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Abstract

A key challenge in artificial intelligence and neuroscience is understanding how neural sys-
tems learn representations that capture the underlying dynamics of the world. Most world
models represent the transition function with unstructured neural networks, limiting inter-
pretability, sample efficiency, and generalization to unseen states or action compositions.
We address these issues with a generalizable world model grounded in Vector Symbolic
Architecture (VSA) principles as geometric priors. Our approach utilizes learnable Fourier
Holographic Reduced Representation (FHRR) encoders to map states and actions into a
high-dimensional complex vector space with learned group structure and models transitions
with element-wise complex multiplication. We formalize the framework’s group-theoretic
foundation and show how training such structured representations to be approximately
invariant enables strong multi-step composition directly in latent space and generalization
performances over various experiments. On a discrete grid world environment, our model
achieves 87.5% zero-shot accuracy to unseen state-action pairs, obtains 53.6% higher ac-
curacy on 20-timestep horizon rollouts, and demonstrates 4× higher robustness to noise
relative to an MLP baseline. These results highlight how training to have latent group
structure yields generalizable, data-efficient, and interpretable world models, providing a
principled pathway toward structured models for real-world planning and reasoning.

Keywords: World Models, Vector Symbolic Architecture, Hyperdimensional Computing,
Fourier Holographic Reduced Representation, Neurosymbolic AI, Geometric Deep Learning

1. Introduction

Humans build internal world models that capture the underlying dynamics of the envi-
ronment and allow interaction beyond direct trial-and-error (LeCun, 2022). Inspired by
this idea, modern reinforcement learning (RL) has leveraged latent predictive models con-
ditioned on states and actions, achieving state-of-the-art results in video games (Hafner
et al., 2020) and continuous control (Hansen et al., 2023). Despite these successes, current
world models face two major limitations. They are largely confined to RL, control, and
robotics settings where abundant simulated data is available and treat the transition func-
tion T : S×A → S as an unstructured black-box function approximator realized by neural
networks that lack any built-in geometric priors. While highly expressive, such architec-
tures suffer from poor sample efficiency, weak extrapolation to unseen states, compounding
rollout errors, and latent spaces with no explicit geometric meaning.

Biological systems, in contrast, appear to exploit symmetries and geometric struc-
ture (Gardner et al., 2022; Gallego et al., 2017) in the environment, effectively reducing
the complexity of learning. Geometric Deep Learning (GDL) (Bronstein et al., 2021; Pa-
pillon et al., 2025; Shewmake et al., 2023) formalizes this idea by incorporating geometric
priors into neural networks to help preserve structure throughout the network, dramatically
improving the efficiency and generalization capabilities.
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Vector Symbolic Architecture (VSA) (Kleyko et al., 2022) offers a complementary, alge-

braic approach to structured representations. They represent symbols as high-dimensional
vectors and compose them via binary operations, forming structured representations that
are robust to noise. In addition, VSA-based representations can be trained to approximate
group actions, making them a promising approach for GDL. Among the many VSA vari-
ants, Fourier Holographic Reduced Representation (FHRR) (Plate, 2003) remains a popular
implementation of VSA to efficiently encode complex data structures due to its efficiency
and exact invertibility.

Contribution. In this work, we propose a generalizable world model using VSA prin-
ciples. Our FHRR encoder encodes states and actions as unitary complex vectors, with
transitions realized as element-wise multiplication. We train the model to have latent group
structure on actions with multi-step action composition, invertibility, and robust cleanup.
We demonstrate that the model (1) encourages transition equivariance in the latent space
and learns action representations respecting group structure, (2) achieves long-horizon sta-
bility and error correction via cleanup, and (3) outperforms MLP baselines on one-step
prediction, long-horizon rollouts, zero-shot generalization, and robustness tests on a dis-
crete grid world environment regardless of scale. Our approach provides an alternative
architecture to world modeling with strong implications for interpretable and generalizable
decision-making for real world applications.

