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Abstract
Symbolic meaning representations of natural001
language text have been studied since at least002
the 1960s. With the availability of large an-003
notated corpora, and more powerful machine004
learning tools, the field has recently seen sev-005
eral new developments. In this survey, we study006
today’s most prominent Meaning Representa-007
tions Frameworks. We shed light on both their008
theoretical properties and on their practical re-009
search environment, which includes datasets,010
parsers, applications, and future challenges.011

1 Introduction012

Being able to represent the semantic structure of a013

text has been an important research goal since the014

early days of NLP. Early works started to develop015

natural language interfaces on specific databases by016

transforming raw text into an executable language,017

using formalisms such as SQL, first-order logic018

or lambda-calculus (Mooney, 1996; Wong and019

Mooney, 2006; Mooney, 2007). Another avenue of020

research, which is the focus of this work, has de-021

veloped general-purpose, non-executable Meaning022

Representations (MRs), inspired by formal gram-023

mars. These often take the form of human-readable024

graphs. Figure 1 shows an example.025

Such MRs are used to improve the accuracy of026

NLP systems in tasks such as summarization or027

machine translation (Gao and Vogel, 2011; Liu028

et al., 2015; Mohamed and Oussalah, 2019; Liao029

et al., 2018; Song et al., 2019; Ribeiro et al., 2022).030

In the age of large language models (LLMs), they031

also get leveraged for their interpretability, e.g., to032

enhance semantic search (Bonial et al., 2020; Cai033

et al., 2022; Opitz and Frank, 2022b) or natural034

language inference (Opitz et al., 2023b). They are035

also used to generate paraphrases (Cai et al., 2021),036

augment training data (Shou et al., 2022), or to do037

style-transfer (Jangra et al., 2022; Shi et al., 2023).038

In this survey, we provide a structured overview039

of current Meaning Representations Formalisms.040

Several other surveys have discussed MRs before 041

us. However, they are either focused on linguistic 042

theory (Abend and Rappoport, 2017; Pavlova et al., 043

2023) and thus tend to neglect applications, parsers, 044

and resources, or they focus on the practical ap- 045

plication (Verrev, 2023), and present the different 046

formalisms only in a few lines. Our survey takes 047

a balanced stance: It presents both the different 048

formalisms and their applications, resources, and 049

parsers. This balance allows us to describe a big- 050

ger picture and outline commonalities and open 051

challenges. Our survey thus aims to be a handy 052

reference for anyone who wishes to choose, under- 053

stand, build, or use a Meaning Representation. 054

In Section 2 we introduce the main concepts 055

and properties of MRs. Section 3 tackles Shallow 056

MRs, and Section 4 Deep MRs. Finally, Section 5 057

discusses open challenges in the domain. 058
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Figure 1: AMR graph for the sentence “Tiffany decided
that she would never fly again, because it is bad for the
environment”.

2 Meaning Representations 059

Given a text in natural language, MR parsing is 060

the task of producing a symbolic representation 061

of its meaning, as it is understood by a language 062

speaker (Abend and Rappoport, 2017). Different 063

Meaning Representation Formalisms (MRFs) have 064
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MRF Subevents Shape Compositionality Node type (Flavor) Edge type

SRL ✗ Tree Non-Compositional Text spans (1) Numbered
RST ✗ Tree Compositional Text spans (1) Theory-oriented
UDS ✗ Tree Compositional Text spans (1) Numbered & Theory-oriented

SDP ✓ Graph Non-Compositional Augmented Word Spans (0) Numbered
EDS ✓ Graph Non-Compositional Augmented Text Spans (1) Numbered
UCCA ✓ Tree Compositional Text spans (1) Theory-oriented
AMR ✓ Graph Non-Compositional Synsets (Propbank) (2) Predicate-dependent
DRS ✓ Graph Compositional Synsets (WordNet) (2) Predicate-independent

Table 1: Properties of the Meaning Representation Frameworks that we survey. The middle line separates shallow
and deep formalisms.

