

A FINE-GRAINED ANALYSIS OF PURE SEMANTIC PREFERENCE ALIGNMENT IN LARGE LANGUAGE MODELS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Large language models (LLMs) are typically aligned with human preferences
012 through methods such as direct preference optimization (DPO). While empirically
013 successful, these approaches face well-known limitations, including length bias, re-
014 ward hacking, binary preference assumptions, and the aggregation of heterogeneous
015 preferences into a single scalar signal. In this work, we take an inverse perspective:
016 rather than attempting to resolve these issues, we investigate an idealized setting,
017 which we call the *pure semantic preference scenario*, where such confounding
018 factors are absent. We show that even in this idealized setting, existing alignment
019 methods still do not fully capture the preference. Our analysis further reveals that
020 (i) on-policy algorithms align more effectively, (ii) models trained without an ex-
021 plicit reference model perform better, and (iii) preference-model-based approaches
022 consistently outperform reward-model-based approaches. Motivated by these ob-
023 servations, we introduce *preference matching optimization* (PMO), a DPO-type
024 method that admits a closed-form solution and provably better approximates the
025 true preference distribution. Experiments on both practical and idealized settings
026 demonstrate that PMO achieves comparable performance with existing alignment
027 methods in the practical setting, while offering stronger theoretical grounding and
028 better performance in the pure semantic setting.

1 INTRODUCTION

029 Large language models (LLMs) such as GPT-5 and Claude Sonnet-4 have demonstrated impressive
030 performance across a wide range of tasks, including program synthesis, quantitative analysis, basic
031 mathematics, and reasoning abilities (Hurst et al., 2024; Anthropic, 2024; Chowdhery et al., 2023;
032 Touvron et al., 2023; Ji et al., 2025). Their rapid progress has led to deployment in decision-making
033 contexts that, until recently, were thought to require exclusively human judgment (Bubeck et al.,
034 2023; Eloundou et al., 2024).

035 One of a key factor behind this success is alignment: the ability of LLMs to adapt their outputs to
036 human expectations, values, and conversational norms. The most widely adopted techniques for this
037 purpose are reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Casper et al.,
038 2023; Dong et al., 2024) and direct preference optimization (DPO) (Rafailov et al., 2023). RLHF
039 proceeds in two stages. First, a reward model is trained on human preference data, often using the
040 Bradley–Terry–Luce (BTL) model to transform pairwise judgments into a latent scoring function
041 (Bradley & Terry, 1952; Luce, 2012). A higher reward assigned to a candidate response indicates that
042 labelers favor it over alternatives, and this is taken as a proxy for broader human preference. Next,
043 the base LLM is fine-tuned against this reward model, steering it toward producing responses with
044 high predicted preference scores.

045 Despite their empirical success, preference alignment methods such as RLHF and DPO face a number
046 of fundamental limitations. One major issue is length bias: models tend to favor longer responses
047 that increase the probability of satisfying surface-level heuristics, even when verbosity harms clarity
048 or faithfulness. Closely related is reward hacking, where models exploit spurious correlations in the
049 reward model or feedback process, producing outputs that optimize proxy signals while drifting from
050 genuine human intent. A further limitation lies in the binary preference assumption: many frameworks
051 reduce rich human judgments to a simplistic “winner” versus “loser” comparison, neglecting the
052 subtleties of neutrality, partial agreement, or multi-dimensional trade-offs. This is compounded by the
053

054 aggregation problem, where diverse annotator preferences are collapsed into a single scalar reward,
 055 often masking minority viewpoints and reinforcing majority bias.
 056

057 It is commonly recognized that the main barriers to alignment include, but are not limited to, the
 058 challenges outlined above. Consequently, numerous variants of RLHF and DPO have been proposed;
 059 see Section 2 for further details. **Motivated by these challenges, it is natural to decompose alignment**
 060 **bias into three components: length alignment bias, syntactic alignment bias, and semantic alignment**
 061 **bias. Under this view, reward hacking can be interpreted as an excessive emphasis on the first two**
 062 **components while insufficiently capturing the third.**

063 To investigate whether this phenomenon is fundamentally a preference-alignment issue, we focus in
 064 this paper on semantic alignment bias. We analyze an idealized setting, which we refer to as the pure
 065 semantic preference scenario, where length and syntactic effects are absent, and ask:

066
 067 *How do preference alignment methods perform under a purely semantic preference setting?*
 068
 069

070 The pure semantic preference scenario for preference alignment algorithms is constructed as follows.
 071 *Minimal pairs*: for any given prompt, the two candidate responses are of identical length, ensuring
 072 that preferences are not influenced by response length. The two responses share the same syntactic
 073 structure, so that preferences are not affected by stylistic or structural variations. Under these two
 074 conditions, the responses differ only in a single word (or phrase), which represents the main meaning
 075 of the sentence. *Semantic difference*: there is no notion of truth or falsity between the two responses.
 076 *Probabilistic Preference*: there is no strict binary preference; instead, there exists a probability
 077 $p \in [0, 1]$ such that p fraction of people prefer the first response while $1 - p$ fraction prefer the second.
 078 An illustrative example is provided in Figure 1.

079 In other words, under this setting, all alignment approaches exhibit zero length and syntactic bias.
 080 Their performance on pure semantic bias therefore offers a more direct view of reward hacking.

081 Next, we evaluate the performance of various
 082 alignment methods on the pure semantic pref-
 083 erence scenario using models. We find that
 084 in this idealized setting, where responses do
 085 not differ in length or sentence pattern, most
 086 alignment methods still do not fully capture the
 087 preference. We observe a pronounced prefer-
 088 ence-accuracy trade-off: improving alignment
 089 with diverse human preferences inevitably re-
 090 duces accuracy, while prioritizing accuracy di-
 091 minishes alignment with those preferences. In
 092 addition, within these methods, our findings
 093 can be summarized as follows: (i) on-policy
 094 algorithms align more effectively with pure se-
 095 mantic preferences; (ii) models trained without
 096 an explicit reference model perform better; and
 097 (iii) preference-model-based approaches (e.g.,
 098 NLHF) consistently outperform reward-model-based approaches (e.g., RLHF).

099 In our experiment, the observed preference-accuracy trade-off arises from the reliance on a reference
 100 model and seems inevitable. To probe this, we first analyze a reference-free objective: its optimum
 101 recovers the ground-truth Bradley-Terry probabilities, exactly matching the target preference dis-
 102 tribution. We further note that dropping the reference term in DPO is analogous to replacing the
 103 KL control in RLHF with an entropy regularizer, yielding a maximum-entropy formulation that
 104 curbs overconfident collapse and better preserves probabilistic preferences. Motivated by this, we
 105 adopt an RL objective that combines entropy and KL regularization, jointly preserving probabilistic
 106 preferences while maintaining accuracy—achieving a better trade-off.

107 Finally, we return to the practical setting by fine-tuning on the UltraFeedback dataset and evaluating
 108 performance across five benchmark tasks. In these experiments, we find that preference matching
 109 optimization attains performance comparable to existing methods.

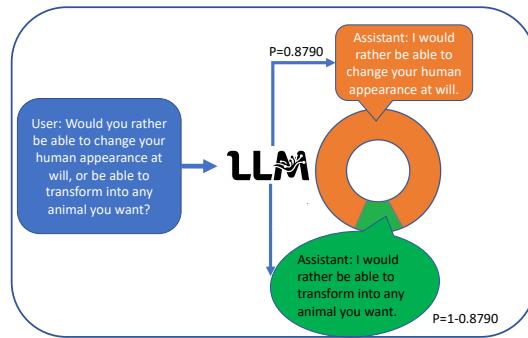


Figure 1: An illustrative example of pure semantic preference scenario, constructed using (i) minimal pairs, (ii) semantic difference, and (iii) probabilistic preferences.

108
109

2 RELATED WORK

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

Alignment with human preference. DPO reframes RLHF as supervised ratio matching, improving stability and sample efficiency, but its implicit KL can compress diversity and bias toward majority styles, limiting peak accuracy without careful regularization (Rafailov et al., 2023). CDPO calibrates/conditions preference learning to correct annotator noise/context bias, recovering win rates while reducing shifts on near-tie pairs to preserve minority or user-specific preferences (Mitchell, 2024). IPO relaxes Bradley–Terry assumptions by matching scores directly, improving robustness under misspecification and heterogeneous feedback to preserve calibration and minority preferences with competitive accuracy (Azar et al., 2024). SimPO removes the fixed reference and uses a margin-based objective that often boosts win rate/accuracy, but risks drift unless margins and entropy are adaptively controlled (Meng et al., 2024). CPO replaces KL with chi-squared divergence, enabling larger yet controlled steps and improving the accuracy–preference Pareto frontier by avoiding KL’s asymmetric pressure (Xu et al., 2024). PPO-based RLHF can raise reward and accuracy via exploration but is prone to over-optimization, instability, and diversity loss due to KL pressure and reward-model coupling (Schulman et al., 2017). RLHF can lead to calibration issues (OpenAI, 2023; Xiao et al., 2025a) and violates several fundamental axioms in social choice theory (Xiao et al., 2025c). Nash-MD frames alignment as a mixed-strategy equilibrium; mirror-descent updates and mixture sampling act as an implicit trust region to improve accuracy while maintaining pluralistic preferences (Munos et al., 2023; Wang et al., 2024; Liu et al., 2025a; Shi et al., 2025). H-DPO adds entropy control by scaling the reverse-KL entropy term, yielding sharper, more mode-seeking policies that improve accuracy and pass@k without post-hoc temperature tuning (Omura et al., 2024).

129
130
131
132
133
134

Diversity in human preferences. Most alignment methods average annotator preferences, overlooking diversity rooted in social and cultural backgrounds; key drivers include socio-demographics, personal bias and context subjectivity, imperfect preferences, and linguistic ambiguity or missing context (Denton et al., 2021; Vogels, 2021; Sandri et al., 2023; Casper et al., 2023; Kaufmann et al., 2023; Aroyo et al., 2023; Chakraborty et al., 2024; Xiao et al., 2025b).