2. Related Work

World Models in Model-Based RL. World models aim to learn a predictive model of
an environment’s transition dynamics that can leveraged for learning and planning. Model-
based reinforcement learning methods (Ha and Schmidhuber, 2018; Hafner et al., 2019) and
recent Model Predictive Control methods (Hansen et al., 2023) utilize world models to learn
the environment’s dynamics for decision-making, yet often suffer from compounding rollout
errors (Hansen et al., 2022) and limited transparency in the learned dynamics (Glanois
et al., 2024). Most approaches treat the transition function as an unstructured mapping
from (s, a) 7→ s′, which can be highly expressive but fails to exploit known symmetries in
the environment. This can limit generalization, especially when the environment exhibits
strong symmetries or if little training data is available. These limitations motivate the
incorporation of geometric priors into world models, where known symmetries or structures
in the environment are part of the representation learning process.

Geometric Deep Learning. In the context of world modeling, GDL-based approaches
(Kipf et al., 2019; Park et al., 2022) have incorporated symmetry and structure to improve
generalization in structured environments. However, in such implementations, the group
action is enforced through the transition model’s architecture, and the latent representations
themselves are not structured such that they can be algebraically composed, inverted, or
directly manipulated. Without the ability to easily or interpretably manipulate latents with
vector operations, planning or composition with such architectures consequently require an
expensive full forward pass or additionally trained modules. Our VSA-based approach to
GDL trains the action representations such that it respects group structure in the latent
space and leverages cleanup for robustness and compounding error reduction.
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Vector Symbolic Architectures. VSA, also known as Hyperdimensional Computing,
is a computational paradigm where discrete symbols are represented as high-dimensional
vectors (e.g. D ≥ 1000) sampled from well-defined distributions (Kanerva, 2009). These
distributed representations are inherently robust to noise and enable symbolic reasoning
through algebraic operations on vectors. VSAs have been applied in diverse domains, in-
cluding efficient classification (Hernández-Cano et al., 2021; Ni et al., 2024b), time-series
modeling (Mejri et al., 2024), graph reasoning (Poduval et al., 2022), reinforcement learn-
ing (Ni et al., 2024a), and representing cognitive maps (Yeung et al., 2025). Hardware-
efficient implementations have also made them appealing for resource-constrained applica-
tions and learning on the edge (Zou et al., 2021; Chung et al., 2025). While VSA has been
applied to various domains, its applications as a transition operation in learnable settings
remain largely unexplored. Our work aims to close this gap by constructing learnable world
models that utilize the binding operation to model environment transitions and the VSA
clean-up mechanism to perform robust rollouts.
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Figure 1: Overview of the FHRR-based world modeling framework. a) Visualization of the
partially held-out GridWorld Environment. b) Difference between MLP-based
and FHRR-based dynamics modeling. Direct predictions of ŝt+1 by MLPs cannot
easily generalize to OOD samples, while FHRR can.

3. Proposed Framework

Figure 1 visualizes the architecture of our generalizable world model. We model envi-
ronment dynamics as group actions in a learnable, complex latent space where the dy-
namics is implemented by the binding operation. Concretely, we learn state and action
encoders such that the transition model inherits several useful VSA properties including
interpretability of the transformation between two given states, robustness to noise due to
the high-dimensionality of the representations, and a native cleanup mechamism to mitigate
exponential error growth in long-horizon rollouts. In contrast, MLP-based approaches take
the concatenation of state-action pairs which limits the model’s ability to learn separate
state and action mappings. In this section, we introduce the mathematical formulation that
allows the model to generalize.

3.1. Fourier Holographic Reduced Representation

FHRR (Plate, 2003) is a specific VSA variant in which each vector component lies on the
unit circle in the complex plane, i.e.

v = [eiθj ]Dj=1 ∈ CD (1)