been developed. Here, we focus on graph-like065

MRFs that target English language sentences. Fig-066

ure 1 shows a MR in an MRF called AMR.067

MRFs often adopt Neo-Davidsonian semantics,068

and see events as the central elements of sentences.069

These events center around a predicate, which in-070

dicates the type of the event, and is most often a071

verb (decide-01 or fly-01 in Figure 1). The argu-072

ments correspond to the entities that participate in073

the event (“Tiffany” in the example), or to the cir-074

cumstances of the event, such as place or manner (a075

negative polarity “-”, in our example). The seman-076

tic role specifies the participant’s role in the event,077

e.g., the semantic role of Tiffany in the decide-01078

event is the subject (the ARG0 in AMR jargon).079

The information in a MR can be decomposed080

into three levels, with the event level in the middle.081

On the sub-event level, the arguments of an event082

can themselves be decomposed into more atomic083

components. In our example, “bad for the envi-084

ronment” is modeled by the link from bad-4 to085

environment with the semantic role ARG2. On the086

supra-event level, events can also be linked, using087

discourse relations. In our example, the cause-01088

node connects decide-01 and bad-04, meaning089

that the decision was taken because flying is bad090

for the environment. Discourse relations can also091

link events across sentence borders.092

Different MRFs vary these general ideas along093

several axes, which we show in Table 1. First, not094

all MRFs can represent sub-events (Column 2 in095

Table 1), so we call a MRF deep if it represents096

sub-events, and shallow otherwise. Second, MRFs097

construct either trees (where each node has at most098

one parent) or full-fledged graphs (Column 3). Fig-099

ure 1 is a full-fledged graph: fly-01 and person100

play two different roles, and participate in a cycle.101

Third, some MRFs are compositional (Column 4),102

which means that they create nodes that compose103

the meaning of other nodes. Our example in Fig-104

ure 1 is not compositional: every node corresponds 105

to one element. However, we can imagine creat- 106

ing a node that represents the fact that the fly-01 107

event is negated. This would then be a composi- 108

tional node. 109

MRFs can further be distinguished by their types 110

of nodes (Column 5): Nodes can be labeled with a 111

span from the text, but they can also be augmented 112

with extra information such as a POS tag or other in- 113

formation. Some representations even use abstrac- 114

tions such as synsets from predefined vocabularies, 115

to help reduce (or even eliminate) lexical ambigu- 116

ity, and make events invariant to surface form. The 117

node type is closely related to the Flavor hierarchy 118

proposed by Oepen et al. (2019). It differentiates 119

Meaning Representations based on anchoring, i.e. 120

on the explicit correspondence between nodes and 121

the input sentence. Flavor 0 means that each node 122

injectively corresponds to one word, while Flavor 1 123

relaxes the anchoring constraints, allowing a node 124

to correspond to a whole span, and the same span 125

to correspond to several nodes, and Flavor 2 marks 126

the absence of explicit node-text links. 127

Finally, the MRFs differ in their edge type (Col- 128

umn 6): Some MRFs use roles that depend on a 129

specific linguistic theory, like elaboration (dis- 130

course theory) or scene (cognitive science). These 131

schemes can describe only a limited array of re- 132

lations, and for instance do not distinguish agents 133

and patients. Other representations are more spe- 134

cific and use numbered semantic roles (A0, A1, ...). 135

In these schemes, A0 and A1 usually correspond 136

to Dowty’s Proto-Agent and Proto-Patient (Dowty, 137

1991), respectively. These proto-roles are defined 138

by their features: Typical agent features are aware- 139

ness, movement, and volition, while typical pa- 140

tient features are change of state, being stationary, 141

etc. The other semantic roles (A2, A3, ...) usually 142

do not have such a predefined meaning. Again, 143

other MRFs are more specific, and use predicate- 144
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independent semantic roles that distinguish finer145

