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Abstract

Adversarial perturbations are strategic manipulations of input by an adversary
that are aimed to cause a Deep Network to misclassify the input. Since such
perturbations are employed to malicious ends, defending against them has become
an important research direction. Here, we consider the question of whether the
high-dimensional geometry of internal representations of Deep Networks trained
with standard methods can be used to derive predictions that are robust to adver-
sarial perturbations directed at them. To this end, we design probes on layerwise
representations, whose parameters can be directly determined from the training
data and/or adversarial versions thereof. We show, empirically, that such probes
can have adversarial robustness that is significantly better than that of the base
network, even though the probes and the base network have an identical initial
substrate.

1 Introduction

Deep Networks have achieved extraordinary performance on many tasks and datasets. However, it
is known that they suffer from unreliability of various kinds. One such type of unreliability is their
susceptibility to adversarial examples, which are maliciously-crafted perturbations of inputs which
are designed to elicit misclassifications by these models, while typically staying close enough to the
original input in order for the perturbation to remain perceptually indistinguishable.

A number of defenses against adversarial perturbations have been proposed, with adversarial training
[[L8]] emerging as the most widely adopted approach. While effective, it remains computationally
costly and tends to reduce performance on clean data [5]]. Other lines of work—including methods
based on data augmentation [6], regularization [20], transfer learning [[12], ensembling [9], and
randomized smoothing [4]—offer complementary benefits but also face their own trade-offs. Despite
steady progress, building defenses that are both practical and broadly effective continues to be an
open challenge [17].

Techniques to defend against adversarial perturbations typically either involve new kinds of training
paradigms or expensive iterative adversarial training. Here we consider the setting where we have a
pre-trained network, which hasn’t been explicitly trained to be robust to adversarial perturbations. We
seek to endow a degree of adversarial robustness to such networks by leveraging the high-dimensional
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geometry of their learned representations. Specifically, we build multiple classes of probes on the
layerwise representations of these networks and study their adversarial robustness.

Our recent work [[14] has examined the use of probes for robustness in the memorization setting
(i.e. models trained with label noise). We introduce a post-hoc decoding framework, in which we
build a new class of probes — the Minimum Angle Subspace Classifier (MASC). MASC constructs
class-conditional subspaces from internal network representations of models which have been trained
with different degrees of label noise; these subspaces are used to build a classifier. We demonstrate
that such models retain latent, generalizable structure in their internal representations that enables
our probe to achieve significantly better generalization than the base model, which has memorized
the noisy labels. Our findings suggests that useful predictive features may persist in hidden layers
but remain underutilized by standard readout mechanisms. However, the potential of leveraging
a network’s internal representations to defend against adversarial attacks has remained largely
unexplored. We use the MASC framework to investigate the role of internal representations in the
adversarial setting. Our main contributions are listed below.

* We employ MASC as a post-hoc decoding strategy to assess the capacity of internal network
representations to correctly classify adversarial inputs. Specifically, we investigate whether,
for adversarially perturbed test images, a model’s internal representations — when decoded
via MASC - produce more reliable predictions than the model’s native output layer. In this
setting, the class-conditional subspaces are constructed on internal representations of the
clean training dataset. Our results show that, in most cases, MASC outperforms the model
on adversarial data, with at least one layer consistently offering greater robustness. Indeed,
this defense is attack-agnostic in the sense of not being designed to defend against a specific
adversarial attack technique and does favorably on inputs perturbed using Fast Gradient
Sign Method (FGSM) and Projected Gradient Descent (PGD) respectively, while retaining
good accuracies on unperturbed test inputs.

* We further explore whether building class-conditional subspaces from adversarially-
perturbed training data can strengthen robustness, driven by the intuition that integrat-
ing adversarial examples into subspace construction may better adapt MASC to resist
such attacks. To this end, we develop Adversarial MASC, which constructs subspaces on
adversarially-perturbed training data. We find that, while Adversarial MASC often surpasses
standard MASC on adversarial data, but its performance deteriorates on clean test data,
especially with higher ¢ values.

» Thirdly, we investigate whether constructing class-conditional subspaces from both
adversarially-perturbed and clean training data can improve adversarial performance without
sacrificing accuracy on clean test data. In this setting, we built an Adversarial+ MASC,
which constructs subspaces on combined training datasets (adversarially-perturbed plus
clean). Our results show that Adversarial+ MASC has comparable results with Adversarial
MASC on adversarial data, while also delivering good performance on clean test data.

* Finally, we also deployed these probes on ResNet-50 pre-trained on ImageNet, where we
find that they are surprisingly effective. They show over 3x improvement in adversarial
accuracy when compared to the model, while having a modest drop in clean test accuracy.

Details on the models, datasets and training parameters used are available in the Appendix.