135
136

3 PURE SEMANTIC PREFERENCE ON SYNTHETIC DATASET

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Pure semantic preference scenario. To isolate alignment on meaning rather than form, we first instantiate a controlled “pure semantic” scenario in which all non-semantic confounds are neutralized. For any given prompt, we construct two candidate responses that are (i) identical in length, eliminating length-induced preferences and token-count biases, and (ii) matched in sentence pattern, sharing the same syntactic template and differing only by a single lexical item occupying the same position—the main content noun (e.g., “I favor tea” vs. “I favor coffee”). By design, neither candidate is more or less “true”: the contrast is semantically neutral with respect to factuality, so correctness cannot explain preferences. Instead of a hard choice, we posit a probabilistic preference: there exists a target probability $p \in [0, 1]$ that the first response is preferred, with $1 - p$ for the second. Under these constraints, any difference in model behavior can be attributed to the intended semantic substitution, and alignment reduces to matching the target pairwise preference probability p in a setting free from length, format, or stylistic confounds.

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
77710
77711
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
77780
77781
77782
77783
77784
77785
77786
77787
77788
77789
77790
77791
77792
77793
77794
77795
77796
77797
77798
77799
777100
777101
777102
777103
777104
777105
777106
777107
777108
777109
777110
777111
777112
777113
777114
777115
777116
777117
777118
777119
777120
777121
777122
777123
777124
777125
777126
777127
777128
777129
777130
777131
777132
777133
777134
777135
777136
777137
777138
777139
777140
777141
777142
777143
777144
777145
777146
777147
777148
777149
777150
777151
777152
777153
777154
777155
777156
777157
777158
777159
777160
777161
777162
777163
777164
777165
777166
777167
777168
777169
777170
777171
777172
777173
777174
777175
777176
777177
777178
777179
777180
777181
777182
777183
777184
777185
777186
777187
777188
777189
777190
777191
777192
777193
777194
777195
777196
777197
777198
777199
777200
777201
777202
777203
777204
777205
777206
777207
777208
777209
777210
777211
777212
777213
777214
777215
777216
777217
777218
777219
777220
777221
777222
777223
777224
777225
777226
777227
777228
777229
777230
777231
777232
777233
777234
777235
777236
777237
777238
777239
777240
777241
777242
777243
777244
777245
777246
777247
777248
777249
777250
777251
777252
777253
777254
777255
777256
777257
777258
777259
777260
777261
777262
777263
777264
777265
777266
777267
777268
777269
777270
777271
777272
777273
777274
777275
777276
777277
777278
777279
777280
777281
777282
777283
777284
777285
777286
777287
777288
777289
777290
777291
777292
777293
777294
777295
777296
777297
777298
777299
777300
777301
777302
777303
777304
777305
777306
777307
777308
777309
777310
777311
777312
777313
777314
777315
777316
777317
777318
777319
777320
777321
777322
777323
777324
777325
777326
777327
777328
777329
777330
777331
777332
777333
777334
777335
777336
777337
777338
777339
777340
777341
777342
777343
777344
777345
777346
777347
777348
777349
777350
777351
777352
777353
777354
777355
777356
777357
777358
777359
777360
777361
777362
777363
777364
777365
777366
777367
777368
777369
777370
777371
777372
777373
777374
777375
777376
777377
777378
777379
777380
777381
777382
777383
777384
777385
777386
777387
777388
777389
777390
777391
777392
777393
777394
777395
777396
777397
777398
777399
777400
777401
777402
777403
777404
777405
777406
777407
777408
777409
777410
777411
777412
777413
777414
777415
777416
777417
777418
777419
777420
777421
777422
777423
777424
777425
777426
777427
777428
777429
777430
777431
777432
777433
777434
777435
777436
777437
777438
777439
777440
777441
777442
777443
777444
777445
777446
777447
777448
777449
777450
777451
777452
777453
777454
777455
777456
777457
777458
777459
777460
777461
777462
777463
777464
777465
777466
777467
777468
777469
777470
777471
777472
777473
777474
777475
777476
777477
777478
777479
777480
777481
777482
777483
777484
777485
777486
777487
777488
777489
777490
777491
777492
777493
777494
777495
777496
777497
777498
777499
777500
777501
777502
777503
777504
777505
777506
777507
777508
777509
777510
777511
777512
777513
777514
777515
777516
777517
777518
777519
777520
777521
777522
777523
777524
777525
777526
777527
777528
777529
777530
777531
777532
777533
777534
777535
777536
777537
777538
777539
777540
777541
777542
777543
777544
777545
777546
777547
777548
777549
777550
777551
777552
777553
777554
777555
777556
777557
777558
777559
777560
777561
777562
777563
777564
777565
777566
777567
777568
777569
777570
777571
777572
777573
777574
777575
777576
777577
777578
777579
777580
777581
777582
777583
777584
777585
777586
777587
777588
777589
777590
777591
777592
777593
777594
777595
777596
777597
777598
777599
777600
777601
777602
777603
777604
777605
777606
777607
777608
777609
777610
777611
777612
777613
777614
777615
777616
777617
777618
777619
777620
777621
777622
777623
777624
777625
777626
777627
777628
777629
777630
777631
777632
777633
777634
777635
777636
777637
777638
777639
777640
777641
777642
777643
777644
777645
777646
777647
777648
777649
777650
777651
777652
777653
777654
777655
777656
777657
777658
777659
777660
777661
777662
777663
777664
777665
777666
777667
777668
777669
777670
777671
777672
777673
777674
777675
777676
777677
777678
777679
777680
777681
777682
777683
777684
777685
777686
777687
777688
777689
777690
777691
777692
777693
777694
777695
777696
777697
777698
777699
777700
777701
777702
777703
777704
777705
777706
777707
777708
777709
777710
777711
777712
777713
777714
777715
777716
777717
777718
777719
777720
777721
777722
777723
777724
777725
777726
777727
777728
777729
777730
777731
777732
777733
777734
777735
777736
777737
777738
777739
777740
777741
777742
777743
777744
777745
777746
777747
777748
777749
777750
777751
777752
777753
777754
777755
777756
777757
777758
777759
777760
777761
777762
777763
777764
777765
777766
777767
777768
777769
777770
777771
777772
777773
777774
777775
777776
777777
777778
777779
777780
777781
777782
777783
777784
777785
777786
777787
777788
777789
777790
777791
777792
777793
777794
777795
777796
777797
777798
777799
7777100
7777101
7777102
7777103
7777104
7777105
7777106
7777107
7777108
7777109
7777110
7777111
7777112
7777113
7777114
7777115
7777116
7777117
7777118
7777119
7777120
7777121
7777122
7777123
7777124
7777125
7777126
7777127
7777128
7777129
7777130
777713

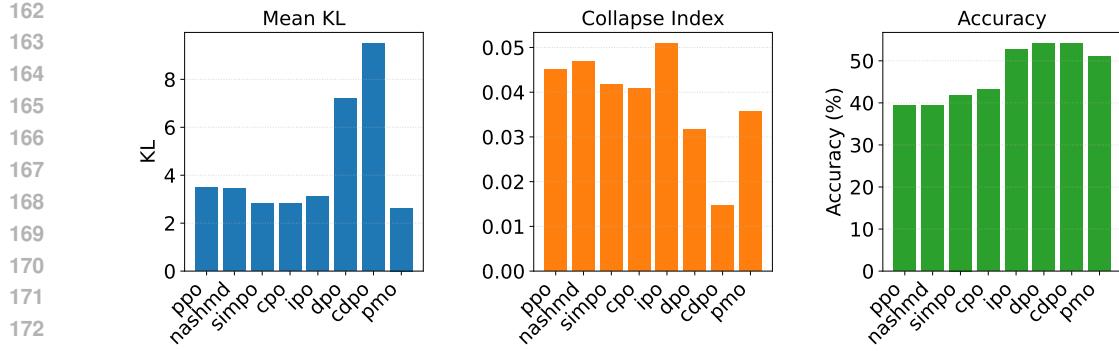


Figure 2: Tradeoff between preference and accuracy on Llama model.

probability alignment. (iii) Dialogue form. Instances are packaged as short user–assistant turns to mirror RLHF preference data schemas (Rafailov et al., 2023; Li et al., 2023) while preserving strict control over the single-word contrast ¹.

We analyze three metrics reported for eight preference-learning methods across three backbones (Qwen, Gemma, Llama): (i) Accuracy, (ii) Mean KL, interpreted as the KL divergence between the ground-truth label distribution and the model’s predicted distribution (lower is better), and (iii) the Preference Collapse Index (PCI), defined as

$$\text{PCI} = \frac{1}{n} \sum_{i=1}^n \min\{p_i, 1 - p_i\},$$

where $p_i \in [0, 1]$ is the predicted probability of the positive class on example i . PCI measures the average distance of predictions from deterministic extremes: lower PCI indicates stronger collapse toward a single option, whereas higher PCI indicates more uncertainty (with PCI = 0.5 achieved at $p_i = 0.5$ for all i). In light of prior observations that preference collapse can undermine the faithful representation of distributional preferences, suppressing minority outcomes, we interpret very low PCI as a warning signal of overconfident, potentially collapsed behavior, especially when accompanied by large KL.

Tradeoff between preference and accuracy. Figure 2 reports results on our synthetic Llama setup across strong preference-optimization baselines (DPO, CDPO, IPO, SimPO, CPO, PPO, NashMD). We quantify preference preservation with Mean KL (lower is better) and the PCI (higher is better). Both metrics consistently indicate that reference-free objectives (e.g., SimPO, CPO) align more faithfully with the target probabilities, exhibiting lower KL and higher PCI. However, when accuracy is considered, a clear tradeoff emerges: methods like DPO and CDPO that push predictions toward decisive extremes can improve accuracy but typically inflate KL and reduce PCI (i.e., more collapse), whereas methods that maintain calibrated distributions improve KL/PCI but may concede some accuracy.