roles such as Agent and Patient. Finally, some146

MRFs make the meaning of the role dependent on147

the predicate: in Figure 1 ARG0 means “pilot, agen-148

tive entity capable of flight” for fly-01, while it149

means “decider” for decide-01. These MRFs thus150

describe their arguments very specifically.151

3 Shallow Meaning Representation152

Frameworks153

3.1 Semantic Roles154

A prominent Shallow Meaning Representation155

Framework is Semantic Roles (SR, Gildea and Ju-156

rafsky, 2000), also known as Semantic Role La-157

beling (SRL). Given an input sentence and a pred-158

icate, its purpose is to determine the predicate’s159

arguments and their semantic roles. It focuses on160

event-level relations, which means that predicates161

are verbs. There are (at least) three different im-162

plementations of semantic roles. The most pop-163

ular one is PropBank SRL, where semantic roles164

are split into core and non-core roles according165

to PropBank (Palmer et al., 2005). The non-core166

roles are also called modifiers, and they always167

have the same meaning: ARGM-CAU indicates cause,168

ARGM-LOC indicates location, etc. The meaning169

of core roles (ARG2...n) depends on the predicate.170

However, ARG0 and ARG1 usually correspond to171

Dowty’s Proto-Agent and Proto-Patient (Dowty,172

1991). Other paradigms exist: FrameNet (Baker173

et al., 1998) SRL generalizes descriptions across174

similar verbs (e.g., say, speak) as well as similar175

nouns and other words (e.g., speech). Semantic176

Proto-Role Labeling (SPRL) aims at directly ap-177

proximating Dowty’s agent and patient roles with178

features such as movement, awareness, etc.179

Figure 2 shows a merger of three parsings for180

our example (in PropBank-SRL style), for the pred-181

icates “decided”, “fly”, and “is”. Having only one182

predicate node and its arguments, an SRL graph is a183

dependency tree. No node abstraction is performed,184

meaning all nodes are text spans.185

SRL is a rather light annotation, and it is used186

to enhance LLMs (Zhang et al., 2020b) for down-187

stream tasks such as Fact Checking (Zhong et al.,188

2020), Question Answering (Pillai et al., 2018), and189

Summarization (Mohamed and Oussalah, 2019).190

Resources. (PropBank-)SRL has been the focus191

of several shared tasks, which provided datasets192

that are used to this day. CoNLL 2005 (Car-193

reras and Màrquez, 2004, 2005) introduced span-194

Tiffany decided that she would never fly again , because it is bad for the environment.

ARG0 ARG1

ARGM-CAU

ARG1

ARGM-MOD

ARGM-NEG

ARGM-TMP

ARG1 ARG2

Figure 2: Semantic Role Labeling of our example sen-
tence in span-graph style.

based SRL, while CoNLL 2008 (Surdeanu et al., 195

2008) and 2009 (Hajič et al., 2009) introduced 196

dependency-based SRL (which labels only syn- 197

tactic heads of arguments). Other datasets prop- 198

vide FrameNet SRL (Burchardt and Pennacchiotti, 199

2008; Das and Smith, 2011; Hartmann et al., 2017) 200

and SPRL annotations (Reisinger et al., 2015; 201

White et al., 2016a). 202

Parsing. Regardless of the flavor of SRL, many 203

approaches for parsing (or labeling) are heavily 204

reliant on syntactic features (Pradhan et al., 2005; 205

Punyakanok et al., 2008; Li et al., 2018; Fei et al., 206

2021). The progress in Neural Networks allowed 207

systems to become more syntax-agnostic (Zhou 208

and Xu, 2015; He et al., 2017; Tan et al., 2018; 209

Rudinger et al., 2018; Arora et al., 2022; Spaulding 210

et al., 2023), so much that recent approaches ex- 211

tract not just the arguments, but also the predicates 212

themselves (Cai et al., 2018; He et al., 2018; Zhang 213

et al., 2021), which is particularly appealing in the 214

scope of Meaning Representation. 215

3.2 Rhetorical Structure Theory 216

Rhetorical Structure Theory (RST, Mann and 217

Thompson, 1988) takes interest in discourse re- 218

lations. It sees the text as a sequence of Elemen- 219

tary Discourse Units (EDUs), which roughly cor- 220

respond to events, and seeks to identify the re- 221

lations between these units, such as Condition, 222

Contrast, Cause, Result, or Elaboration. RST 223

models a text as a tree, in which discourse re- 224

lations are recursively applied connect discourse 225

units. Leaf nodes are EDUs (text spans), while 226

inner nodes are unlabeled, and represent sets of 227

EDUs. Figure 3 shows the RST MR of our ex- 228

ample sentence. We see that EDUs correspond to 229

events, as they coincide with the spans delimited by 230

predicates and arguments in the SRL graph. Each 231

discourse relation links a satellite (supporting infor- 232

mation) to a nucleus (central information). In our 233

example, the nucleus of the Reason relation is the 234

fact that Tiffany decided to never fly again, and the 235
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satellite is the reason for that decision. The reper-236

tory of discourse relations depends on the dataset.237

Discourse relations can cross sentence bound-238

aries, which means that one rhetorical structure can239

represent a multi-sentence document. RST is used240

for summarization (Xu et al., 2020) and question241

answering (Ouyang et al., 2021), and is even used242

for argument mining (Peldszus and Stede, 2013;243

Mitrović et al., 2017; Chakrabarty et al., 2019).244

Figure 3: RST-DT style annotation for our example.