2 Related work

Adversarial Attacks and Defenses

Deep Networks’ susceptibility to small, imperceptible input perturbations [24} [10] has emerged as a
pressing challenge in the deep learning community and has garnered a lot of attention in recent years.
The discovery of such adversarial examples quickly led to a spectrum of attack methods that evolved
in both sophistication and effectiveness. Early approaches such as the Fast Gradient Sign Method
(FGSM) [I10]] demonstrated that a single gradient-based step could reliably fool a classifier. This was
soon extended to stronger iterative versions, most prominently Projected Gradient Descent (PGD)
[L8]], which became a canonical benchmark for evaluating robustness. Optimization-based attacks,
such as the Carlini-Wagner (CW) method [3]], further showed that adversaries could find minimal
perturbations that were highly effective at evading detection. More recently, evaluation suites like



AutoAttack [5] have emerged to standardize robustness assessment by combining multiple attacks in
an adaptive and parameter-free way. Alongside white-box attacks where the model parameters are
known, black-box methods have also been developed, demonstrating the surprising transferability of
adversarial examples across models [21]].

With the discovery of such adversarial examples, there has been an equal effort in designing defenses
and other measures to minimize the effect of these attacks. The most effective, and intuitive algorithm,
Adversarial Training [18]] simply adds generated adversarial examples to the network’s training diet.
Although effective in dealing with adversarial examples during inference, adversarial training incurs
substantial costs, including increased computational overhead and a consistent drop in clean-data
performance [5]. Variants such as TRADES [27] and Free Adversarial Training [23] attempt to
mitigate these trade-offs by balancing robustness with generalization or reducing computational
burden. Other strategies have leveraged data augmentation [6]], regularization [20], pre-training [12],
ensembling [9], and distillation [22]. More recently, randomized smoothing has been proposed as a
probabilistic defense that can offer certified robustness guarantees under certain perturbation regimes
[4]. Despite their promise, these defenses often come with significant trade-offs, such as the need for
larger training sets, multiple rounds of training, or maintaining ensembles of models, all of which
increase computational and data requirements [[17].

Linear Probes in the context of Adversarial Attacks

In the past, simple linear probes have been used to gain insight into the internal representations
of intermediate layers in Deep Networks [[1]. In this setup, the probes are simple linear classifiers
trained iteratively on the activations of intermediate layers to minimize crossentropy loss, to assess
the information available at that stage of processing in the network. Such probes are also beginning
to be used in the context of adversarial examples. For instance, 9] used linear probes to fine-tune for
CIFAR-10, a model that was pre-trained on ImageNet. They then used adversarial attacks that target
a specific layer probe and find that doing so disrupts primarily the representations of neighboring
layers, insofar as adversarial robustness is concerned. Additionally, [[13] demonstrate the robustness
of linear probes on models obtained by finetuning a robust pre-trained model.

3 Attack-agnostic probes on intermediate representations and their
adversarial robustness

We ask if probes on intermediate-layer representations of Deep Networks can have better adversarial
robustness than the corresponding Deep Network. Rather than use probes of the kind proposed in [[1]],
wherein the probe weights are trained by iteratively minimizing a crossentropy classification loss, we
wanted to leverage the high-dimensional geometry of class-conditional representations to create a
probe, whose weights can be directly inferred from this geometry.

We use a class of probes proposed in our recent study [14] that investigated class-conditional
subspaces derived from training data representations at various layers of Deep Networks, in the
memorization setting. Briefly, our approach, the Minimum Angle Subspace Classifier (MASC),
constructs low-dimensional class-specific subspaces by applying Principal Components Analysis
(PCA) to intermediate feature representations from a chosen network layer. Given a test sample, its
chosen layer representation is projected onto each class subspace, and the angle between the sample
vector & its projections are computed. The predicted label corresponds to the class with the smallest
such angle (i.e. highest cosine similarity).

Here, we begin by evaluating the capability of MASC constructed from clean training data. Specifi-
cally, we build MASC with class-conditioned subspaces from intermediate representations of the
clean training dataset and evaluate MASC performance on adversarial test inputs. We used MASC
with 1-D subspaces. For adversarially perturbing the dataset, we test this probe separately with FGSM
as well as PGD40 (i.e. PGD run for 40 iterations) with different € values on the test dataset. Figure
presents MASC results on the FGSM & PGD test dataset across different network layers for multiple
models — MLPs trained on MNIST and CIFAR-10, and CNNs trained on MNIST, Fashion-MNIST,
and CIFAR-10 — under standard training protocols and varying e values. We have run tests on a
number of e budgets, some of which also correspond to cases where the perturbed images look
perceptibly different. MASC is applied independently across all layers of the network.

