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ABSTRACT

Protein language models often struggle to capture the biological functions en-
coded within protein sequences due to their lack of factual knowledge (e.g., gene
descriptions of proteins). Existing solutions leverage protein knowledge graphs
(PKGs), using knowledge as auxiliary encoding objectives. However, none of
them explored the direct injection of correlated knowledge into protein language
models, and task-oriented knowledge integration during fine-tuning, making them
suffer from insufficient knowledge exploitation and catastrophic forgetting of pre-
trained knowledge. The root cause is that they fail to align PKGs with downstream
tasks, forcing their knowledge modeling to adapt to the knowledge-isolated nature
of these tasks. To tackle these limitations, we propose a novel knowledge retriever
that can accurately predict gene descriptions for new proteins in downstream tasks
and thus align them with PKGs. On this basis, we propose Knowledge-aware
retrieval-augmented protein language model (Kara), achieving the first unified
and direct integration of PKGs and protein language models. Using the knowledge
retriever, both the pre-training and fine-tuning stages can incorporate knowledge
through a unified modeling process, where contextualized virtual tokens enable
token-level integration of high-order knowledge. Moreover, structure-based reg-
ularization is introduced to inject function similarity into protein representations,
and unify the pre-training and fine-tuning optimization objectives. Experimen-
tal results show that Kara consistently outperforms existing knowledge-enhanced
models in 6 representative tasks, achieving on average 5.1% improvements.

1 INTRODUCTION

Proteins are essential for understanding biological processes and recent advances in artificial intel-
ligence led to growing interest in learning generalized vector representations of proteins (Hu et al.,
2024). By viewing amino acids as language tokens, protein language models (PLMs) such as ESM
(Lin et al., 2023), ProteinBert (Brandes et al., 2022), and ProtBert (Ahmed et al., 2020) have proven
highly valuable in various application tasks such as drug discovery (Hoang et al., 2024) and function
prediction (Xu et al., 2024; Shaw et al., 2024). However, as pointed out by Kalifa et al. (2024); Zhou
et al. (2023); Zhang et al. (2022), lacking factual knowledge (e.g., gene descriptions) makes them
struggle to capture intricate biological function encoded within protein sequences.

Existing solutions leverage protein knowledge graphs (PKGs) that describe the relationships be-
tween proteins and gene ontology (GO) entities with biological relations (Chen et al., 2023b). These
models use protein sequences and associated GO annotations as complementary encoding objectives
to infuse knowledge information. For example, OntoProtein (Zhang et al., 2022) uses knowledge
embedding objective (i.e., TransE (Bordes et al., 2013)) to optimize the alignment between the pro-
tein representations and associated GO entity representations. KeAP (Zhou et al., 2023) integrates
GO entity representations into the masked token prediction of protein sequences through a cross-
attention mechanism. Despite their effectiveness, unfortunately, they still have several limitations.

Limitations. 1) Implicitly embed knowledge information. Existing methods use knowledge only
as encoding objectives to supervise the pre-training of the model, assuming that knowledge infor-
mation can be well embedded within model parameters. However, as highlighted by Kandpal et al.
(2023), LMs often struggle to precisely embed knowledge, particularly long-tail knowledge. Storing
knowledge within model parameters also makes them unable to adapt to knowledge graph updates
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(e.g., adding new knowledge), which further diminishes their usability. 2) Overlook the structure
information. Existing methods treat each knowledge triplet (i.e., (protein, relation,GO)) inde-
pendently. However, the neighboring GO entities of a protein are often correlated, and the high-order
connections between proteins (e.g., proteins linked to a GO entity through similar relations) can
provide additional insights into their functional similarities. Ignoring the structural relevance makes
existing methods fail to fully exploit knowledge information within PKGs. 3) Inconsistent knowl-
edge modeling. Existing methods incorporate knowledge modeling during pre-training but ignore
it during fine-tuning, leading to inconsistent optimization objectives between these two stages. This
inconsistency can cause the knowledge learned during pre-training to be catastrophically forgotten
during fine-tuning (Lee et al., 2020), making it difficult to transfer to downstream tasks. Overall, the
root cause of these limitations is that proteins in downstream tasks often fall outside the PKG, re-
straining the use of knowledge during fine-tuning. Existing methods fail to align knowledge graphs
with downstream tasks, forcing their knowledge modeling to adapt to the knowledge-isolated nature
of these tasks (e.g., knowledge cannot be directly used as part of the input for protein encoding).
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Figure 1: Performance in downstream
tasks. S-, M-, and L-Contact are the
short-range, medium-range, and long-
range contact prediction. PPI is the
protein-protein interaction prediction.

Proposed Work. To tackle these limitations, we propose
Kara, a Knowledge-aware retrieval-augmented protein
language model, achieving the first unified and direct
integration of PKGs and protein language models. As
the core of Kara, we propose a knowledge retriever that
can accurately predict potential gene descriptions for new
proteins and thus align them with PKGs. This align-
ment allows the pre-training and fine-tuning stages of
Kara to be enhanced through a unified knowledge model-
ing process, and seamlessly adapt to knowledge updates.
By employing contextualized virtual tokens, we achieve
token-level information fusion between protein sequence
and knowledge. Specifically, we categorized the virtual
tokens into knowledge tokens and structure tokens, en-
abling the direct injection of both knowledge informa-
tion and high-order structure information into protein rep-
resentations. To unify the optimization objectives, we
incorporate structure-based regularization into both two
stages, injecting function similarities into protein representations and helping the pre-trained knowl-
edge to be effectively transferred to downstream tasks.

As shown in Figure 1, experiments in 6 representative downstream tasks demonstrate the effective-
ness of Kara. It consistently outperforms powerful baselines (i.e., KeAP and ESM-2) across all the
tasks. For instance, Kara exceeds the state-of-the-art knowledge-enhanced model KeAP by 11.6%
in the long-range contact prediction and by 10.3% in the protein homology detection, highlighting
Kara as a better paradigm for integrating protein knowledge graphs into protein language models.

