1
CoTalk
vtext

in
<

Ỹ 1
CoTalk
vout

(17)945

thus:946

∆T > T X̃
in +

Ỹ 1
CoTalk − Ỹ 2

CoTalk
vout

> 0 (18)947

Given that taggers have identical abilities Ỹ 1
par =948

Ỹ 1
CoTalk and Ỹ 1

CoTalk > Ỹ 2
CoTalk, the positive time949

difference ∆T is established. Moreover, as m in-950

creases, the total time for parallel annotation grows.951

Therefore, for any m > n, the time difference sat- 952

isfies: 953

∆T (n = 2,m > n) = Tm
Par − T 2

CoTalk > 0 (19) 954

confirming that CoTalk annotation remains more 955

efficient than parallel annotation under these base 956

conditions. 957

C Support for Assumption 958

Support for LLM input-output consistency: To 959

validate the consistency of σ(·), specifically, that 960

more input yields more output. We merge multi- 961

person annotations at the sentence level. Token 962

counts exclude prompt tokens, considering only 963

those from the annotated sentences to be merged. 964

As shown in Figure 7, output tokens increase with 965

input tokens, which is consistent with the hypothe- 966

sis. 967

Figure 7: Proof of Assumption 2: The Merging Function
Demonstrates a Positive Input-Output Correlation.

D Simulation 968

Due to the high cost of manual annotation, we uti- 969

lize only 427 samples from the full CoTalk dataset 970

for our experiments. To supplement this, we simu- 971

late data generation using LLMs. Specifically, we 972

apply the model to the entire DOTA training set, 973

approximately three times larger than the original 974

12



Table 6: The complete experimental results of Extrinsic Metric in the Ret-3 dataset benchmark evaluation.

Model

RSICD RSITMD UCM-Captions

Image to Text Text to Image
Average

Image to Text Text to Image
Average

Image to Text Text to Image
Average

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Zero-shot 9.70 23.88 38.15 5.13 19.11 29.85 20.97 13.50 33.63 45.58 10.52 31.57 47.10 30.32 39.50 80.00 90.48 28.38 59.68 77.19 62.54

Parallel 9.79 26.19 38.46 6.19 20.96 33.83 22.57 16.24 36.73 48.76 13.52 36.61 52.02 33.97 44.57 76.48 90.10 32.26 64.83 81.80 65.01

CoTalk 10.41 27.32 39.65 6.49 22.5 35.38 23.63 15.49 35.62 48.27 13.17 37.35 53.04 33.83 46.67 78.38 89.24 32.41 64.77 84.19 65.94

Table 7: Consistency analysis of Intrinsic Metrics Complete data results.

Percentage

RSICD RSITMD UCM-Captions

Image to Text Text to Image
Average

Image to Text Text to Image
Average

Image to Text Text to Image
Average

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

100% 11.25 27.45 40.35 6.42 21.08 33.69 23.38 17.04 35.18 49.12 13.45 36.24 51.63 33.78 43.33 79.52 91.9 34.75 63.13 81.17 65.63

80% 11.80 27.17 40.53 6.26 20.64 32.58 23.17 17.48 34.73 47.57 12.69 36.10 50.45 33.17 41.9 77.62 90.48 33.16 61.27 81.70 64.36

70% 11.34 26.53 40.62 6.19 20.51 32.70 22.98 16.37 34.51 46.90 12.65 35.91 52.01 33.06 43.81 77.62 90.95 30.50 59.68 81.70 64.04

50% 10.61 27.17 40.71 5.79 19.87 32.20 22.73 16.59 34.73 47.57 12.51 35.35 51.01 32.96 40.48 78.57 90.48 31.03 62.60 80.90 64.01

30% 10.43 27.08 40.44 5.47 19.01 30.97 22.23 15.49 34.73 46.90 11.18 35.06 51.20 32.43 38.10 78.57 90.95 28.91 61.01 79.84 62.90

20% 10.16 25.62 39.98 4.75 18.38 30.35 21.54 15.27 34.29 46.68 10.05 35.49 50.87 32.11 41.43 75.71 88.57 30.50 61.01 80.37 62.93