The probes built here turn out to not be dependent on a single adversarial attack technique and we find
that they perform well in the face of both the adversarial attack techniques tested here — FGSM and
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Figure 1: Minimum Angle Subspace Classifier (MASC) accuracy on adversarially perturbed test
dataset and clean test dataset over the layers of the network and for varying € values. Here, the
data is projected onto class-specific subspaces constructed from the clean training dataset. ¢ value
is presented at the top of each subplot and the rows represent model-dataset pair as indicated. For
reference, the model accuracy on clean test dataset and adversarially perturbed test dataset of the
corresponding model (dotted line) is also shown. PGDA40 refers to Projected Gradient Descent (PGD)
adversarial attacks run for 40 iterations (steps).



PGD. In many cases, for various epsilon values, the MASC accuracy on adversarial testing with these
attacks is significantly better than that of the model, and this is accompanied by a modest decrease in
MASC accuracy on the clean test set. Interestingly, probes on later layers tend to be less adversarially
robust while having high accuracy on the clean test set. Also, in some cases, MASC applied directly
on the input has good adversarial robustness, although it suffers from poorer accuracy on the test data.
While we haven’t run detailed comparisons with other techniques on fixed parameter values, in the
Appendix, we demonstrate that the adversarial accuracy obtained here is comparable to those with
other techniques for similar ranges of attack parameters. In the Appendix, we likewise run versions
of our probes where the subspaces correspond to those that capture 99% of variance in the training
data. Our results in this section suggest that leveraging internal representations in an attack-agnostic
manner through MASC can yield more robust predictions against adversarial perturbations than the
model, especially with probes on earlier layers.

4 Robustness of probes built on subspaces with adversarial perturbations

Here, we ask the following question: does incorporating adversarial perturbations during subspace
construction enable MASC to better resist such attacks? Specifically, we investigate whether con-
structing class-conditional subspaces from adversarially perturbed training data — Adversarial MASC
— improves robustness against adversarial attacks compared to subspaces derived from clean training
data. Adversarial MASC'’s subspaces incorporate adversarial samples, which may allow it to better
capture and counteract such attacks, thereby improving robustness.

Adversarial MASC results on PGD40 attack test dataset over the layers of MLP-MNIST, MLP-
CIFAR-10, CNN-MNIST, CNN-Fashion-MNIST, and CNN-CIFAR-10 are shown in Figure [2] and for
on FGSM attack test dataset on same models are shown in Figure §]in the Appendix.

We find that at smaller € values, MASC and Adversarial MASC perform comparably on both
adversarial and clean data. However, as € increases, Adversarial MASC often surpasses standard
MASC on adversarial inputs, though this improvement comes at the cost of a significant drop in
performance on clean test data. Also, for the case of the FGSM attack (Figure [§|of Appendix), we
find in some cases that the adversarial accuracy outperforms the clean test accuracy. This is consistent
with the possibility of label leaking [16]] in FGSM, although we did not investigate this, in detail.

5 Probes built on subspaces with adversarial perturbations augmented with
the clean training set samples

Using only clean training data to build subspaces preserves accuracy on clean samples to a significant
extent while offering a measure of adversarial robustness. In contrast, as demonstrated in the previous
section, relying solely on adversarially-perturbed data to fit subspaces improves robustness but often
reduces accuracy on the clean test set significantly. Here, to explore the best of both worlds, we
construct Adversarial+ MASC, which uses subspaces integrating both clean and adversarial training
representations, aiming to retain clean performance while enhancing robustness. In this setting, these
subspaces capture 99% of variance per clasﬂ

Adversarial+ MASC results on PGD40 attack test dataset over the layers of MLP-MNIST, MLP-
CIFAR-10, CNN-MNIST, CNN-Fashion-MNIST, and CNN-CIFAR-10 are shown in FigureE] and
for on FGSM attack test dataset on same models are shown in Figure [10|in the Appendix. The
comparative figures of Adversarial+ MASC and MASC are provided in the Appendix.

The results demonstrate that Adversarial+ MASC offers a balanced trade-off between robustness and
accuracy. Specifically, while its performance on adversarial test data remains largely comparable
to Adversarial MASC, it simultaneously achieves substantially higher accuracy on clean test data.
For small € values, Adversarial+ MASC and Adversarial MASC exhibit similar performance on
both clean and adversarial test data. However, as € increases, Adversarial+ MASC shows a slight