2 PRELIMINARY

Protein Knowledge Graphs. A protein knowledge graph (PKG) is G = {Vp, Vgo, R, F}, where Vp

is the protein set and Vgo is the gene ontology (GO) entity set. R is the set of relations among proteins
and GO entities. The knowledge set F consists of two kinds of triplets: (p, r, g) which describes the
properties of proteins, and (g1, r, g2) which describes the relationships between GO entities. Each
protein p ∈ Vp has an amino acid sequence s. Each GO entity g ∈ Vgo includes a text description tg
explaining the gene’s function. Similarly, each relation r ∈ R comes with a text description tr. We
first generate pre-trained embeddings of items in PKG and store them in vector databases for further
usage. Specifically, relation r and GO entity g are encoded based on their text descriptions using a
frozen PubMedBERT model (Gu et al., 2021), resulting in relation embedding r and GO embedding
g. Protein p is encoded based on its amino acid sequence via a frozen ProtBert model (Ahmed et al.,
2020), resulting in protein embedding p. These stored embeddings will be further used to construct
virtual tokens in Kara. Following previous works, we use the ProteinKG25 knowledge graph (Zhang
et al., 2022). Detailed introduction of ProteinKG25 can be found in Appendix A.

Problem Formulation. Given a PKG G, we aim to pre-train a knowledge-aware protein language
model f so that for each protein with amino acid sequence s, we can generate its knowledge-
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Figure 2: Overall architecture. During pre-training, Kara directly integrates knowledge informa-
tion via contextualized virtual tokens and structure-based regularization. During fine-tuning, the
knowledge information can be similarly integrated into protein representations through a knowledge
retriever, which can align new proteins in downstream tasks with the protein knowledge graph.

integrated vector representation as p̃ = f(G, s). In Kara, f consists of a protein encoder, a knowl-
edge projector, a protein projector, and a knowledge retriever. We use the ProtBert model (Ahmed
et al., 2020) as the backbone of the protein encoder, which is the same as previous works (Zhou et al.,
2023) for a fair comparison. By fine-tuning f on task-specific data, we further verify its capabilities
to generalize pre-trained knowledge to downstream tasks (e.g., protein homology detection).

3 METHODOLOGIES

As shown in Figure 2, with a knowledge retriever to align new proteins with the protein knowl-
edge graph, Kara can uniformly integrate knowledge information during both the pre-training and
fine-tuning stages 1. Specifically, the contextualized virtual tokens allow Kara to directly inject the
associated knowledge information and high-order structure information of a protein into its repre-
sentations. During pre-training, masked language modeling (MLM) helps the protein encoder learn
to fuse the information of protein sequences and structured knowledge at the token level. During
fine-tuning, downstream task modeling helps the protein encoder learn to extract task-specific use-
ful knowledge from PKGs via virtual tokens. Additionally, based on the high-order connectivity
between proteins, structure-based regularization is incorporated during the two stages to unify their
optimization objectives and inject function similarities into protein representations. We detail each
part of Kara in the following and summarize important notations used in this paper in Table 1.

3.1 PRE-TRAINING STAGE

3.1.1 CONTEXTUALIZED VIRTUAL TOKENS

Existing protein language models struggle to encode knowledge information since 1) knowledge
in PKG is interconnected, providing the context of proteins based on the graph structure, but lan-
guage models are only designed to encode sequential data, limiting their ability to capture graph
information; and 2) PKGs contain multi-modal information (e.g., amino acid sequences and GO
text descriptions), and protein language models can only encode amino acid sequences, failing to
achieve effective multi-modal information fusion. As shown in Figure 2 A.1, we tackle the above
challenges by introducing contextualized virtual tokens. By summarizing the associated knowledge
of a protein as knowledge virtual tokens and summarizing its high-order structure as structure virtual
tokens, Kara can directly inject the knowledge and graph information into protein representations.
These virtual tokens are then concatenated with the amino acid token sequences as the knowledge
context, so that each amino acid can query them to integrate helpful knowledge information, en-
abling effective token-level multi-modal information fusion. Specifically, for each protein pi ∈ Vp,
we extract its one-hop GO entities with relations N1(pi) = {(ri, gi)|(pi, ri, gi) ∈ F} as its knowl-
edge, and use its two-hop proteinsN2(pi) = {pj |(pj , ri, gi) ∈ F ; (ri, gi) ∈ N1(pi)} as its structure

1Note that the knowledge retriever is only used during fine-tuning, ensuring that no data from downstream
tasks can be leaked into the pre-training stage.
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Table 1: Important notations and descriptions.
Notation Description

G A protein knowledge graph.
Vp, Vgo, R Protein set, GO entity set, and relation set in G.

F Set of triplets (i.e., knowledge) in G.
pi, rj , gk A protein, a GO entity, and a relation.
si, s

m
i The amino acid sequence of protein pi, and each amino acid in si.

pi, rj ,gk Stored pre-trained embeddings of protein pi, relation rj , and GO entity gk (see Section 2).
vk
i ,v

p
i Knowledge virtual token and structure virtual token of protein pi.

Si,S
L
i Input embedding sequence of protein pi, embedding sequence at the L-th layer.

p̃i Encoded embedding of protein pi by Kara.
ggo
m ,gprot

m Neighboring GO entity embedding and neighboring protein embedding of GO entity gm.
qn Query embedding corresponds to new protein pn.
r̃m Query embedding corresponds to relation rm.
cm Candidate embedding corresponds to GO entity gm.
S(·) Score function.

MLP(·) Trainable multi-layer perceptron.
N1(pi) One-hop GO entities with relations of protein pi
N2(pi) Two-hop connected proteins of protein pi.
Ngo(gm) One-hop neighboring GO entities of GO entity gm.
Nprot(gm) One-hop neighboring proteins of GO entity gm.
E(rm) Candidate GO entity set corresponding to relation rm.

context. The knowledge virtual token of protein pi is then constructed as

vk
i =

1

|N1(pi)|
∑

(ri,gi)∈N1(pi)

MLPknowledge([ri : gi]), (1)

where ri and gi are respectively the pre-trained embeddings of relation ri and GO entity gi (see
Section 2). [:] is the concatenation operation. MLPknowledge is a trainable multi-layer perceptron
used to project text-modal information into a uniform semantic space. Similarly, to incorporate the
structure information of pi, we construct its structure virtual token as

vp
i =

1

|N2(pi)|
∑

pj∈N2(pi)

MLPstructure(pj), (2)

where pj is the pre-trained embedding of protein pj . MLPstructure is another trainable multi-layer
perceptron used to project the amino acid sequence-modal information. We then construct the input
embedding sequence for the protein encoder by concatenating virtual tokens with amino acid tokens.
Given the amino acid sequence si = [s1i , s

2
i , ..., s

|si|
i ] of protein pi, where smi represents an amino

acid, we lookup the embedding vocabulary of protein encoder to initialize the input embedding
sequence as Si = [s1i , s

2
i , ..., s

|si|
i ] ∈ R|si|×d, then concatenate it as

Si ← [vk
i ,v

p
i ,Si] ∈ R(2+|si|)×d, (3)

where |si| is the length of amino acid sequence si, and d is the dimension of embeddings. During
inference, any related knowledge updates can be perceived by constructing these virtual tokens.