3



Proceedings Track
such that θj ∼ p for dimension j = 1, . . . , D where p is some distribution (e.g. Unif(0, 2π)
or N (0, 1)), resulting in a phase-based complex unitary vector. As a VSA, FHRR admits
binary operations, namely bundling (+) and binding (⊙), to construct composite repre-
sentations. Bundling is implemented as vector addition while binding is implemented as
element-wise complex multiplication. Given vectors v1 = [eiθ1,j ]Dj=1 and v2 = [eiθ2,j ]Dj=1,

v1⊙v2 = [ei(θ1,j+θ2,j)]Dj=1. The inverse of a FHRR vector v is simply its complex conjugate,

enabling straightforward unbinding via v−1 = v. FHRR is the extension of Holographic Re-
duced Representations, which consists of real-valued components and circular convolution
as binding (Appendix A). FHRR avoids convolution and fourier transforms altogether by us-
ing element-wise complex multiplication which is equivalent to convolution in the frequency
domain (Plate, 2003). A notable property of FHRR is its connection to kernel-based meth-
ods in machine learning (Appendix A.2). There are various other related implementations
of VSA (Appendix A), but we limit the scope of VSA to FHRR in this work.

3.2. Environment Dynamics as a Group Action on Sets

Let S be a finite set of states, A a finite set of actions, and T : S × A → S a deterministic
transition function. We assume that compositions of actions generate an action group (G, ◦)
acting on S:

· : G× S → S, (g, s) 7→ g · s, (2)

with identity e · s = s and (g1 ◦ g2) · s = g1 · (g2 · s) for g1, g2 ∈ G. Each action a ∈ A
corresponds to a generator ga ∈ G such that T (s, a) = ga · s. In particular, the identity e
does not need to be a primitive action, but is always present in G and can be realized as
e = ga ◦ g−1

a for any a ∈ A.

Example: (10×10 GridWorld) Let S = Z10 × Z10, and let G = Z10 × Z10 act by
translations. The four actions correspond to the generators (±1, 0) and (0,±1) (i.e., left,
right, up, and down). With wrap-around, G is abelian while without wrap-around, the
action structure is a local group with boundary effects and S = [10] × [10] where [n] =
{1, 2, . . . , n}.

3.3. Equivariant Latent Representations

We embed states into a D-dimensional complex vector space via a map ϕS : S → Z, where
Z = (S1)D = {z ∈ CD : |zd| = 1}. Notably, (Z,⊙) forms a group. A representation of the
action group G in Z is a homomorphism

ρ : G → Z, ρ(g1 ◦ g2) = ρ(g1)⊙ ρ(g2), ∀g1, g2 ∈ G. (3)

The encoder ϕS : S → Z is equivariant to environment transitions if

ϕS(T (s, a)) = ρ(a)⊙ ϕS(s), ∀s ∈ S, a ∈ A (4)

where T (s, a) is the environment’s transition function. By closure of G, the same property
holds for any composed action g ∈ G, i.e. ϕS(g · s) = ρ(g) ⊙ ϕS(s), which states that
transforming s by g corresponds to multiplying its latent representation by ρ(g).
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3.4. Latent Transition Model

We would like to learn state and action encoders, ϕS : S → Z and ϕA : A → Z respectively,
such that (1) ϕA induces a representation of G via the generators ga ∈ G for all a ∈ A; and
(2) the equivariance condition given by Eq. 4 holds.

Suppose s ∈ Rns and a ∈ Rna where ns and na are the state and action dimensions,
respectively. We parametermize ϕS and ϕA via the FHRR encoding

ϕS(s) = [eiθ
⊤
j,ss]Dj=1, ϕA(a) = [eiθ

⊤
j,aa]Dj=1 (5)

Motivated by Eq. 4, we model the latent transitions in FHRR-space via the binding operator

τ : Z × Z → Z, (ϕS(s), ϕA(a)) 7→ ϕS(s)⊙ ϕA(a) (6)

We would also like to learn ϕS : S → Z and ϕA : A → Z such that one-step dynamics
satisfy

ϕS(st+1) = τ(ϕS(st), ϕA(at)) = ϕS(st)⊙ ϕA(at), (7)

and ϕA(a) = ρ(ga). In phase coordinates, this corresponds to:

Θ⊤
s st+1 = Θ⊤

s st +Θ⊤
a at (mod 2π) (8)

where Θs = [θj,s]
D
j=1 ∈ CD×ns , Θa = [θj,a]

D
j=1 ∈ CD×na , and the modulus is applied element-

wise. Due to the properties of FHRR, we can simply extend this to multi-step composition:

Embedding Space: ϕS(st+k) = ϕS(st)⊙
k∏

j=1

ϕA(at+j−1) (9)

Phase Space: Θ⊤
s st+k = Θ⊤

s st +
k∑

j=1

Θ⊤
a at+j−1 (mod 2π). (10)

3.5. Learning Objectives

We learn ϕS and ϕA with learnable parameters Θs and Θa respectively and train on transi-
tion tuples, (st, at, st+1). We minimize a binding loss to encourage transition equivariance
given in Eq. 7:

Lbind = ∥ϕS(st+1)− ϕS(st)⊙ ϕA(at)∥2 (11)

Additionally, to preserve structure in our representations, we introduce invertibility and
orthogonality regularizers:

Linv =
∑

(a,a−1)

∥∥ϕA(a)⊙ ϕA(a
−1)− 1

∥∥2 , (12)

Lortho =
∑
i ̸=j

(⟨ϕS(si), ϕS(sj)⟩)2 . (13)

In particular, the invertability constraint given by Eq. 12 encourages that the actions a ∈ A
form a representation via ϕA, i.e. ϕA induces an approximate homomorphism with respect
to the actions in the grid environment.
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The full objective is L = λbindLbind + λinvLinv + λorthoLortho where λbind, λinv, λortho are

the hyperparameters controlling the balance between each objective respectively. Training
is linear-time in D per sample and memory is O(D) as all VSA operations are done element-
wise. Additionally, multi-step rollouts can be processed using Eq. 10 for linear-time in the
phase space where (|a| ∈ A) ≪ D for inference.

3.6. Cleanup Mechanism

Training dataset: Perfect trajectories 
limit model’s distribution

Typical inference: Error accumulation 
causes distribution shift

FHRR inference: Cleanup keeps  
inputs within distribution

a)

b) Cleanup via 

similarity search

Figure 2: a) Shaded red represents out of the training distribution. Cleanup during FHRR
Inference can ameliorate error accumulation due to distribution shift between
train and test. b) Cleanup mechanism equations via similarity search in FHRR.

A key advantage of VSA-based models is their ability to support error correction through
a process known as cleanup, shown in Figure 2. In our setting, each state s ∈ S is encoded
as a unitary complex vector, and during training the Lortho term (Section 3.5) enforces that
distinct state representations are quasi-orthogonal, i.e. Re ⟨ϕS(s), ϕS(s

′)⟩ ≈ 0 for s ̸= s′.

As D increases, the capacity to maintain larger separation margins between symbols
improves, which directly enhances cleanup robustness. Given a noisy or approximate pre-
diction of the next-state, ϕS(ŝt+1), cleanup recovers the most likely true embedding by sim-
ilarity search, i.e. ϕS(ŝt+1) = argmaxs∈S Re ⟨ϕS(ŝt+1), ϕS(s)⟩. When the state-codebook
is explicitly stored as a matrix, this operation can be reduced to taking an argmax after
performing matrix-vector multiplication.

4. Results

Experimental Design. We train and evaluate 2 variants of VSA-based world models
and 3 MLP baselines of varying sizes on a 10×10 GridWorld environment with a total
of 100 discrete states and 4 deterministic actions. For all models, we train on 80% of
(state, action) pairs, hold out 20% for zero-shot evaluation, and train for 500 epochs. For
our VSA-based models we use embedding dimensions of D = 512 while for MLP we use
D = 64, D = 16 for state and action which are concatenated and a hidden dimension of
D = 128. In Table 4, we compare Holographic Reduced Representations (HRR) and FHRR
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Table 1: VSA-Based vs MLP Dynamics Modeling