3Results corresponding to 1-D subspaces are available in the Appendix. We find that in case of 1-D subspaces,
the adversarial accuracy is worse than for subspaces corresponding to those that capture 99% variance. Our
hypothesis is that because the clean data points and their adversarial versions are fairly close, their distinction
tends to be lost when only the first principal component is considered.
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Figure 2: Adversarial Minimum Angle Subspace Classifier (Adversarial MASC) accuracy on adver-
sarially perturbed test dataset and original test dataset over the layers of the network and for varying e
values. Here, the data is projected onto class-specific subspaces constructed from PGD40 training
dataset. € value is presented at the top of each plot and the columns represent model-dataset pair as
indicated. For reference, the model accuracy on original test dataset and adversarially perturbed test
dataset of the corresponding model (dotted line) is also shown. MASC accuracy on testing (dotted
line) and PGD40 testing (dotted line) when data is projected onto original training subspaces is
overlaid for comparison. PGDA40 refers to Projected Gradient Descent (PGD) adversarial attacks run
for 40 iterations (steps).
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Figure 3: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for varying
€ values. Here, the data is projected onto class-specific subspaces constructed from PGD40 and clean
training dataset. € value is presented at the top of each plot and the columns represent model-dataset
pair as indicated. For reference, the model accuracy on clean test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. Adversarial MASC accuracy
on testing (dotted line) and PGD40 testing (dotted line) when data is projected onto subspaces
corresponding to only adversarial data is overlaid for comparison.



reduction in adversarial robustness compared to Adversarial MASC, but maintains significantly
stronger accuracy on clean test data.

Adversarial+ MASC can be considered somewhat analogous to Adversarial Training [[18} 27] due to
the inclusion of both clean and adversarial samples in the model training diet. Although, it is worth
pointing out that traditional Adversarial Training involves expensive iterations that train a full Deep
Network on the additional samples whereas our Adversarial+ MASC only needs a single forward
propagation of these adversarial examples to construct the class-conditional subspaces. Despite this,
we see comparable performance between the two robustness regimes in Table 2] of the Appendix.

6 Probes on ResNet-50 pre-trained on ImageNet

We also ran a smaller scale of experiment on a ResNet-50 model pre-trained on the ImageNet
dataset with 1000 classes, which is the largest model/dataset we have tested. We ran experiments
only for PGD with 10 iterations and with a single e budget (0.3). For this value of €, the adversarial
perturbations look perceptually indistinguishable from the original images. We ran the previously
discussed MASC variants on three of the layerwise outputs. See Table([I]for details of the clean test
accuracies and adversarial test accuracies we obtained for these probes, along with the corresponding
baseline accuracies obtained on the ResNet-50 model.

Table 1: MASC, Adversarial MASC and Adversarial+ MASC accuracies on the ResNet-50 model.
While the Testing column refers to accuracy on the ImageNet validation dataset, PGD Testing
column refers to accuracy on an adversarial version of the same (adversarially attacked using PGD;
e-value: 0.3; iterations: 10). MASC either uses 600(c, a, a+) or 300(a) images per class in fitting
subspaces, while ‘c’, ‘a’ and ‘a+’ refers to clean, adversarial and adversarial+(50% clean + 50%
adversarial) training images respectively. We used probes on the outputs of three different layers of
the ResNet-50 model namely avg_pool, conv5_block3_out, conv5_block2_out. During subspace
construction of MASC, 1-D subspaces were used per class for probes in all three layers and an
additional experiment was conducted on the avg_pool layer with subspaces each capturing 99%
variance of the class-conditioned training data.

ResNet-50 layer & nature of subspaces =~ MASC trained on  Testing PGD Testing

600c 0.51 0.26

avg_pool (2048 dimensions) 300a 0.52 0.32

1-D subspaces 600a 0.53 0.33

600a+ 0.55 0.30

600c 0.49 0.30

conv5_block3_out (100352 dimensions) 300a 0.49 0.33
1-D subspaces 600a 0.51 0.34

600a+ 0.52 0.32

600c 0.33 0.25

conv5_block2_out (100352 dimensions) 300a 0.34 0.28
1-D subspaces 600a 0.34 0.29

600a+ 0.36 0.28

600c 0.53 0.28

avg_pool (2048 dimensions) 300a 0.57 0.45
Subspaces capturing 99% variance 600a 0.59 0.45
600a+ 0.59 0.43

ResNet-50 Model accuracies - 0.65 0.13

We find that the probes can be remarkably effective in this case. In particular, an Adversarial MASC
probe trained on the avg_pool layer using class-conditional subspaces that capture 99% variance
results in 45% adversarial accuracy, which is 346% better than the adversarial accuracy of 13%
obtained with the model. This probe comes with a clean test accuracy of 59% which is marginally
lower than the clean test accuracy of 65% obtained with the model.

*See Appendix for details of experimental set-up.



We also sought to examine the dependence of the probe performance on the ambient dimensionality
of the layerwise representations. Two of the layers tested have about 50x the ambient dimensionality
of the avg_pool layer. For MASC variants that use 1-D subspaces, we don’t find that higher ambient
dimensionality results in better performance. Likewise, we considered how the performance of the
MASC probes is dependent on the number of images per class used to fit subspaces. For MASC
variants that use 1-D subspaces, we found that doubling the number of images per class from 300 to
600 results only in marginal gains in acccuracy.