3.1.2 KNOWLEDGE-GUIDED PRE-TRAINING

The pre-training of Kara has two purposes: 1) achieving effective information fusion of the contex-
tualized virtual tokens (i.e., knowledge and structure information) and the amino acid tokens (i.e.,
protein information); and 2) integrating the knowledge-based relevance (i.e., function similarities)
among proteins into their representations. For the first purpose, we introduce knowledge-guided
masked language modeling, allowing each amino acid to query the virtual tokens to extract helpful
knowledge information for restoring masked tokens, which achieves token-level information fusion
at each layer of the protein encoder. Specifically, given the input embedding sequence Si, we use
a 15% probability to mask each amino acid token (i.e., replace the amino acid embedding as the

4
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embedding of special token ‘[MASK]’). Then the masked embedding sequence is encoded by the
Transformer component (Vaswani et al., 2017) within the protein encoder as follows:

S̃l
i = LN(Sl

i + MHA(Sl
i)), (4)

S
(l+1)
i = LN(S̃l

i + MLP(S̃l
i)), (5)

where S0
i is initiated by Si. LN denotes the layer-norm unit and MHA denotes the multi-head attention

unit. After modeling the correlations among virtual tokens and amino acid tokens layer by layer,
we leverage cross-entropy loss LMLM on the last layer token embeddings (i.e., SL

i , where L is the
number of Transformer layers in protein encoder) to estimate the masked tokens.

While the aforementioned masked language modeling achieves token-level multi-modal knowledge
infusion, we further introduce a sequence-level regularization based on graph connectivity between
proteins, integrating biological function similarities into their representations. As we mentioned
before, each protein pj ∈ N2(pi) is two-hop connected with pi in graph structure. This high-order
connectivity indicates that pi and pj share the same knowledge (ri, gi) and thus should be similar
in their biological functions. Therefore, each pair (pi, pj ∈ N2(pi)) can be regarded as positive pair
that we hope their embeddings are closer in semantic space (e.g., A9JR22 and A9JR44 in Figure 2),
and (pi, pk /∈ N2(pi)) can be regarded as negative pair (e.g., A9JR22 and O14910). Specifically, in
Kara, we generate the sequence-level embedding of protein pi as p̃i = MEAN(SL

i [2 :]), where MEAN
is the mean-pooling operation, and SL

i [2 :] is the last layer token embeddings except the virtual
tokens. Then, we apply the margin loss on sequence-level protein embeddings to ensure high-order
connected protein pj is closer to pi than other proteins in semantic space.

Lreg = − 1

|N2(pi)|
∑

pj∈N2(pi)

MAX(0,sim(p̃i, p̃j))− sim(p̃i, p̃k) + γ), (6)

where sim indicates the similarity function (e.g., cosine similarity). We finally pre-train the param-
eters within the protein encoder, knowledge projector, and structure projector by jointly optimizing
LMLM and Lreg. These three components are then used to handle downstream tasks.

3.2 FINE-TUNING STAGE

3.2.1 KNOWLEDGE RETRIEVER

Proteins in downstream tasks often fail outside the PKGs (Zhou et al., 2023), restraining the use of
knowledge during fine-tuning. Existing methods thus incorporate knowledge modeling solely during
pre-training, leaving the fine-tuning process only guided by task-specific objectives. However, this
strategy has several limitations. 1) The optimization objectives of the pre-training and fine-tuning
stages are inconsistent (i.e., one is knowledge-guided while the other is knowledge-isolated), caus-
ing the pre-training knowledge to be catastrophically forgotten during fine-tuning (Lee et al., 2020).
2) Without PKGs during fine-tuning, these models fail to explicitly extract helpful knowledge for
downstream tasks, leading to unsatisfactory performance. 3) Knowledge graphs are consistently up-
dated (e.g., correcting obsolete knowledge). Existing models cannot adapt to these updates without
undergoing retraining. To tackle these challenges, we propose a knowledge retriever that can accu-
rately predict potential knowledge for new proteins, and thus align them with PKGs. This allows the
pre-training and fine-tuning stages to directly integrate with knowledge through a unified modeling
process, thus unifying the optimization objectives and seamlessly adapting to knowledge updates.

Generating Candidate Embeddings. We regard the GO entities in protein knowledge graphs as
retrieval candidates. To achieve more accurate and stable retrieval, we integrate the neighboring
structure information of each GO entity gm and generate its candidate embedding as

cm = MLPaggregation([MLPG(gm) : MLPG(g
go
m ) : MLPP (g

prot
m )]), (7)

where gm is the stored embedding of gm. We use ggo
m to incorporate the information of

neighboring GO entities of gm, defined as ggo
m = 1

|Ngo(gm)|
∑

gk∈Ngo(gm) gk. Similarly,
gprot
m is used to incorporate the information of gm’s neighboring proteins, defined as gprot

m =
1

|Nprot(gm)|
∑

pk∈Nprot(gm) pk. Ngo(gm) and Nprot(gm) are respectively the 1-hop neighboring
GO entities and 1-hop neighboring proteins of gm. All of MLPaggregation, MLPG, and MLPP are
trainable multi-layer perceptrons.
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Retrieval Process. For each new protein pn, we use a frozen ProtBert model to generate its query
embedding as qn = MLPP (MEAN(ProtBert(sn))) where sn is the amino acid sequence of pn.
Intuitively, we can traverse the relation set R and the GO entity set Vgo to find potential knowledge
for pn. However, the time consumption of this strategy is unacceptable because of the large size
of Vgo (i.e., 47K in ProteinKG25). Fortunately, we observed that each relation only connects with
several specific GO entities in PKGs, inspiring us to reduce the retrieval complexity by finding
relation-GO combinations. Specifically, for relation rm ∈ R, we construct its candidate GO entity
set as E(rm) = {gm|(px, rm, gm) ∈ F}. During retrieval, we traverse each rm ∈ R and use
each of its corresponding candidate GO entity gm ∈ E(rm) to construct the candidate knowledge
(pn, rm, gm). Then we use the TransE objective Bordes et al. (2013) to score (pn, rm, gm) as

S(pn, rm, gm) = ||qn + r̃m − cm||1, (8)

where r̃m = MLPrel(rm). Finally, we rank all the candidate knowledge based on their scores, and
then add the top-K candidate knowledge into G to align new protein pn with the knowledge graph.