Task VSA (HRR) VSA (FHRR) MLP-S MLP-M MLP-L

1-step Accuracy 91.0% 96.3% 80.0% 80.0% 80.25%
1-step Accuracy (Zero-Shot) 80.0% 87.5% 0.0% 0.0% 1.25%
Cosine Similarity 82.5 83.0 79.5 79.9 80.6
Cosine Similarity (Zero-Shot) 71.1 80.5 0.9 0.15 3.1
Rollout (5 steps) 70.8% 74.6% 39.8% 38.0% 40.8%
Rollout (20 steps) 3.2% 34.6% 2.0% 4.0% 6.2%
Rollout (20 steps + Clean) 45.4% 61.4% 5.4% 7.8% 8.4%
Rollout (100 steps) 0.6% 1.8% 0.8% 1.8% 2.0%
Rollout (100 steps + Clean) 6% 38.6% 2.8% 4.0% 3.2%

versus MLP-Small, MLP-Medium, and MLP-Large on several different tasks, such as 1-step
accuracy, cosine similarity, and rollouts. In Appendix B.5, we compare the total parameter
count and inference time between all the models to highlight that VSA models have a
similar parameter count as MLP-S (MLP-S is 0.8×, MLP-M is 4.5×, MLP-L is 26.2× the
parameter count as VSA models). For more explicit details on the implementation, please
check the Appendix B.

Dynamics Modeling For 1-step accuracy, we test the models on their ability to predict
the correct next state given (state, action) pairs. While the models are trained on 80% of
the dataset, they are tested on all possible transitions. VSA-FHRR achieves a higher 1-step
prediction accuracy than all the MLP variations and also outperforms VSA-HRR (real-
valued, binding through circular convolution). The 1-step accuracy of all MLP variations
are seemingly limited by the amount of data they train on at 80%. For the zero-shot tests
(when evaluating on the unseen 20% transitions), VSA-based models achieves significantly
higher zero-shot accuracy and cosine similarity, confirming its ability to generalize well.
We also highlight that scaling the size of the MLPs has not shown a stronger ability for
these models to generalize. In the rollout tests, we compare VSA and MLP methods on
their latent rollout accuracy when predicting over long horizons (i.e. interactions solely
in the latent space without receiving a state from the environment). FHRR maintains a
higher accuracy over long transitions, unlike MLP which accumulates drift. Additionally,
VSA has the added benefit of applying cleanup. For a fair comparison, we utilize nearest-
neighbor search for the MLPs to compare against the VSA models with cleanup and apply
the cleanup every 2 time steps.

Latent Rollout Performance. Figure 3 compares the latent rollout accuracy of horizon
length t = 20 between FHRR and MLP-M given varying zero-shot ratios. As the zero-
shot ratio increases, we notice a linear decrease in the FHRR model performance while the
MLP-based model’s accuracy exponentially decreases and fails to maintain even above 10%
when trained on only 90% of the transitions. Additionally, the cleanup operation improves
the accuracy of the FHRR model by 35% when zero-shot ratio = 0.1, resulting in a 3.3×
improvement over the MLP baseline. As expected, we also emphasize that the cleanup
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Figure 3: Latent Rollout Accuracy of FHRR and MLP-M over varying zero-shot ratios
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Figure 4: t-SNE visualization of state embeddings for VSA (FHRR) vs MLP-M labeled per
row

operation has little to no benefit for the MLP-based model due to the lack of structure and
quasi-orthogonality.

Latent Visualizations. In Figure 4 we visualize the t-SNE components of the state
embeddings of the VSA-FHRR and MLP-Medium models. The VSA-FHRR model is able
to capture the structure of the grid environment in its latent space while MLP-Medium
fails to maintain any structure. We attribute this structured latent space for its strong
generalization capabilities over MLP baselines.

Robustness. We study the robustness of our FHRR model with MLP-M by comparing
the 1-step dynamics accuracy when random gaussian noise is added to the transition func-
tion. Figure 5(a) shows the results between gaussian noise between 0 to 5 magnitude of
standard deviation (i.e. noise n ∼ N (0, σ) where σ ∈[0, 5]). The FHRR model maintains
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Figure 5: VSA (FHRR) vs MLP-Medium on robustness and similarity experiments

above a 80% accuracy even under large amounts of noise while MLP-M struggles as the scale
of noise increases. Specifically, the FHRR model has above 4× higher prediction accuracy
than MLP-M under noisy conditions.