7 Discussion

Here, we considered the setting where we have Deep Networks pre-trained on a dataset via stan-
dard methods that do not include any adversarial training. Our goal was to ask whether we can
leverage existing high-dimensional layerwise representations to obtain some measure of adversarial
robustness, without resorting to expensive iterative (re)training methods. We find indeed that simple
computationally-inexpensive probes, which are not even specifically designed for the adversarial
setting, can already offer a modest degree of adversarial robustness without significant sacrifices on
clean test accuracy. Secondly, we built variants of these probes that used adversarial perturbations of
the training data. We find that these probes can have better adversarial robustness than the previous
class of probes, especially for larger ¢ budgets, although this comes at the cost of clean test accuracy.
With a view to have improved adversarial test accuracy, as obtained in the previous case, but without
significantly impacting clean test accuracy, we also created versions of probes that fit subspaces to
clean training data augmented with adversarially perturbed versions of the training data. Here, we find
that the probes can have somewhat better adversarial accuracy than our attack-agnostic probes, while
taking only a modest loss in clean test accuracy. We also tested these probes on ResNet-50 trained on
ImageNet — our largest model/dataset. Here we find that the probes are particularly effective. Indeed,
our probes are able to outperform the model’s adversarial accuracy by up to 346%, while only having
a slightly worse clean test accuracy.

The work in its present form carries some limitations. On the one hand, we have not run detailed
comparisons with other techniques for identical values of parameters. However, we show (in the
Appendix) that our results are comparable to those from other techniques for similar parameter values,
with our techniques often requiring less computational overhead. For some models, we haven’t run
probes on all layers; it is possible that some of these layers indeed show better performance. It would
also be interesting to see how the probes perform on other attack techniques such as AutoAttack and
Carlini-Wagner.

The use of probes on layerwise representations of pre-trained networks towards obtaining better
adversarial robustness is a research direction that hasn’t yet received adequate attention. Indeed,
it is somewhat surprising that existing representations learned by networks trained with standard
methods carry a significant measure of adversarial robustness that is underutilized by the networks.
Our work shows the initial promise of using probes to take advantage of robustness present in these
representations. The detailed mechanisms that underlie their effectiveness are poorly understood
and merit further investigation. For example, the three variants of probes designed here do not show
significant differences in accuracy for smaller ¢ budgets, the reasons for which are unclear. It is
possible that a detailed understanding of the mechanisms here could not only serve to improve such
probes, but also lead to better adversarial training methods that better leverage this latent adversarial
robustness.
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A Model and training details

We conduct experiments using Multi-Layer Perceptrons (MLPs) trained on MNIST [8] and CIFAR-
10 [[15]]; Convolutional Neural Networks (CNNs) trained on MNIST, Fashion-MNIST [23]], and
CIFAR-10 and ResNet50 [[11]] pre-trained on ImageNet[7]].

The MLP model consists of four hidden layers with 128, 512, 2048, and 2048 units, respectively.
Each hidden layer is followed by a Re LU activation, while a softmax activation is applied at the
output for classification. Training was performed using the SGD optimizer with a learning rate of
1 x 1073 and momentum of 0.9. A batch size of 32 was used across all experiments. Input data was
normalized by dividing pixel values by 255.

The CNN model is composed of three convolutional blocks, each containing two convolutional layers
followed by a max pooling layer. The convolutional layers use 16, 32, and 64 filters, respectively,
with a stride of 1 and a kernel size of 3 x 3. The max pooling layers use a stride of 1 and a kernel
size of 2 x 2. These blocks are followed by three fully connected layers, each with 250 units. The
model was trained with the Adam optimizer using a learning rate of 2 x 10~*. For MNIST and
Fashion-MNIST, a batch size of 32 was used, while for CIFAR-10 the batch size was 128. Input data
was normalized by subtracting the mean and dividing by the standard deviation for each channel.
ReLU activations were applied after all layers except pooling, and a softmax activation was used at
the final classification layer.

We have used ResNet-50 pre-trained on ImageNet. For pre-processing the images, we first applied
zero-padded to resize each image to 224 x 224 and then performed the standard pre-processing step
for ResNet-50 using TensorFlow library. Pre-proessed images were used in all experiments in this
work. Layerwise outputs of these inputs are flattened and then used in subspace construction.

In our adversarial experiments with MNIST, Fashion-MNIST, and CIFAR-10, we evaluated robustness
under FGSM and PGD attacks (L-inf) using the following dataset-specific € values: MNIST (0.2,
0.5, 0.8, 1.0), Fashion-MNIST (0.05, 0.1, 0.3, 0.5), and CIFAR-10 (2/255, 0.05, 0.1, 0.3). For PGD
attacks, we performed 40 iterations. On the ImageNet dataset, we applied an €=0.3 with 10 PGD
iterations. The attacks were generated by algorithms adapted from [[10]] and [[18]].