4 PREFERENCE MATCHING OPTIMIZATION

4.1 PRELIMINARIES

RLHF. Let $\pi_\phi(y|x)$ be the probability distribution of the responses given a prompt x , where ϕ denotes the weights of the LLM. The goal of RLHF is to maximize the expected reward with a KL penalty between the RLHF model and the reference model. The loss function of is

$$\max_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_\phi(\cdot|x)} r(x, y) - \beta D_{\text{KL}}(\pi_\phi(y|x) \parallel \pi_{\text{ref}}(y|x)), \quad (1)$$

where $\beta > 0$ is a parameter controlling the deviation from the base reference policy π_{ref} .

¹We leave the details of our dataset in the Appendix A.2.

216 **DPO.** The DPO method (Rafailov et al., 2023) is to directly optimize of the policy without explicitly
 217 training the reward function in a supervised manner:

$$218 \quad -\mathbb{E}_{(x, y_w, y_l)} \log \sigma \left(\beta \log \frac{\pi_\phi(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\phi(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right).$$

221 **SimPO.** The objective of SimPO (Meng et al., 2024) can be written as

$$222 \quad -\mathbb{E}_{(x, y_w, y_l)} \log \sigma \left(\frac{\beta}{|y_w|} \log \pi_\phi(y_w|x) - \frac{\beta}{|y_l|} \log \pi_\phi(y_l|x) - \gamma \right), \quad (2)$$

225 where $|y|$ denotes the length of a response², and γ is the reward margin, with the preference probability
 226 expressed as $p(y_w \succ y_l|x) = \sigma(r(x, y_w) - r(x, y_l) - \gamma)$.

227 4.2 MATHEMATICAL FORMULATIONS

229 The tradeoff arises from the reliance on a reference model and seems inevitable. But is that truly the
 230 case? To investigate, we first examine a reference-free objective. We consider SimPO as an illustrative
 231 example, with the corresponding analysis for other compared algorithms deferred to Appendix B.
 232 The following proposition provides its corresponding RLHF objective and optimal policy.

233 **Proposition 4.1** *Let $\beta' = \beta/|y|$, and let $r_\gamma(x, y)$ denote a reward model with a reward margin γ . Then minimizing the direct alignment objective in Equation 2 is equivalent to solving the reinforcement learning problem*

$$234 \quad \max_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_\phi(\cdot|x)} [r_\gamma(x, y)] + \beta' H(\pi_\phi(\cdot|x)), \quad (3)$$

235 whose optimal policy is given by $\pi^*(y|x) = \exp\left(\frac{1}{\beta'} r_\gamma(x, y)\right) / \sum_{y'} \exp\left(\frac{1}{\beta'} r_\gamma(x, y')\right)$.

241 **Why do reference-free approaches better preserve probabilistic preference?** A direct consequence of Proposition 4.1 is that when $\beta = |y|$ and $\gamma = 0$, the optimal solution coincides with the
 242 ground-truth BT preference. In other words, SimPO can recover the target probabilistic preference
 243 with appropriately chosen parameters. By contrast, for reference-based approaches such as DPO, this
 244 is not possible. Recall that the optimal solution (Rafailov et al. (2023), cf. Equation (4)) of DPO is
 245 given by

$$246 \quad \pi^*(y|x) = \frac{\pi_{\text{ref}}(y|x) \exp(r(x, y)/\beta)}{\sum_{y'} \pi_{\text{ref}}(y'|x) \exp(r(x, y')/\beta)}.$$

249 Regardless of the choice of β , the influence of π_{ref} cannot be removed, and thus the solution cannot
 250 exactly preserve the target probabilistic preference.

251 **Regularization.** A second observation from Proposition 4.1 is that removing the reference term in
 252 the DPO objective is equivalent to replacing the KL term in the RLHF objective with an entropy term.
 253 Maximizing entropy plays a key role in preserving the target preference. Notably, this perspective is
 254 not discussed from the original SimPO paper (Meng et al., 2024), where the reference model was
 255 removed primarily for computational and memory considerations.

256 Motivated by the observation that the ability of reference-free approaches to preserve probabilistic
 257 preferences arises primarily from the inclusion of the entropy term, rather than from the removal of
 258 the KL term, which in fact reduces accuracy, we consider the following RL problem that incorporates
 259 both the entropy and KL terms to achieve a better trade-off:

$$260 \quad \max_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_\phi(\cdot|x)} r(x, y) + \alpha H(\pi_\phi(y|x)) - \beta D_{\text{KL}}(\pi_\phi(y|x) \parallel \pi_{\text{ref}}(y|x)). \quad (4)$$

262 The following proposition provides its corresponding direct alignment objective and optimal policy.

264 **Proposition 4.2** *Solving the reinforcement learning problem in Equation 4 is equivalent to the direct
 265 alignment objective*

$$266 \quad -\mathbb{E}_{(x, y_w, y_l)} \log \sigma \left((\alpha + \beta) \log \frac{\pi_\phi(y_w|x)}{\pi_{\text{ref}}(y_w|x)^{\frac{\beta}{\alpha+\beta}}} - (\alpha + \beta) \log \frac{\pi_\phi(y_l|x)}{\pi_{\text{ref}}(y_l|x)^{\frac{\beta}{\alpha+\beta}}} \right), \quad (5)$$

269 ²In the pure semantic preference scenario, $|y_w| = |y_l|$.

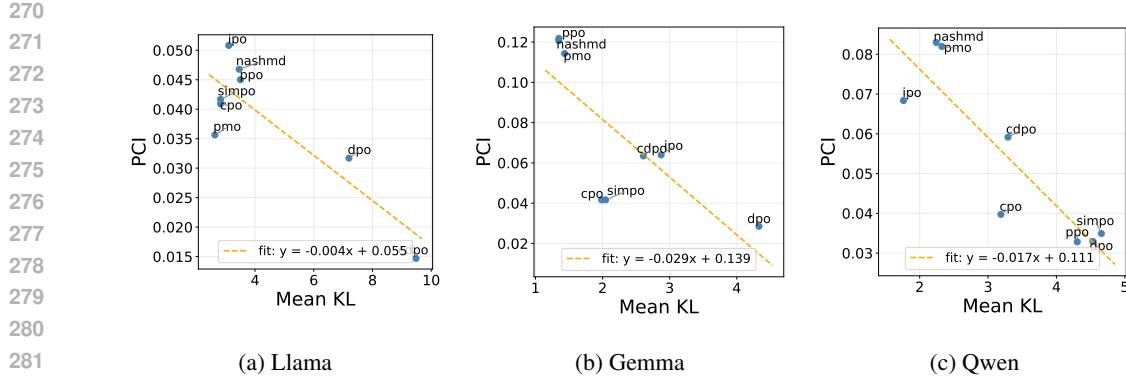


Figure 3: Linear regressions of KL-PCI for Llama, Gemma, and Qwen.

whose optimal policy is $\pi_\phi(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x)^{\beta/(\alpha+\beta)} \exp\left(\frac{1}{\alpha+\beta} r(x, y)\right)$, where the normalizing constant is $Z(x) = \sum_y \pi_{\text{ref}}(y|x)^{\beta/(\alpha+\beta)} \exp\left(\frac{1}{\alpha+\beta} r(x, y)\right)$.

Relation to H-DPO. H-DPO reweights the reverse-KL by decomposing it into cross-entropy and entropy, effectively tuning the entropy term’s contribution; the final loss is reward + α -entropy - cross-entropy (App.B.2). PMO instead optimizes reward + α -entropy - β -KL, which leads to a closed-form optimum whose policy multiplies the reference density by an exponent $\beta/(\alpha + \beta)$ (Prop.4.2). This explicit reference attenuation is central to preserving probabilistic preferences while retaining accuracy via a light anchor; it is not exposed in DPO (exponent 1) and is distinct from the cross-entropy view in H-DPO.

Relation to DPO. When $\alpha = 0$, PMO reduces to DPO. Moreover, if we set the value of $\alpha + \beta$ in PMO equal to the value of β used in DPO, the two objectives differ only in the exponent on $\pi_{\text{ref}}(y|x)$: PMO decreases this exponent from 1 to $\beta/(\alpha + \beta)$. This attenuation reduces the reference model’s influence on the learned preference and thereby helps preserve the target probability distribution, while the KL regularizer maintains accuracy comparable to DPO.

5 EXPERIMENT IN PURE SEMANTIC PREFERENCE SCENARIO

We evaluate off-policy preference-optimization baselines (CDPO, DPO, IPO, CPO, SimPO) and our off-policy PMO variants on our synthetic dataset, reporting per-task accuracy and macro-average. Besides, on-policy algorithms (PPO, NashMD) are also put into comparison. In PMO, $\alpha > 0$ scales (tempers) the preference scores that drive the update, and $\beta \geq 0$ controls the strength of the reference-model term; $\beta = 0$ denotes a reference-free objective.

5.1 CROSS-CUTTING PATTERNS AND IMPLICATIONS

We observe a Pareto trade-off (Pareto frontier) among accuracy, PCI, and KL across backbones, consistent with multi-objective optimization behavior in RL (Liu et al., 2025b) and recent evidence of metric trade-offs in RL-style training (e.g., accuracy vs consistency) (Park et al., 2025): (i) methods with the highest accuracy (DPO, and CDPO on Llama) systematically push PCI down (stronger collapse) and inflate KL (worse distance to ground truth); (ii) methods with the best KL (IPO, PMO, Nash-MD, PPO depending on backbone) maintain higher PCI (less collapse), reflecting better-calibrated probabilities that refrain from overconfident extremes; and (iii) intermediate methods (e.g., CPO, SimPO) trace the interior of this frontier.