Training Strategy. We use triplets (pi, ri, gi) ∈ F as valid knowledge and by minimizing a margin-
based ranking criterion, we hope that valid knowledge can receive lower scores than invalid knowl-
edge. The training objective is defined as

Lmargin = MAX(0,S(pi, ri, gi)− S(pi, ri, gj) + γ), (9)

where MAX is the maximum operation and γ is a hyper-parameter used to control the distance be-
tween valid and invalid knowledge. (pi, ri, gj) /∈ F is invalid knowledge constructed by perturbing
gi in (pi, ri, gi) with a random GO entity gj . Since the retrieval process needs to match information
from different modalities (i.e., text descriptions and amino acid sequences), we further propose a
cross-modal matching loss to unify the semantic space of embeddings from different modalities as

Lmatch = MAX(0, ||MLPG(gi)− MLPP (g
prot
i )||1 − ||MLPG(gi)− MLPP (g

prot
j )||1 + γ), (10)

where gprot
j is the neighboring protein embedding of a randomly sampled GO entity gj . This loss

forces the text modality information MLPG(gi) of gi is closer to its corresponding neighboring pro-
tein information MLPP (g

prot
i ) (i.e., amino acid sequence modality) than other protein information

MLPP (g
prot
j ). After jointly optimizing Lmargin and Lmatch, the knowledge retriever can accurately

predict the potential knowledge for new proteins, enabling its effective alignment with PKGs.

3.2.2 TASK-ORIENTED FINE-TUNING

After being aligned with PKGs, new proteins can be uniformly encoded with the enhancement of
knowledge following Equations (1)-(5), and any related knowledge updates will be perceived when
constructing virtual tokens, as they can access the latest version of the PKG to extract relevant
knowledge and structures. Then, the downstream task objectives will be used to fine-tune Kara,
enabling the protein encoder to extract task-specific useful knowledge from PKGs via virtual tokens.
Note that for each new protein pn, we exclude other new proteins from N1(pn) when constructing
structure virtual token vp

n, to avoid noises.

Moreover, the structure-based regularization can also be seamlessly adapted to the fine-tuning stage.
This brings two advantages. 1) Downstream tasks usually lack sufficient training data (Rao et al.,
2019). The regularization term can introduce biological function similarities among new proteins
as an auxiliary optimization objective, thus effectively avoiding over-fitting. 2) By using this regu-
larization as a unified optimization objective of pre-training and fine-tuning, pre-trained knowledge
can avoid being catastrophically forgotten and thus effectively transfer to downstream tasks.

Complexity. Compared with vanilla protein language models, the additional time complexity of
Kara only stems from the virtual tokens and the retrieval process. The two virtual tokens let the
encoding complexity become O((|S| + 2)2d) from O(|S|2d), where |S| is the length of amino
acid sequences. Thanks to the proposed strategy of finding relation-GO combinations, the time
complexity of retrieving potential knowledge for a new protein is only O(|R|kmax), where |R| is
the size of the relation set in the PKG and kmax is the maximum size of the candidate GO entity
sets for relations. kmax is much smaller than the size of the GO entity set in the protein knowledge
graph (e.g., In proteinKG25, kmax is about 2K and the size of the GO entity set is 47K).
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Table 2: Performance comparisons in the amino acid contact prediction task, where seq indicates
the number of amino acids between two selected amino acids. P@L, P@L/2, and P@L/5 denote
the precision calculated upon top L (i.e., L most likely contacts), top L/2, and top L/5 predictions,
respectively. The best results are bolded and the second best results are underlined.

6 ≤ seq ≤ 12 12 ≤ seq ≤ 24 24 ≤ seq

Models P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5
LSTM 0.26 0.36 0.49 0.20 0.26 0.34 0.20 0.23 0.27
ResNet 0.25 0.34 0.46 0.28 0.25 0.35 0.10 0.13 0.17

Transformer 0.28 0.35 0.46 0.19 0.25 0.33 0.17 0.20 0.24
ProtBert 0.30 0.40 0.52 0.27 0.35 0.47 0.20 0.26 0.34
ESM-1b 0.38 0.48 0.62 0.33 0.43 0.56 0.26 0.34 0.45
ESM-2 0.40 0.50 0.62 0.35 0.44 0.56 0.27 0.35 0.45

OntoProtein 0.37 0.46 0.57 0.32 0.40 0.50 0.24 0.31 0.39
KeAP 0.41 0.51 0.63 0.36 0.45 0.54 0.28 0.35 0.43
Kara 0.45 0.55 0.65 0.39 0.48 0.59 0.31 0.39 0.48

4 EXPERIMENTS AND ANALYSES

We evaluate the generalization ability of Kara in 6 representative downstream tasks, including amino
acid contact prediction, homology detection, stability prediction, protein-protein interaction identi-
fication, binding affinity prediction, and semantic similarity inference. Ablation studies, hyper-
parameter studies, and analysis of the knowledge retriever are also provided. The detailed task
descriptions are provided in Appendix B. Experimental settings and implementation details are pro-
vided in Appendix C. We run each experiment independently three times and report the average re-
sults. Codes and datasets are at https://anonymous.4open.science/r/Kara-1DB8/.

4.1 AMINO ACID CONTACT PREDICTION

Overview. This task aims to predict whether two amino acids within a protein are in contact, which
is a token-level classification task (Rao et al., 2019). Following Zhou et al. (2023), we use variants
of LSTM, ResNet, and Transformer proposed by the TAPE (tasks assessing protein embeddings)
benchmark (Rao et al., 2019), pre-trained language models ProtBert (Ahmed et al., 2020), ESM-1b
(Rives et al., 2021), and typical knowledge-enhanced model OntoProtein (Zhang et al., 2022) as
baselines. The state-of-the-art knowledge-enhanced model KeAP (Zhou et al., 2023) and the recent
powerful protein language model ESM-2-30t (Lin et al., 2023) are also used for comparison.