For the MLP, experiments were conducted on all layers of the network, whereas for the CNN, they
were restricted to the last four layers. For ResNet-50, the experiments were conducted on avg_pool,
conv5_block3_out and conv_5block2_out layers. For MASC algorithms, refer to [[14].

In the plots, Model Testing Accuracy refers to models’ accuracy on the clean test dataset, Model
FGSM Testing Accuracy to models’ accuracy on an FGSM-attacked test dataset, MASC Accuracy on
Testing to MASC performance on the original test dataset, and MASC Accuracy on FGSM Testing to
MASC performance on the FGSM-perturbed test dataset. Similar understading Accuracy was used as
the primary evaluation metric throughout. Results are averaged over three independent training runs,
with shaded regions in the plots indicating the range across runs, except for ResNet50, where results
are reported from a single run since it is a pre-trained network.

Experiments were performed on workstation having NVIDIA GeForce RTX 3090s and server
equipped with Tesla A100 and Tesla H100 GPUs. The workstation operated on Ubuntu 20.04.3 LTS
and the server on Rocky Linux 8.10 (Green Obsidian). All MLP-CNN models were implemented in
Python using the PyTorch library and ResNet-50 was implemented using Keras/TensorFlow. Memory
usage varied across experiments depending on the model and dataset. For reproducibility, we set
torch.manual_seed to 42 in case of CNN and MLP models. Most experiments completed within
12-24 hours.

B Comparing MASC with other Adversarial Defenses

We compared our implementations of MASC with several widely-studied and state-of-the-art defense
measures on CIFAR-10 (Table[2)) and ImageNet (Table [3). The reported accuracy results are taken
directly from the original papers under PGD [18] attacks. For both datasets, we include three variants
of our MASC model (Standard, Adversarial, and Adversarial+) and representative defenses from
recent adversarial robustness literature. These include methods that augment training with adversarial
or synthetic examples [[18 27, 2] and defenses that employ specialized regularization techniques
(19} 26]].
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Table 2: Comparison of different defense methods against adversarial attacks on CIFAR-10. Our
results reported are averaged over three runs for the best layer.

Defense Method Architecture e-value Clean Acc. Adv. Acc.
MASC (Ours) CNN 0.05 (12.75/255) 65.35 53.81
Adversarial MASC (Ours) CNN 0.05 (12.75/255) 74.57 54.65
Adversarial+ MASC (Ours) CNN 0.05 (12.75/255) 71.58 46.10
MixUp Inference [[19]] ResNet50 8/255 82.90 31.00
Standard AT [[18]] ResNet50 8/255 87.30 47.04
TRADES AT [27] ResNet18 8/255 84.92 56.61

Table 3: Comparison of different defense methods against adversarial attacks on ImageNet.

Defense Method Architecture e-value Clean Acc. Adv. Acc.
MASC (Ours) ResNet50 0.3 (76.5/255) 53.00 28.00
Adversarial MASC (Ours) ResNet50 0.3 (76.5/255) 59.00 45.00
Adversarial+ MASC (Ours) ResNet50 0.3 (76.5/255) 59.00 43.00
Standard AT [18] ResNet50 4/255 62.42 33.58
Augmentation Warmup [2] DelT-S 4/255 66.62 36.56
MIMIR [26] ViT-B 4/255 76.98 53.84

Broadly, we find that our results are in the ballpark of results obtained via other techniques, while, in
many cases, requiring significantly smaller computational overhead.

C Additional results with PGD attack

In this section, we present additional results with Projected Gradient Descent (PGD) attack. For
subspaces corresponding to 99% variance captured, MASC and Adversarial MASC results are shown
in Figure ] Adversarial+ MASC results with only top one principal component are shown in Figure
[l Results comparing Adversarial+ MASC with MASC for only top principal component is shown in
Figure[6]and for 99% variance captured in Figure

D Additional results on with FGSM attack

In this section, we present the results with Fast Gradient Sign Method (FGSM) attack. Here, we
show results with probes subspaces using only top one principle component and 99% variance
explained. MASC and Adversarial MASC results with subspaces corresponding only top one
principle component and 99% variance captured per class are shown in Figure [§] and Figure [9]
respectively.

Adversarial+ MASC results with subspaces corresponding to only one top principal component and
99% variance captured per class are shown in Figure [I0] and [IT] respectively. Results comparing
Adversarial+ MASC with MASC for only top principal component is shown in Figure [I2] and for
99% variance captured in Figure [I3|respectively.