CoTalk dataset, to generate annotations following975

both the CoTalk and parallel annotation methods,976

as shown in Table 13. We then fine-tune the Long-977

CLIP-L model on the resulting datasets using three978

V100 GPUs, with a batch size of 16, a learning rate979

of 1e-6, and for 4 epochs.980

We evaluate the models on remote sensing re-981

trieval tasks, with the results summarized in Table 5.982

CoTalk achieves an average score of 40.62% across983

six tasks and three datasets, outperforming both the984

parallel method (40.05%) and the zero-shot base-985

line (37.64%). Notably, CoTalk surpasses both986

baselines in almost every task.987

E Complete Experimental Results988

The comprehensive experimental results, including989

both internal and external metrics, for the image-990

text retrieval downstream task evaluated on the Ret-991

3 dataset are summarized in table 6 and table 7.992

F Prompt993

F.1 Merge Annotation994

Both CoTalk and parallel annotation require a large995

model to integrate individual annotations. This996

section provides a detailed analysis of the merging997

process. With the instructions in Table 8 and Table998

9, we design specific prompts to guide the LLMs999

in merging image captions from both annotation1000

methods, ultimately producing semantically rich 1001

descriptions. 1002

F.2 Comparison of Talk and Text in 1003

Annotation Input 1004

To verify that reading comprehension is faster than 1005

listening comprehension, we utilize a text-based 1006

LLM to generate questions according to fundamen- 1007

tal facts. Participants answer these questions under 1008

both reading and listening conditions. The prompts, 1009

detailed in Table 10, are designed to generate high- 1010

quality questions with varying levels of difficulty, 1011

gradually incorporating finer-grained image con- 1012

tent to ensure scientific rigor and experimental va- 1013

lidity. 1014

F.3 Derive the Semantic Units 1015

For the intrinsic evaluation of image caption qual- 1016

ity, we employ a text-based LLM to decompose 1017

image captions into their semantic units and assess 1018

them according to the number of semantic units 1019

identified. Following the procedure outlined in Ta- 1020

ble 11 and Table 12, we first perform necessary 1021

simplification and standardization of the combined 1022

text from Section F.1, then systematically split it to 1023

extract all the semantic units contained within the 1024

captions. 1025
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Prompt for Merging Parallel Annotation

System Message:
Input:
You are a text integration expert. Here are the parallel annotations of two annotators. Please help me merge their
annotations to form a summary annotation.

Guidelines:
• Rule 1: For parts with the same semantic meaning in caption1 and caption2, adopt a merging strategy and avoid

repeating the same content.
• Rule 2: For parts unique to caption1 or caption2, incorporate them into the final description at an appropriate

position.
• Rule 3: For parts where caption1 and caption2 contradict each other, select one caption’s description for the

consolidation, and do not include any reference to caption1 or caption2 in the description.
• Rule 4: During the merging process, avoid redundant mentions of caption1 and caption2. No intermediate

reasoning is needed; just provide the final consolidated result.

Remember, your output should be a high-quality caption that is concise, informative, and coherent!

User:
### Caption 1: {first person annotation}
### Caption 2: {parallel person annotation}

Assistant Generation Prefix:
Here’s the merged parallel caption:

Table 8: An Example implementation of the merging parallel annotation function σmerge via prompting LLMs.

Prompt for Merging Sequential Annotation

System Message:
Input:
You are a text integration expert. Caption1 is the original annotation result, and Caption2 is the annotator’s supplementa-
tion and correction.

Guidelines:
• Rule 1: Caption2 will include corrections to Caption1, possibly revising parts of the description in Caption1, as

well as supplementing areas where Caption1’s description was insufficient.
• Rule 2: For parts with the same semantic meaning in Caption1 and Caption2, adopt a merging strategy and avoid

repeating the same content.
• Rule 3: For parts that are missing in Caption1 but present in Caption2, incorporate the relevant parts from

Caption2 into Caption1 at an appropriate position.
• Rule 4: If there is a conflict between the descriptions in Caption1 and Caption2, prioritize the description in

Caption2 and replace the corresponding part in Caption1.

Remember, your output should be a high-quality caption that is concise, informative, and coherent!

User:
### Caption 1: {first person annotation}
### Caption 2: {sequential person annotation}

Assistant Generation Prefix:
Here’s the merged sequential caption:

Table 9: An Example implementation of the merging sequential annotation function σmerge with prompting LLMs.
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Prompt for faster input of text than talk problem acquisition

System Message:
Input:
You are an annotation question-generation assistant. Given a segment of annotation text, please design questions
according to the following rules:

Guidelines:
• Rule 1: Generate a total of 5 questions.
• Rule 2: The five questions should cover the beginning, middle, and later parts of the annotation text.
• Rule 3: Design the questions in the order of the text and number them sequentially (Q1–Q5).
• Rule 4: The five questions should progress from general to detailed, starting with broad questions and moving to

fine-grained ones.
• Rule 5: The questions can be about objects or their attributes (e.g., color, quantity, location, shape, size, etc.).