Results. As shown in Table 2, Kara outperforms existing models by large margins in all short-
(6 ≤ seq ≤ 12), medium- (12 ≤ seq ≤ 24), and long-range (24 ≤ seq) contact predictions,
achieving on average 9.5% and 11.0% improvements in the P@L and P@L/2 metrics. Compared
with the state-of-the-art knowledge-enhanced model KeAP, Kara consistently surpasses it, especially
in challenging long-range predictions. This is due to Kara’s use of contextualized virtual tokens,
which allows each amino acid token to explicitly extract task-oriented knowledge information from
protein knowledge graphs, thus producing knowledge-contextualized token embeddings with more
information. However, KeAP fails to incorporate knowledge during the fine-tuning stage.

4.2 PROTEIN-PROTEIN INTERACTION IDENTIFICATION

Overview. The protein-protein interaction (PPI) identification task aims to predict the interaction
types of protein pairs, which is a sequence-level multi-label classification problem. Our experiments
are performed on three widely-used datasets SHS27K (Chen et al., 2019), SHS148K (Chen et al.,
2019), and STRING (Lv et al., 2021), where 7 types of interactions are included. Following Zhang
et al. (2022), we use DPPI (Hashemifar et al., 2018), DNNPPI (Li et al., 2018), PIPR (Chen et al.,
2019), and GNN-PPI (Lv et al., 2021) as four baselines. The LM baselines include ProtBert, ESM-
1b, and ESM-2. The knowledge-enhanced model baselines include KeAP and OntoProtein.

Results. Experimental results are shown in Table 3. We can see that Kara outperforms baselines
on nearly all datasets, highlighting its effectiveness in accurately understanding the relationships
between protein sequences. An interesting observation is that the performance gains of KeAP com-
pared with OntoProtein are very small on the STRING dataset. It is suggested in Zhou et al. (2023)
that this is because the large number of fine-tuning data in the STRING dataset reduces the impact of
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Table 3: Performance comparisons in the protein-protein interaction identification task. BFS
(breadth-first search) and DFS (depth-first search) indicate the strategies used to generate test sets
on three datasets. We use the F1 score as the evaluation metric.

SHS27K SHS148K STRING
Models BFS DFS Avg BFS DFS Avg BFS DFS Avg

DNN-PPI 48.09 54.34 51.22 57.40 58.42 57.91 53.05 64.94 59.00
DPPI 41.43 46.12 43.77 52.12 52.03 52.08 56.68 66.82 61.75
PIPR 44.48 57.80 51.14 61.83 63.98 62.91 55.65 67.45 61.55

GNN-PPI 63.81 74.72 69.27 71.37 82.67 77.02 78.37 91.07 84.72
ProtBert 70.94 73.36 72.15 70.32 78.86 74.59 67.61 87.44 77.53
ESM-1b 74.92 78.83 76.88 77.49 82.13 79.31 78.54 88.59 83.57
ESM-2 75.05 79.55 77.30 77.19 83.34 80.26 81.32 89.19 85.30

OntoProtein 72.26 78.89 75.58 75.23 77.52 76.38 76.71 91.45 84.08
KeAP 78.58 77.54 78.06 77.22 84.74 80.98 81.44 89.77 85.61
Kara 81.18 78.85 80.01 79.62 86.02 82.82 82.73 92.46 87.59

knowledge modeling in pre-training. In contrast, Kara incorporates knowledge modeling in both the
pre-training and fine-tuning stages, thus avoiding catastrophically forgetting pre-trained knowledge.

4.3 HOMOLOGY DETECTION AND STABILITY PREDICTION

Table 4: Performance comparisons in
the protein homology detection and sta-
bility prediction tasks.

Models Homology Stability
LSTM 0.26 0.69
ResNet 0.17 0.73
Transformer 0.21 0.73
ProtBert 0.29 0.78
ESM-1b 0.11 0.77
ESM-2 0.13 0.80
OntoProtein 0.24 0.75
KeAP 0.29 0.80
Kara 0.32 0.83

Overview. Homology detection aims to predict the re-
mote homology of protein, which is a sequence-level clas-
sification task. We follow the datasets and experimental
settings of Hou et al. (2018), and ask the model to pre-
dict the right fold type of protein from 1,195 different
types. We report average accuracy on the fold-level held-
out set. Stability prediction aims to predict the intrinsic
stability of a protein, which is a sequence-level regres-
sion task. Following Rocklin et al. (2017), we use Spear-
man’s rank correlation scores to evaluate the model per-
formance. The same baselines are used as in Table 2.

Results. As illustrated in Table 4, existing knowledge-
enhanced models (i.e., OntoProtein and KeAP) cannot
outperform traditional language models in this task. Pre-
vious works (Zhang et al., 2022) attributed this failure to the lack of sequence-level objectives during
pre-training. Instead, using structure-based regularization, Kara incorporates the knowledge-based
relevance (i.e., function similarity) among proteins as a unified sequence-level optimization objec-
tive in both pre-training and fine-tuning stages, thus achieving better performance.

4.4 PROTEIN-PROTEIN BINDING AFFINITY PREDICTION

Table 5: Performance com-
parisons in the protein-protein
binding affinity prediction.

Models Affinity (↓)
PIPR 0.63
ProtBert 0.58
ESM-1b 0.50
ESM-2 0.50
OntoProtein 0.59
KeAP 0.52
Kara 0.50

Overview. This task aims to map each pair of proteins to a
real value to indicate their binding affinity changes, which is a
sequence-level regression task. Following Unsal et al. (2022), we
use Bayesian ridge regression to the element-wise multiplication
of protein embeddings for predicting the binding affinity. The
SKEMPI dataset (Moal & Fernández-Recio, 2012) is used and the
performance is reported based on the mean square error of 10-fold
cross-validation. We use the same baselines as recent works (Zhou
et al., 2023), additionally with KeAP and ESM-2.