Resources. The main dataset for RST is RST-DT245

(Carlson et al., 2001), which defines 78 discourse246

relations, divided into 16 classes. The dataset con-247

tains 385 documents from the Wall Street Journal248

corpus, with around 20.000 EDUs.249

Parsing is usually performed in two steps: EDU250

Segmentation and Tree Building. Wang et al.251

(2018) achieves a 95% F1-score on segmentation252

with a Bi-LSTM-CRF-based model, while human253

performance is only marginally better, at 98%. First254

approaches for Tree Building (Soricut and Marcu,255

2003; Hernault et al., 2010) used hand-crafted fea-256

tures. Ji and Eisenstein (2014) introduced the257

first RST-DT neural parser, followed by bottom-up258

parsers (Li et al., 2016; Braud et al., 2017; Wang259

et al., 2017; Yu et al., 2018), and more recently top-260

down ones (Lin et al., 2019; Zhang et al., 2020a;261

Kobayashi et al., 2020). Though they have dif-262

ferent approaches, Nguyen et al. (2021) and Koto263

et al. (2021) define the state-of-the-art with Parse-264

val scores (Morey et al., 2017) of 50.2 and 50.3,265

respectively (human performance is at 55.0).266

3.3 Universal Decompositional Semantics267

Universal Decompositional Semantics (UDS) is268

a multi-layer semantic annotation scheme, which269

means that it allows annotating the same sentence270

on different dimensions. These dimensions are,271

e.g., factuality and time for predicates, or generic-272

ity and word sense for arguments. UDS builds a273

semantic compositional tree, where leaf nodes are 274

words of the sentence (or special tokens) and inner 275

nodes represent larger semantic units. The graph 276

structure is based on PredPatt (White et al., 2016a), 277

a pattern-based framework for predicate-argument 278

extraction that operates on (syntactic) Universal 279

Dependencies (UD, de Marneffe et al., 2021). It 280

focuses on event-level relations, which means the 281

extracted structure is close to that of merged SRL 282

graphs. UDS uses Dowty’s Proto Roles, which, 283

as described above, describe features of event par- 284

ticipants and how they are affected by the event 285

(movement, volition, change of state, and so on). 286

Resources. The UDS dataset can be accessed 287

through the Decomp Toolkit (White et al., 288

2020). The original annotations include proto-roles 289

(Reisinger et al., 2015), word sense, and factuality. 290

They were augmented with annotations on time 291

(Vashishtha et al., 2019), and generalizing state- 292

ments (Govindarajan et al., 2019), and also some 293

discourse relations (Gantt et al., 2022). 294

Parsing. UDS Parsing is a fairly unexplored task. 295

Zhang et al. (2018) performs cross-lingual UDS 296

parsing with a pipeline approach performing graph 297

transduction, coreference resolution and semantic 298

proto-role labeling. Stengel-Eskin et al. (2020) 299

proposes an end-to-end parser with an encoder- 300

decoder structure, while Stengel-Eskin et al. (2021) 301

parses UD and UDS jointly. 302

4 Deep Meaning Representation 303

Frameworks 304

Deep Meaning Representation Frameworks go fur- 305

ther than shallow ones by representing relations at 306

all levels of the text, in particular at the sub-event 307

level. They aim to model the meaning of the text 308

exhaustively, representing as many phenomena as 309

possible (noun phrases, negations, comparisons, 310

modifiers, time, cause, etc.). 311

4.1 Semantic Dependencies 312

Semantic Dependencies (SD), also known as Se- 313

mantic Dependency Parsing (SDP), is a family of 314

MR frameworks that are based on the SemEval 315

2014 & 2015 challenges (Oepen et al., 2014, 2015). 316

Their aim is to go further than syntactic depen- 317

dency parsing, and to represent the semantic struc- 318

ture of a sentence. Four main frameworks have 319

been proposed, derived from independent anno- 320

tation schemes with different formalisms: DM 321
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Figure 4: A Semantic Dependency Parse in DM-style for our running example.