These patterns are consistent with the interpretation of KL as a calibration or fit objective on the probability simplex: overconfident predictions (low PCI) penalize KL heavily when incorrect, whereas restrained probabilities (higher PCI) reduce KL by avoiding extreme errors. Simultaneously, pushing accuracy often benefits from confident decisions, which, when correct, boost accuracy despite degrading KL.

324 5.2 ANALYSIS OF KL-PCI-ACCURACY TRADE-OFFS
325

326 **On-policy algorithms better align pure semantic preferences.** On Gemma, PPO/NashMD/PMO
327 attain the lowest KL (1.35–1.43) and the highest PCI (0.114–0.122), whereas the most accurate
328 off-policy method (DPO, 0.473) shows the worst KL (4.33) and strongest collapse (PCI 0.029), see
329 Figure 3. On Llama, on-policy methods achieve favorable KL (3.459–3.503) and acceptable PCI
330 (0.045–0.046), while off-policy CDPO/DPO maximize accuracy (0.541) at the expense of severe
331 collapse (PCI 0.015–0.032) and very large KL (7.20–9.48). Qwen is mixed but consistent: on-
332 policy PMO/NashMD have low KL (2.32/2.24) and the least collapse (PCI 0.082), with NashMD
333 also reaching the second-best accuracy (0.446). These findings mirror broader evidence that on-
334 policy RLHF tends to deliver better alignment than offline variants and that PPO-style training can
335 outperform DPO given comparable data and settings.

336 **Models trained without an explicit reference model are better on collapse and KL.** Reference-
337 free formulations (e.g., IPO, SimPO) avoid overconfident degeneration in two of the three backbones
338 and often yield favorable KL-PCI trade-offs: IPO on Qwen achieves the lowest KL (1.76) with
339 moderately high PCI (0.068), and on Llama achieves low KL (3.11) with the highest PCI (0.051).
340 Although some reference-based, off-policy methods (e.g., DPO/CDPO) can peak in accuracy, this
341 typically coincides with pronounced collapse and inflated KL. This aligns with reports that sim-
342 pler, reference-free preference objectives like SimPO can match DPO performance while reducing
343 complexity and sensitivity to hyperparameters (Meng et al., 2024).

344 5.3 ABLATION ON α AND β IN THE PURE SEMANTIC SETTING

345 Table 1 evaluates how the score-scaling parameter α and the reference weight β shape the trade-off
346 among KL (probability alignment to the dataset targets; lower is better), PCI (anti-collapse; higher is
347 better), and 0–1 accuracy on the pure semantic dataset where responses differ by a single content word
348 and all non-semantic confounds are controlled. Three consistent patterns emerge. First, configurations
349 that maximize accuracy (e.g., $\alpha=0.05, \beta=0.05$) do so by sharply degrading alignment: they yield the
350 worst KL and the lowest PCI across all backbones (Gemma: KL 4.37, PCI 0.051, Acc 0.486; Llama:
351 5.46/0.033/0.556; Qwen: 8.21/0.030/0.556), indicating severe collapse and poor probability matching
352 despite higher 0–1 accuracy. Second, moving to a stronger preference signal ($\alpha \approx 0.9$ –1.0) while
353 keeping a very light reference ($\beta \in \{0.05, 0.1\}$) substantially improves probabilistic fidelity and
354 reduces collapse at a modest accuracy cost. For Gemma, $(\alpha, \beta)=(0.9, 0.1)$ and $(0.95, 0.05)$ achieve
355 the best alignment (KL 1.16–1.19; PCI 0.125), with accuracy 0.417–0.431; for Llama, $(0.95, 0.05)$
356 yields KL 1.71 and PCI 0.105 with accuracy 0.444; for Qwen, $(0.9, 0.1)$ reaches the best KL 1.53
357 with PCI 0.098 and accuracy 0.458, while $(0.95, 0.05)$ trades a small KL increase (1.65) for the
358 highest accuracy in this block (0.486) with similarly high PCI (0.099). Third, reference-free training
359 ($\beta=0$) at $\alpha \in \{0.5, 1.0\}$ underperforms the light-reference regime on alignment for Gemma/Llama
360 and markedly so for Qwen (e.g., Qwen $\alpha=1, \beta=0$: KL 2.40, PCI 0.080, Acc 0.417), suggesting that
361 a small reference term acts as a helpful calibration prior in this synthetic probability-matching task.

362 Backbone-wise, Gemma exhibits the
363 strongest gains from adding a light
364 reference at high α (KL drops from
365 2.51 at $\alpha=0.5, \beta=0$ to 1.16–1.19
366 at $\alpha \approx 1, \beta \in \{0.05, 0.1\}$; PCI rises
367 from 0.111 to ≈ 0.125), while Llama
368 benefits similarly but with smaller
369 absolute swings. Qwen shows
370 a broad plateau near $(\alpha, \beta) \in \{(0.9, 0.1), (0.95, 0.05)\}$, both out-
371 performing $\beta=0$ on KL and PCI
372 and delivering competitive accuracy.
373 Across all models, the settings that
374 minimize KL also maximize PCI, re-
375 inforcing the earlier observation of a
376 negative PCI-KL slope: better prob-
377 ability alignment coincides with less
378 collapse. Practically, we recommend
379 operating near $\alpha \in [0.9, 1.0]$ with a

361 Table 1: Ablation study for α and β on synthetic dataset.

alpha	beta	Model	KL	PCI	Accuracy
0.05	0.05	gemma	4.3658	0.0512	0.4861
0.5	0	gemma	2.5124	0.1112	0.4167
0.9	0.1	gemma	1.1632	0.1246	0.4167
0.95	0.05	gemma	1.1933	0.1250	0.4306
1	0	gemma	1.5178	0.1224	0.3889
0.05	0.05	llama	5.4562	0.0332	0.5556
0.5	0	llama	1.9248	0.1019	0.4028
0.9	0.1	llama	1.9294	0.1025	0.4444
0.95	0.05	llama	1.7057	0.1046	0.4444
1	0	llama	2.1556	0.0912	0.4444
0.05	0.05	qwen	8.2112	0.0297	0.5556
0.5	0	qwen	3.7404	0.0781	0.4167
0.9	0.1	qwen	1.5261	0.0984	0.4583
0.95	0.05	qwen	1.6452	0.0991	0.4861
1	0	qwen	2.3973	0.0803	0.4167

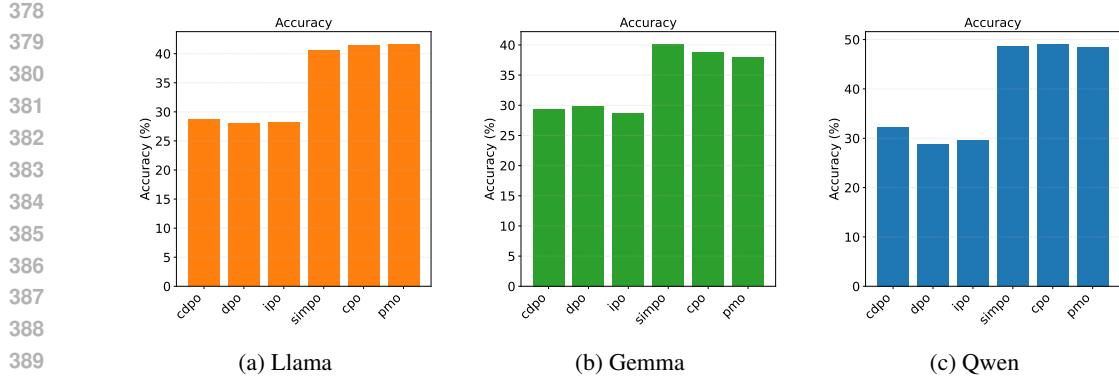


Figure 4: Average accuracy on benchmarks: ARC-Challenge, HellaSwag, MMLU, TruthfulQA (MC1), and WinoGrande.

very light reference $\beta \in [0.05, 0.1]$
 (Gemma: (0.95, 0.05) or (0.9, 0.1); Llama: (0.95, 0.05); Qwen: (0.9, 0.1) or (0.95, 0.05)). Extremely small α should be avoided despite its apparent accuracy gains, as it drives systematic miscalibration (high KL) and collapse (low PCI) in the pure semantic regime.

Practitioner note. PCI is a diagnostic for overconfidence (collapse), not a target by itself. Tasks demanding decisive behavior can use lower α or higher β to move toward the accuracy-seeking end of the frontier (see Table 1), whereas pluralistic or user-diverse settings may prefer higher α with a light reference $\beta \in [0.05, 0.1]$ (Table 1).

6 BENCHMARK AND ABLATION ANALYSIS

We evaluate off-policy preference-optimization baselines (CDPO, DPO, IPO, CPO, SimPO) and our off-policy PMO variants on ARC-Challenge, HellaSwag, MMLU, TruthfulQA (MC1), and WinoGrande³, reporting per-task accuracy and macro-average. In PMO, $\alpha > 0$ scales (tempers) the preference scores that drive the update, and $\beta \geq 0$ controls the strength of the reference-model term; $\beta = 0$ denotes a reference-free objective.

6.1 OVERALL BASELINE COMPARISON

Without ablations, the strongest baselines are CPO/SimPO across backbones, see Figure 4. On Gemma-3B-1B, CPO/SimPO reach 0.389/0.402 average, substantially above CDPO/DPO/IPO (0.286–0.299) and PMO (0.293). On Qwen2.5-1.5B, CPO/SimPO achieve 0.492/0.486, clearly exceeding CDPO/DPO/IPO (0.288–0.323) and PMO (0.283). On Llama3-1B, CPO/SimPO obtain 0.415/0.407 versus 0.280–0.290 for CDPO/DPO/IPO/PMO. Gains are especially pronounced on HellaSwag and ARC, with strong improvements also on MMLU and WinoGrande.