Results. As shown in Table 5, all of the existing knowledge-
enhanced models fail to outperform ESM-1b. This is because pro-
tein structure features play a vital role in this task (Unsal et al.,
2022), and the existing models overlook the modeling of protein structures but ESM-1b can achieve
it via its network architecture. Kara can achieve competitive performance with ESM-1b because the
protein knowledge graph contains the description of the structure properties of proteins, and Kara
can directly inject such knowledge information into protein embeddings via the virtual tokens.
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Table 7: Ablation study and performance of variants.
Tasks Concate (6 ≤ seq ≤ 12) PPI (STRING) Homology Stability Affinity (↓)
w/o contextualized virtual tokens 0.42 85.16 0.28 0.81 0.55
w/o structure-based regularizations 0.43 86.49 0.30 0.80 0.52
Retrieval based on the protein sequence similarities 0.43 85.33 0.29 0.79 0.57
Kara 0.45 87.59 0.32 0.83 0.50

4.5 SEMANTIC SIMILARITY INFERENCE

Table 6: Performance in the se-
mantic similarity inference task.

Models BP CC
MSA Transformer 0.31 0.30
ProtBert 0.35 0.36
ESM-1b 0.42 0.37
ESM-2 0.41 0.39
OntoProtein 0.36 0.36
KeAP 0.41 0.40
Kara 0.41 0.41

Overview. This task evaluates models’ ability to extract the
biomolecular functional similarity among proteins. Following
Unsal et al. (2022), we use biological process (BP) and cellu-
lar component (CC) to divide protein attributes into two groups
and calculate the Lin similarity in each group as the ground-
truth similarity. We then calculate the Manhattan similarity be-
tween protein embeddings as the prediction. The Spearman’s
rank correlation between these similarities is calculated as the
metric. We include another powerful protein language model
MSA Transformer (Rao et al., 2021) as baseline.

Results. Table 6 shows that Kara outperforms existing knowledge-enhanced models on both BP and
CC. This can be attributed to the explicit incorporation of the information of GO entities in Kara,
which describes the functionality of proteins. Kara is unable to outperform ESM-1b on BP may be
because of the larger number of parameters of ESM-1b. However, it can still outperform the larger
model ESM-1b on CC, indicating its effectiveness in explicitly incorporating GO entity information.

4.6 ANALYSIS OF KARA

Ablation and Variants. In Table 7 we study the performance contribution of each component in
Kara. We can see that all of the virtual tokens, structure-based regularization, and knowledge re-
triever are essential for achieving good performance. Specifically, removing contextualized virtual
tokens makes Kara unable to incorporate knowledge explicitly, and thus significantly degrades its
performance in the protein-protein binding affinity prediction task which requires the property un-
derstanding of proteins. After removing structure-based regularization, Kara fails to integrate func-
tion similarities into sequence-level protein embeddings and thus results in performance degradation
in sequence-level tasks, such as homology detection and stability prediction.

To assess the effectiveness of our proposed knowledge retriever, we compare it to a variant that uses
a protein similarity-based retriever. In this variant, we use the frozen ProtBert model to calculate
embedding similarities between new proteins and those in the PKG, selecting the top-K similar
proteins and using their embeddings as virtual tokens. However, this approach does not outperform
Kara. The reason is that similarity-based retrievers struggle to accurately predict associated knowl-
edge (i.e., gene descriptions) for proteins, but proteins with similar sequences can have different
functions, so this approach may introduce irrelevant protein information as noise during encoding.

0.45

0.44

0.43

0.42

Homology Detection (Accuracy)Short-term Contact Prediction (P@L)

0.32

0.31

0.30

0.29

0.28
0

K
1 5 50 100

K
0 1 5 50 100

(a) (b)

Figure 3: Performance of Kara with
different numbers of knowledge K.

Hyper-parameter Analysis. During pre-training, we use
the ground-truth knowledge graph structure to construct the
virtual tokens. However, in the fine-tuning stage, because
the new proteins are not included in the protein knowledge
graph, we need to use the knowledge retriever to predict its
top-K potential knowledge to construct the virtual tokens
for fine-tuning and inference, where K is a hyper-parameter
used to control the amount of predicted potential knowl-
edge incorporated. Because the predicted potential knowl-
edge can bring additional information but also inevitable
noise, in this part we study how K affects the performance
of Kara. As shown in Figure 3, the performance improves across different tasks when K increases
from 0 to 1, showcasing the value of incorporating knowledge into protein representations. As K
continues to increase, performance fluctuates due to the introduction of noise from additional knowl-
edge. Nevertheless, it still outperforms the variant without knowledge (i.e., K=0), demonstrating
Kara’s ability to effectively extract useful knowledge for downstream tasks.
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4.7 ANALYSIS OF KNOWLEDGE RETRIEVER

Table 8: Ablation study results of the
knowledge retriever.

Metrics P@1 P@5
Without structure information 0.681 0.669
Without cross-modal matching 0.733 0.721
Without relation-GO combinations 0.649 0.538
Original 0.821 0.795

Ablation Study. The accurate retrieval of the knowledge
retriever is extremely important for Kara’s performance
in downstream tasks. Therefore, here we analyze how
different components and hyper-parameters affect the re-
trieval performance of the knowledge retriever. As we
mentioned before, the knowledge retriever is trained on
the ProteinKG25 knowledge graph and we use the randomly sampled 2,000 proteins as the test set
to select the best model. During the evaluation, for each test protein pt we first traverse each rela-
tion r ∈ R to construct query pairs (pt, r, ?), and then use the knowledge retriever model to score
the corresponding candidate knowledge (pt, r, g

r
i ), where gri is the candidate GO entity from E(r).

After traversing all the relations, we rank candidate knowledge based on their scores and calculate
the Precision@n (P@n) metric to evaluate the retrieval performance, which indicates how much
knowledge on the top-n ranked candidates is valid (i.e., exists in the protein knowledge graph).

1
Neighbor Sampling Number

0.82 Precision@1

0.80

0.78

0.76

0.74

0.72
5 50 100 200

Figure 4: Performance of
knowledge retriever with
different neighbor sampling
numbers.