Example:
• Question 1: What kind of image is this describing?
• Question 2: What color is the sea surface?
• Question 3: What’s in the top left corner of the picture?
• Question 4: Where is the parking lot located in the picture?
• Question 5: Do all houses have swimming pools?

User:
### Annotation Text: {caption}

Assistant Generation Prefix:
Here are the generated questions:

Table 10: An Example implementation of the generated questions via prompting LLMs.

Prompt for Denoising and simplifying annotations

Prompt for Denoising and simplifying annotations
System Message:
Input:
Please help me improve the following text according to the steps below.

Guidelines:
• Rule 1: Correct obvious types.
• Rule 2: Remove meaningless connecting words such as "then", "and", "furthermore" and "next".
• Rule 3: Format the output according to the sample provided.

User:
### Annotation Text: {merged caption}

Assistant Generation Prefix:
Here’s the processed caption:

Table 11: Prompt for Denoising and simplifying annotations.
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Prompt for Deriving the minimal Semantic Units

Assistant Generation Prefix:
Here’s the processed caption:

System Message:
Input:
Please help me extract and segment the semantic units according to the following rules and referring to the output
example:

Guidelines:
• Unit Definition: Semantic unit = object name + associated attributes; A single sentence may contain multiple

independent units; Each unit must contain only one object name.
• Attribute Specifications: Valid attributes: absolute_location (position in the overall image), rela-

tive_location(Position relative to other objects), colour, amount (Explicitly extract indefinite articles "a"/"an" as
standalone attributes. Include numerical values e.g., "two", "three" and quantifiers (e.g., "some", "several")), size, shape,
material, object description, other(All other unclassified attributes are ’other’, If there are multiple, please separate them
with commas),Omit any attributes that do not exist; Prohibit attribute overlap or duplication; Pronoun-based locations
(e.g., "this", "that") must be replaced with specific referenced objects.

• Extraction Principles: Prioritize extracting the "name" field separately; Create independent units for multiple
objects sharing attributes; Absolute and relative locations cannot coexist in the same unit; Omit unspecified/ambiguous
attributes.

• Output Requirements: Present only final results without reasoning processes.

Example:
• Input Example 1: The sea surface appears green, with a patch of green seaweed visible under the bridge in the

upper right area.
• Output Example 1:

[
{

"name": "sea surface",
"attributes": {

"colour": "green",
"other": ["appears"]

}
},
{

"name": "seaweed",
"attributes": {

"amount": "a patch of",
"colour": "green",
"relative_location": "under the bridge in the upper right area",
"other": ["visible"]

}
}

]
. . .

User:
### Caption: {processed caption}

Assistant Generation Prefix:
Here are the Semantic Units:

Table 12: Prompt for Deriving the minimal Semantic Units.
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Figure 8: The first-person annotation interface.

Figure 9: The Suquential Subsequent Annotation Interface.
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Guidelines for Image Annotation

First-Person:
System Message:
Input:
You will be provided with an image. Your task is to generate a detailed and informative caption for the image, adhering
to the following guidelines:
Guidelines:

• Rule 1: The caption should be as comprehensive as possible. Identify and describe all discernible entities in
the image along with their attributes. Attributes may include (but are not limited to): Absolute position (via image
orientation), Relative position (in reference to other objects), Color, quantity, size, shape, material, etc. Avoid describing
entities that cannot be clearly identified.

• Rule 2: Structure the caption in the following order: First: Begin with a global description of the entire image;
Second, Provide a description of the objects located at the center of the image. Last, Describe the entire image
systematically, starting from the upper-left corner and proceeding in a structured manner with the spatial relationships
between objects.

• Rule 3: If there are more than 10 instances of a particular object type, leverage approximate quantifiers (e.g.,
many, some, a row, a column, a cluster, etc.) instead of exact counts.

• Rule 4: Ensure the caption is concise but information-rich. Each sentence should contain meaningful and
non-redundant information. Avoid vague, repetitive, or empty expressions.

Subsequent-Person:
System Message:
Input:
You will be provided with an image and its corresponding caption. Your task is to review and revise the caption to
ensure it accurately and comprehensively reflects the content of the image, following the rules below:
Guidelines:

• Rule 1: Examine whether the caption includes all identifiable entities present in the image, along with their
corresponding attributes. Attributes may include (but are not limited to): Absolute position (according to image
orientation) Relative position (with respect to other objects) Color, quantity, size, shape, material, etc. If any entity is
missing, add it along with its attributes. If any attribute of a described entity is missing, supplement it accordingly.

• Rule 2: If the caption contains any inaccuracies (e.g., incorrect quantity, color, or other attributes of an entity),
make the necessary corrections.