6.2 REGULARIZATION AND REFERENCE ABLATIONS: DPO vs. CPO vs. SIMPO vs. PMO

Table 2 studies three knobs that often distinguish xPO objectives: (i) the reference term in DPO (here ablated by setting $\beta=0$), (ii) SimPO’s length normalization and margin ($|y|, \gamma$), and (iii) the BC-style regularization in CPO (here denoted by λ). Conceptually, removing the reference collapses DPO toward a policy-only scoring; removing SimPO’s length/margin reduces it to a policy-only Bradley–Terry loss; and turning off CPO’s BC regularizer yields a pure preference objective. These manipulations are expected to make the objectives converge in behavior, consistent with analyses that relate SimPO to a length-normalized DPO family via mixing and show that length normalization and the margin term are the main sources of divergence across objectives (Meng et al., 2024; Azar et al., 2024).

³Please see Appendix A.1 for further information.

432
433 Table 2: Reference model ablation for DPO ($\beta = 0$) and regularization ablation for SimPO ($|y|, \gamma$
434 and CPO (λ)).

model	arc_challenge	hellaswag	mmlu	truthfulqa	winogrande	average
Gemma-DPO	0.3524	0.4776	0.2614	0.2938	0.5943	0.3959
Gemma-CPO	0.3498	0.4721	0.2551	0.2925	0.5927	0.3925
Gemma-SimPO	0.3609	0.4786	0.2695	0.3060	0.5880	0.4006
Gemma-PMO	0.3737	0.4568	0.2621	0.2987	0.6014	0.3985
Llama-DPO	0.3208	0.4442	0.4414	0.2546	0.5896	0.4101
Llama-CPO	0.3336	0.4538	0.4346	0.2619	0.5983	0.4164
Llama-SimPO	0.3387	0.4500	0.3945	0.2583	0.5998	0.4083
Llama-PMO	0.3507	0.4500	0.4526	0.2656	0.5912	0.4220
Qwen-DPO	0.4471	0.5015	0.5983	0.2387	0.6448	0.4861
Qwen-CPO	0.4078	0.5115	0.5927	0.2546	0.6417	0.4817
Qwen-SimPO	0.4471	0.5014	0.5978	0.2387	0.6440	0.4858
Qwen-PMO	0.4394	0.5023	0.5984	0.2521	0.6417	0.4868

448
449 Table 3: Ablation study for α and β on benchmarks.

alpha	beta	model	arc	hellaswag	mmlu	truthfulqa	winogrande	average
0.5	0	Gemma	0.3447	0.4061	0.2378	0.2827	0.5848	0.3712
1	0	Gemma	0.3558	0.4235	0.2537	0.2925	0.5927	0.3837
0.05	0.05	Gemma	0.3737	0.4568	0.2621	0.2987	0.6014	0.3985
0.9	0.1	Gemma	0.3345	0.4119	0.2553	0.2852	0.6077	0.3789
0.95	0.05	Gemma	0.3430	0.4094	0.2493	0.2840	0.5872	0.3746
0.5	0	Llama	0.3251	0.4551	0.4496	0.2656	0.5935	0.4178
1	0	Llama	0.3294	0.4525	0.4457	0.2668	0.6006	0.4190
0.05	0.05	Llama	0.3507	0.4500	0.4526	0.2656	0.5912	0.4220
0.9	0.1	Llama	0.3251	0.4536	0.4504	0.2619	0.5872	0.4157
0.95	0.05	Llama	0.3396	0.4559	0.4509	0.2668	0.5919	0.4210
0.5	0	Qwen	0.4292	0.4996	0.5951	0.2595	0.6346	0.4836
1	0	Qwen	0.4317	0.4991	0.5978	0.2546	0.6361	0.4839
0.05	0.05	Qwen	0.4394	0.5023	0.5984	0.2521	0.6417	0.4868
0.9	0.1	Qwen	0.4428	0.5037	0.5972	0.2485	0.6330	0.4850
0.95	0.05	Qwen	0.4437	0.5021	0.5968	0.2534	0.6267	0.4845

467 Two observations follow. First, once reference/regularization differences are removed, DPO, SimPO,
468 and CPO behave similarly, supporting the hypothesis that much of the reported performance spread
469 across xPOs is driven by a small set of regularizers rather than fundamentally different optimization
470 targets. This is consistent with prior findings that (a) length normalization and the margin term
471 are the dominant contributors to SimPO’s empirical advantage (Meng et al., 2024), and (b) SimPO
472 (reference-free, length-normalized, marginized) can be understood as a limit or mixture within a
473 length-normalized DPO family, while implementations expose the same knobs (e.g., SimPO-gamma,
474 loss type) under a unified trainer. Second, PMO is competitive or best across backbones under
475 the same ablations, indicating that explicitly matching target probabilities can preserve preference
476 behavior without sacrificing accuracy, even when the distinguishing regularizers in other methods are
477 disabled.

478
479 6.3 ABLATION ON THE SCORE SCALING α AND REFERENCE WEIGHT β

480 We ablate the PMO hyperparameters that control (i) the strength of the preference signal (α multiplies
481 the pairwise scores) and (ii) the influence of the reference model (β scales the reference term, with
482 $\beta=0$ being reference-free). Table 3 summarizes results on ARC-Challenge, HellaSwag, MMLU,
483 TruthfulQA (MC1), and WinoGrande.

484
485 **Global trends.** (i) Moving from $\alpha=0.5$ to $\alpha=1.0$ consistently helps or holds steady across back-
486 bones at $\beta=0$, indicating that moderately stronger preference signals are beneficial without a reference

486 constraint. (ii) A small but nonzero β can further improve accuracy when it is not paired with a
 487 too-aggressive α . (iii) Over-regularizing the reference (larger β) together with high α can degrade
 488 performance on some backbones, suggesting that the combination of a strong prior and a strong
 489 preference signal can oversmooth or miscalibrate the update.

490 Across backbones, α chiefly governs learning strength and should be set moderately high in the
 491 reference-free regime. A small β can help, but only when it remains light relative to α . Over-
 492 regularization (high β) coupled with aggressive scaling (high α) tends to underperform. These
 493 findings align with the broader observation that reference-free preference optimization is a strong
 494 baseline, and that careful, minimal use of reference regularization can provide incremental, backbone-
 495 dependent gains without inducing over-smoothing.

496

497

7 CONCLUSION

498

499 We introduce a *pure semantic preference scenario* to discuss the preference and accuracy tradeoffs for
 500 PMO and other baselines. Across the literature, preference optimization often improves truthfulness
 501 and reading comprehension while largely retaining general knowledge, but it can degrade perfor-
 502 mance on reasoning-heavy math benchmarks unless care is taken in the objective and tuning. This
 503 reflects a Pareto-style tension: pushing harder on preference alignment can induce overconfidence
 504 or length/format biases that help conversational quality yet erode structured reasoning accuracy.
 505 When all benchmarks are reasoning tasks, our PMO, designed for preference alignment, preserves
 506 preference adherence without incurring a performance drop on these reasoning evaluations. **Our**
 507 **contribution is a controlled analysis of probabilistic preference matching and a simple objective**
 508 **(PMO) with a closed-form solution that allows explicit control of the accuracy–collapse trade-off.**

509

510

511 Our work is not without limitations. Due to computational constraint, the experiments are not scaled
 512 up to larger models and on-policy algorithms are not further analyzed. Besides, the analysis of the
 513 length-variance scenario is also relevant in our pure semantic preference scenario. We leave these to
 514 our future work.

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 ETHICS STATEMENT
541542 This paper presents work whose goal is to advance the field of Machine Learning. There are many
543 potential societal consequences of our work, none of which we feel must be specifically highlighted
544 here.
545546 REPRODUCIBILITY STATEMENT
547548 Our code is built on the open-sourced platform OpenRLHF, and we have uploaded the code and
549 synthetic dataset as supplementary files. We will set our repository to public once this paper has been
550 accepted.
551552 REFERENCES
553554 AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. *Claude-3 Model Card*, 2024.555 Lora Aroyo, Mark Diaz, Christopher Homan, Vinodkumar Prabhakaran, Alex Taylor, and Ding Wang.
556 The reasonable effectiveness of diverse evaluation data, 2023.558 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
559 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
560 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
561 4447–4455. PMLR, 2024.562 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
563 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.565 Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
566 Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
567 Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.568 Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémie Scheurer, Javier
569 Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
570 and fundamental limitations of reinforcement learning from human feedback. *arXiv preprint*
571 *arXiv:2307.15217*, 2023.572 Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
573 rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Towards equitable alignment of large language
574 models with diverse human preferences. *arXiv preprint arXiv:2402.08925*, 2024.576 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
577 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
578 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
579 2023.580 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
581 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
582 *arXiv:1803.05457v1*, 2018.584 Emily Denton, Mark Díaz, Ian Kivlichan, Vinodkumar Prabhakaran, and Rachel Rosen. Whose
585 ground truth? accounting for individual and collective identities underlying dataset annotation,
586 2021.587 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
588 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
589 *arXiv e-prints*, pp. arXiv–2405, 2024.590 Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. GPTs are GPTs: Labor market
591 impact potential of LLMs. *Science*, 384(6702):1306–1308, 2024.593 Team Gemma. Gemma 3 technical report. *arXiv preprint arXiv:2503.19786*, 2025. doi: 10.48550/
arXiv.2503.19786. URL <https://arxiv.org/abs/2503.19786>.

594 Aaron Grattafiori and et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024. doi:
 595 10.48550/arXiv.2407.21783. URL <https://arxiv.org/abs/2407.21783>.

596

597 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 598 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International
 599 Conference on Learning Representations (ICLR)*, 2021.