E Additional results with MASC

Here, we present additional results with both the attack for MASC using subspaces corresponding to
99% variance captured. Figure [14] presents MASC results on the FGSM & PGD test dataset across
different network layers for multiple models under standard training protocols and varying e values.
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Figure 4: Minimum Angle Subspace Classifier (MASC) accuracy and Adversarial Minimum Angle
Subspace Classifier (Adversarial MASC) accuracy on adversarially perturbed test dataset and clean
test dataset over the layers of the network and for varying e values. For MASC, the data is projected
onto class-specific subspaces constructed from clean training dataset and for Adversarial MASC,
the data is projected onto class-specific subspaces constructed from PGD40 training dataset. e value
is presented at the top of each plot and the columns represent model-dataset pair as indicated. For
reference, the model accuracy on clean test dataset and adversarially perturbed test dataset of the
corresponding model (dotted line) is also shown. PGDA40 refers to Projected Gradient Descent (PGD)
adversarial attacks run for 40 iterations (steps).
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Figure 5: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for varying
€ values. Here, the data is projected onto class-specific subspaces constructed from PGD40 and clean
training dataset. € value is presented at the top of each plot and the columns represent model-dataset
pair as indicated. For reference, the model accuracy on clean test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. Adversarial MASC accuracy
on testing (dotted line) and PGD40 testing (dotted line) when data is projected onto subspaces
corresponding to only adversarial data is overlaid for comparison.

15



Model Testing Accuracy «- MASC Accuracy on Testing —+— Adversarial+ MASC Accuracy on Testing

Model PGD40 Testing Accuracy = MASC Accuracy on PGD40 Testing Adversarial+ MASC Accuracy on PGD40 Testing
Eps:0.2 Eps:0.5 Eps:0.8 Eps:1.0
10 10 / 1.0 /
0.8 ; 0.8 0.8
i - s
06 0.6 . 0.6 0.6
=
904 0.4 0.4 2 0.4
0.2 0.2 0.2 - 0.2
0.0 0.0 0.0 0.0
E O a® D @ @ S a® ) E 0D D @ @ 0 D @ ®
W «<® VCGQ ?COQ W «® ¢ > 0® W «® ?C(L“ ?(,OQ W «® ?00“ (&\”L“
Eps:0.2 Eps:0.5 Eps:0.8 Eps:1.0
1.0 /,.-—" —— 1.0 10 /—/ 1.0 /.—/
0.8 0.8 /l 0.8 0.8
& : "
> 06 0.6 0.6 0.6
= W
§ 0.4 0.4 a 0.4 0.4
O e = .
0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0 .
N A O o <O N 46 W\ W\ N} N 10 o o ) N 46 o o) o
o S ¢; ¢ & @ S 2> @ @® o S i @ g 2> 0 @°
\ ?\3‘\ PO X ?\a‘\ ® &V X ?\@‘\ «® Q X ?\6‘\ I q
Eps:0.3 Eps:0.5
1.0 1.0 1.0
Zos 08l 0.8 /
3% |- : . B &
© 506 R 06 06
5z
O Bo4 0.4 0.4 . 0.4
w
O 2 =
< %o‘z 0.2 0.2 2 0.2 €
00 00 0.0 | EE——— 00 -
S o W\ N o N o o o0 o N o N o o N o o o N
U O ) N s 02 @ @° N N ) N s 02 @ @°
N ?\6‘\ A N ?\a‘\ PGS e ?\“‘\ GO K ?\a\\ & @V
Eps:2/255 Eps:0.05 Eps:0.1 Eps:0.3
1.0 1.0 1.0 1.0
o 08 0.8 0.8 0.8
—
Z 0.6 0.6 0.6 0.6
T — N
T 0.4 * 0.4 0.4 0.4 .A
g ,/ / ) e——
=02 0.2 - 0.2 0.21%
0.0 0.0 0.0 0.0 %
o ) 0 FEANRN] W 2] 0 (AN W %) 0 (AN
o o e o o 3 A o> of o 3 A o> of o
PRI Gl PR PG T VT O
Eps:2/255 Eps:0.05 Eps:0.3
1.0 1.0 1.0 1.0
o038 0.8 0.8 0.8
g 0.6 — 0.6 0.6 0.6 =
o
; 0.4 / 0.4 0.4 0.4 /
=z p
o021 021 0.2 . 027 ¢ :
0.0 0.0 0.0 0.0

R N Y N S N N P P Y
o Q\a‘\@ ?(1\1 ‘(/\‘L «¢ o ?\%‘\\p ((c\’L ((C\l ?CG o Q\G‘\@ ?(1\1 ((CCL ‘C\'L o ?\a&p PG ((C\’l ?LG