(DELPH-IN MRS-Derived Bi-Lexical Dependen-322

cies, Flickinger et al., 2012), PAS (Enju Predicate-323

Argument Structures, Miyao, 2006), PSD (Prague324

Semantic Dependencies, Hajič et al., 2012), and325

CCD (Combinatory Categorial Grammar Depen-326

dencies, Hockenmaier and Steedman, 2007).327

All frameworks see the semantic structure as a bi-328

lexical dependency graph: every node corresponds329

to exactly one word in the sentence. In contrast330

to syntactic dependency trees, a graph structure331

is required, as nodes can have several incoming332

edges (a phenomenon called re-entrancy) if a word333

is the argument of several predicates, as well as334

none if they are semantically vacuous. A node335

is a word that can be augmented with its lemma,336

POS-tag or framework-specific frame. The exact337

vocabulary of semantic roles, as well as the way the338

graph models different phenomena, varies across339

frameworks. Most of them use unspecific semantic340

roles (ARG1, ARG2, ARG3, ...). Nevertheless, simi-341

lar to SRL, ARG1 and ARG2 usually correspond to342

Dowty’s Proto-Agent and Proto-Patient.343

Still, SDP has the advantage to be easily under-344

standable by human readers. Figure 4 shows DM345

annotations for our example sentence. We see that346

relations go all the way to the token level: the noun347

phrase “bad for the environment” is seen as an ob-348

ject of interest, with “for” being a predicate, with349

the arguments “bad” and “environment”.350

Resources. Oepen et al. (2016) proposes a cor-351

pus with annotations for all four frameworks, with352

close to 37.000 English sentences. The dataset also353

provides a corpus of PAS annotations on Chinese354

text, and PSD annotations on Czech text.355

Parsing. Most parsing approaches for SDP are in-356

spired by syntactic dependency parsing (Dozat and357

Manning, 2018; Fernández-González and Gómez-358

Rodríguez, 2020). ACE (Wang et al., 2021)359

achieves state of the art results in SDP (on DM,360

PSD and PAS) and other structured prediction tasks361

by acting on embeddings concatenation.362

Variations. English Resource Grammar (ERG), 363

which DM is a reduction of, produces MRs in the 364

Minimal Recursion Semantics (Copestake et al., 365

2005). These structures are particularly expres- 366

sive and can model scope, but they are also com- 367

plex to read and exploit. Elementary Discourse 368

Structures (EDS, Oepen and Lønning, 2006) try 369

to reduce this complexity by making the graph 370

non-compositional. The main difference between 371

EDS and DM is that EDS are Flavor 1 graphs with 372

stronger node abstraction: in addition to POS tags 373

and identifiers, nodes can be labeled with proper- 374

ties, such as time or number. 375

4.2 Universal Conceptual Cognitive 376

Annotation 377

The Universal Conceptual Cognitive Annotation 378

(UCCA, Abend and Rappoport, 2013) is a semantic 379

annotation scheme aiming to be “universal”, hence 380

it wants to be resistant to syntactic variation within 381

and across languages. An UCCA Representation 382

takes the form of a compositional tree whose leaf 383

nodes are the words of the sentence, and interme- 384

diate nodes, called units, are unlabeled. UCCA 385

identifies 3 levels of semantic information. On 386

the central level, scene units correspond to events. 387

They are linked to a predicate, to its core argu- 388

ments by a generic label participant, as well 389

as to non-core arguments using several other la- 390

bels (see Figure 5). On the lower level, sub-scene 391

units help specify the participants of a scene. Fi- 392

nally, superparallel units can link two scenes with 393

generic parallel scene edges, and possibly a cue 394

word indicating the type of discourse relation with 395

a linker edge. At any level, functional units can 396

represent phenomena such as prepositions, articles, 397

or expletive pronouns. UCCA can annotate several 398

sentences in a single graph. 399

There are very few semantic roles in UCCA, 400

which makes the annotation task more accessible 401

to non-experts and portable to other languages. Se- 402

mantic roles have a generic interpretability, but it 403

can be hard to exploit them directly: for instance, 404
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the participant role doesn’t make a difference405

between what would be labeled as ARG0 (Agent)406

and ARG1 (Patient) in other frameworks. UCCA is407

multi-layered, which makes it possible to add exten-408

sions to the representation, for instance to annotate409

co-reference links, more specific semantic roles, or410

more abstract node types. UCCA is cross-lingual,411

and as such found applications in machine transla-412

tion (Slobodkin et al., 2022; Birch et al., 2016), but413

also in text simplification (Sulem et al., 2018a,b).414

Tiffany decided that she would never fly again, because it is bad for the environment.
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Figure 5: UCCA graph for our example. H: Parallel
Scene, L: Linker, P: Process, A: Participant, D: Adver-
bial, F: Function C: Center, E: Elaborator, R: Relator.