600 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 601 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-Whitcomb,
 602 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 603 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali
 604 Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin
 605 Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew
 606 Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko,
 607 Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley
 608 Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben
 609 Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob Mc-
 610 Grew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan
 611 Quinn, Brian Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll
 612 Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern,
 613 Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris
 614 Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine
 615 McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis,
 616 Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
 617 David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares,
 618 Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong,
 619 Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric
 620 Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Fil-
 621 ippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff
 622 Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong,
 623 Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde
 624 de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell,
 625 Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya
 626 Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki,
 627 James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park,
 628 Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia
 629 Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne
 630 Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John
 631 Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook
 632 Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua
 633 Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan
 634 Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen,
 635 Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther,
 636 Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
 637 Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held,
 638 Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondracik, Lukasz Kaiser, Luke Hewitt, Luke
 639 Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat
 640 Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin,
 641 Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz,
 642 Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe,
 643 Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro,
 644 Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira
 645 Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone,
 646 Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick
 647 Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
 Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia
 Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov,
 Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder,
 Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel
 Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara,

648 Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky
 649 Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy
 650 Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
 651 Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray,
 652 Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino
 653 Jomoto, Shirong Wu, Shuaiqi Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey,
 654 Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya
 655 Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunningham, Thomas Degry, Thomas
 656 Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov,
 657 Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
 658 Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko,
 659 Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash
 660 Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin,
 661 Yunxing Dai, and Yury Malkov. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.

662 Wenlong Ji, Weizhe Yuan, Emily Getzen, Kyunghyun Cho, Michael I Jordan, Song Mei, Jason E
 663 Weston, Weijie J Su, Jing Xu, and Linjun Zhang. An overview of large language models for
 664 statisticians. *arXiv preprint arXiv:2502.17814*, 2025.

665 Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
 666 learning from human feedback, 2023.

667 Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An
 668 adversarial winograd schema challenge at scale. 2019.

669 Zihao Li, Zhuoran Yang, and Mengdi Wang. Reinforcement learning with human feedback: Learning
 670 dynamic choices via pessimism. *arXiv preprint arXiv:2305.18438*, 2023. URL <https://arxiv.org/abs/2305.18438>.

671 Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
 672 falsehoods. In *Proc. of ACL*, pp. 3214–3252, Dublin, Ireland, 2022. Association for Computational
 673 Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL <https://aclanthology.org/2022.acl-long.229>.

674 Kaizhao Liu, Qi Long, Zhekun Shi, Weijie J Su, and Jiancong Xiao. Statistical impossibility and
 675 possibility of aligning llms with human preferences: From condorcet paradox to nash equilibrium.
 676 *arXiv preprint arXiv:2503.10990*, 2025a.

677 Ruohong Liu, Yuxin Pan, Linjie Xu, Lei Song, Pengcheng You, Yize Chen, and Jiang Bian. Efficient
 678 discovery of pareto front for multi-objective reinforcement learning. In *ICLR 2025*, 2025b. Poster.

679 R Duncan Luce. *Individual choice behavior: A theoretical analysis*. Courier Corporation, 2012.

680 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
 681 free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.

682 Eric Mitchell. cdpo: Calibrated direct preference optimization. <https://ericmitchell.ai/cdpo.pdf>, 2024. Placeholder entry; please update with the final author list, venue, and identifier
 683 if available.

684 Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 685 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
 686 learning from human feedback. *arXiv preprint arXiv:2312.00886*, 2023.

687 Motoki Omura, Yasuhiro Fujita, and Toshiki Kataoka. Entropy controllable direct preference
 688 optimization. *arXiv preprint arXiv:2411.07595*, 2024.

689 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

690 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 691 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 692 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
 693 Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
 694 <https://arxiv.org/abs/2203.02155>.

702 Cheonbok Park, Jeonghoon Kim, Joosung Lee, Sanghwan Bae, Jaegul Choo, and Kang Min Yoo.
 703 Cross-lingual collapse: How language-centric foundation models shape reasoning in large language
 704 models. *arXiv preprint arXiv:2506.05850*, 2025. doi: 10.48550/arXiv.2506.05850. URL <https://arxiv.org/abs/2506.05850>.

705
 706 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
 707 Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

708
 709 Marta Sandri, Elisa Leonardelli, Sara Tonelli, and Elisabetta Jezek. Why don't you do it right?
 710 analysing annotators' disagreement in subjective tasks. In Andreas Vlachos and Isabelle Au-
 711 genstein (eds.), *Proceedings of the 17th Conference of the European Chapter of the Associa-
 712 tion for Computational Linguistics*, pp. 2428–2441, Dubrovnik, Croatia, May 2023. Associa-
 713 tion for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.178. URL <https://aclanthology.org/2023.eacl-main.178>.

714
 715 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 716 optimization algorithms. *ArXiv preprint*, abs/1707.06347, 2017. URL <https://arxiv.org/abs/1707.06347>.

717
 718 Zhekun Shi, Kaizhao Liu, Qi Long, Weijie J Su, and Jiancong Xiao. Fundamental limits of
 719 game-theoretic llm alignment: Smith consistency and preference matching. *arXiv preprint
 720 arXiv:2505.20627*, 2025.

721
 722 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 723 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 724 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

725
 726 Emily A Vogels. The state of online harassment. *Pew Research Center*, 13:625, 2021.

727
 728 Mingzhi Wang, Chengdong Ma, Qizhi Chen, Linjian Meng, Yang Han, Jiancong Xiao, Zhaowei
 729 Zhang, Jing Huo, Weijie J Su, and Yaodong Yang. Magnetic preference optimization: Achieving
 730 last-iterate convergence for language model alignment. In *The Thirteenth International Conference
 731 on Learning Representations*, 2024.

732
 733 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
 734 Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english. *Transactions
 735 of the Association for Computational Linguistics*, 8:377–392, 2020.

736
 737 Jiancong Xiao, Bojian Hou, Zhanliang Wang, Ruochen Jin, Qi Long, Weijie J Su, and Li Shen.
 738 Restoring calibration for aligned large language models: A calibration-aware fine-tuning approach.
 739 In *Proceedings of the 42nd International Conference on Machine Learning*, volume 267, pp.
 68364–68390. PMLR, 2025a.

740
 741 Jiancong Xiao, Ziniu Li, Xingyu Xie, Emily Getzen, Cong Fang, Qi Long, and Weijie J Su. On the
 742 algorithmic bias of aligning large language models with rlhf: Preference collapse and matching
 743 regularization. *Journal of the American Statistical Association*, (just-accepted):1–21, 2025b.

744
 745 Jiancong Xiao, Zhekun Shi, Kaizhao Liu, Qi Long, and Weijie J Su. Theoretical tensions in
 746 rlhf: Reconciling empirical success with inconsistencies in social choice theory. *arXiv preprint
 747 arXiv:2506.12350*, 2025c.

748
 749 Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
 750 Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of llm
 751 performance in machine translation. *arXiv preprint arXiv:2401.08417*, 2024.

752
 753 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 754 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 755 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 2024.

756 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
757 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for*
758 *Computational Linguistics*, 2019.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 THE USE OF LLMs
811812 The authors used LLMs only for proofreading, checking grammar, and correcting typos to improve
813 the readability of the paper.
814815 A ADDITIONAL EXPERIMENTAL DETAILS
816817 A.1 COMPREHENSIVE DESCRIPTIONS FOR MODELS AND DATASETS
818819 **Models.** In our study, we employ three widely-used open-source large language models to investi-
820 giate the calibration issue and validate the effectiveness of our proposed method. They include Here's
821 a brief introduction to each model you're using:
822

- 823 • Gemma-3-1B (Google) (Gemma, 2025): A lightweight, open model from the Gemma 3
824 family; multimodal (accepts text and images) with text output. The 1B size supports a 32K
825 token input context, while larger sizes go to 128K. Gemma 3 emphasizes broad multilingual
826 support (pretrained on 140+ languages) and efficient deployment on limited hardware.
- 827 • Llama-3.2-1B (Meta; often shortened to “Llama-3-1B”) (Grattafiori & et al., 2024): A
828 1.23B-parameter, text-only model optimized for multilingual dialogue and on-device use.
829 It supports a 128K token context window, has instruction-tuned variants, and is designed
830 for summarization, rewriting, and agentic tasks. Llama 3.2 targets edge deployment and is
831 optimized for Arm, with day-one enablement on Qualcomm and MediaTek hardware.
- 832 • Qwen-2.5-1.5B (Alibaba) (Yang et al., 2024): A 1.54B-parameter model available in base
833 and instruction-tuned variants. The series improves instruction following, coding, math, and
834 structured outputs. The 1.5B models support a 32K token context (with the Instruct variant
835 commonly using up to 8K generation) and multilingual coverage across 29+ languages.
836

837 **Benchmark.** To evaluate the efficacy of our proposed calibration method, we employ five datasets
838 to conduct comprehensive experiments:
839

- 840 • ARC-Challenge (Clark et al., 2018): A multiple-choice benchmark of 7,787 grade-school
841 science questions split into Easy and Challenge sets; the Challenge split contains ques-
842 tions that defeat simple retrieval and co-occurrence methods, emphasizing knowledge and
843 reasoning beyond surface cues.
- 844 • HellaSwag (Zellers et al., 2019): A commonsense inference dataset where models must
845 choose the most plausible continuation to a context; built via adversarial filtering to be easy
846 for humans (>95% accuracy) yet challenging for models (<48% at release).
- 847 • MMLU (Hendrycks et al., 2021): A massive multitask multiple-choice benchmark spanning
848 57 subjects (humanities, social sciences, STEM, etc.), designed to assess broad world
849 knowledge and problem-solving ability in language models.
- 850 • TruthfulQA (MC1) (Lin et al., 2022): Evaluates whether models provide truthful answers
851 to questions targeting common misconceptions; MC1 is the single-correct-option multiple-
852 choice setting (one true answer among 4–5 choices).
- 853 • Winogrande (Keisuke et al., 2019): A 44k-instance adversarial Winograd-style pro-
854 noun/coreference benchmark with AfLite debiasing to reduce dataset-specific artifacts;
855 improves scale and hardness relative to WSC and supports transfer to related commonsense
856 tasks.