Hyper-parameter Analysis. In Table 8, without structure infor-
mation means that we remove the neighbor information in can-
didate GO embeddings (Equation equation 7), and without cross-
modal matching means that the knowledge retriever is only opti-
mized based on Lmargin. We can see that both of these two compo-
nents are beneficial to the retrieval performance. Without relation-
GO combinations means that for each relation, we use the whole
GO entity set as the candidates during retrieval. The worse perfor-
mance of this variant shows that relation-GO combination strategy
can not only reduce the retrieval time consumption, but also help
to filter out irrelevant GO candidates and thus improve the retrieval
accuracy. As shown in Figure 4, we can see that the higher neighbor
sampling number helps to achieve better retrieval performance.

5 RELATED WORK

Protein representation learning has attracted much attention due to the rapid development of pre-
trained language models. Existing works treat amino acid sequences as token sequences, and train
the language model with either supervision signal (Bepler & Berger, 2019) or self-supervised pre-
training objective (Alley et al., 2019; Rao et al., 2019; Xiao et al., 2021; Ahmed et al., 2020; Un-
sal et al., 2022; Lin et al., 2023; Brandes et al., 2022). However, these approaches ignore factual
knowledge (e.g., gene descriptions of proteins), resulting in inferior representations. Recently, On-
toProtein (Zhang et al., 2022) is the first attempt to incorporate knowledge graph by proposing a
hybrid encoder. KeAP (Zhou et al., 2023) further extends it by performing token-level knowledge
exploration via cross-attention module. However, both of them are limited by ignoring knowledge
graph structure and task-oriented knowledge modeling. Very recently, GOProteinGNN (Kalifa et al.,
2024) explores the benefit of graph structure. However, it still suffers from inconsistent optimiza-
tion objectives and fails to consider the high-order relationships among proteins. Instead, Kara can
explicitly inject high-order knowledge during both the pre-training and fine-tuning stages.

Some models explore incorporating information from other modalities to improve their ability to
learn protein representations (Chen et al., 2023a). For example, Otter-Knowledge (Lam et al., 2023)
designs knowledge graphs for not only proteins but broadly biomedical concepts. ProtST (Xu et al.,
2023) infers protein representations from biomedical texts, but with no graph structure. Our model
captures text descriptions together with knowledge graphs for high-order knowledge incorporation.

6 CONCLUSION AND FUTURE WORK

We develop a retrieval-augmented language model (Kara) for knowledge-aware protein represen-
tation learning, achieving the first unified and direct integration of protein knowledge graphs and
protein language models, while considering the high-order relationships within knowledge graphs.
Experimental results demonstrate the effectiveness of Kara and its superiority in 6 downstream tasks.
A promising future direction is integrating other modalities, such as 3D structures, with knowledge
graphs to develop multi-modal, knowledge-aware protein language models.
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REPRODUCIBILITY STATEMENT

Here we detail the efforts that we have made to ensure reproducibility of this work. As shown in
Section 4, we provide the anonymous link where the source code of Kara and source data (including
both the ProteinKG25 knowledge graph and downstream task datasets) are downloadable. In Ap-
pendix B, we provide detailed descriptions of the experimental settings and data processing steps
for each downstream task. In Appendix C, we provide detailed descriptions of the experimental
environment, backbone selection, hyper-parameter settings, and implementation details (including
all of the pre-training and fine-tuning stages, as well as the knowledge retriever). We also provide
the official links to pre-trained models and datasets that we used in Kara.
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A DATASET DESCRIPTION

We train the Kara using the ProteinKG25 knowledge graph (Zhang et al., 2022), consistent with
previous knowledge-enhanced models to achieve a fair comparison. ProteinKG25 includes about
4.5 million triplets describing relationships between protein and gene ontology (GO) entities, and
100K triplets describing relationships between GO entities. There are 31 kinds of relations, 600K
proteins, and 50K GO entities in ProteinKG25. Each GO entity in ProteinKG25 can be a molecule, a
cellular component, or a biological process, and each protein in ProteinKG25 has an average of 8.64
relations. Following the strategy provided by Zhou et al. (2023), we removed proteins appearing in
the datasets of downstream tasks to avoid data leakage. The raw data of ProteinKG25 can be found
in https://www.zjukg.org/project/ProteinKG25/.

B DOWNSTREAM TASK DEFINITIONS

Amino Acid Contact Prediction. This is a pairwise token-level matching task, where each pair of
input amino acids (si, sj) from a protein sequence s is mapped to a label yi,j ∈ {0, 1}, indicating
whether they are in contact or not (< 8Å apart). Accurate contact maps can facilitate robust modeling
of full 3D protein structure (Kim et al., 2014). Following previous works (Zhou et al., 2023), we use
data that comes from ProteinNet (AlQuraishi, 2019) and report precision on the ProteinNet CASP12
test set, which is a standard metric reported in CASP (Moult et al., 2018).

Protein-protein Interaction Identification. This is a pairwise sequence-level classification task.
Given a pair of proteins (pi, pj), the model aims to predict the interaction types yi,j between them.
Similar to previous works (Zhou et al., 2023), 7 types of interactions are included in our experiments,
which are reaction, binding, post-translational modifications, activation, inhibition, catalysis, and
expression. Each protein pair may belong to several types simultaneously so this is a multi-label
classification problem. We use three widely-used datasets SHS27K (Chen et al., 2019), SHS148K
(Chen et al., 2019), and STRING (Lv et al., 2021) in our experiments, where SHS27K and SHS148K
can be regarded as two subsets of STRING, which remove proteins with no more than 50 amino acids
or ≥ 40% sequence identity. The F1 score is used as the evaluation metric for this task.

Homology Detection. This is a sequence-level classification task where each input protein p is
mapped to a label y ∈ {1, 2, ..., 1195} based on its representation generated by protein language
models, which indicates its possible protein fold. This task requires the evolutionary understanding
of proteins and thus is valuable in microbiology and medicine (e.g., discover new CAS enzymes
(Liu et al., 2019)). We follow the previous works and use data from Hou et al. (2018). By hold-
ing out entire evolutionary groups from the training set, the model is required to generalize across
evolutionary gaps. Same as Hou et al. (2018), we report accuracy on the fold-level heldout set.

Stability Prediction. This is a sequence-level regression task. Each input protein p is mapped as
a number y ∈ R, which represents the most extreme conditions under which the protein maintains
its structure above a concentration threshold, serving as a proxy for its intrinsic stability. Measuring
the stability of proteins is important for finding top candidates from expensive protein engineer-
ing experiments (Rao et al., 2019). We use the data provided by Rocklin et al. (2017), where the
training set includes proteins from four rounds of experimental design, while the test set contains
proteins that are Hamming distance-1 neighbors of the top candidates. We report the Spearman’s
rank correlation scores on the test set to evaluate the model performance.