Resources. UCCA comes with a large anno-415

tated multilingual corpus (Abend and Rappoport,416

2013). Its English version includes annotations of417

Wikipedia, the Web- and Penn Treebank, Twenty418

Thousand Leagues Under the Sea, and The Little419

Prince, with a total of 1350 passages (more than420

200k tokens). Some of the sources were also anno-421

tated in French, German, Hebrew, and Russian.422

Parsing. The first proposed parser for UCCA423

(Hershcovich et al., 2017) was transition-based.424

Other methods exploit constituency parsers (Jiang425

et al., 2019; Bölücü and Can, 2021). Nowadays,426

the best parsers are sequence-to-sequence models427

(Ozaki et al., 2020; Samuel and Straka, 2020).428

4.3 Abstract Meaning Representation429

Abstract Meaning Representation (AMR, Ba-430

narescu et al., 2013) aims at further abstracting431

away from syntax, even mapping named entities432

to Wikipedia. AMR has no explicit alignments be-433

tween nodes and the text. The representation itself434

takes the form of a rooted, acyclic, directed depen-435

dency graph, where each node is labeled with a436

concept, and represents an instance of this concept.437

The root of an AMR is used for modeling the focus,438

or main event, of a text. Figure 1 shows the AMR439

graph for our running example.440

AMR performs strong node abstraction: node441

labels can be PropBank frames for explicitly mod-442

eling entities, unambiguous English words, or spe- 443

cial frames (e.g. for dates, modality, negation, 444

comparisons, or family relationships). Semantic 445

roles are either PropBank roles, which have acces- 446

sible predicate-specific interpretation, or manually- 447

crafted ones (e.g. :name, :location, :cause, 448

:concession, :month, :poss, degree...). 449

Many AMR relations can be reified and used 450

as concepts, thus allowing the focus to be on the 451

relation itself. AMR also makes use of re-entrancy: 452

in our example, Tiffany appears only once as a 453

node, and is linked to both decide-01 and fly-01. 454

AMR also represents explicit quantities and tem- 455

poral relations. This makes AMR graphs nearly 456

unambiguous. However, the lack of explicit scope 457

can still lead to ambiguity: in our example, it is 458

unclear whether what is bad for the environment 459

is only the node “fly”, or the subgraph meaning 460

“that Tiffany will never fly again” – which is the 461

opposite of the actual meaning of the sentence. 462

Of all MRFs, AMR has probably garnered the 463

most attention in recent years. It has been used 464

in tasks such as machine translation (Song et al., 465

2019), question answering (Kapanipathi et al., 466

2021; Lim et al., 2020; Xu et al., 2021), toxic con- 467

tent detection (Elbasani and Kim, 2022), semantic 468

search and natural language inference (Opitz and 469

Frank, 2022b; Opitz et al., 2023b) and social rea- 470

soning (Chanin and Hunter, 2023). 471

Resources. The most important AMR corpus is 472

the AMR Annotation Release (Banarescu et al., 473

2013). It was constructed fully manually, and con- 474

tains 60.000 AMR graphs in its latest (3.0) version, 475

including multi-sentence graphs (O’Gorman et al., 476

2018). AMR graphs are often linearized in the 477

‘Penman’ form (Kasper, 1989), which is easy to 478

read, and allows processing with neural models in 479

a sequence-to-sequence manner (the Penman uses a 480

depth-first traversal and can, in principle, linearize 481

any directed and rooted graph). 482

Parsing. Many AMR parsers have been proposed 483

through the years, graph-based (Flanigan et al., 484

2014; Werling et al., 2015; Cai and Lam, 2020), 485

transition-based (Wang et al., 2015; Vilares and 486

Gómez-Rodríguez, 2018; Lee et al., 2020), or seq- 487

2-seq (Barzdins and Gosko, 2016; Peng et al., 488

2018; Bevilacqua et al., 2021), possibly leveraging 489

adapters to better incorporate graph topology (Va- 490

sylenko et al., 2023). Most systems of the 2020s 491

leverage large pre-trained language models and 492

achieve strong performance on AMR 3.0 493
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Extensions. AMR has been extended to model494