Similarity Kernel. Given the kernel approximation property of FHRR (Appendix A.2),
in Figure 5(b), we plot the similarity between ϕS(s) and ϕS(s + ka) where a is a given
action and k ∈ [−10, 10]. For all actions, we notice an approximately smooth but sharp
similarity kernel peaking at k = 0 and decaying as |k| increases, indicating that the latent
space preserves locality of the states. States that can be reached by 1 or 2 actions are
closer in similarity while further ones become nearly orthogonal (e.g. similarity ≈ 0). The
approximate symmetry of these curves across actions demonstrates that our model learns a
structured geometry in which actions correspond to consistent translation across the states.

5. Conclusion

In this work, we present an alternative approach to world modeling based on VSA, where
states and actions are encoded as unitary complex vectors and transitions are modeled via
element-wise multiplication. Our experiments on a discrete world environment show that
our model achieves strong generalization capabilities and maintains long-horizon rollout
accuracy under noise, outperforming MLP baselines regardless of scale. While promising,
our current work is limited to small discrete environments. Extending this approach to
continuous, stochastic, or partially observable domains remains an open challenge. In future
work, we hope to integrate VSA-based world modeling into model-based RL and planning
to enable generalizable dynamics models that are applicable to real world environments.
Overall, this work demonstrates that learning structured algebraic representations offers a
principled path toward robust, interpretable, and generalizable world models.
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Appendix A. Vector Symbolic Architectures

A.1. VSA Variants

VSA consists of two fundamental operations: bundling (superposition), which adds vectors
to form set-like representations, and binding (association), which combines vectors into a
compositional representation, often with invertibility. This algebraic structure allows VSAs
to represent structured data such as sequences, sets, and relations in a way that supports
compositionality and symbolic reasoning through lightweight vector operations.

Many VSA works also consist of a permutation operation (shuffling) to encode or-
dered structures or design non-commutative operations when combined with bundling or
binding. Below, we summarize some related VSA approaches:

Holographic Reduced Representations HRR (Plate, 1995) uses real-valued vectors
with components drawn from a normal distribution and defines binding as circular con-
volution, bundling as element-wise addition, and similarity as dot product between two
vectors.

Multiply Add Permute MAP (Gayler, 1998) utilizes high-dimensional bipolar vectors
where binding is element-wise multiplication, bundling is element-wise addition, and similar-
ity as cosine similarity or the dot product. MAP forms the foundation for many subsequent
VSA designs due to the simplicity of element-wise multiplication for binding.

Generalized Holographic Reduced Representations GHRR (Yeung et al., 2024) is
an extension of FHRR by replacing the unitary complex vector eiθ ∈ U(1) with a unitary
matrix aj ∈ U(m), such that vectors become tensors H ∈ CD×m×m whose binding is defined
as matrix multiplication. Bundling still holds as element-wise addition. The similarity
between two hypervectors H1 = [aj ]

D
j=1 and H2 = [bj ]

D
j=1 is defined as

δ(H1, H2) =
1

mD
Re

tr
D∑
j=1

ajb
†
j

 . (14)

For m = 1, this reduces exactly to FHRR similarity. GHRR enables non-commutative and
more flexible representations, controlled by the choice of unitary matrices yet equivalent to
FHRR when m = 1.

A.2. Kernel Approximation in FHRR

One way to encode data into FHRR follows the Random Fourier Features (RFF) encoding
(Rahimi and Recht, 2007), an efficient approximation of kernel methods. The RFF encoding
is a map ϕ : Rn → CD, with ϕ(x) = eiMx, where each row Mj,: ∼ p for some multivariate
distribution p. As a result of Bochner’s theorem, ⟨ϕ(x), ϕ(y)⟩/D ≈ K(x− y) for all x,y ∈
Rn, where K is a shift-invariant kernel that is the Fourier transform of distribution p. The
approximation converges to the true kernel in the limit as D → ∞. Notably, when p is the
standard Gaussian distribution, the radial basis function (RBF) kernel is recovered.
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B.1. Environment

Dataset We use a 10 × 10 GridWorld with boundaries (no wrap-around). States are
indexed and mapped to (row, col). Actions a ∈ {0, 1, 2, 3} correspond to up, down, left,
right with deterministic transition T (s, a) = (s′).