Protein-protein Binding Affinity Prediction. This is a pairwise sequence-level regression task
that maps each pair of proteins (pi, pj) as a real value y ∈ R, indicating the binding affinity changes
between them. This task evaluates how well a protein representation can predict changes in bind-
ing affinity resulting from protein mutations, thus being valuable for many downstream applications
such as drug design (Reidenbach, 2024). Following Unsal et al. (2022), we use Bayesian ridge re-
gression to the element-wise multiplication of protein embeddings for predicting the binding affin-
ity. The SKEMPI dataset (Moal & Fernández-Recio, 2012) is used and the performance is reported
based on the mean square error of 10-fold cross-validation.

Semantic Similarity Inference. This is a pairwise sequence-level regression task, which evaluates
how well protein language models can capture information about biomolecular functional similarity
between proteins. In this task, we emphasize the biological process (BP) and cellular component
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Table 9: Hyper-parameter settings for different downstream tasks.
Tasks Train Steps Batch Size K Lreg Learning Rate Gradient Accumulation Step
Contact 30,000 1 5 False 3e-5 8
Homology 2,200 2 1 True 4e-5 16
Stability 4,800 5 5 True 1e-5 16

(CC) categories similar to previous works (Unsal et al., 2022). We first use BP and CC to divide
protein attributes into two groups and calculate the Lin similarity in each group as the ground-truth
similarity. We then calculate the Manhattan similarity between protein embeddings as the prediction.
The Spearman’s rank correlation between these similarities is calculated as the metric.

C EXPERIMENTAL DETAILS

Experimental Settings. Same as previous knowledge-enhanced protein language models such as
KeAP and OntoProtein, we use the ProtBert model 2 as the backbone of the protein encoder within
Kara for a fair comparison. The text descriptions of GO entities and relations are encoded by the
PubMedBert model 3, which is also consistent with previous works. While generating the pre-
trained embeddings of items in the protein knowledge graph (see Section 2), we represent each item
as averaging the embeddings of its amino acid or word tokens. Our model is implemented with
Python and we refer to the official code released by Zhou et al. (2023) to implement the downstream
task experiments. All tasks use standard datasets and metrics, consistent with previous works, to
ensure a fair comparison. Note that since the train/valid/test set splittings of SHS27K, SHS148K,
and STRING datasets are not provided, we use the official code released by Lv et al. (2021) to
split each dataset with three different random seeds, and the average performance of each dataset is
reported. All the experiments are conducted on NVIDIA A40 with 48 GB memory.

Pre-training Implementation Details. In the pre-training stage, we set the protein encoder within
Kara (i.e., a PortBert model) as full-parameter trainable similar to previous works (Zhang et al.,
2022). We only use proteins and knowledge preserved in the ProteinKG25 knowledge graph to pre-
train Kara, where the maximum token length is set as 1024 for proteins and 512 for text descriptions.
For each protein, we randomly select 10 knowledge and 10 high-order connected proteins respec-
tively from N1 and N2 to construct its virtual tokens. The margin γ is set as 5 and the number of
negative samples is set as 2. We set the batch size to 4 with the maximum number of update steps
to 10,000, and the gradient accumulation step to 16. The learning rate is set as 1e-6 and we use
AdamW (Loshchilov & Hutter, 2017) for optimization. The weight decay is set as 1e-2.

Knowledge Retriever Implementation Details. In the knowledge retriever, we set the sampling
number of neighbors during the candidate embedding generation as 100. Similar to the pre-training
stage, the maximum token length is 1024 for proteins and 512 for text descriptions. To train the
knowledge retriever, we randomly sample 2,000 proteins as well as their associated knowledge from
the ProteinKG25 knowledge graph as the test set, and the remaining proteins are used as training
data. The best knowledge retriever model is selected based on the Precision@5 metric on the test set.
We train the knowledge retriever with the Adam optimizer (Kingma & Ba, 2015). The number of
training epochs is set as 500 with the batch size as 100, and we use the early stopping strategy with
a patience of 5. The learning rate is set as 1e-3 and the negative sampling number is set as 20. The
margin γ is also set as 5. Note that we only train the parameters within MLPs and the embeddings
of items in the protein knowledge graph are frozen, thus making our knowledge retriever seamlessly
generalize to knowledge updates. During inference, we rank all the candidate knowledge for a new
protein based on their scores S (lower is better), and then select top-K knowledge to add to the
protein knowledge graph, where K ∈ {1, 5, 50, 100}.
Fine-tuning Implementation Details. In the fine-tuning stage, we freeze the knowledge projector
MLPknowledge and the structure projector MLPstructure, and only optimize the parameters within
the protein encoder for downstream tasks. Note that the protein-protein interaction identification,
the protein-protein binding affinity prediction, and the semantic similarity inference tasks do not
need fine-tuning and we directly use the pre-trained Kara to encode proteins for these tasks. For the

2https://huggingface.co/Rostlab/prot_bert
3https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
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structure-based regularization term, we still set the margin γ as 5 and the number of negative samples
as 2. Different downstream tasks require various fine-tuning hyper-parameters and we summarize
them in Table 9. Additionally, we follow the implementations in GNN-PPI (Lv et al., 2021) for
PPI prediction, where the number of epochs is 600 and batch size is 2048. The learning rate is
set as 1e-3 for the SHS27K dataset and 1e-4 for the SHS148K and STRING datasets. We follow
the implementations in PROBE (Unsal et al., 2022) for the binding affinity prediction and semantic
similarity inference tasks.

16


	Introduction
	Preliminary
	Methodologies
	Pre-training Stage
	Contextualized Virtual Tokens
	Knowledge-guided Pre-training

	Fine-tuning Stage
	Knowledge Retriever
	Task-oriented Fine-tuning


	Experiments and Analyses
	Amino Acid Contact Prediction
	Protein-Protein Interaction Identification
	Homology Detection and Stability Prediction
	Protein-Protein Binding Affinity Prediction
	Semantic Similarity Inference
	Analysis of Kara
	Analysis of Knowledge Retriever

	Related Work
	Conclusion and Future Work
	Dataset Description
	Downstream Task Definitions
	Experimental Details