tense and aspect (Donatelli et al., 2018), as well as495

scope (Pustejovsky et al., 2019), and larger docu-496

ments (Naseem et al., 2021). The BabelNet Mean-497

ing Representation (Navigli et al., 2022) aims at498

making it multilingual by using BabelNet synsets499

for concepts (Navigli et al., 2021) and semantic500

roles from VerbAtlas (Di Fabio et al., 2019). Per-501

haps even more ambitious, the Universal Meaning502

Representation (UMR, Van Gysel et al., 2021) aims503

at compensating all main shortcomings of AMR,504

adding aspect and scope, integrating document-505

level annotations with coreference, temporal and506

modal relations between sentences, and making the507

representation language-agnostic.508

4.4 Discourse Representation Structure509

Discourse Representation Structure (DRS) is the510

fruit of Discourse Representation Theory (DRT,511

Kamp, 1981; Kamp and Reyle, 1993) and provides512

a meaning representation that fully integrates with513

first order logic. We focus here on the characteris-514

tics of the DRS format used in the Parallel Mean-515

ing Bank (PMB, Abzianidze et al., 2017), based516

on Segmented Discourse Representation Theory517

(Asher and Lascarides, 2003), which implements518

discourse relations. A Discourse Representation519

Structure (DRS) is not a graph, but a recursive520

structure of nested boxes. Figure 6 shows the rep-521

resentation of our example sentence.522

As in AMR, elements are represented by a con-523

cept, here a Wordnet synset (Miller, 1995), accom-524

panied by an identifier. Wordnet has a very wide525

coverage of English, which means that most labels526

are fully abstract. Semantic roles are taken from527

VerbNet (Kipper et al., 2000), augmented by hand-528

crafted roles (e.g. Quantity, Name, Owner, Time),529

some of which are used specifically for compari-530

son. Yet, these roles are generic, and no predicate-531

specific interpretation is available.532

Usually, a simple box represents an event (simi-533

lar to an EDU). Discourse relations are represented534

similarly to semantic roles, but with boxes as argu-535

ments. This means that DRS is compositional, and536

naturally equipped for multi-sentence representa-537

tion. Modal logic operators can also be applied to538

boxes (negation, possibility, and necessity), which539

allows for a precise scoping of these operators: in540

the example, “she will never fly again” is repre-541

sented as the negation of the box expressing that542

Tiffany flies at some point in the future.543

Even though there is no ideal way to transform544

DRS into a graph (Abzianidze et al., 2020), we can 545

see concepts as nodes, and semantic roles as labels 546

of the edges between these nodes. Boxes would 547

be another type of nodes, with discourse relations 548

linking them. The most recent development of 549

DRS, the Sequence Notation (Bos, 2023) proposes 550

a similar graph equivalent. With this view, DRS 551

are compositional graphs, with high-level nodes 552

representing scope. 553

Resources. DRS annotations are hard to produce 554

even for experts, which makes constructing large 555

corpora difficult. The Groningen Meaning Bank 556

(GMB, Basile et al., 2012) was the first DRS cor- 557

pus, followed by the Parallel Meaning Bank (PMB, 558

Abzianidze et al., 2017). These banks were built 559

using an automatic pipeline using the rule-based 560

parser Boxer (Bos, 2008). The PMB tries to make 561

DRS language-neutral by associating English docu- 562

ments with translations to one or several languages. 563

The latest release contains almost 10.000 “gold”, 564

i.e., human-checked, English documents. 565

Parsing. Several DRS parsers are available, ex- 566

ploiting transition-based parsing (Evang, 2019), 567

DAG Grammars (Fancellu et al., 2019) or POS- 568

tags and dependency graphs (van Noord, 2019). 569

Modern parsers use LLMs (van Noord et al., 2018, 570

2020) and generally outperform older ones. 571

Figure 6: DRS for our running example

5 Current Research Trends 572

Synthesizing insights from our overview of MRFs, 573

we see research challenges in three main areas: MR 574

design, MR parsing, and MR applications. 575

5.1 Trends in MR design 576

MRs seem to lend themselves to multi-linguality, 577

since they represent semantic concepts such as 578

agent, patient, instrument, and cause that appear 579
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universal. However, MRs often have a strong fla-580