857 A.2 THE DETAILS OF THE SYNTHETIC DATASET
858859 **Schema.** Each example is a quadruple (x, y_A, y_B, p) , $p \in (0, 1)$, where x is the shared prompt,
860 y_A, y_B are completions differing in exactly one lexical item at the same position, and p is the dataset-
861 specified probability that y_A is preferred. By construction, $(1 - p)$ is the probability that y_B is
862 preferred.
863In Figure 1, $p = 0.879051$ denotes the target probability of preference given the shared prompt.

864 **Intended learning target.** Let $P_\theta(y_A \succ y_B | x)$ denote the model’s pairwise preference probability
 865 under a Bradley–Terry–style parameterization (Li et al., 2023):
 866

$$867 P_\theta(y_A \succ y_B | x) = \frac{\exp(r_\theta(x, y_A))}{\exp(r_\theta(x, y_A)) + \exp(r_\theta(x, y_B))}, \\ 868$$

869 where r_θ is a scalar scoring function. Our dataset defines a ground-truth soft label p for this pairwise
 870 probability. Thus, the alignment goal is probability matching, i.e., $P_\theta(y_A \succ y_B | x) \approx p$ over the
 871 distribution of minimal pairs. This soft-preference formulation generalizes binary chosen–rejected
 872 labels used in standard preference datasets (Rafailov et al., 2023; Li et al., 2023) by supplying
 873 calibrated targets for pairwise comparisons.

874 **Generation and controls.** To construct (x, y_A, y_B) we: (a) sample a prompt template that admits
 875 a single-slot substitution; (b) choose a lexical contrast set $\{w_A, w_B\}$ (e.g., brand, beverage, team,
 876 OS) and instantiate y_A, y_B by substituting w_A vs. w_B in the same position; (c) verify minimality
 877 (string equality outside the substituted span) and well-formedness. This process controls for length,
 878 formatting, and syntactic variation, leaving only the targeted semantic contrast to influence model
 879 preferences (Warstadt et al., 2020). The probability p is then sampled by a fixed-seed RNG and stored
 880 with the pair.

882 B ADDITIONAL COMPARISON WITH PREFERENCE ALIGNMENTS OBJECTIVES

883 B.1 OPTIMAL POLICY OF VARIANTS OF DPO

884 **Optimal policies of DPO and PPO.** The optimal policy of DPO is given by

$$885 \pi^*(y|x) = \frac{\pi_{\text{ref}}(y|x) \exp(r(x, y)/\beta)}{\sum_{y'} \pi_{\text{ref}}(y'|x) \exp(r(x, y')/\beta)}, \quad (6)$$

886 as it is discussed in the main text. PPO is widely used for RLHF. Since our goal is not to analyze
 887 PPO’s convergence properties, we instead adopt the RLHF optimal policy (Equation 6) as a proxy for
 888 the PPO solution.

889 **Optimal solution of cDPO.** The optimal policy of cDPO is given by

$$890 \pi^*(y|x) = \frac{\pi_{\text{ref}}(y|x) \exp(c \pi_\phi(y|x))}{\sum_y \pi_{\text{ref}}(y|x) \exp(c \pi_\phi(y|x))}, \quad c = \frac{1}{\beta} \log \frac{1 - \varepsilon}{\varepsilon}$$

891 **Optimal policy of IPO.** The optimal policy of cDPO is given by

$$892 \pi^*(y|x) = \frac{\pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} \mathbb{E}_{y' \sim \mu} [p^*(y \succ y'|x)]\right)}{\sum_y \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} \mathbb{E}_{y' \sim \mu} [p^*(y \succ y'|x)]\right)}.$$

893 **Optimal policy of NashMD.** NashMD is used to optimize the objective of Nash learning from
 894 human feedback (NLHF). Since our goal is not to analyze convergence properties, we adopt the
 895 (unknown) NLHF optimal policy as a surrogate for the NashMD solution.

896 To the best of our knowledge, NLHF admits no closed-form optimal policy. The strongest available
 897 characterization shows that the NLHF Nash equilibrium coincides with the solution of online IPO,
 898 which can be expressed in the following recursive form:

$$899 \pi^*(y|x) = \frac{\pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} \mathbb{E}_{y' \sim \pi^*(y|x)} [p^*(y \succ y'|x)]\right)}{\sum_y \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} \mathbb{E}_{y' \sim \pi^*(y|x)} [p^*(y \succ y'|x)]\right)}.$$

900 **Optimal policy of CPO.** The objective of CPO is given by

$$901 -\log \sigma(\beta \log \pi_\theta(y_w | x) - \beta \log \pi_\theta(y_l | x)) - \lambda \log \pi_\theta(y_w | x),$$

902 which is originated from a constraint optimization problem

$$903 \min -\log \sigma(\beta \log \pi_\theta(y_w | x) - \beta \log \pi_\theta(y_l | x)) \quad \text{s.t.} \quad \log \pi_\theta(y_w | x) \leq \epsilon.$$

918 With out the constraint (or $\lambda = 0$), the loss function admits the following closed form solution.
 919

920
$$\pi^*(y|x) = \frac{\exp(\frac{1}{\beta}r(x,y))}{\sum_y \exp(\frac{1}{\beta}r(x,y))}$$

 921
 922

923 With the constraint, there is generally no closed form solution.
 924

925 **B.2 COMPARISON WITH H-DPO**
 926

927 Omura et al. (2024) introduced a variant of DPO, termed H-DPO. By decomposing the reverse KL
 928 divergence into its entropy and cross-entropy components, one can separately adjust the entropy
 929 contribution through a parameter α . The resulting objective for entropy-adjusted DPO is

930
$$J_{\text{H-DPO}} = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} [r(x,y) - \beta D_\alpha(\pi \parallel \pi_{\text{ref}})]$$

 931
$$= \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} [r(x,y)] + \alpha\beta H(\pi) - \beta H(\pi, \pi_{\text{ref}}).$$

 932

933 While both PMO and H-DPO incorporate an entropy term, their underlying principles differ. In PMO,
 934 the final term is a KL divergence, whereas in H-DPO the final term is a cross-entropy; in fact, the
 935 combination of the second and third terms in H-DPO recovers the KL divergence.
 936

937 **C TECHNICAL RESULTS**
 938

939 **C.1 PROPERTY C.1**
 940

941 Let the PMF of p_i is $f(x)$, $x \in [0, 1]$, $i = 1, \dots, n$.
 942

943
$$\text{PCI} = 2 \int_0^{0.5} f(x) dx. \quad (7)$$

 944

945 **Property C.1 (PCI consistency)** (a) *Consistency*: by the law of large numbers, $\text{PCI}_n \rightarrow \mathbb{E}[\min(P, 1 - P)]$ almost surely as $n \rightarrow \infty$. (b) *Tight bounds*: $0 \leq \mathbb{E}[\min(P, 1 - P)] \leq \frac{1}{2}$.
 946 The lower bound is attained when $P \in \{0, 1\}$ a.s.; the upper bound is attained when $P \equiv \frac{1}{2}$ a.s.
 947

948 Proof sketch. (a) Apply the strong law to the i.i.d. sequence $\min\{p_i, 1 - p_i\}$. (b) Pointwise,
 949 $0 \leq \min(p, 1 - p) \leq 1/2$; take expectations and note the extremal cases. (c) Use LOTUS to write
 950 $\mathbb{E}[\min(P, 1 - P)] = \int \min(x, 1 - x) f(x) dx$ and split at $1/2$; alternatively use the tail integral
 951 $\int_0^{1/2} \mathbb{P}(\min(P, 1 - P) > t) dt = \int_0^{1/2} (F(1 - t) - F(t)) dt$. (d) Follows immediately from (c)
 952 under symmetry. (e) For $U \sim \text{Unif}(0, 1)$, $\mathbb{P}(\min(U, 1 - U) \leq t) = 1 - \mathbb{P}(U \in [t, 1 - t]) = 2t$ on
 953 $t \in [0, 1/2]$, giving the stated distribution and mean $1/4$.
 954

955 **C.2 PROOF OF PROPOSITION 4.1**
 956

957 Consider the RL problem:
 958

959
$$\max_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_{\phi}(\cdot|x)} [r_{\gamma}(x,y)] + \beta' H(\pi_{\phi}(\cdot|x)).$$

 960

961 It can be written as
 962

963
$$\min_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_{\phi}(\cdot|x)} \log \pi_{\phi}(y|x) - \log \left[\exp\left(\frac{1}{\beta'} r_{\gamma}(x,y)\right) \right].$$

 964

965 The optimal solution is
 966

967
$$\pi_{\phi}(y|x) = \frac{1}{Z(x)} \exp\left(\frac{1}{\beta'} r_{\gamma}(x,y)\right),$$

 968

969 where
 970

971
$$Z(x) = \sum_y \exp\left(\frac{1}{\beta'} r_{\gamma}(x,y)\right).$$

972 This gives the second result in Proposition 4.1: the optimal policy is given by
 973

$$974 \pi^*(y|x) = \exp\left(\frac{1}{\beta'} r_\gamma(x, y)\right) / \sum_{y'} \exp\left(\frac{1}{\beta'} r_\gamma(x, y')\right).$$

975
 976 The reward can be written as
 977

$$978 r_\gamma(x, y) = \beta' \log \pi_\phi(y_w|x) + \beta' \log Z(x).$$

979 Put it into the loss function of reward with margin γ , which is
 980

$$981 -\mathbb{E}_{(x, y_w, y_l)} \log \sigma\left(r(x, y_w) - r(x, y_l) - \gamma\right).$$

982
 983 we obtain the objective SimPO:
 984

$$985 -\mathbb{E}_{(x, y_w, y_l)} \log \sigma\left(\beta' \log \pi_\phi(y_w|x) - \beta' \log \pi_\phi(y_l|x) - \gamma\right) \\ 986 = -\mathbb{E}_{(x, y_w, y_l)} \log \sigma\left(\frac{\beta}{|y_w|} \log \pi_\phi(y_w|x) - \frac{\beta}{|y_l|} \log \pi_\phi(y_l|x) - \gamma\right).$$