We define transitions (s, a, s′) for s ∈ S, a ∈ A, which yields |S||A| = 100 × 4 tuples.
We form a zero-shot split at the level of given a zero-shot ratio, such that a fixed ratio
(default 20%) of pairs (s, a) are withheld from training. Zero-shot evaluations are done
only held-out pairs, while the regular accuracy, cosine similarity, rollout tests are all done
with the all the transitions.

B.2. Models

Our VSA-based models use embedding dimensions of D = 512. HRR initializes its weights
as real-valued numbers sampled from a normal distribution with mean = 0 and standard
deviation = 1. We utilize circular convolution for the binding and circular correlation for
unbinding. For FHRR, we sample the elements from a uniform distribution from -pi to pi
and utilize element-wise complex multiplication for binding. For MLP-based models, we
use D = 64 and D = 16 for the state and action respectively. These state and actions are
concatenated and fed into a MLP for next state prediction. MLP-S is constructed with 2
hidden layer (D = 128), MLP-M with 4 hidden layers (D = 256), and MLP-L with 6 hidden
layers (D = 512). Every hidden layer’s output passes through a ReLU activation as well.

B.3. Training Objectives and Hyperparameters

For both VSA and MLP-based models. we utilize MSE for the binding loss in 11. For
all experiments, the binding λbind = 2, λinv = 0.5, and λortho = 0.05. The learning rate
for VSA models is set as 0.007 where as the learning rate for MLP-based models is set as
0.0005. We apply a gradient clipping of 1 to help with learning as well.

B.4. Experiments

All experiments were run conducted over 500 epochs. For the rollout tests, we sample 500
trials of random trajectories based on the horizon length (i.e. Rollout Length = 20 implies
a random trajectory with t = 20). We apply the cleanup operation to both VSA and
MLP-based models every 2 time steps when specified as rollout + cleanup.

In Figure 6 we run an ablation study and see that increasing dimensionality helps
with robustness as expected. Having an orthgonality weight is also necessary but shows
little benefit of increasing the weight itself. On the other hand, increasing the number of
parameters hurts the robustness of an MLP-based model.

B.5. Inference Details

In Table B.5, we display the number of parameters of each model as well as the inference
time. Experiments were conducted using an NVIDIA GPU 3060 Ti and inference times
were reported in milliseconds.
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Figure 6: Robustness Ablation Study

Table 2: VSA vs MLP Parameter and Inference Speed

VSA (HRR) VSA (FHRR) MLP-S MLP-M MLP-L

Parameter Count 53,248 53,248 41,600 241,024 1,394,048
Parameter Ratio 1x 1x 0.8x 4.5x 26.2x
Inference time (ms) 0.2063 0.1528 0.1174 0.1715 0.3135
Inference + Clean time (ms) 0.2632 0.2421 0.1743 0.2317 0.3761

B.6. Cleanup

Because unrelated vectors are nearly orthogonal, small perturbations to ŝt+1 do not change
the identity of the nearest neighbor, ensuring correct retrieval. By contrast, conventional
neural networks often learn latent spaces without explicit separation or compositional struc-
ture. In such unstructured spaces, small prediction errors can change the nearest neighbor
in latent space, leading to semantic drift that compounds over long roll-outs and even incom-
patibility with inherently noisy emerging hardware alternatives (e.g. processing in-memory
and neuromorphic computing). Given a perturbed output ŝt+1 = fθ(s, a) + ϵ, it is not
guaranteed that:

argmin
s′

∥fθ(s, a)− ŝt+1∥ ≈ st+1.

Nearest-neighbor search in such spaces is unreliable and semantically ambiguous, as it does
not preserve identity or symbolic structure. When the number of states is manageable
(e.g. discrete environments), this allows error correction at each timestep with negligible
overhead, maintaining prediction accuracy and stability even over long horizons. In practice,
when |S| is large, batch-restricted cleanup or approximate nearest neighbor can be used to
speed up the process.

In practice, the similarity metric often used for cleanup in FHRR is the real part of the
cosine similarity between two vectors, Re ⟨ϕS(s), ϕS(s

′)⟩.
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