vor of English, e.g., because they use an English581

PropBank. Only UCCA is natively fully language582

independent. Other MRs are being equipped with583

parallel corpora and node labels (Abzianidze et al.,584

2020; Van Gysel et al., 2021; Navigli et al., 2022;585

Giordano and Lopez, 2023). Another trend is to586

make MRs more expressive. This happens along587

three avenues: One is extending existing MRFs (as588

illustrated by AMR extensions for tense or scope589

modeling, see above), one is to use multi-layer590

annotation schemes (as exemplified by UCCA or591

UDS), and one is to employ more complex struc-592

tures (as DRS does).593

However, there is a trade-off between expressiv-594

ity and the annotation load. To reduce the anno-595

tation load, current works aim at crowd-sourcing596

MRs (e.g., by re-formulating annotation tasks into597

simple questions (White et al., 2016b)), or im-598

proving annotation tools (e.g., with a CodePilot599

machine-in-the-loop (Cai et al., 2023)), or creating600

simpler MRFs (Feng et al., 2023).601

5.2 Trends in MR Parsing602

For humans, producing an MR is an arduous task,603

particularly for abstract frameworks: a trained an-604

notator needs about 10 minutes to annotate a sen-605

tence in AMR Banarescu et al. (2013). Therefore,606

much research has been dedicated to building au-607

tomatic parsing systems. Most parsers now use608

sequence-to-sequence architectures (Ozaki et al.,609

2020; Samuel and Straka, 2020; van Noord et al.,610

2018, 2020; Bevilacqua et al., 2021; Zhou et al.,611

2021). They differ in their learning strategies:612

graph pre-trainig (Bai et al., 2022; Wang et al.,613

2023), instruction fine-tuning (Lee et al., 2023),614

graph information distillation (Vasylenko et al.,615

2023), or even prompting (Ettinger et al., 2023).616

Other approaches mix deep learning with classical617

ideas, using neural representations in transition-618

based parsing (Astudillo et al., 2020; Zhou et al.,619

2021), graph-prediction parsing (Lyu and Titov,620

2018), or ensembling (Hoang et al., 2021; Lorenzo621

et al., 2023). Interestingly, despite performance622

on par with human annotators, recent research sug-623

gests that parsing is far from solved (Opitz and624

Frank, 2022a; Groschwitz et al., 2023).625

The evaluation of MRs often revolves around626

structural graph similarity, measured with metrics627

such as SMATCH (Cai and Knight, 2013; Opitz,628

2023). Computing the SMATCH, however, is NP-629

complete. Therefore, newer approaches leverage630

graph-traversal heuristics to evaluate AMR (Song 631

and Gildea, 2019) and DRS (Liu et al., 2020), ap- 632

proximate SMATCH with neural networks (Opitz 633

et al., 2023a), or do quality estimation without 634

a costly reference (Opitz, 2020; Yao and Koller, 635

2023). There are also efforts towards a more se- 636

mantic matching of MRs, to take into account, e.g., 637

that a node cat is similar to a node kitten or a 638

sub-graph cat :mod young, with neural networks 639

or graph algorithms used to that end (Opitz et al., 640

2020, 2021; Shou and Lin, 2023). Recently, Opitz 641

and Frank (2022a) and Groschwitz et al. (2023) 642

showed that SMATCH struggles to detect perfor- 643

mance differences between strong parsers. 644

5.3 Trends in MR Application 645

We may wonder what is the place of MRFs in a 646

domain dominated by always better-performing 647

LLMs. Some works try to integrate MRs directly 648

into these architectures during the training phase. 649

They leverage the semantic information from MRs 650

to make the models more robust (Zhang et al., 651

2020b; Cai et al., 2021) or explainable (Opitz and 652

Frank, 2022b). The most popular way for lever- 653

aging MR in downstream tasks is to use them as 654

intermediate representations during training and in- 655

ference. For this, MRs can be linearized and used 656

directly in BERT-like architectures (Ouyang et al., 657

2021; Xu et al., 2020), or fed into graph neural net- 658

works that exploit structure (Song et al., 2019; Xu 659

et al., 2021; Lim et al., 2020; Ribeiro et al., 2022). 660

Other works (Slobodkin et al., 2022) use discourse- 661

level information to perform scene-aware attention, 662

or concatenate sentence and MR embeddings to re- 663

fine representations (Cai et al., 2022). Again other 664

approaches exploit the graphs directly, in symbolic 665

or neuro-symbolic pipelines. Some works perform 666

MR Parsing and MR-to-text-generation for data 667

augmentation or style transfer (Jangra et al., 2022; 668

Shi et al., 2023; Shou et al., 2022). Others use 669

MRs to do textual inference between pairs of sen- 670

tences (Bonial et al., 2020; Opitz et al., 2023b), per- 671

form splitting for text simplification (Sulem et al., 672

2018b), or transform MRs into logical formulas 673

to permit symbolic reasoning (Kapanipathi et al., 674

2021; Chanin and Hunter, 2023). 675

MRFs are thus being combined fruitfully with 676

LLMs, contributing interpretability, useful interme- 677

diate representations, and a bridge towards formal 678

logic. 679
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6 Limitations680

Our survey is limited to graph-like meaning rep-681

resentations. While these are indeed the most682

popular meaning representations these days, there683

are others that could be discussed in this survey,684

in particular R. Mooney’s ground-breaking works685

(Mooney, 1996; Wong and Mooney, 2006; Mooney,686

2007), or L. Zettlemoyer’s work on CCG pars-687

ing (Kwiatkowski et al., 2011; Wang et al., 2014;688

Dasigi et al., 2019), which aim at building Meaning689

Representations from a corpus, for a target applica-690

tion. The compactness of this survey also prevents691

us from going more into detail of the parsing tech-692

niques. While we do discuss current methods and693

future trends, parsing itself could merit a survey.694
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