Network layers

Figure 6: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for varying
e values. Here, the data is projected onto class-specific subspaces constructed from PGD40 and clean
training dataset. € value is presented at the top of each plot and the columns represent model-dataset
pair as indicated. For reference, the model accuracy on clean test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. MASC accuracy on testing (dotted
line) and PGDA40 testing (dotted line) when data is projected onto subspaces corresponding to only
clean data is overlaid for comparison.
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Figure 7: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for varying
e values. Here, the data is projected onto class-specific subspaces constructed from PGD40 and clean
training dataset. € value is presented at the top of each plot and the columns represent model-dataset
pair as indicated. For reference, the model accuracy on clean test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. MASC accuracy on testing (dotted
line) and PGDA40 testing (dotted line) when data is projected onto subspaces corresponding to only
clean data is overlaid for comparison.
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Figure 8: Adversarial Minimum Angle Subspace Classifier (Adversarial MASC) accuracy on adver-
sarially perturbed test dataset and original test dataset over the layers of the network and for varying e
values. Here, the data is projected onto class-specific subspaces constructed from FGSM training
dataset. € value is presented at the top of each plot and the columns represent model-dataset pair
as indicated. For reference, the model accuracy on original test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. MASC accuracy on testing
(dotted line) and FGSM testing (dotted line) when data is projected onto original training subspaces
is overlaid for comparison.
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Figure 9: Minimum Angle Subspace Classifier (MASC) accuracy and Adversarial Minimum Angle
Subspace Classifier (Adversarial MASC) accuracy on adversarially perturbed test dataset and clean
test dataset over the layers of the network and for varying e values. For MASC, the data is projected
onto class-specific subspaces constructed from clean training dataset and for Adversarial MASC,
the data is projected onto class-specific subspaces constructed from FGSM training dataset. € value
is presented at the top of each plot and the columns represent model-dataset pair as indicated. For
reference, the model accuracy on clean test dataset and adversarially perturbed test dataset of the
corresponding model (dotted line) is also shown.
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Figure 10: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for
varying € values. Here, the data is projected onto class-specific subspaces constructed from FGSM
and clean training dataset. € value is presented at the top of each plot and the columns represent model-
dataset pair as indicated. For reference, the model accuracy on clean test dataset and adversarially
perturbed test dataset of the corresponding model (dotted line) is also shown. Adversarial MASC
accuracy on testing (dotted line) and FGSM testing (dotted line) when data is projected onto subspaces
corresponding to only adversarial data is overlaid for comparison.
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Figure 11: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and original test dataset over the layers of the network and for
varying € values. Here, the data is projected onto class-specific subspaces constructed from FGSM
and clean training dataset. € value is presented at the top of each plot and the columns represent model-
dataset pair as indicated. For reference, the model accuracy on original test dataset and adversarially
perturbed test dataset of the corresponding model (dotted line) is also shown. Adversarial-MASC
accuracy on testing (dotted line) and FGSM testing (dotted line) when data is projected onto subspaces
corresponding to only adversarial data is overlaid for comparison.
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Figure 12: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for varying
e values. Here, the data is projected onto class-specific subspaces constructed from FGSM and clean
training dataset. € value is presented at the top of each plot and the columns represent model-dataset
pair as indicated. For reference, the model accuracy on clean test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. MASC accuracy on testing (dotted
line) and FGSM testing (dotted line) when data is projected onto subspaces corresponding to only
clean data is overlaid for comparison.
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Figure 13: Adversarial+ Minimum Angle Subspace Classifier (Adversarial+ MASC) accuracy on
adversarially perturbed test dataset and clean test dataset over the layers of the network and for varying
e values. Here, the data is projected onto class-specific subspaces constructed from FGSM and clean
training dataset. € value is presented at the top of each plot and the columns represent model-dataset
pair as indicated. For reference, the model accuracy on clean test dataset and adversarially perturbed
test dataset of the corresponding model (dotted line) is also shown. MASC accuracy on testing (dotted
line) and FGSM testing (dotted line) when data is projected onto subspaces corresponding to only
clean data is overlaid for comparison.
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Figure 14: Minimum Angle Subspace Classifier (MASC) accuracy on adversarially perturbed test
dataset and clean test dataset over the layers of the network and for varying € values. Here, the
data is projected onto class-specific subspaces constructed from the clean training dataset. ¢ value
is presented at the top of each subplot and the rows represent model-dataset pair as indicated. For
reference, the model accuracy on clean test dataset and adversarially perturbed test dataset of the
corresponding model (dotted line) is also shown. PGDA40 refers to Projected Gradient Descent (PGD)
adversarial attacks run for 40 iterations (steps).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .
Justification: Please refer section[3} @] 3] and |6}
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Please refer section [
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:|[NA] .
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: Please refer Appendix section [A]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: Not presently.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: Please refer Appendix section [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the high computational cost of most experiments, we conducted three
independent runs per experiment. The plots present the average results along with the range
observed across these runs. We do not report statistical significance in our analysis.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .
Justification: Please refer to Appendix section [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research presented in this paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not present any such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please refer Appendix section [A]
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core methodological development in this research does not make use of
LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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