• Rule 3: Output only the revised caption. Do not include or refer to the original caption in your response.

Table 13: Guidelines for Image Annotation.

G Annotation Interface1026

G.1 Annotation Interface 1: The first-person1027

Annotation Interface of the CoTalk1028

framework1029

The first annotator is tasked with generating de-1030

tailed image captions that comprehensively de-1031

scribe the visual content. These captions are pro-1032

vided via voice input, transcribed into text, and1033

then standardized using a large language model1034

for storage. Each caption should aim to cover all1035

identifiable entities in the image along with their1036

attributes, including—but not limited to—absolute1037

and relative positions, color, quantity, size, shape,1038

and material. Details are shown in Table 13 (up).1039

G.2 Annotation Interface 2: The Suquential1040

Subsequent Annotation Interface of1041

CoTalk Framework1042

In CoTalk, subsequent annotators review the im-1043

age and previously merged captions, generated1044

by a large model, to identify omissions and cor- 1045

rect errors. They contribute additional information 1046

through voice input, guided by a comprehensive 1047

understanding of both the image and the existing 1048

annotations.Details are shown in Table 13 (down). 1049

H Detailed Experimental Process 1050

H.1 Extrinsic Metric 1051

We evaluate the practicality of each annotation 1052

method using extrinsic metrics that indirectly re- 1053

flect annotation quality, employing a retrieval task 1054

for this purpose. Specifically, we fine-tune the 1055

Long-CLIP model on datasets annotated by CoTalk 1056

and a parallel method. Long-CLIP is selected for 1057

its extended input capacity of 248 tokens, nearly 1058

four times that of the original CLIP (77 tokens), 1059

making it well-suited for capturing detailed annota- 1060

tions. 1061

We fine-tune the Long-CLIP-L model using 1062

three V100 GPUs, with a batch size of 16, a learn- 1063
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Figure 10: Example of image annotation in the area around the theatre.

ing rate of 1e-6, and 12 epochs. Each epoch takes1064

approximately 18 seconds. To ensure robust results,1065

we run five trials with different random seeds per1066

dataset and report the average performance.1067

After training, we evaluate the model on a re-1068

mote sensing retrieval dataset. As shown in Table1069

6, CoTalk achieves 65.94% across six tasks and1070

three datasets, outperforming the parallel method1071

(65.01%) and the zero-shot baseline (62.54%).1072

H.2 Consistency between Extrinsic and1073

Intrinsic Metrics1074

To verify the consistency between intrinsic indica-1075

tors (i.e., the number of semantic units) and extrin-1076

sic indicators (i.e., downstream task performance),1077

we reduce the number of semantic units in the1078

CoTalk-annotated dataset of 429 images, at fixed1079

ratios. Specifically, for each image, we randomly1080

remove 20%, 30%, 50%, 70%, or 80% of its Se-1081

mantic Units. For example, if an image originally1082

has 10 Semantic Units and 20% are removed, 2 are1083

randomly deleted, and the remaining 8 are merged1084

into a single text input for subsequent fine-tuning1085

of the Long-CLIP model.1086

We fine-tune Long-CLIP-L using three V1001087

GPUs with a batch size of 16, a learning rate of1088

1e-6, and 12 epochs. To ensure stability, we repeat1089

each experiment using five different random seeds1090

per dataset and report the average results. 1091

We evaluate performance on the RSICD, 1092

RSITMD, and UCM-Captions retrieval datasets. 1093

As shown in Table 7, retrieval performance declines 1094

as fewer Semantic Units are retained, confirming 1095

the alignment between intrinsic and extrinsic in- 1096

dicators. This supports the use of Semantic Units 1097

as an effective measure of annotation quality and 1098

practical utility. Notably, when more than 50% 1099

of Semantic Units are removed, the performance 1100

drop becomes more pronounced, indicating the im- 1101

portance of detailed captions for effective vision- 1102

language alignment. 1103

I CoTalk Examples 1104

This section presents representative image samples 1105

manually annotated to demonstrate the labeling 1106

process. As illustrated in Figure 10 and Figure 11, 1107

the examples span typical scenes: (1) theaters and 1108

surrounding urban areas, (2) bridges and adjacent 1109

suburban waters, (3) parking lots and their environ- 1110

ments, (4) port piers with coastal landscapes. These 1111

samples reflect both the annotation quality and the 1112

integration of large model predictions. The result- 1113

ing text data accurately reflect the spatial structures 1114

and semantic content of each scene, underscoring 1115

the reliability of our annotations. 1116
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Figure 11: Examples of image annotation of bridge periphery (top), parking lot periphery (middle) and port coast
(bottom).
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