987 C.3 PROOF OF PROPOSITION 4.2

988 Consider the problem:
 989

$$990 \max_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_\phi(\cdot|x)} r(x, y) + \alpha H(\pi_\phi(y|x)) - \beta D_{\text{KL}}(\pi_\phi(y|x) \| \pi_{\text{ref}}(y|x)), \quad (8)$$

991 Equation equation 8 can be written as
 992

$$993 \min_{\phi} \mathbb{E}_{x \sim \rho} \mathbb{E}_{y \sim \pi_\phi(\cdot|x)} \log \pi_\phi(y|x) - \log \left[\pi_{\text{ref}}(y|x)^{\frac{\beta}{\alpha+\beta}} \exp\left(\frac{1}{\alpha+\beta} r(x, y)\right) \right],$$

994 The optimal solution is
 995

$$996 \pi_\phi(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x)^{\frac{\beta}{\alpha+\beta}} \exp\left(\frac{1}{\alpha+\beta} r(x, y)\right),$$

997 where
 998

$$999 Z(x) = \sum_y \pi_{\text{ref}}(y|x)^{\frac{\beta}{\alpha+\beta}} \exp\left(\frac{1}{\alpha+\beta} r(x, y)\right).$$

1000 The reward can be written as
 1001

$$1002 r(x, y) = (\alpha + \beta) \log \frac{\pi_\phi(y_w|x)}{\pi_{\text{ref}}(y_w|x)^{\frac{\beta}{\alpha+\beta}}} + (\alpha + \beta) \log Z(x).$$

1003 Put it into the loss function of reward, we obtain the DPO version:
 1004

$$1005 -\mathbb{E}_{(x, y_w, y_l)} \log \sigma\left((\alpha + \beta) \log \frac{\pi_\phi(y_w|x)}{\pi_{\text{ref}}(y_w|x)^{\frac{\beta}{\alpha+\beta}}} - (\alpha + \beta) \log \frac{\pi_\phi(y_l|x)}{\pi_{\text{ref}}(y_l|x)^{\frac{\beta}{\alpha+\beta}}}\right).$$

1006 D ADDITIONAL EXPERIMENT

1007 D.1 BACKBONE-WISE OBSERVATIONS IN SYNTHETIC DATASET

1008 **Qwen.** IPO attains the lowest KL (1.76), followed by Nash-MD (2.24) and PMO (2.32), indicating
 1009 better alignment of predicted probabilities with ground-truth targets. However, the highest accuracy is
 1010 delivered by DPO (0.473), which exhibits the second-worst KL (4.53) and one of the lowest PCI values
 1011 (0.033), i.e., strong collapse. PPO and SimPO also show relatively low PCI (≈ 0.033 – 0.035) with large
 1012 KL (≈ 4.30 – 4.66). In contrast, methods with higher PCI (less collapse), such as PMO and Nash-MD
 1013 (PCI ≈ 0.082), tend to have lower KL but slightly lower accuracy (0.419 and 0.446, respectively).
 1014 Overall, for Qwen we observe a clear trade-off: pushing accuracy via more decisive predictions
 1015 (lower PCI) correlates with worse KL, suggesting overconfidence that increases divergence when
 1016 predictions are wrong.

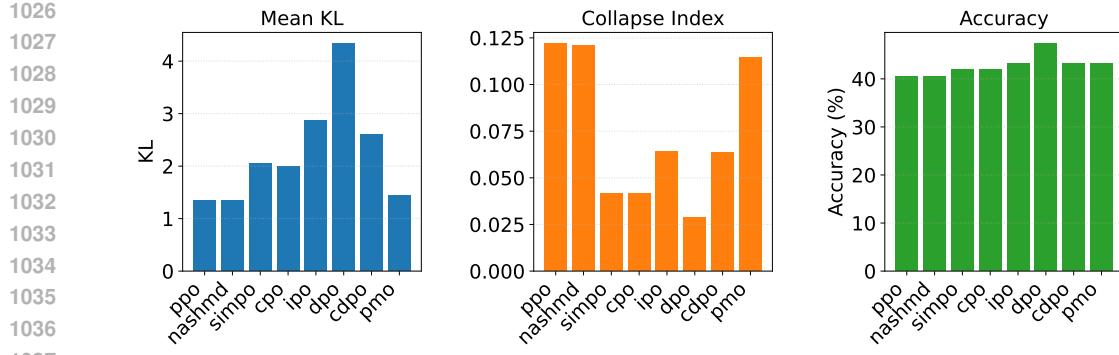


Figure 5: Tradeoff between preference and accuracy on Gemma model.

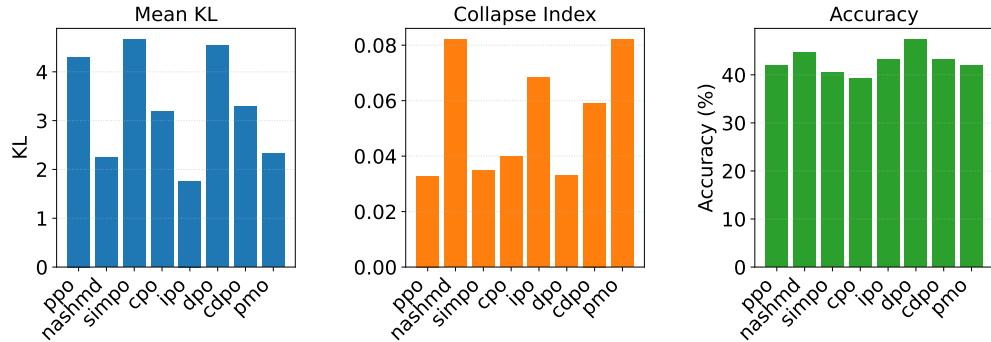


Figure 6: Tradeoff between preference and accuracy on Qwen model.

Gemma. The best KL is achieved by Nash-MD (1.35) and PPO (1.35), both with the highest PCI (≈ 0.121), i.e., least collapse. DPO again yields the highest accuracy (0.473) but the worst KL (4.33) and the lowest PCI (0.029), signaling pronounced collapse. CDPO, IPO, and PMO occupy intermediate positions: their KL is higher than PPO/Nash-MD but lower than DPO; their PCI is below PPO/Nash-MD but above DPO. This backbone thus strengthens the pattern that methods achieving better probabilistic alignment (low KL) do so by avoiding extreme confidence (higher PCI), whereas the most accurate method (DPO) concentrates probability mass aggressively (very low PCI), incurring high KL.

D.2 ANALYSIS OF KL-PCI-ACCURACY INDEX

Across backbones, linear regressions of PCI on KL reveal a strong, negative association: Qwen ($r = -0.888$, $p=0.0032$, slope -0.017 ± 0.0036), Gemma ($r = -0.754$, $p=0.0308$, slope -0.0286 ± 0.0102), and Llama ($r = -0.860$, $p=0.0061$, slope -0.00384 ± 0.00093). Thus, as KL increases, PCI systematically decreases, i.e., higher divergence correlates with stronger collapse. Spearman's ρ is also negative and significant for Qwen and Gemma, while Llama shows a strong linear trend but weaker rank monotonicity.

Across the three backbones, the relationship between KL (treated as a distance to the target distribution) and accuracy differs markedly. For Qwen, there is essentially no association: Pearson $r = 0.013$ ($p = 0.976$), a near-zero slope ($0.00029 + / - 0.00908$), and $R^2 \approx 0$, indicating accuracy is insensitive to KL within this range. Gemma shows a strong, statistically significant positive correlation ($r = 0.906$, $p = 0.002$; Spearman $\rho = 0.84$, $p = 0.009$) with a tight linear fit ($R^2 = 0.82$, RMSE = 0.0086): the slope ($0.0192 + / - 0.0037$; 95% CI [0.010, 0.028]) implies each unit increase in KL aligns with 1.9 percentage-point higher accuracy, evidencing a pronounced tradeoff where higher divergence from the target probabilities accompanies better task accuracy. Llama exhibits a similar positive trend ($r = 0.587$; slope $0.0153 + / - 0.0086$) but it is not statistically significant at $n = 8$ ($p = 0.126$; CI spans zero), and rank association is weak ($\rho = 0.313$, $p = 0.450$). In short: no

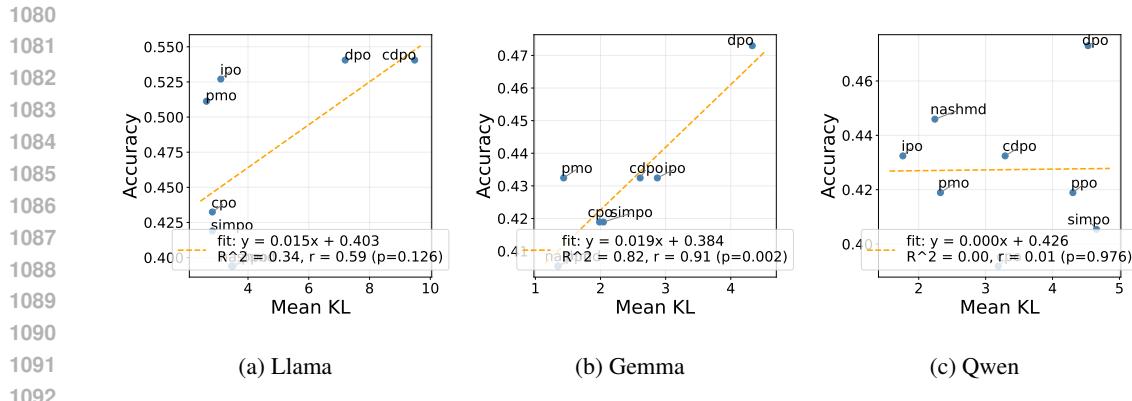


Figure 7: Linear regressions of KL-Accuracy for Llama, Gemma, and Qwen.

KL-accuracy tradeoff for Qwen, a clear positive tradeoff for Gemma, and an inconclusive trend for Llama, with small-sample uncertainty cautioning interpretation.